# Cosmologia e fondo cosmico di microonde 

Aniello (Daniele) Mennella

Dipartimento di Fisica
Università degli studi di Milano





## 1929 - Legge di Hubble



Edwin Hubble - 1929

## 2002 - Legge di Hubble




[^0]Oggi le osservazioni confermano la Legge di Hubble fino alle più grandi distanze accessibili


Se l'universo oggi si sta espandendo, cosa possiamo dire di come era nel passato?

- ?
- ?
- ?


## I modelli di Friedmann

$$
\rho_{C}=\frac{3 H_{0}^{2}}{8 \pi G} \approx 10^{-29} \mathrm{~g} \mathrm{~cm}^{-3}
$$




Alexander Friedmann

La dinamica e la geometria dell'universo sono determinati dalla sua densità media

## George Gamow - Big bang e CMB



## Evoluzione dell'Universo

- L'universo nei primi istanti di vita ha densità e temperature altissime. I processi fisici che agiscono in questo periodo di vita non sono ancora chiari.

- L'immagine dell'esplosione evocata dal termine "Big Bang" è più evocativa che reale.
- L'universo "osservabile" aveva in questa fase le dimensioni di una palla da gioco


## Evoluzione dell'Universo

INFLAZIONE: Espansione esponenziale causata dall'energia del vuoto


## Evoluzione dell'Universo

- L'universo è una "zuppa" di particelle, antiparticelle e radiazione in equilibrio dinamico (paricelle e antiparticelle sono continuamente create ed annichilate)
- Esiste una piccola sproporzione fra particelle e antiparticelle a favore delle prime
- Per ogni famiglia di particelle esiste una temperatura al di sotto della quale l'equilibrio fra radiazione e materia si rompe, lasciando come residuo la picola frazione di particelle
- I quark si combinano per formare i barioni, ovvero protoni e neutroni


## Evoluzione dell'Universo



- Si formano i nuclei più leggeri (Elio, Deuterio, Litio)
- L'abbondanza dell'elio, del deuterio e del litio primordiali è possibile misurarla oggi e confrontarla con le previsioni dei modelli


## Evoluzione dell'Universo



```
- Dopo la nucleosintesi la materia è ionizzata (gli elettroni sono liberi).
- La radiazione interagisce con gli elettroni e non può propagarsi liberamente (universo opaco)
- A t~300000 anni la temperatura scende < 3000 K e gli elettroni si legano ai nuclei. La materia diventa neutra e la radiazione può propagarsi (universo trasparente)
```


## CMB - Cosmic Microwave Backgorund

- Radiazione di corpo nero (emissione termica)
- Per effetto dell'espansione dell'universo ci aspettiamo una lunghezza d'onda spostata verso il "rosso" (red-shift) di un fattore circa 1000 (a che frequenza? A che temperatura?)
- Ci si aspetta una distribuzione essenzialmente isotropa ed omogenea

$$
\theta
$$




## E’ ragionevole aspettarsi anisotropie nella CMB?

## E’ ragionevole aspettarsi anisotropie nella CMB?

- Oggi l'universo è anisotropo su piccole scale (galassie, stelle, pianeti, persone, ...)
- In tempi più recenti la materia si è aggregata per effetto dell'attrazione gravitazionale: è necessario supporre l'esistenza di zone di sovradensità e di rarefazione.
- La "caccia" alle anisotropie si è aperta su larga scala nel 1992, con la pubblicazione dei risultati della missione COBE della NASA


## COBE

## Cosmic Background Explorer



Experiments:
DMR:
CMB Anisotropy

FIRAS:
CMB Specrum

DIRBE:
IR Background

## DMR 53 GHz Maps

Dipole-dominated map
$\Delta \mathrm{T} \sim \pm 3.5 \mathrm{mK}$

## DMR 53 GHz Maps

Fluctuations from Galaxy, background and instrument noise
$\Delta \mathrm{T} \sim \pm 0.1 \mathrm{mK}$

## DMR 53 GHz Maps

La prima "immagine" dell'universo primordiale


Fluctuations from CMB
(with instrument noise)

$$
\Delta \mathrm{T}_{\mathrm{CMB}} \sim \pm 35 \mathrm{mK}
$$

## DMR 53 GHz Maps

La prima "immagine" dell'universo primordiale




## Che informazioni ci dà una mappa di anisotropie di CMB?



## A cosa serve lo spettro di potenza?

- La "forma" dello spettro di potenza riflette la distribuzione di materia e radiazione all'epoca disaccoppiamento
- Dipende dai "parametri cosmologici", gli ingredienti costitutivi dell'Universo
- Una misura accurata dello spettro di potenza consente di determinare con grande precisione (dell'ordine del \%) molti parametri cosmologici


## A cosa serve lo spettro di potenza?



## A cosa serve lo spettro di potenza?



## A cosa serve lo spettro di potenza?



## Misure sperimentali dello spettro di potenza da COBE a MAP

Misure estremamente delicate

- Segnale molto piccolo
- Contaminazione atmosferica
- Necessarie misure da satellite



## Requisiti sperimentali per misure "di precisione"

- Elevata risoluzione angolare ( 1 ~ 1500 => q ~ 5-7')
- Elevato rapporto segnale-rumore ( $\sim 10,=>\sigma_{\text {pix }} \sim 5$ $\mu \mathrm{K} /$ pixel)
- Ampia copertura del cielo
- Possibilità di rimuovere segnali di "foreground" (segnali galattici ed extragalattici)
- Contaminazione da errori sistematici al livello del $\sim 10 \%$ del rumore strumentale ( $<1 \mu \mathrm{~K} /$ pixel)


## Requisiti sperimentali per misure "di precisione"

- Elevata risoluzione angolare ( 1 ~ 1500 => q ~ 5-7')
- Elevato rapporto segnale-rumore ( $\sim 10, \Rightarrow \sigma_{\text {pix }} \sim 5$ $\mu K /$ pixel)
- Ampia copertura del cielo
- Possibilità di rimuovere segnali di "foreground" (segnali galattici ed extragalattici)
- Contaminazione da errori sistematici al livello del $\sim 10 \%$ del rumore strumentale ( $<1 \mu \mathrm{~K} /$ pixel)


## Requisiti sperimentali per misure "di precisione"

- Elevata risoluzione angolare ( 1 ~ 1500 => q ~ 5-7')
- Elevato rapporto segnale-rumore ( $\sim 10,=>\sigma_{\text {pix }} \sim 5$ $\mu \mathrm{K} /$ pixel)
- Ampia copertura del cielo
- Possibilità di rimuovere segnali di "foreground" (segnali galattici ed extragalattici)
- Contaminazione da errori sistematici al livello del $\sim 10 \%$ del rumore strumentale (< $1 \mu \mathrm{~K} /$ pixel)


## Requisiti sperimentali per misure "di precisione"

- Elevata risoluzione angolare ( 1 ~ 1500 => q ~ 5-7')
- Elevato rapporto segnale-rumore ( $\sim 10,=>\sigma_{\text {pix }} \sim 5$ $\mu \mathrm{K} /$ pixel)
- Ampia copertura del cielo
- Possibilità di rimuovere segnali di "foreground" (segnali galattici ed extragalattici)
- Contaminazione da errori sistematici al livello del $\sim 10 \%$ del rumore strumentale ( $<1 \mu \mathrm{~K} /$ pixel)


## Requisiti sperimentali per misure "di precisione"

- Elevata risoluzione angolare ( 1 ~ 1500 => q ~ 5-7')
- Elevato rapporto segnale-rumore ( $\sim 10,=>\sigma_{\text {pix }} \sim 5$ $\mu \mathrm{K} /$ pixel)
- Ampia copertura del cielo
- Possibilità di rimuovere segnali di "foreground" (segnali galattici ed extragalattici)
- Contaminazione da errori sistematici al livello del $\sim 10 \%$ del rumore strumentale ( $1 \mu \mathrm{~K} /$ pixel)


## Requisiti sperimentali per misure "di precisione"

- Elevata risoluzione angolare ( 1000 => q ~ 5-7')
$\Rightarrow$ Antenna a riflettore (telescopio)


## Requisiti sperimentali per misure "di precisione"

- Elevato rapporto segnale-rumore ( $\sim 10,=>\sigma_{\text {pix }} \sim 5$ $\mu \mathrm{K} /$ pixel)
$\Rightarrow$ Schiere di ricevitori criogenici (basso rumore) a larga banda (bolometri, ricevitori coerenti)
$\Rightarrow$ Lunghi tempi di integrazione


## Requisiti sperimentali per misure "di precisione"

- Ampia copertura del cielo
$\Rightarrow$ Missione spaziale


## Requisiti sperimentali per misure "di precisione"

- Possibilità di rimuovere segnali di "foreground" (segnali galattici ed extragalattici)


## Requisiti sperimentali per misure "di precisione"

- Possibilità di rimuovere segnali di "foreground" (segnali galattici ed extragalattici)



## Requisiti sperimentali per misure "di precisione"



## Requisiti sperimentali per misure "di precisione"

- Possibilità di rimuovere segnali di "foreground" (segnali galattici ed extragalattici)
=> Ampia copertura in frequenza


## Requisiti sperimentali per misure "di precisione"

- Contaminazione da errori sistematici al livello del $\sim 10 \%$ del rumore strumentale (< $1 \mu \mathrm{~K} /$ pixel)
$\Rightarrow$ Orbita termicamente stabile,
$\Rightarrow$ Hardware intrinsecamente stabile
$\Rightarrow$ Software di analisi dati in grado di riconoscere ed eliminare effetti sistematici residui


## NASA WMAP Satellite Overview



Sun-Earth L2 Orbits
MAP - PLANCK - HERSCHEL - NGST


From COBE...

## ... to WMAP




## 22 GHz

## ... to WMAP



## ... to WMAP



## ... to WMAP



## ... to WMAP



## ... come cambia lo spettro di potenza



## ... come cambia lo spettro di potenza



## The WMAP pie

## Dark Energy $73 \%$

## La missione Planck (ESA)

Obiettivo principale

- Osservazione "definitiva" delle anisotropie CMB
- Estrazione accurata dei parametri cosmologici dal power spectrum


Obiettivi "secondari"

- Effetto SZ
- Sorgenti extragalattiche
- IR sources
- Radio sources
- Emissione galattica diffusa
- sincrotrone
- free-free
- polveri


## Polarizzazione <br> - CMB <br> - Componenti galattiche <br> - Sorgenti

## La missione Planck (ESA)



## La missione Planck (ESA)

## Requisiti



- Risoluzione angolare: < 10'
- Sensibilita' per pixel: < 10 microK
- Range di frequenza: $30-900 \mathrm{GHz}$
- Copertura del cielo: 100\%
- Errori sistematici: < 3 microK


## Implementazione

- Telescopio: 1.5m, Aplanatico offaxis
- Detectors: array di radiometri (3 canali fra 30 e 70 GHz ) + bolometri ( 6 canali fra 100 e 857 GHz )
- Raffreddamento passivo e attivo
- Orbita: Sun-Earth L2 (1.5 x $10^{6} \mathrm{~km}$ )
- Lancio: 2007, Ariane 5


## II satellite



II piano focale


II piano focale


100-143-217-353-545-857 GHz

## Lo strumento LFI




[^0]:    1 parsec $(p c)=3.26$ anni luce

