V WniveERSITA wi CANIERINO

XVIII. Software Testing

Laurea Triennale in Informatica — Corso di Ingegneria del Software | - A.A. 2006/2007

Andrea Polini

 oObjective

v General discussion on Testing

v Testing Phases

v Approaches to testing

v Structural testing

v Functional testing

v Testing non functional behaviour

v Adequacy

N UN] CAM Ingegneria del Software | — A.A. 2006/2007 b &
W (NivERSITA oi CAPIERINO Andrea Polini L

~ Whatistesting?

v Software testing consist of the dynamic verification of

the behavior of a program on a finite set of test cases,
suitably selected from the usually infinite execution
domain, against the specified expected behavior”

[Antonia Bertolino — SWEBOK]

Implied tasks:

designing the test cases
executing the software with those test cases

examining the produced results

h UN] CAM Ingegneria del Software | — A.A. 2006/2007
- oy WNivERSITA i CAPIERNO Andrea Polini

Error/Fault/Failure

~ Error

= Introduction of a wrong behaviour in the code
~ Fault

= The emergence of a wrong condition within the system caused by the error
~ Failure

= The observation of a wrong situation in the system behaviour

¥ UN] C AM Ingegneria del Software | — A.A. 2006/2007

) WNivERSITA oi CAMERIN® Andrea Polini

"~ Interaction Constraints

v Testing is striclty related to two concepts:

~ What we can control — e.g. Object interfaces

= What we can observe — e.g. Return value

v Platforms can be extended with support for testing...increase control
and observability

v Certainly investments should be directed to observations for which we
can provide an “oracle”

v Testability: what is it? How can be improved?

IR UN] CAM Ingegneria del Software | — A.A. 2006/2007 £ -
o WInivERSITA vi CANERINO Andrea Polini : s

~ TheOracleProblem

« |s it the result provided by the System Under Test (SUT) correct

or not?
‘ Manual derivation of Oracles

v Usage of models to define oracles

= In general weaker relation among the inputs and the outputs permit to

highlight errors

v' oracles can be derived from history of executions of available
systems providing same functionality

v Deriving an oracle is a really expensive task and should not consist in

the implementation of another system

v Relevant theoretical results limit the possibility of automatic derivation

of oracles

UN] CAM Ingegneria del Software | — A.A. 2006/2007

Y WNivERSITA oi CAMERINO Andrea Polini

~ TestingStraegy

» Testing cannot reveal the absence of errors and can only show

their presence
= Develop strategy that maximise the chance of discovering bugs
‘v Testing as fishing
v Systematic exploration of a system characteristics

v Testing should be an adaptive phase

= Different technology show different problems

= OO - Late binding, inheritance

= CBS - software reused in different context and produced by third parties

= Testing strategy should exploit characteristics of a technology

R UN] CAM Ingegneria del Software | — A.A. 2006/2007 ot g2
oy WniveERSITA oi CAMIERINO Andrea Polini eHm-

Testing phases

~ Unit Testing
~ Integration Testing
~ System Testing

~» Regression Testing

& UNICAM Ingegneria del Software | — A.A. 2006/2007

 [niveERSITA wi CAMERINO Andrea Polini

~ StucturalTesing

v Also known as white-box testing

v |s based on the assumption that only when executed an error can
manifest itself. i.e. a wrong statement must be executed
v Requires the availability of the source code

v Different code characteristics can be considered:

= Data
= Definition and Usage
= Statements

= Conditional

v Increasing level of complexity

IR UN] CAM Ingegneria del Software | — A.A. 2006/2007 b A8
W (NivERSITA oi CAPIERINO Andrea Polini L

~ StucturalTesing

v All Statements Coverage:

= All statements should be executed at least once

v All Branches Coverage

= All branches should be executed at least once

v All Paths Coverage

= All paths should be executed at least once

UN] CAM Ingegneria del Software | — A.A. 2006/2007 b A8
gy (WInivERSITA wi CAMIERNO Andrea Polini Lol

[

X ,
ITI 4 ITIJ_
Jl‘ l 4l

L [] []

k J

4
o]

Statement Coverage

Branch Coverage
(aka line coverage)

Path Coverage
(aka condition coverage) g

ol UNICAM Ingegneria del Software | — A.A. 2006/2007 gl 2

A % I‘|--_i
oy (LnivERSITA ni CAPMIERINO Andrea Polini | -

~ FunctionalTesting

v Also known as Black-box testing

~ Assume the availability of a model for the system (the
specification)
¥ Requirements based testing

v Data Models

= Several methodologies to derive tests:

Boundary conditions, Category Partitions
» Behavioural Models

= Availability of state machines and definition of invocation sequences to observe that
traces

= Coverage on behavioural models

31 NICAM Ingegneria del Software | — A.A. 2006/2007 " AT
paw WniveRsiTA wi CAMERINO Andrea Polini | l

© Automatic support for the testing phase

v Availability of Models permits the development of tools for automatic

derivation of test cases
v This permit to management to save a lot 0 money

 Model Based Testing

R UN] CAM Ingegneria del Software | — A.A. 2006/2007 £
Y WNivERSITA i CAMIERIN© Andrea Polini M-

© Testing non functional behaviour

¥ Inspection cannot be used to show lack of QoS
v Testing can help the developer to derive QoS correct systems
v Platforms reproducing the environment are required

v Simulator of real usage are required (workload generator)

14

5 "B NICAM Ingegneria del Software | — A.A. 2006/2007

W WNivERSITA i CAPIERINO Andrea Polini

'~ Adeguacy Criteriaand Assesment

v Traditional notion of test adequacy: A test adequacy criterion is a systematic

method used to determine whether a test suite provides an “adequate”
amount of testing for a program [component] under test

¥ When to stop testing:

= related to required level of confidence

= related to budget

v How can be defined?

v A fault based approach: fault injection

IR UNICAM Ingegneria del Software | — A.A. 2006/2007
Y WNivERSITA i CAMIERIN© Andrea Polini {]

e

v “Every programmer knows they should write tests for their code. Few

do. The universal response to "Why not?" is "I'm in too much of a
hurry." This quickly becomes a vicious cycle- the more pressure you
feel, the fewer tests you write. The fewer tests you write, the less
productive you are and the less stable your code becomes. The less
productive and accurate you are, the more pressure you feel.”

v “code a little, test a little, code a little, test a little”

v Provide a framework to define, group and (re-)execute test cases

N @ UN] CAM Ingegneria del Software | — A.A. 2006/2007 i 32
Wy WnivERSITA i CAPIERINO Andrea Polini L

