V WniveERSITA wi CANIERINO

XVI. Software Evolution

Laurea Triennale in Informatica — Corso di Ingegneria del Software | - A.A. 2006/2007

Andrea Polini

~ Objectives

v To explain why change is inevitable if software systems are to remain

useful
v To discuss software maintenance and maintenance cost factors
v To describe the processes involved in software evolution
v To discuss an approach to assessing evolution strategies for legacy

systems

| /NICAM Ingegneria del Software | — A.A. 2006/2007 A
W (LinivERSITA oi CAPIERINO Andrea Polini L

~ softwareChange

v Software change is inevitable

= New requirements emerge when the software is used;
= The business environment changes;

= Errors must be repaired;

= New computers and equipment is added to the system;

= The performance or reliability of the system may have to be improved.

v A key problem for organisations is implementing and managing

change to their existing software systems.

| /NICAM Ingegneria del Software | — A.A. 2006/2007 A
W (LinivERSITA oi CAPIERINO Andrea Polini L

~ Imporanceofevoluion

¥ QOrganisations have huge investments in their software systems - they

are critical business assets.

¥ To maintain the value of these assets to the business, they must be
changed and updated.

¥ The majority of the software budget in large companies is devoted to

evolving existing software rather than developing new software.

- K UN] CAM Ingegneria del Software | — A.A. 2006/2007 s A
W WnivERSITA i CAMERINO Andrea Polini Nl

~ Programevolution dynamics

v Program evolution dynamics is the study of the processes of system

change.

v After major empirical studies, Lenman and Belady proposed that there
were a number of ‘laws’ which applied to all systems as they evolved.

v There are sensible observations rather than laws. They are applicable
to large systems developed by large organisations. Perhaps less

applicable in other cases.

= i UN] CAM Ingegneria del Software | — A.A. 2006/2007 T ‘*".
o WNivERSITA wi CAPIERINO Andrea Polini .

Law Description

Continuing change A program that 1s used m a real-world environment necessarily
must change or become progressively less useful m that
environment.

Increasing complexity As an evolving program changes, its structure tends to become

more complex. Extra resources must be devoted to preserving
and simplifying the structure.

Large program evolution = Program evolution 1s a self-regulating process. System
attributes such as size, tune between releases and the number of
reported errors 1s approximately mvariant for each system
release.

Organisational stability =~ Over a program’s lifetime, 1its rate of development 1s
approximately constant and mdependent of the resources
devoted to system development.

Conservation of Over the lifetime of a system, the mcremental change m each
tamiliarity release 1s approximately constant.
Continuing growth The functionality offered by systems has to continually mcrease

to mamtain user satisfaction.

Declining quality The quality of systems will appear to be declining unless they
are adapted to changes in their operational environment.

Feedback system Evolution processes incorporate multi-agent, multi-loop
teedback systems and you have to treat them as feedback
systems to achieve significant product improvement.

UNICAM Ingegneria del Software | — A.A. 2006/2007

Y WNivERSITA i CAMIERIN© Andrea Polini

=] T

~ Applicability of Lehman's Law

v Lehman’s laws seem to be generally applicable to large, tailored

systems developed by large organisations.

= Confirmed in more recent work by Lehman on the FEAST project (see further

reading on book website).

¥ It is not clear how they should be modified for

= Shrink-wrapped software products;
= Systems that incorporate a significant number of COTS components;
= Small organisations;

= Medium sized systems.

| /NICAM Ingegneria del Software | — A.A. 2006/2007 A
W (LinivERSITA oi CAPIERINO Andrea Polini L

~ softwareMaintenance

v Modifying a program after it has been put into use.

¥ Maintenance does not normally involve major changes to the system’s
architecture.
v Changes are implemented by modifying existing components and

adding new components to the system.

= & UN] CAM Ingegneria del Software | — A.A. 2006/2007 e 3
W WnivERSITA i CAMERINO Andrea Polini Lol

'~ Maintenanceisinevitable

¥ The system requirements are likely to change while the system is

being developed because the environment is changing. Therefore a
delivered system won't meet its requirements!

v Systems are tightly coupled with their environment. When a system is
installed in an environment it changes that environment and therefore
changes the system requirements.

v Systems MUST be maintained therefore if they are to remain useful in

an environment.

= UN] CAM Ingegneria del Software | — A.A. 2006/2007 o A\
W WnivERSITA i CAMERINO Andrea Polini :

~ TypesofMaintenance

¥ Maintenance to repair software faults (corrective)

= Changing a system to correct deficiencies in the way meets its requirements.
¥ Maintenance to adapt software to a different operating environment
(adaptive)
= Changing a system so that it operates in a different environment (computer, OS,

etc.) from its initial implementation.

¥ Maintenance to add to or modify the system’s functionality (perfective)

= Modifying the system to satisfy new requirements

| /NICAM Ingegneria del Software | — A.A. 2006/2007 A
W (LinivERSITA oi CAPIERINO Andrea Polini L

~ MaintenanceCosts

v Usually greater than development costs (2* to 100* depending on the

application).
v Affected by both technical and non-technical factors.
¥ Increases as software is maintained. Maintenance corrupts the
software structure so makes further maintenance more difficult.
¥ Ageing software can have high support costs (e.g. old languages,

compilers etc.).

11

- K UN] CAM Ingegneria del Software | — A.A. 2006/2007 s A
W WnivERSITA i CAMERINO Andrea Polini il

"~ Maintenance CostFactors

v Team stability

= Maintenance costs are reduced if the same staff are involved with them for some
time.
v Contractual responsibility

= The developers of a system may have no contractual responsibility for maintenance

so there is no incentive to design for future change.
v Staff skills
= Maintenance staff are often inexperienced and have limited domain knowledge.
v Program age and structure

= As programs age, their structure is degraded and they become harder to

understand and change.

| /NICAM Ingegneria del Software | — A.A. 2006/2007 o N
W (LinivERSITA oi CAPIERINO Andrea Polini L

~ Maintenance Predicton

¥ Maintenance prediction is concerned with assessing which parts of

the system may cause problems and have high maintenance costs

= Change acceptance depends on the maintainability of the components affected by
the change;

= Implementing changes degrades the system and reduces its maintainability;

= Maintenance costs depend on the number of changes and costs of change depend
on maintainability.

) \?ﬁ UN] CAM Ingegneria del Software | — A.A. 2006/2007 a

G £
gty L} I
W WNivERSITA i CAPIERINO Andrea Polini B

~ ChangePredicton

v Predicting the number of changes requires and understanding of the

relationships between a system and its environment.
v Tightly coupled systems require changes whenever the environment
Is changed.

¥ Factors influencing this relationship are
= Number and complexity of system interfaces;
= Number of inherently volatile system requirements;

= The business processes where the system is used.

N & UN] CAM Ingegneria del Software | — A.A. 2006/2007 i Y
W (LinivERSITA oi CAPIERINO Andrea Polini

~ Complexity Metries

v Predictions of maintainability can be made by assessing the

complexity of system components.
¥ Studies have shown that most maintenance effort is spent on a
relatively small number of system components.
v Complexity depends on
= Complexity of control structures;

= Complexity of data structures;

= Obiject, method (procedure) and module size.

N UN] CAM Ingegneria del Software | — A.A. 2006/2007 i ‘*".
W (LinivERSITA oi CAPIERINO Andrea Polini L

~ ProcessMetrics

¥ Process measurements may be used to assess maintainability

= Number of requests for corrective maintenance;
= Average time required for impact analysis;
= Average time taken to implement a change request;

= Number of outstanding change requests.

v If any or all of these is increasing, this may indicate a decline in

maintainability.

| IN|CAM Ingegneria del Software | — A.A. 2006/2007 b AT
Wy WnivERSITA oi CAMIERINO Andrea Polini er

© Evolution Processes - Motivations

v Evolution processes depend on

= The type of software being maintained;
= The development processes used;

= The skills and experience of the people involved.

v Proposals for change are the driver for system evolution. Change
identification and evolution continue throughout the system lifetime
= Existing requirements not implemented in previous release
= Request for new requirements

= Bur repairs

g * UN] CAM Ingegneria del Software | — A.A. 2006/2007 5% el
Y WNivERSITA oi CAMERINO Andrea Polini L l___l,.

~ TheSystemEvolutionProcess

Y

Change Impact Release Change System
Request Analysis Planning Implementation Release

_ Platform System
Fault R i
(au epeur) (Adaptation) (EnhancemenD

v Revision of the Development process where the revision are

designed, implemented and tested

= Basic difference is that the initial stage is program understanding

v During the change implementation requirements analysis could lead

to the identification of new changes and the revision of those planned

Proposed Requirements Requirements Software

Changes Analysis Updating Development
: ____18
- R UN] CAM Ingegneria del Software | — A.A. 2006/2007 b &t

N WnivERSITA oi CAMERIO Andrea Polini

~ Emergency Repair Process

v Urgent changes may have to be implemented without going through

all stages of the software engineering process

= |If a serious system fault has to be repaired;

= |If changes to the system’s environment (e.g. an OS upgrade) have unexpected

effects:

= If there are business changes that require a very rapid response (e.g. the release of

a competing product).

Change Analysis Modify Deliver
Requests Source Code Source Code odified Syste

v Emergency repair leads faster to ageing effects

= Possible solution: “fix and then rework”. But....

| /NICAM Ingegneria del Software | — A.A. 2006/2007 AT
W WnivERSITA vi CAMERINO Andrea Polini)

~ systemReengineering

‘v System re-engineering concerns with re-structuring or re-writing

part or all of a legacy system without changing its functionality.
v Applicable where some but not all sub-systems of a larger system
require frequent maintenance.
v Re-engineering involves adding effort to make them easier to

maintain. The system may be re-structured and re-documented.

UN] CAM Ingegneria del Software | — A.A. 2006/2007
W WnivERSITA wi CAMERINO Andrea Polini

"~ Advantagesof reengineering

v Two key advantages over redevelopment:

v Reduced risk

= There is a high risk in new software development. There may be development
problems, staffing problems and specification problems. Planning is difficult and

delays are expensive
» Reduced cost

= The cost of re-engineering is often significantly less than the costs of developing

new software.

| /NICAM Ingegneria del Software | — A.A. 2006/2007 N
Y WNivERSITA i CAMIERIN© Andrea Polini -

~ Conventional Development vs. Re-engineering

v Development start with requirements, and proceeds through the

studied phases

¥ In re-engineering the old system acts as a specification for the new
system

Conventional Development
S‘,f.stem. Design am.:l New System
Specification Implementation

Software Re-engineering

Existing Understanding an Re-engineered
Software System transformation System

R UN] CAM Ingegneria del Software | — A.A. 2006/2007 ‘*".
o WniveRSITA i CAMERINO Andrea Polini b

~ Typical Activities of the Re-engineering Process

v Source code translation

= Convert code to a new language.

v Reverse engineering

= Analyse the program to understand it;

¥ Program structure improvement

= Restructure automatically for understandability;

¥ Program modularisation

= Reorganise the program structure;

v Data reengineering

= Clean-up and restructure system data.

N G UN] CAM Ingegneria del Software | — A.A. 2006/2007 b A8
W (NivERSITA oi CAPIERINO Andrea Polini L

"~ Reengineering Cost Factors

“ The quality of the software to be reengineered.

v The tool support available for reengineering.
¥ The extent of the data conversion which is required.

v The availability of expert staff for reengineering.

= This can be a problem with old systems based on technology that is no longer

widely used

 Limit to re-engineering

= e.g. Converting code written using functional languages to OO

UN] CAM Ingegneria del Software | — A.A. 2006/2007

' WNivERSITA i CAPIFRINO Andrea Polini

" Legacysystemevoluton

~ Organisations that rely on legacy systems must choose a strategy for

evolving these systems

= Scrap the system completely and modify business processes so that it is no
longer required;

= Continue maintaining the system;

= Transform the system by re-engineering to improve its maintainability;

~ Replace the system with a new system.
» The strategy chosen should depend on the system quality and its

business value.

= UNICAM Ingegneria del Software | — A.A. 2006/2007

WniveERSITA i CAMERINO Andrea Polini

© Legacy systems — business and technical perspective

v Low quality, low business value

= These systems should be scrapped.
v Low-quality, high-business value

= These make an important business contribution but are expensive to maintain.

Should be re-engineered or replaced if a suitable system is available.
v High-quality, low-business value
= Replace with COTS, scrap completely or maintain.
v High-quality, high business value

= Continue in operation using normal system maintenance.

26

K8 /N|CAM Ingegneria del Software | — A.A. 2006/2007 R &Y
W WnivERSITA i CAMERINO Andrea Polini Nl

Identify Quality

~ Business quality: usage, supported activities, dependability

~ Technical quality:

= Environmental

= Application

¥ UN] C AM Ingegneria del Software | — A.A. 2006/2007

) WNivERSITA oi CAMERIN® Andrea Polini

Factor
Supplier
stability

Failure rate

Age

Performance

Questions

Is the supplier 1s still m existence? Is the supplier financially stable and
likely to continue m existence? If the supplier 1s no longer in busmess,
does someone else maintain the systems?

Does the hardware have a high rate of reported failures? Does the support
software crash and force system restarts?

How old 1s the hardware and software? The older the hardware and
support software, the more obsolete 1t will be. It may still function
correctly but there could be significant economic and busmess benefits to
moving to more modern systems.

Is the performance of the system adequate? Do performance problems
have a significant effect on system users?

Support
requirements

Maimtenance costs

Interoperability

What local support is required by the hardware and software? If there are
high costs associated with this support, it may be worth considering
system replacement.

What are the costs of hardware maintenance and support software
licences? Older hardware may have higher maintenance costs than
modem systems. Support software may have high annual licensing costs.

Are there problems mterfacing the system to other systems? Can
compilers etc. be used with current versions of the operating system? Is
hardware emulation required?

UNICAM

WnivesIiTA wi CAMERINO

Ingegneria del Software | — A.A. 2006/2007
Andrea Polini

7

Factor

Understandability

Documentation

Data

Performance

Questions

How difficult is it to understand the source code of the current system?
How complex are the control structures that are used? Do variables
have meaningful names that reflect their function?

What system documentation is available? Is the documentation

complete, consistent and up-to-date?

Is there an explicit data model for the system? To what extent is data
duplicated in different files? Is the data used by the system up-to-date
and consistent?

Is the performance of the application adequate? Do performance

problems have a significant effect on system users?

Programming

language

Configuration
management

Test data

Personnel skills

Are modern compilers available for the programming language used to
develop the system? Is the programming language still used for new
system development?

Are all versions of all parts of the system managed by a configuration
management system? Is there an explicit description of the versions of

components that are used in the current system?

Does test data for the system exist? Is there a record of regression tests
carried out when new features have been added to the system?

Are there people available who have the skills to maintain the
application? Are there only a limited number of people who understand

the system?

UNICAM

Y WnivERSITA »i CAMERINO

Ingegneria del Software | — A.A. 2006/2007
Andrea Polini

