
Laurea Triennale in Informatica – Corso di Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

XI. Architectural Design

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

2

Objectives

To introduce architectural design and to discuss its importance

To introduce importance of different views

To introduce the concepts of patterns and frameworks

To explain the architectural design decisions that have to be

made

To introduce three complementary architectural styles covering

organisation, decomposition and control

To discuss reference architectures are used to communicate

and compare architectures

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

3

Software architecture

The design process for identifying the sub-systems making up a

system and the framework for sub-system control and

communication is architectural design.

The output of this design process is a description of the

software architecture.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

4

Architectural design decisions

Is there a generic application architecture that can be used?

How will the system be distributed?

What architectural styles are appropriate?

What approach will be used to structure the system?

How will the system be decomposed into modules?

What control strategy should be used?

How will the architectural design be evaluated?

How should the architecture be documented?

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

5

Forces In Software

Technology churn

Scalability

Performance

Capacity

Fail safe/Fault tolerance

Reliability/Availability

Security

Functionality
Cost/Schedule Compatibility

Resilience

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

6

Misconceptions about architecture

Architecture is just paper

Architecture and design are the same things

Architecture and infrastructure are the same things

<my favorite technology> is the architecture

A good architecture is the work of a single architect

Architecture is simply structure

Architecture can be represented in a single blueprint

System architecture precedes software architecture

Architecture cannot be measured or validated

Architecture is a science

Architecture is an art

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

7

Architecture is just paper

A system’s architecture ultimately resides in executable code

A system’s architecture may be visualized in models

Every system has an architecture; some architectures are made

manifest and visible, many others are not

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

8

Architecture is design

All architecture is design, but not all design is architecture

Architecture focuses on significant design decisions, decisions

that are both structurally and behaviorally important as well as

those that have a lasting impact on the performance, reliability,

cost, and resilience of the system

Architecture involves the how and the why, not just the what

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

9

Architecture is infrastructure

Infrastructure is an integral and important part of architecture,

but there is more to architecture than just infrastructure

Significant patterns will manifest themselves at many different

levels and dimensions of a system

Too narrow a view of architecture will lead to a very pretty

infrastructure, but the wrong infrastructure for the problem at

hand

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

10

<my favorite technology> is the architecture

A given technology only serves to implement some dimension of

an architecture
The network is the architecture

The database is the architecture

The transaction server is the architecture

J2EE is the architecture

Architecture is more than just a list of products

Technology shapes an architecture, but a resilient architecture

should never be bound to all of the technologies that form it

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

11

Architecture is the work of a single architect

Conceptual integrity is essential, but the complexity of most

interesting systems leads development to be a team sport

Fred Brooks (1975), but then Fred Brooks (1995)

The architecture team is
Not a committee

Not a problem clearinghouse

Not an ivory tower

The architecture team
Needs a clear leader

Requires a mix of specialties

Manifests itself at many levels in the system

Coplien & Harris, Organizational Patterns

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

12

Architecture is structure

Architecture does involve structure, decomposition, and

interfaces

Architecture also involves behavior

A system’s architecture is always projected to a given context

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

13

Architecture is flat

Architecture is flat only in trivial systems

Multiple stakeholders with multiple concerns lead to multiple

views with multiple blueprints

Using a single blueprint to represent all or most of system’s

architecture leads to a semantic muddle

The 4+1 view model has proven to be both necessary and

sufficient for most interesting systems

Kruchten, “The 4+1 Model View”

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

14

System architecture comes first

Software has a longer life than hardware

Complex systems require well-informed hardware/software

tradoffs, which cannot be made in a strict sequence

Forcing a hardware-first process typically leaves to stove pipe

systems

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

15

Architecture can’t be measured

The very purpose of a blueprint is to provide a tangible artifact

that can be used to visualize, specify, construct, document -

and reason about - a system

A system’s architecture can be used to
Mitigate technical risks through the release of a continuous stream of

executables

Improve learning and understanding and communicate important decisions

Accelerate testing and attack integration risks

Set expectations

Break in the development environment and the team

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

16

Architecture is a science

There exists only a modest body of knowledge about software

architecture

Scientific and analytical methods are lacking; those that do exist

are hard to apply

There is no perfect design; architecture involves the

management of extreme ambiguity and contradiction

Experience counts: the best architects are grown, not born

Petroski, Small Things Considered

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

17

Architecture is an art

Even the best architects copy solutions that have proven

themselves in practice, adapt them to the current context,

improve upon their weaknesses, and then assemble them in

novel ways with very modest incremental improvements

The “artsy” part of software architecture is minimal

An architectural process can be established with intentional

artifacts, clear activities, and well-defined

Rechtin Maier, Systems Architecting

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

18

Architecture defined

Architecture n (1563)
The art or science of building or constructing edifices of any kind for

human use

The action or process of building

Architectural work; structure, building

The special method of ‘style’ in accordance with which the details of the

structure and ornamentation of a building are arranged

Construction or structure generally

The conceptual structure and overall logical organization of a computer or

computer-based system from the point of view of its use or design; a

particular realization of this

Oxford English Dictionary, 2nd ed.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

19

Physical systems

Mature physical systems have stable architectures
Aircraft, cars, and ships

Bridges and buildings

Such architectures have grown over long periods of time
Trial-and-error

Reuse and refinement of proven solutions

Quantitative evaluation with analytical methods

Mature domains are dominated by engineering efforts
Analytical engineering methods

New materials

New manufacturing processes

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

20

Software-intensive system

A system in which software is the dominant, essential, and

indispensable element
E-commerce system

IT (business) system

Telephone switch

Flight control system

Real-time control system (e.g. industrial robot)

Sophisticated weapons system

Software development tools

System software (e.g. operating systems or compilers)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

21

Architecting software is different

No equivalent laws of physics

Transparency

Complexity
Combinatorial explosion of state space

Non-continuous behavior

Systemic issues

Requirement and technology churn

Low replication and distribution costs

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

22

Architecture defined

Software architecture is what software architects do!

Beck

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

23

Architecture defined

 Perry and Wolf, 1992
A set of architectural (or design) elements that have a particular form

 Boehm et al., 1995
A software system architecture comprises

A collection of software and system components, connections, and constraints

A collection of system stakeholders' need statements

A rationale which demonstrates that the components, connections, and constraints define a

system that, if implemented, would satisfy the collection of system stakeholders' need

statements

Clements et al., 1997
The software architecture of a program or computing system is the

structure or structures of the system, which comprise software

components, the externally visible properties of those components, and the

relationships among them

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

24

Common elements

Architecture defines major components

Architecture defines component relationships (structures) and interactions

Architecture omits content information about components that does not

pertain to their interactions

Behavior of components is a part of architecture insofar as it can be

discerned from the point of view of another component

Every system has an architecture (even a system composed of one

component)

Architecture defines the rationale behind the components and the

structure

Architecture definitions do not define what a component is

Architecture is not a single structure -- no single structure is the

architecture

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

25

Architecture defined

Architecture establishes the context for design and

implementation

C ODE

implementation

 design

architecture

Architectural decisions are
the most fundamental
decisions; changing them
will have significant ripple
effects.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

26

Architecture defined

IEEE 1471-2000
Software architecture is the fundamental organization of a system,

embodied in its components, their relationships to each other and the

environment, and the principles governing its design and evolution

Software architecture encompasses the set of significant

decisions about the organization of a software system
Selection of the structural elements and their interfaces by which a system

is composed

Behavior as specified in collaborations among those elements

Composition of these structural and behavioral elements into larger

subsystems

Architectural style that guides this organization

Booch, Kruchten, Reitman, Bittner, and Shaw

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

27

Architectural style defined

Style is the classification of a system’s architecture according to

those with similar patterns

A pattern is a common solution to a common problem; patterns

may be classified as idioms, mechanisms, or frameworks

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

28

Model, views, concerns, and stakeholders

A model is a simplification of reality, created in order to better

understand the system being created; a semantically closed

abstraction of a system

A view is a representation of a whole system from the

perspective of a related set of concerns

A concern is those interests which pertain to the system's

development, its operation or any other aspects that are critical

or otherwise important to one or more stakeholders

A stakeholder is an individual, team, or organization (or classes

thereof) with interests in, or concerns relative to, a system

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

29

Stakeholders and views

Architecture is many things to many different stakeholders
End user

Customer

Sys admin

Project manager

System engineer

Developer

Architect

Maintainer

Tester

Other systems

Multiple realities, multiple views and multiple blueprints exist

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

30

Representing software architecture

Logical View

End-user
Functionality

Implementation View

Programmers
Configuration management

Process View

Performance
Scalability
Throughput

System integrators
Deployment View

System topology
Communication

Provisioning

System engineering

Use Case View

Conceptual Physical

Clements, et al, Documenting Software Architectures

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

31

Adapting views

Not all systems require all views
Single process (ignore process view)

Small program (ignore implementation view)

Single processor (ignore deployment view)

Some systems require additional views
Data view

Security view

Other aspects

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

32

Cross functional mechanisms

Some structures and behaviors crosscut components
Security

Concurrency

Caching

Persistence

Such elements usually appear as small code fragments sprinkled

throughout a system

Such elements are hard to localize using traditional approaches

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

33

Logical view

The view of a system’s architecture that encompasses the

vocabulary of the problem and solution space, the

collaborations that realize the system’s use cases, the

subsystems that provide the central layering and decomposition

of the system, and the interfaces that are exposed by those

subsystems and the system as a whole

Focuses on
Functionality

Key Abstractions

Mechanisms

Separation of concerns and distribution of responsibilities

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

34

Process view

The view of a system’s architecture that encompasses the

threads and processes that form the system’s concurrency and

synchronization mechanisms

Focuses on
Performance

Scalability

Throughput

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

35

Implementation view

The view of a system's architecture that encompasses the

components used to assemble and release the physical system

Focuses on
Configuration management

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

36

Deployment view

The view of a system’s architecture that encompasses the

nodes that form the system’s hardware topology on which the

system executes

Focuses on
Distribution

Communication

Provisioning

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

37

Use case view

The view of a system’s architecture that encompasses the use

cases that describe the behavior of the system as seen by its

end users and other external stakeholders

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

38

Patterns

A pattern is a common solution to a common problem

A pattern codifies specific knowledge collected from experience

in a domain

A pattern resolves forces in context

All well-structured systems are full of patterns
Idioms

Mechanisms

Frameworks

http://www.hillside.net

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

39

Mechanisms

Mechanisms (design patterns) are the soul of an architecture

Gang of Four patterns
Creational patterns

Structural patterns

Behavioral patterns

Gamma, et al Design Patterns

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

40

Frameworks

Frameworks (architectural patterns) provide an extensible

template for applications within a domain

Shaw/Garlan patterns
Dataflow systems

Batch sequential

Pipes and filters

Call-and-return systems
Main program and subroutine

OO systems

Hierarchical layers

Independent components
Communicating processes

Event systems

Virtual machines
Interpreters

Rule-based systems

Data-centered systems
Databases

Hypertext systems

Blackboards

Shaw et al, Software Architecture

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

41

Architectural design

An early stage of the system design process.

Represents the link between specification and design processes.

Often carried out in parallel with some specification activities.

It involves identifying major system components and their

communications.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

42

Advantages of explicit architecture

Stakeholder communication
Architecture may be used as a focus of discussion by system stakeholders.

System analysis
Means that analysis of whether the system can meet its non-functional

requirements is possible.

Experiment we carried on at UCL

Large-scale reuse
The architecture may be reusable across a range of systems.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

43

Architecture and system characteristics

Performance
Localise critical operations and minimise communications. Use large rather

than fine-grain components.

Security
Use a layered architecture with critical assets in the inner layers.

Safety
Localise safety-critical features in a small number of sub-systems.

Availability
Include redundant components and mechanisms for fault tolerance.

Maintainability
Use fine-grain, replaceable components.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

44

Architectural conflicts

Using large-grain components improves performance but

reduces maintainability.

Introducing redundant data improves availability but makes

security more difficult.

Localising safety-related features usually means more

communication so degraded performance.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

45

System structuring

Concerned with decomposing the system into interacting sub-

systems.

The architectural design is normally expressed as a block

diagram presenting an overview of the system structure.

More specific models showing how sub-systems share data, are

distributed and interface with each other may also be

developed.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

46

Architectural design decisions

Architectural design is a creative process so the process differs

depending on the type of system being developed.

However, a number of common decisions span all design

processes.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

47

Architectural styles

The architectural model of a system may conform to a generic

architectural model or style.

An awareness of these styles can simplify the problem of

defining system architectures.

However, most large systems are heterogeneous and do not

follow a single architectural style.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

48

System organisation

Reflects the basic strategy that is used to structure a system.

Three organisational styles are widely used:
A shared data repository style;

A shared services and servers style;

An abstract machine or layered style.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

49

The repository model

Sub-systems must exchange data. This may be done in two

ways:
Shared data is held in a central database or repository and may be

accessed by all sub-systems;

Each sub-system maintains its own database and passes data explicitly to

other sub-systems.

When large amounts of data are to be shared, the repository

model of sharing is most commonly used.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

50

CASE toolset architecture

Pro je c t
re po sito ry

De sign
transla to r

Pro gram
e dito r

De sign
e dito r

Co de
ge ne r ato r

De sign
analy se r

Re po r t
ge ne r ato r

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

51

Repository model characteristics

Advantages
Efficient way to share large amounts of data;

Sub-systems need not be concerned with how data is produced Centralised

management e.g. backup, security, etc.

Sharing model is published as the repository schema.

Disadvantages
Sub-systems must agree on a repository data model. Inevitably a

compromise;

Data evolution is difficult and expensive;

No scope for specific management policies;

Difficult to distribute efficiently.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

52

Client-server model

Distributed system model which shows how data and

processing is distributed across a range of components.

Set of stand-alone servers which provide specific services such

as printing, data management, etc.

Set of clients which call on these services.

Network which allows clients to access servers.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

53

Film and picture library

Catalo gue
se rve r

Library
c atalo gue

Vide o
se rve r

Film c lip
file s

Pic ture
se rve r

Digitis e d
pho to g raphs

We b se rv e r

Film and
pho to info .

Clie nt 1 Clie nt 2 Clie nt 3 Clie nt 4

Inte rne t

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

54

Client-server characteristics

Advantages
Distribution of data is straightforward;

Makes effective use of networked systems. May require cheaper hardware;

Easy to add new servers or upgrade existing servers.

Disadvantages
No shared data model so sub-systems use different data organisation. Data

interchange may be inefficient;

Redundant management in each server;

No central register of names and services - it may be hard to find out what

servers and services are available.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

55

Abstract machine (layered) model

Used to model the interfacing of sub-systems.

Organises the system into a set of layers (or abstract machines)

each of which provide a set of services.

Supports the incremental development of sub-systems in

different layers. When a layer interface changes, only the

adjacent layer is affected.

However, often artificial to structure systems in this way.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

56

Version management system

Configuration management system layer

Database system layer

Operating system layer

Object management system layer

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

57

Modular decomposition styles

Styles of decomposing sub-systems into modules.

No rigid distinction between system organisation and modular

decomposition.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

58

Sub-systems and modules

A sub-system is a system in its own right whose operation is

independent of the services provided by other sub-systems.

A module is a system component that provides services to other

components but would not normally be considered as a

separate system.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

59

Modular decomposition

Another structural level where sub-systems are decomposed

into modules.

Two modular decomposition models covered
An object model where the system is decomposed into interacting object;

A pipeline or data-flow model where the system is decomposed into

functional modules which transform inputs to outputs.

If possible, decisions about concurrency should be delayed until

modules are implemented.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

60

Object models

Structure the system into a set of loosely coupled objects with

well-defined interfaces.

Object-oriented decomposition is concerned with identifying

object classes, their attributes and operations.

When implemented, objects are created from these classes and

some control model used to coordinate object operations.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

61

Invoice processing system

issue ()
se ndRe m inde r ()
ac c e ptPay m e nt ()
se ndRe c e ipt ()

invo ic e #
date
am o unt
c usto m e r

invo ic e #
date
am o unt
c usto m e r#

invo ic e #
date
am o unt
c usto m e r#

c usto m e r#
nam e
ad dre ss
c re dit pe rio d

Custo m e r

Pay m e nt

Invo ic e

Re c e ipt

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

62

Object model advantages

Objects are loosely coupled so their implementation can be

modified without affecting other objects.

The objects may reflect real-world entities.

OO implementation languages are widely used.

However, object interface changes may cause problems and

complex entities may be hard to represent as objects.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

63

Function-oriented pipelining

Functional transformations process their inputs to produce

outputs.

May be referred to as a pipe and filter model (as in UNIX shell).

Variants of this approach are very common. When

transformations are sequential, this is a batch sequential model

which is extensively used in data processing systems.

Not really suitable for interactive systems.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

64

Invoice processing system

Re ad issue d
invo ic e s

Ide ntify
pay m e nts

Issue
re c e ipts

Find
pa y m e nts

due

Re c e ipts

Issue
pa y m e nt
re m inde r

Re m inde rs

Invo ic e s Pay m e nts

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

65

Pipeline model advantages

Supports transformation reuse.

Intuitive organisation for stakeholder communication.

Easy to add new transformations.

Relatively simple to implement as either a concurrent or

sequential system.

However, requires a common format for data transfer along the

pipeline and difficult to support event-based interaction.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

66

Control styles

Are concerned with the control flow between sub-systems.

Distinct from the system decomposition model.

Centralised control
One sub-system has overall responsibility for control and starts and stops

other sub-systems.

Event-based control
Each sub-system can respond to externally generated events from other

sub-systems or the system’s environment.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

67

Centralised control

A control sub-system takes responsibility for managing the

execution of other sub-systems.

Call-return model
Top-down subroutine model where control starts at the top of a subroutine

hierarchy and moves downwards. Applicable to sequential systems.

Manager model
Applicable to concurrent systems. One system component controls the

stopping, starting and coordination of other system processes. Can be

implemented in sequential systems as a case statement.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

68

Call-return model

Ro utine 1 .2Ro utine 1 .1 Ro utine 3.2Ro utine 3.1

Ro utine 2 Ro utine 3Ro utine 1

Main
pro gram

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

69

Real-time system control

Sy ste m
c o ntr o lle r

Use r
inte r fac e

Fault
handle r

Co m puta tio n
pr o c e sse s

Ac tuato r
pro c e sse s

Se nso r
pr o c e sse s

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

70

Event-driven systems

Driven by externally generated events where the timing of the

event is outwith the control of the sub-systems which process

the event.

Two principal event-driven models
Broadcast models. An event is broadcast to all sub-systems. Any sub-

system which can handle the event may do so;

Interrupt-driven models. Used in real-time systems where interrupts are

detected by an interrupt handler and passed to some other component for

processing.

Other event driven models include spreadsheets and production

systems.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

71

Broadcast model

Effective in integrating sub-systems on different computers in a

network.

Sub-systems register an interest in specific events. When these

occur, control is transferred to the sub-system which can handle

the event.

Control policy is not embedded in the event and message

handler. Sub-systems decide on events of interest to them.

However, sub-systems don’t know if or when an event will be

handled.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

72

Selective broadcasting

Sub-sy ste m
1

Eve nt and m e ssa ge handle r

Sub-sy ste m
2

Sub-sy ste m
3

Sub-sy ste m
4

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

73

Interrupt-driven systems

Used in real-time systems where fast response to an event is

essential.

There are known interrupt types with a handler defined for each

type.

Each type is associated with a memory location and a hardware

switch causes transfer to its handler.

Allows fast response but complex to program and difficult to

validate.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

74

Interrupt-driven control

Handle r
1

Handle r
2

Handle r
3

Handle r
4

Pro c e ss
1

Pro c e ss
2

Pro c e ss
3

Pro c e ss
4

Inte rrupts

Inte rrupt
ve c to r

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

75

Reference architectures

Architectural models may be specific to some application

domain.

Two types of domain-specific model
Generic models which are abstractions from a number of real systems and

which encapsulate the principal characteristics of these systems. Covered

in Chapter 13.

Reference models which are more abstract, idealised model. Provide a

means of information about that class of system and of comparing different

architectures.

Generic models are usually bottom-up models; Reference

models are top-down models.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

76

Reference architectures

Reference models are derived from a study of the application

domain rather than from existing systems.

May be used as a basis for system implementation or to

compare different systems. It acts as a standard against which

systems can be evaluated.

OSI model is a layered model for communication systems.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

77

OSI reference model

Pre se nta tio n

Se ssio n

Transpo r t

Ne tw o rk

Data link

Phy sic al

7

6

5

4

3

2

1

Co m m unic a tio ns m e dium

Ne tw o r k

Data link

Phy sic al

Applic a tio n

Pre se nta tio n

Se ssio n

Transpo r t

Ne tw o r k

Data link

Phy sic al

Applic a tio n

