
Laurea Triennale in Informatica – Corso di Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

IX. System Models (III)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

2

Objective

Introduce formal descriptive notation
Logic

Algebraic

Z

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

3

Logic Specifications

Use of First Order Logic formula to describe program

properties
Expressions involve variables, numeric constants, functions,

predicates. Logical connectives and, or, not, implies, for all, exists

Examples
 x > y and y > z implies x>z

 for all i in N x[i] > x[i+1]

 for all M in N (exist n in N(n>M))

Free variables and bound variables

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

4

Logic Specifications – input/output assertions

A property for a program or a subprogram P is specified as a

formula of type

 {Pre(i1,i2,...,in)}

 P

 {Post(O1,O2,...,Om,i1,i2,...,in)}

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

5

input/output assertions - example

{true}

 P

 {(o=i1 or o=i2) and o ≥ i1 and o ≥ i2}

{n>0}

 P

 {o=∑k=1...n ik}
{(i1>0 and i2>0)}

 P

 {(exists z1,z2 (i1=o x z1 and i2=o x z2) and not

 (exists h(i1=h x z1 and i2=h x z2) and h>o))}

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

6

Generalising input/output assertions

We would like to talk of programs fragments!

The language should be able to refer variables defined

within the program

{n > 0} – n is a constant value

 procedure search(table: in integer_array; n: in integer;

 element: in integer; found: out Boolean);

 {found=(exist i(1<=i<=n and table(i)=element))}

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

7

input/output assertions and classes

The language “predicates” over object variables and data

structures defining:

Invariants
Object states

Methods execution must preserve invariants
Examples: set abstraction or ordered set abstraction

Pre- and Post-conditions on each methods
{INV and precondition} program fragment for m {INV and post-condition}

Logical statements defined by the developer to increase

verification power

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

8

Example

public class Queue {
 Object[] queue;
 int length,head,tail,elementInQueue;
 public Queue(int length) {
 queue = new Object[length];
 this.length=length;this.head=0;this.tail=0;this.elementInQueue=0;
 }
 public void insert(Object o) {
 queue[head]=o;head++;elementInQueue++;
 if (head==length) head=0;
 }
 public Object remove() {
 Object o = queue[tail];tail++;elementInQueue--;
 if (tail==length) tail=0;
 return o;
 }
 public boolean isEmpty() {
 return (head==tail);
 }
}

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

9

Design by Contract

Engineering principle known as Design by Contract (DbC)
Logical statements defined at the interface level

Constitute the agreement among the contractor and the client

Support in programming languages: Eiffel, JContractor ...

Design vs. Requirements using logic specifications
Which is the universe of discourse?

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

10

Verification of Specifications

Using FOT you specify that any implementation must

guarantee that all of the given rules are true

Logical expressions can be used to analyze system properties

applying logical deduction
Derive the formula from the specification of the system

Operational formalisms do not allow to prove properties

You can discover behaviour but you cannot provide a proof!

Proving theorems is not a decidable problem within FOT

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

11

Algebraic Specification

Large systems are decomposed into subsystems with well-

defined interfaces between these subsystems.

Specification of subsystem interfaces allows independent

development of the different subsystems.

Interfaces may be defined as abstract data types or object

classes.

The algebraic approach to formal specification is

particularly well-suited to interface specification as it is

focused on the defined operations in an object.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

12

Specification elements

Introduction
Defines the sort (the type name) and declares other specifications that are
used.

Description
Informally describes the operations on the type.

Signature
Defines the syntax of the operations in the interface and their parameters.

Axioms
Defines the operation semantics by defining axioms which characterise
behaviour.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

13

Systematic Algebraic Specification

Algebraic specifications of a system may be developed
in a systematic way

Specification structuring;
Specification naming;
Operation selection;
Informal operation specification;
Syntax definition;
Axiom definition.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

14

Specification Operations

Constructor operations. Operations which create
entities of the type being specified.
Inspection operations. Operations which evaluate
entities of the type being specified.
Rule of thumb: identify constructor operations and
define inspector operations for each primitive
constructor operation.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

15

Operations on a List ADT

Constructor operations which evaluate to sort List
Create, Cons and Tail.

Inspection operations which take sort list as a
parameter and return some other sort

Head and Length.
Tail can be defined using the simpler constructors
Create and Cons. No need to define Head and Length
with Tail.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

16

Operations on a List ADT

LIST(ELEM)

sort List
imports INTEGER

Defines a list where elements are added at the end and removed from the front.
The operations are Create, which brings an empty list into existence, Cons, which
creates a new list with an added member, Length, which evaluates the list size,
Head, which evaluates the front element of the list, and Tail, which creates a list
by removing the head from its input list. Undefined represents an undefined value
of type Elem.

Create --> List
Cons(List, Elem) --> List
Head(List) --> Elem
Length(List) --> Integer
Tail(List) --> List

Head(Create) = Undefined exception (empty list)
Head(Cons(L,v)) = if L = Create then v else Head(L)
Length(Create)=0
Length(Cons(L,v)) = Length(L) + 1
Tail(Create) = Create
Tail(Cons(L,v)) = if L = Create then Create else Cons(Tail(L),v)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

17

Operations on a List ADT

Operations are often specified recursively.
Tail (Cons (L, v)) = if L = Create then Create

else Cons (Tail (L), v).
Cons ([5, 7], 9) = [5, 7, 9]
Tail ([5, 7, 9]) = Tail (Cons ([5, 7], 9)) =
Cons (Tail ([5, 7]), 9) = Cons (Tail (Cons ([5], 7)), 9) =
Cons (Cons (Tail ([5]), 7), 9) =
Cons (Cons (Tail (Cons ([], 5)), 7), 9) =
Cons (Cons ([Create], 7), 9) = Cons ([7], 9) = [7, 9]

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

18

Algebraic specifications

Algebraic Specifications can be easily combined

Reuse of algebras
Import allow to reuse

Assume allows to rewrite definition

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

19

Keynote

Discussed two formalism for defining a software specification

with a descriptive flavour
Use of FOT

Algebraic specification

Operational spec better for simulation descriptive for analysis

Limitations of analysis have been highlighted

