
Laurea Triennale in Informatica – Corso di Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

VII. Specifications (I)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

2

Objectives

To discuss the importance of models for the definition of

specifications

To show formalisms that can be used to define system models

To discuss properties and compare such formalisms

To provide examples

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

3

Topics

To distinguish among formal and informal specifications

Operational vs. Descriptive Models

Introduce some operational model:
Data Flow Diagrams (DFD)

Finite State Machines (FSM)

Petri Nets (PN)

The material that will be discussed today and tomorrow is

covered by [GJM] Chapter 5 and/or [Som] Chapters 8,10

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

4

How to increase Specification Qualities

Spec should be: Clear, Unambiguous, Understandable

Should not be: Contradictory or Inconsistent, Incomplete

Models are description of the system abstracting away

unimportant details, so to make the system “tractable”

Formal specifications vs. Informal specifications
Use of formalisms make spec precise and augment automatic verification

possibilities

Informal spec more flexible, leave more decision space to the implementer

Semiformal often we use notation which semantics has not

been defined so precisely (e.g. UML)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

5

Formal Spec and Verification

Formal specs are a powerful tool for making easier many

development phases in particular for analysis and verification

purpose

Just some keyword:
Model Checking

Model Based Testing

Simulation and prototyping

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

6

Operational vs. Descriptive Specification

Operational specification describe the system in term of the

expected behaviour generally providing a model

Descriptive specifications describe the system in term of

desired properties for the system

An example from mathematics:
Take a string of length “r” and fix at one of its extreme a pencil. Then fix

the other extreme to a sheet using a pin. Now tightening the string move

the pencil over the sheet describing a circle.

x 2 + y 2 = r 2

which one is a descriptive or an operational specification?

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

7

Operational Specifications – DFD

Data Flow Diagrams:
Used to specify functions of a system and how data flow from functions

to functions

Systems are seen as collections of functions that manipulate

data
Data can be stored in repositories

Data can flow

Data can be transferred from and to the external environment

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

8

DFD – graphical notation

Example – a simple

arithmetical function:
(a+b)*(a+c*d)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

9

DFD – a supermarket example (I)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

10

DFD – a supermarket example (II)

The functionality “gestione acquisti cliente” is certainly a macro

activity that could be split

In case of supermarket wants to apply discounts for some

products, in a certain period, to some clients, how these

information could be introduced in the system?

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

11

DFD Characteristics

DFD is certainly a semi-formal notation

Lack of precise semantics:
Function definition can be defined more precisely using more formal

description

No concept of control in such kind of diagrams
Diagrams do not specify how data are used and output are produced

Synchronization between functions is not specified

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

12

How to overcome DFD weakness

Use of complementary notation to express those aspects

that are not adequately described by DFD

Augment the DFD introducing mechanisms that allow to

express the missing aspects

Revise the traditional definition of DFD to make it fully

formal

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

13

Operational Specifications – FSM

A Finite State Machine (FSM) is an abstract automaton that

permits to describe the control flow of a system

Mathematically FSM are defined by:
A finite set of states Q

A finite set of input I

A transition function δ: Q x I --> Q

A simple switch can be described by the following FSM:
Q = [On, Off]

I = [Switch]

δ = [(On,Switch) --> Off,

 (Off,Switch) --> On]

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

14

FSM graphical representation

A simple example of an

electrical equipment including

a safety mechanism:

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

15

FSM with Input and Output

A Finite State Machine (FSM) extension permits to distinguish

among input and output data

Mathematically I/O FSM are defined by:
A finite set of states Q

A finite set of input I

A finite set of output O

A transition function δ: Q x I --> Q x O

How FSM can be composed originating a system FSM?
Resulting machine have a number of state given by the product of the

number of states for each composing machine

We take a simple (and a bit simplicistic) approach

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

16

FSM – Thinking Philosophers (I)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

17

FSM – Thinking Philosophers (I)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

18

FSM and continuous systems

FSM can store a finite quantity of information (Finite-memory

devices)

FSM can be cumbersome to describe even “finite” systems

requiring to formally express details that sometimes are easier

to understand using natural language

In practice computer always have a finite memory but number

of states is unmanageably large.

How to manage these situations:
Ignore details

Complement diagrams with natural language comments

Change model (LTS, PN, ...)

Enrich FSM (i.e. Introduce a language to annotate transitions)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

19

FSM for a Producer/Consumer System

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

20

Deriving the Parallel Machine

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

21

The Buffered Producer/Consumer System

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

22

FSM limitations

Composing machines the number of states raise drastically

We could leave the FSM are they are defined for the

subsystems and use composition rules.

Still some problem persist
The system must be always in a unique state and can perform only

one action at any instant of time

FSM permit to express only synchronous interactions
Not really adequate to describe general concurrent systems

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

23

FSM Exercises

FSM for a two switch lighting systems

Two lamps and one button
Different alternatives to model the same system

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

24

Key points

On today lesson we introduced and discussed:
Models to describe software systems have been introduce

Properties that permit to classify different modelling language
Operational vs. Descriptive

Formal vs. Semiformal vs. Informal

Data Flow Diagram (DFD)

Finite State Machine (FSM)

