
Laurea Triennale in Informatica – Corso di Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

XII. Distributed Systems and
Middleware

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

2

Outline

Distributed Systems Basics

Middleware generalities

Middleware for Distributed Objects

Distributed Computing Models

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

3

Distributed systems: a definition

“A distributed system is a collection of processors that do not share

memory or a clock. Instead, each processor has its own local memory,

and the processors communicate with each other through various

communication lines. The processors in a distributed system vary in

size and function. They may include small microprocessor,

workstations, minicomputers, and large general purpose computer

systems.

…

A distributed system must provide various mechanisms for process

synchronization and communication, for dealing with the deadlock

problem, and for dealing with a variety of failures that are not

encountered in a centralized system.”

 (Silberschatz & Galvin, Operating System Concepts)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

4

Highlights

No shared memory and neither shared time

Heterogeneity

Typical problems of concurrency and necessity of suitable

means to deal with them

New and more points of failures

Security and Integrity issues

CONCLUSION

Building a distributed system is really more difficult and expensive

than building a centralized one. Hence the choice must be

pondered. In general it is better not to build a distributed system if

it can be avoided

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

5

Why building a distributed system?

However some non-functional requirements cannot be achieved

by a centralized system, and this lead to the construction of

Distributed System, in particular:
Scalability

Resource Sharing

Heterogeneity

Fault-Tolerance

Openness

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

6

Non-functional requirements

Scalability:
The system must be capable of accommodating growing load in the future

Distributed system can be “easily” scalable adding new computers in the

original configuration

Resource Access and Sharing:
Often it is necessary to share hardware, software and data

Resource manager and security issues

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

7

Non-functional requirements

Heterogeneity:
Use of different technology for the implementation of services and legacy

components

Differences in: programming languages, operating systems, hardware

platforms, network protocols

Fault Tolerance:
Operations that continue also in presence of faults (many components

higher probability of having faults)

Generally obtained by means of redundant components

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

8

Non-functional requirements

Openness:
System can be easily extended and modified with new functionalities

It is necessary to establish well-documented and well-defined interfaces

What about Performance?
Distributed system can certainly improve performance (real parallelism

available)

However performance should not be the main motivation

Communications really expensive

Consider instead Multiprocessor and Massively Parallel System

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

9

Outline

Distributed Systems Basics

Middleware generalities

Middleware for Distributed Objects

Distributed Computing Models

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

10

Middleware: a definition

“Middleware is a set of common business-unaware

services that enable applications and end users to

interact with each other across a network. In essence,

middleware is the software that resides above the

network and below the business-aware application

software.”
(Umar, Object-Oriented Client/Server Internet environments)

Operating System and Computing hardware

Local Services

Middleware

Application

Network Services

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

11

Middleware: a glance

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

12

Why do we need middleware?

Programming in heterogeneous distributed environment

is made difficult by several factors:
It is often necessary to exchange complex data

Different encoding of data types

References to other distributed components as return values

Distributed Components activation and deactivation

Synchronization and Real Parallelism

Need for atomic sequence operations

...

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

13

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

14

Trasparency

Trasparency – complexity introduced by distribution

(mobility...) should disappear

The system should appear, to the final user, as an integrated

computing facility

Certainly useful to hide the distribution as much as possible to

the application engineer

Several dimension of transparency (not orthogonals) can be

identified

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

15

Trasparency Relations

Part of the International Standard on Open Distributed

Processing (ODP)
Scalability

Transparency
Performance
Transparency

Failure
Transparency

Migration
Transparency

Replication
Transparency

Concurrency
Transparency

Access
Transparency

Location
Transparency

 (W.Emmerich – Engineering Distributed Objects – John Wiley and Sons)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

16

Transparency Dimensions

Access Transparency:
interface to a service do not depends from the location of the components

that use it. Without it is not an easy task to move the service to a

different host.

Location Transparency:
a request for a service can be made without knowing the physical location

of the components that provide the service. Without it moving components

becomes almost impossible

Migration Transparency:
Components can be migrated to different host without that the user are

aware of that, and that the developer of clients components take a special

consideration

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

17

Transparency Dimensions

Replication Transparency:
The user of a service and the application programmer are not aware that a

service they are using are provided by a replica

Concurrency Transparency:
Several components may concurrently request services from a shared

component while the shared component’s integrity is preserved and neither

users nor application engineers have to see how concurrency is controlled

Scalability Transparency:
To the users and designers is transparent how the system scales to

accommodate a growing load

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

18

Transparency Dimensions

Performance Transparency:
The users and the application programmers are not aware of how the

system performance is actually achieved (really difficult to obtain given the

general unpredictability of load)

Failure Transparency:
the user and the application programmer are unaware of how the system

hides the failure. In some way they should believe that the service cannot

fail

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

19

Outline

Distributed Systems Basics

Middleware generalities

Middleware for Distributed Objects

Distributed Computing Models

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

20

Types of middleware

Transaction Oriented Middleware:
often used when the distributed components are database applications. It

use the two-phase commit protocol to implement distributed transactions.

(IBM CICS, BEA Tuxedo, Transarc Encina)

Message-Oriented Middleware:
supports the communication by message exchange. Components use

messages to require services and can wait for a response. It simplifies

decoupling of clients and servers (then scalability) and supports multi-cast

in a transparent way. (IBM MQSeries, Sun ToolTalk, NCR TopEnd)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

21

Types of middleware

Remote Procedure Calls: operation that can be invoked

remotely across different hardware and operating systems

platforms.
The intent was to provide a mean to invoke remote procedures as local

procedures.

Interface Definition Language (IDL)

Client and Server stubs

RPC is not reflexive

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

22

Object-Oriented middleware

Objective in the developing of OO Middleware is to export the

paradigm of OO into the distributed world

The development of a OO distributed application “must be”

similar to the development of a normal OO application

Distribution should not completely disappear!!!

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

23

OO Middleware

Main elements of a OO middleware are:
Object Request Broker

Interface Definition Language

Three main examples of OO middleware:
CORBA (OMG)

DCOM/.Net (Microsoft)

JavaRMI (Sun)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

24

Just a glance on remote invocations

Based on the same schema of RPC:

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

25

Just a glance on remote invocations

A distributed AddressBook:
public interface AddressBookI {
 public String[] getAddress(String name) throws Trowable;
 public String[] getTown(String name) throws Trowable;
 public String getTelNumber(String name) throws Trowable;
}

public clas s AddressBookServer implements AddressBookI {
private AddressBookTable AddrBook;
public String addEntry(String name, String street, String town, String tel) {

AddressBook.addEntry(name,street,town,tel);
}
public String[] getStreet(String name) { return AddrBook.getStreet(name); }
public String[] getTown(String name) { return AddrBook.getTown(name); }

 public String[] getTelNumber(String name) { return AddrBook.getTel(name); }
}

public clas s AddressRemoteClient {
public s tatic void main(String[] args) {

try {
AddressBookI ab = new AddressBookServerStub();
System.out.println(“Via: ”+ab.getStreet(args[1])+“ Comune di: ”+getTown(args[1])+

 ” Tel: ”+ getTelNumber(args[1]);}
} catch (Throwable t) {t.printStackTrace();}

}
}

Machine X

Machine Y

Andrea Polini – Seminario al RETIS Lab – Scuola Sant'Anna – March 23, 2006

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

26

Class “Stub”

import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.net.Socket;

public clas s AddressStub implements AddressBookI {
Socket socket;

public AddressStub throws Trowable {
socket = new Socket(“localhost”,“9000”);

 }
public String getStreet(name) throws Throwable {

ObjectOutputStream outStream = new ObjectOutputStream(socket.getOutputStream());
outStream.writeObject(“Street”);
outStream.flush();
outStream.writeObject(name);
outStream.flush();
ObjectInputStream inStream = new ObjectInputStream(socket.getInputStream());

return (String)inStream.readObject();
 }

public String getTown() throws Throwable {
...

}

}

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

27

Class “Skeleton”

import java.io.ObjectOutputStream; import java.io.ObjectInputStream;
import java.net.Socket; import java.net.ServerSocket;

public clas s AddressSkeleton extends Thread {
AddressServer server;
public AddressSkeleton (Address server) { this .server = server; }
public void run() {

try { ServerSocket serverSocket = new ServerSocket(9000);
Socket socket = serverSocket.accept();
while (socket != null) {

ObjectInputStream inStream = new ObjectInputStream(socket.getInputStream());
String method = (String)inStream.readObject();

 String name = (String)inStream.readObject();
if (method.equals(“Street”)) {

ObjectOutputStream OutStream = new ObjectOutputStream(socket.getOutputStream());
outStream.writeObject(Server.getStreet(name)); outStream.flush();

} els e if (method.equals(“Town”)) { ... } } }
} catch (Trowable t) {t.printStackTrace(); System.exit(0);}

}
 public s tatic void main(String[] args) {

AddressServer server = new AddressServer(“Via Salaria”,“Roma”);
AddressSkeleton addressSkel = new AddressSkeleton(server);
addressSkel.start();

 }
}

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

28

Distribution can’t disappear!!!

Differences between local and distributed objects, and that

must be considered by the application designer, concern:
Life Cycle

Object References

Request Latency

Activation

Parallelism

Communications

Failures

Security

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

29

Life cycle

Creation: in traditional OO programming creation via

constructor (compiler solve the problem). In distributed OO

programming created object do not necessarily reside in the

same process space, therefore is not possible to directly invoke

constructors.

Migration: after the creation an object could migrate to other

hosts; when necessary the object should have been designed to

permit migration

Deletion:
difficulties in implementing garbage collections algorithms

referential integrity is rather expensive, it is difficult to know all the

existing references to an object then it is necessary to deal with server

objects no more available

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

30

Object references

Parameter-passing

Remote references are quite big data structure

In complex middleware the necessity of space for a reference

can be 100 times bigger than in “normal” OO programming

Applications cannot maintain large numbers of object references

Designing distributed object-based applications we have to

minimize the number of objects

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

31

Request latency

Local request call requires, in modern workstations, 250

nanoseconds (4ya)

Remote request could require between 0.1 and 10 milliseconds

(4ya)

A remote request is about 400-4000 times more expensive

than a local one

It is really important try to obtain locality. Objects that

communicate a lot between them, should reside on the

same host!!

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

32

Activation/Deactivation

More new problems in distributed OO programming:
machines, hosting server objects, could be restarted

Resource required by all the server objects on a host may be greater than

the resources available

Server object could be idle for long time between two invocations than

could be opportune do not waste resources

It is necessary to introduce other two operation to objects life

cycle: Activation and Deactivation

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

33

Activation/Deactivation

This operation can increase latency if the requested service is

provided by a deactivated object

Obviously activation and deactivation must be transparent to

the client

It is necessary to implement a “persistence service” to

handle stateful objects

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

34

Parallelism

Certainly we have to manage real parallelism, independently

from the use of threads

Access to server objects must be controlled

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

35

Communications

The numerous cause of delay impose the possibility of using

non-blocking calls invoking a service

Often is also useful to use a form of multi-cast

Request Synchronization (Synchronous, One way, extended

rendez-vous, asynchronous)

Request Multiplicity (Unicast request, Group request, Multiple

request)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

36

Failures

Distributed objects have to deal with major probability of

failures

Partial failure (a new kind of failure)

Different reliabilities available for distributed objects
Unicast request

exactly-once, atomic, at-least-once, at-most-once, maybe

Group request and Multiple request

k-reliability, totally ordered, best effort

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

37

Security

Distributed objects use the network for

communications!!!

Centralized applications trust that the user will not make the

session available to unauthorized users

In distributed applications each request might be

authenticated

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

38

Common problems

Recurring problems not strictly related to the application logic

Middleware can provide solutions known as “services”. We will

see in brief four of them :
Location

Life Cycle management

Object persistence

Transactions

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

39

Location service

Object Naming
a sequence of identifiers is bound to an object reference

Hierarchical structuring of name spaces (as DNS)

The object must be registered within a naming server that then can

provide the reference to clients

 (CORBA Naming Service, COM Monikers, JavaRMI Registry)

Object Trading
three main actors: Trader, Exporter and Importer

reference retrieved on the base of properties concerning provided

functionalities and quality

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

40

Life cycle service

CREATION:
The new operator is not available for remote construction

Client need reference to Factory objects (objects capable of create other

objects)

Administrator influences distribution placing factories

MIGRATION:
Moving or Copying (using a factory) an object from its current location

moved objects retain the same reference

more factories on heterogeneous platforms to solve heterogeneity machine

code

DELETION

Composite Objects Life Cycle Management

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

41

Persistence service

Three reason that can cause the necessity of storing object

state information:
deactivation

hosts have to be restarted

memory lacking

Java Serialization, CORBA Externalization, COM Structured

Storage

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

42

Transaction service

Several object requests into a coarse grained one with ACID

properties

Middleware provide mechanisms for the implementation of the

2PC

CORBA Transaction Service, Microsoft Transaction Server

(MTS), Java Transaction API (JTA)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

43

CORBA Short Overview

Common Object Request Broker Architecture (CORBA)

Open Standard defined by the Object Management Group

(OMG) Last Formal Spec March 2004 (1152 Pages)

Main Elements:
Object Model

ORB

CORBA IDL

CORBAServices, CORBAFacilities, CORBA Domain Interfaces

http://www.corba.org/vc.htm (~220 companies committed)

http://www.omg.org/technology/corba/corbadownloads.htm

(~15 free CORBA implementation)

http://www.corba.org/vc.htm
http://www.omg.org/technology/corba/corbadownloads.htm

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

44

CORBA Architecture

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

45

CORBAservices

Additional Structuring

Mechanisms for the OTS

Notification Service

Collection Service

Persistent State Service

Concurrency Service

Property Service

Enhanced View of Time

Query Service

Event Service

Lightweight Service

Management of Event Domain

Relationship Service

Externalization Service

Security Service

Naming Service

Time Service

Licensing Service

Trading Object Service

Life Cycle Service

Transaction Service

Notification/JMS Interworking

Telecoms Log Service

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

46

Outline

Distributed Systems Basics

Middleware generalities

Middleware for Distributed Objects

Distributed Computing Models

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

47

Distributed computing models

File Transfer:
this was one of the first model trying to exploit the resources distribution.

Following this paradigm the applications, that need data residing in another

machine, make the log-on on it and then transfer the data. Therefore off-

line the foreseen computations are performed

The distribution regards only the data

Applicable only with low load and low concurrency

e.g. e-mail

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

48

Distributed computing models

Client/Server:
Client/server model is a concept for describing communications between

computing processes that are classified as service consumers (clients) and

service providers (servers)

Today the most used paradigm, therefore we will see major details in the

following

In this context C/S is a software architecture not hardware!!

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

49

Distributed computing models

Peer-to-Peer (P2P):
following this paradigm more processes, located on different machines,

cooperate to reach the solution of the problem. In different moments the

process perform both server and client duties

Also consequence of the great underutilization of many resources linked to

the net.

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

50

Client/Server model

Client: process that requires services

Server: process that provides services

Three different logic levels of computation concerning:
Graphical interface

Business logic

Data Management

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

51

Client/Server model

Two-tier architecture:
the business logic is divided between the two elements. We can have:

fat client and thin server

fat server and thin client

Three-tier and n-tier architecture:
There is a tier for each of the logic levels

It is also possible to split the business logic in more than one tier (e.g. web

applications)

Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

52

Client/Server model

The J2EE example:

