V WniveERSITA wi CANIERINO

XV. Design Patterns

Laurea Triennale in Informatica — Corso di Ingegneria del Software | - A.A. 2006/2007

Andrea Polini

Objectives

~ What Design Patterns are
~ Why we need Design Patterns?

~ Discuss some common examples

¥ UN] C AM Ingegneria del Software | — A.A. 2006/2007

) WNivERSITA oi CAMERIN® Andrea Polini

~ softwareReuse

v System getting more and more complex reuse as a way to

manage complexity
v However reuse is far from being an easy task!!

v Reuse at different level of abstraction

= At the code level — e.qg. libraries, CBSE, inheritance

= At the application level — e.g. wrapping of legacy systems

v Today focus is on reuse at a more abstract level
v Design reusable software requires to define interfaces, inheritance

and relations among elements to be adapted in different context

= Experience make designers good in reusing “deja-vu effect”

R UNICAM Ingegneria del Software | — A.A. 2006/2007 e
Y WNivERSITA i CAMIERIN© Andrea Polini {0 !

~ DesignPatemns

‘v Christopher Alexander says "Each pattern describes a problem

which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way
that you can use this solution a million times over, without ever
doing it the same way twice"

£

v’ ...worth noting that Alexander is a building architect :-)

 The idea is to establish the same concept within the software domain
» Defines design pattern that systematically names, explains, and

evaluates an important and recurring design in OO systems

i UN] CAM Ingegneria del Software | — A.A. 2006/2007

Y WniveESITA wi CAMERINO Andrea Polini

"~ DesignPatterns definiton

v A pattern has four essential elements:

= The pattern name is a handle we can use to describe a design problem, its
solutions, and consequences in a word or two.

= The problem describes when to apply the pattern. It explains the problem and its
context.

= The solution describes the elements that make up the design, their relationship,
responsibilities, and collaborations.

= The consequences are the result and the trade-offs of applying the pattern

“ Definition: design patterns are descriptions of communicating
objects and classes that are customized to solve a general

design problem in a particular context

8| /NICAM Ingegneria del Software | — A.A. 2006/2007 L]
oy WniveERSITA oi CAMIERINO Andrea Polini e l

" Documenting Software Using Design Pattern

v A DP identifies the classes and instances, their roles and
collaborations, and the distribution of responsibilities
¥ When well established in a particular domain Design Patterns become

particularly powerful instrument to document software

= JUnit a framework for testing completely illustrated using patterns

v A Dbit of history
= Erich Gamma PhD thesis
= Successively a four person team become well known with the name of “The Gang of
Four” - Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
= “Design Pattern: elements of reusable Object Oriented software” - Addison Wesley

= A lot of work on patterns started and many collections can be found

UN] C AM Ingegneria del Software | — A.A. 2006/2007

o WniveRSITA i CAMERINO Andrea Polini

"~ Describing Design Patterns

v Definition of pattern collections in specific domains is the first basic

step to establish reuse of patterns
v GoF defined the first reasonable catalog of general patterns. Each

pattern is defined according to:

= Name = Collaborations
= Intent =' Consequences
= Aka = Implementation
=' Motivation = Sample Code

= Applicability = Known Uses

= Structure = Related Patterns

=' Participants

| /NICAM Ingegneria del Software | — A.A. 2006/2007 i
o WNivERSITA wi CAPIERINO Andrea Polini -

v GoF defined 23 Design Patterns and classified them according to two

different concepits:
= Scope - object, class

~ Purpose — creational, structural, behavioral

v Possible to organise them in different ways - e.g. How they relate to

each other.

\ UN] CAM Ingegneria del Software | — A.A. 2006/2007

' WNivERSITA i CAPIFRINO Andrea Polini

Purpose

Creational Structural Behavioral
Scope | Class Factory Method | Adapter (class) | Interpreter
Template Method
Object | Abstract Factory | Adapter (object) | Chain of Responsibility
Builder Bridge Command
Prototype Composite [terator
Singleton Decorator Mediator
Facade Memento
Flyweight Observer
Proxy State
Strategy
Visitor

GoF - Design Patterns: elements of reusable OO software

UNICAM

oy (W[nivERSITA wi CAPMERINO

Ingegneria del Software | — A.A. 2006/2007

Andrea Polini

" Design Patterns and the Design Phase

v Many object in the design come from the analysis model. But OO
designs often end up with classes that have no counterparts in the
real world. For instance array or at a more abstract level composite
pattern. Abstraction make design flexible.

‘v Design Patterns help you identify less-obvious abstractions and the

objects that can capture them.
= For example objects that represent a process or algorithm don't occur in nature,
yet they are a crucial part of flexible designs (Strategy pattern describe how to

implement interchangeable families of algorithms).

UN] CAM Ingegneria del Software | — A.A. 2006/2007
Y WNivERSITA oi CAMERINO Andrea Polini

~ 0ODesign Principles Fostered by DP

~ Class inheritance vs. Interface inheritance

= A Class provide implementation — an interface defines a type
= In case of class, inheritance is mainly a way to reuse code

= In case of interface inheritance just define a subtype
“ Many languages does not make really any difference (C++, Eiffel)
some does (Java, C#) - many patterns rely on this distinction

¥ Reuse and subclass relations are not the same concept

= Client remain unaware of the specific types of objects they use, as long as the
object adhere to the interface that clients expect

= Clients remain unaware of the classes that implement these objects.

Program to an interface, not an implementation

\ UN] CAM Ingegneria del Software | — A.A. 2006/2007

oy WniveERSITA oi CAMIERINO Andrea Polini

"~ Inheritancevs. Compositon

v (Class inheritance kind of white-box reuse

v Object composition kind of black-box reuse
¥ Inheritance, object composition...which one is better?

¥ |Inheritance:

+ defined statically at compile time

+ directly supported by OO programming languages
+ easy to modify the implementation to be reused

- cannot be changed at run-time

- inheritance breaks encapsulation

- dependences on the ancestor put constraint on the reuse of subclass.

| /NICAM Ingegneria del Software | — A.A. 2006/2007 A
W (LinivERSITA oi CAPIERINO Andrea Polini Lol

"~ Inheritancevs. Compositon

¥ Object Composition:

+ defined at run-time through objects acquiring references to other objects
+ does not break encapsulation

+ use of interface reduce number of dependencies

+ helps to keep classes focused on one task

- more objects at run-time and control is more distributed

Favor object composition over inheritance

R UN] CAM Ingegneria del Software | — A.A. 2006/2007 e
Y WNivERSITA i CAMIERIN© Andrea Polini '.__j,_

~ Delegaion

v Delegation is a way of making composition as powerful for reuse as

inheritance

v Objects receive invocation and delegate their execution to other

objects (has relation, not is)

Windows *»| Rectange
rectangle 1
+Areal) s +width
- +height
% +Area(}|,a
¥ &
return rectangle.ﬂrea(jb] return widh‘tffheigh'tb]

¥ Main advantage is that it make easy to compose behaviours at run-
time and to change the way they are composed.

v Highly dynamic software is harder to understand

\ UN] CAM Ingegneria del Software | — A.A. 2006/2007

gy WnivERSITA pi CAMERNO Andrea Polini

~ Designingforchange

¥ DP indica le linee evolutive dei sistemi e ne facilita I'evoluzione.

Problemi comuni nei sistemi OO sono ad esempio:

1. Creating a class by specifying a class explicitely — complicate future changes (Abstract Factory)

2. Dependence on specific operations — avoiding hard coded request, you make it easier to
change

3. Dependence on hardware and software platform — better to limit platform dependences
(Abstract Factory)

4. Dependence on object representations or implementations — hiding this information from clients
keeps changes from cascading (Abstract Factory, Proxy)

5. Algorithmic dependencies — better isolate algorithms that will have to change (Strategy)

6. Tight Coupling — loose coupling reduces modifications and increase reusability (Abstract
Factory, Observer)

7. Extending functionality by subclassing — not always easy (Observer)

8. Inability to alter classes conveniently — difficult to adapt to many different requests (Adapter)

= @ UN] CAM Ingegneria del Software | — A.A. 2006/2007 b B/
Y WnivERSITA ni CAPIERINO Andrea Polini B .

~ Creational Pattens

v Abstract the instantiation process

v Objective of these “pattern category” is to make a system
independent on how its objects are created, composed and
represented

v They permit to rely more on composition than class inheritance

v Creational patterns give you a lot of flexibility in what gets

created, who creates it, how it gets created, and when

v' Two creational patterns will be the subject of our study:

= Abstract Factory

= Singleton

y UN] CAM Ingegneria del Software | — A.A. 2006/2007

s WNivERSITA oi CAMERINO Andrea Polini

> MapSite

+Enter()

Ja\

Maze MazeGame() {

Maze aMaze = new Maze(); " Room Wall Door
aze

Room rl = new Room(); p [rroomhunber | +Enter() +isOpen

+AddRoom () +Enter() +Enter()
Room r2 = new Room(); +RoomNo () +5etside()
Door theDoor = new Door(rl,r2); tEetfide()
aMaze.AddRoom(rl); aMaze.AddRoom(r2);
rl.SetSide(N, new Wall()); rl.SetSide(E, new Wall());
rl.SetSide(S, new Wall()); rl.SetSide(0O, theDoor);
rl.SetSide(N, new Wall()); rl.SetSide(E, theDoor); r2 rl
rl.SetSide(S, new Wall()); rl.SetSide(O, new Wall());
return aMaze; \

theDoor
17

UNICAM

WniveRSITA wi CAMERINO

Ingegneria del Software | — A.A. 2006/2007
Andrea Polini

v Intent:
= Ensure a class only has one instance, and provide a global point of access to it
v Motivation:
= It's important for some classes to have only one instance.
There should be only one printer spooler in a system, there should be one window
manager, one file system manager.
How do we ensure that a class has only one instance and that the instance is easily
accessible? Global variable make an object accessible but doesn't avoid the

instantiation of more instances
v Participants:

= Singleton: defines an instance operation that lets clients access its unique

instance. May be responsible for creating its own unique instance.

g

= UN] CAM Ingegneria del Software | — A.A. 2006/2007
T ey WnivERSITA vi CAMERINO Andrea Polini

~ Consequences:

= Controlled access to sole instance — strict control over the clients

= Reduced name space — avoid the usage of global variables

= Permits refinement of operations and representation — singleton may be
subclassed

= Permits a variable number of instances — easy to permit more instances

= More flexible then using class operations — easier to maintain

UN] C AM Ingegneria del Software | — A.A. 2006/2007

WniveRSITA wi CAMERINO Andrea Polini

v Java Sample Code:

public class Singleton {

protected static Singleton instance = null;

private static int counter = 0;

... // objects attributes and methods

protected Singleton() { ... }
public static Singleton Instance() {
if (counter == 0) {
instance = new Singleton(); counter++;

}

return instance;

B /NICAM Ingegneria del Software | — A.A. 2006/2007
o (LnivERSITA vi CAPIERINO Andrea Polini

~ AbstractFactory

~ Intent

= Provide an interface for creating families of related or dependent objects without

specifying their concrete classes
~ Applicability

= A system should be independent of how its products are created, composed,
and represented

= A system should be configured with one of multiple families of products

= A family of related product objects is designed to be used together, and you
need to enforce this constraint

= You want to provide a class library of products, and you want to reveal just

their interfaces, not their implementation

UN" C AM Ingegneria del Software | — A.A. 2006/2007

WniveERSITA i CAMERINO Andrea Polini

v Structure

AbstractFactory |+ Client

AbstractProductA
+CreateProductA()

+CreateProductB() -

A

= —————— = ProductA2 ProductAl <-

ConcreteFactoryl ConcreteFactory2

+CreateProductB()
+CreateProductAl)

+CreateProductAl) = — = = = = =
+CreateProductE()

AbstractProductB <

L
I I

L e e e e - - > ProductB2 ProductB1 -

UN] CAM Ingegneria del Software | — A.A. 2006/2007 ")
WniveRSITA i CAMIERIN© Andrea Polini

v Java Sample Code

public interface MazeFactory ({

Maze MakeMaze();
Wall MakeWall();
Door MakeDoor ();

Room MakeRoom() ;

public class MazeGame (MazeFactory mf) {

Maze aMaze = mf.MakeMaze(); Room rl = mf.MakeRoom(1l);

Room r2 = mf.MakeRoom(2); Door aDoor = mf.MakeDoor(rl,r2);
aMaze.AddRoom(1l); aMaze.addRoom(2);
rl.SetSide(N,mf.MakeWall()); rl.SetSide(S,mf.MakeWall());
rl.SetSide(E,mf.MakeWall()); rl.SetSide(0O,aDoor);
r2.SetSide(N,mf.MakeWall()); r2.SetSide(S,mf.MakeWall());
r2.SetSide(E,aboor); r2.SetSide(0,mf.MakeWall());

return aMaze;

oy WnivERSITA wi CAMERINO

Ingegneria del Software | — A.A. 2006/2007
Andrea Polini

Structural Patterns

~ How to compose classes and objects to create more complex

structure

= Adapter
= Proxy

¥ UN] C AM Ingegneria del Software | — A.A. 2006/2007

) WNivERSITA oi CAMERIN® Andrea Polini

¥ Intent

= Convert the interface of a class into another interface clients expect. Adapter
lets classes work together that couldn't otherwise because of incompatible
interfaces

v Applicability

= You want to use an existing class, and its interface does not match the one you
need

= You want to create a reusable class that cooperates with unrelated or unforeseen
classes, that is, classes that don't necessarily have compatible interfaces

= You need to use several existing subclasses, but it is impractical to adapt their

interface by subclassing every one. An object adapt the interface of its parent class.

= UN] CAM Ingegneria del Software | — A.A. 2006/2007

WniveRSITA wi CAMERINO Andrea Polini

Class

Client » Target Adaptee

+Request() +8pecificRequest()

1]

Ereditarieta deve essere singola
Adapter in alcuni linguaggi
(Target e un'interfaccia)

+Request()

Object
Client > Target —> Adaptee
+Eequesti() +SpecificRequest()
Adapter adaptee
+Request()
. 26

UN] CAM Ingegneria del Software | — A.A. 2006/2007 . e
WniveERSITA wi CAMERINO Andrea Polini ;J_::%l

Py

v |ntent

= Provide a surrogate or placeholder for another object to control access to it
v Motivation
= One reason for controlling access to an object is to defer full cost of its creation and
initialization until we actually need to use it.
e.g. Big objects not always necessary — put a placeholder without increasing editor
complexity
v Applicability
= A remote proxy provides a local representative for an object in a different address
space
= A virtual proxy creates expensive objects on demand
= A protection proxy control access to the original object

= A smart reference is a replacement that performs additional actions

N UN] CAM Ingegneria del Software | — A.A. 2006/2007 469 2
Y WNivERSITA vi CANERINO Andrea Polini =

Client | Subject

+Request()
+...0)

realSubject
RealSubject |+ Proxy
+Request() +Request()
+...0) +...0) realSubject.Request()

public interface Graphic {...}

public class Image implements Gaphic {

Image(FileInputStream fis) {...}; ...

public class ImageProxy implements Graphic {

String fileName;

public void Draw(at) { Image i = new Image(fis); i.Draw(at); }

UN] CAM Ingegneria del Software | — A.A. 2006/2007 e .’1

WniveRSITA i CAMERINO Andrea Polini e

~ BehavioralPattems

v Behavioral Patterns are concerned with algorithms and the
assignment of responsibilities between objects.
v These patterns characterize complex control flow that is difficult to

follow at run-time — move the focus from control to interconnection

= QObserver

= Strategy

o (WNivERSITA wi CAMERINO

Ingegneria del Software | — A.A. 2006/2007
Andrea Polini

¥ Intent

= Define a one-to-many dependency between objects so that when one object

change state, all its dependents are notified and updated automatically

> Motivation
= Need to maintain consistency

between related objects.
‘v Key objects in this pattern:

= Observer and Subject

‘v Kind of interaction is also

known as publish-subscribe

Observer

Observer

Observer

Observer

Observer

Observer

Observer

Observer

Observer

request, modifications

—» change notification

WniveRsSiTA i CAPIERINO©

B /NICAM Ingegneria del Software | — A.A. 2006/2007

Andrea Polini

 observer

~ Applicability

= When an abstraction has two aspects, one dependent on the other.
Encapsulating these aspects in separate objects lets you vary and reuse them
independently

= When a change to one object requires changing others, and you don't know
how many objects need to be changed

< When an object should be able to notify other objects without making
assumptions about who these objects are. In other words, you don't want these

objects being tightly coupled

\ UN] CAM Ingegneria del Software | — A.A. 2006/2007

Y WNivERSITA oi CAMERINO Andrea Polini

observers

O\ Subject »| Observer
v Structure
+Attach(Observer) +Update()
+Detach(Observer) for all o in obeservers { A
+Hotify() acemm==g==""77 o.Update()
T
subject
Concrete Subject |+ ConcreteObserver
+subjectState N +ObserverState
+oethitate(laaaaemd=====1 Teturn SuhjECtSTﬂtE +Updﬂ'tE|::| .
+SetState() "

v Participants

= Subject: knows its observers; provides an interface for

attaching and detaching

*
L]
%
k]

observerState=subject .GetStatelﬁ

' Observer: defines an updating interface for objects that should be notified
- ConcreteSubject: stores state; sends a notification to its observers

= ConcreteObserver: maintains a reference to a concrete subject; stores state that

should stay consistent with the subject's; implements the observer

UNICAM Ingegneria del Software | — A.A. 2006/2007
WniveRSITA wi CAPER MO Andrea Polini

ConcreteSubjectinst ConcreteQ bsenverinstl ConcreteQbserverinst?

v Collaborations: i :
SetState()
-}
M otify ()
- .
|
Update() +.|.
- GetStatel) .
Update() : .
|
|
g . GetState()

¥ Implementation:

= Observing more that one subject
= Dangling references to delete subjects

= Pull vs. Push protocol model

UN] C AM Ingegneria del Software | — A.A. 2006/2007

oy WnivERSITA wi CAMERINO Andrea Polini

- staeyy

v |Intent

= Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets algorithm vary independently from clients that use it.
v Applicability

= Many related classes differ only in their behaviour. Strategies provide a way to
configure a class with one of many behaviours

=~ You need different variants of an algorithm.

= An algorithm uses data that clients shouldn't know about. Use the strategy pattern
to avoid exposing complex, algorithm-specific data structures

= A class define many behaviours, an these appear as multiple conditional statements
in its operations. Instead of many conditionals, move related conditional branches

into their own Strategy class.

UN] CAM Ingegneria del Software | — A.A. 2006/2007 <% od
Y WNivERSITA i CAMIERIN© Andrea Polini -

strategy

O\
- StrUCtUre Context > Strategy

+ContextInterface() +AlgorithmInterface()

A

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

+AlgorithmInterface() +AlgorithmInterface() +AlgorithmInterface()

~ Motivating example

compositor
Composition »| Compositor

+Traverse() +Compose()
+Repair() '

]

i

il

L

L]

cnmpusitnr.tnmpase(!b1

SimpleCompositor TeXCompositor ArrayCompositor

+Compose() +Compose() +Compose()

UN] CAM Ingegneria del Software | — A.A. 2006/2007

WniveRsSiTA i CAPIERINO© Andrea Polini

public interface Compositor ({

public FormattedComponent[] Compose(String text,int linewidth,intlineheight);

public class Composition {
private Compositor comp; private int linewidth;

private int lineheight; private String text;

public Composition(Compositor c, int l1lw, int 1lh) {

this.comp = c;this.lineheight=1h; this.linewidth=1lw;

public FormattedComponent[] Repair() {

return comp.Compose(text, linewidth, lineheight);

UNICAM Ingegneria del Software | — A.A. 2006/2007

WniveRSITA wi CAMERINO Andrea Polini

public class SimpleCompositor implements Compositor {

public FormattedComponent[] Compose(String text,int linewidth,int lineheight)
{ // TODO Auto-generated method stub

return null; }

public class TeXCompositor implements Compositor {

public FormattedComponent[] Compose(String text,int linewidth,int lineheight)
{ // TODO Auto-generated method stub

return null; }

public class ArrayCompositor implements Compositor {

public FormattedComponent[] Compose(String text,int linewidth,int lineheight)
{ // TODO Auto-generated method stub

return null; }

UN] CAM Ingegneria del Software | — A.A. 2006/2007 e .’1

o (WnivERSITA i CAPIERNO Andrea Polini e

public class FormatterUser {
private Composition simple;
private Composition TeX;
private Composition array;
public void setCompositions() {
simple = new Composition(new SimpleCompositor(),0,0);
TeX = new Composition(new TeXCompositor(),0,0);

array = new Composition(new ArrayCompositor(),0,0);

UN] CAM Ingegneria del Software | — A.A. 2006/2007 s &
WniveRSITA i CAMIERINO Andrea Polini =1

UN] CAM Ingegneria del Software | — A.A. 2006/2007

W WnivERSITA i CAPIERINO Andrea Polini

UN] CAM Ingegneria del Software | — A.A. 2006/2007

oy (LNivERSITA wi CAMERINO Andrea Polini

UN] CAM Ingegneria del Software | — A.A. 2006/2007

oy (LNivERSITA wi CAMERINO Andrea Polini

UN] CAM Ingegneria del Software | — A.A. 2006/2007

oy (LNivERSITA wi CAMERINO Andrea Polini

UN] CAM Ingegneria del Software | — A.A. 2006/2007

oy (LNivERSITA wi CAMERINO Andrea Polini

UN] CAM Ingegneria del Software | — A.A. 2006/2007

oy (LNivERSITA wi CAMERINO Andrea Polini

UN] CAM Ingegneria del Software | — A.A. 2006/2007

oy (LNivERSITA wi CAMERINO Andrea Polini

