
Laurea Triennale in Informatica – Corso di Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

XIV. From Requirements to 
Design in the UP



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

2

Outline

Elaboration phase
Characteristics and principles leading this phase; artifacts to be derived

Describe System Sequence Diagram

Defining conceptual model
Conceptual classes and “techniques” to identify them



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

3

Elaboration activities

What is developed during the elaboration phase?
Majority of requirements are discovered and stabilized

Major risks are mitigated or retired

The core architectural elements are implemented and proven

It consists of around 2-4 iterations
Each iteration should not last longer than six weeks and should be 

timeboxed

The code developed constitutes a prototype 

(this is not a trow-away prototype development process)

Elaboration in one sentence:
Build the core architecture, resolve the high risk elements, define most 

requirements, and estimate the overall schedule and resources (C.Larman)



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

4

Elaboration best practices

Do short timeboxed risk-driven iterations

Start programming early

Adaptively design, implement, and test the core and risky parts 

of the architecture

Test early, often, realistically

Adapt based on feedback from tests, users, developers

Write most of the use cases and other requirements in 

detail, through a series of workshops, once per elaboration 

iteration



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

5

Which functionalities we should implement first?

Organize requirements and iterations by risk, coverage, and 

criticality:
Risk: includes both technical complexity and other factors, such as 

uncertainty of effort or usability

Coverage: implies that all major parts of the system are at least touched 

on in early iterations

Criticality: refers to functions of high business value

Before the first iteration rank each UC 

Revise ranking before each iteration

Risk is the main factor to consider planning the next iteration



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

6

What artifacts may start in elaboration?

Domain model: visualization of the domain concepts; it is 

similar to a static information model of the domain entities

Design model: set of diagrams that describes the logical 

design. 

Software Architecture Document: a learning aid that 

summarizes the key architectural issues and their resolution in 

the design

Data Model: this includes the database schemas

Test Model: what will be tested and how

Implementation Model: source code, executables, database, 

and so on

UI prototypes: user interface, usability models



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

7

Common mistakes in Elaboration

Planning more than few months for the phase

Planning a single iteration (possible for stable, well-understood 

problems)

No production of code

Consider elaboration a requirement phase carried on before 

construction

Trying to derive a full and careful design before programming

There is no early and realistic testing

...



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

8

Elaboration – SSD

Define System Sequence Diagram (SSD)
A SSD is a picture that shows, for a particular scenario or UC, the events 

that external actors generate, their order, and inter-system events.

All systems are treated as black-box. Interest on events that cross the 

system boundary from actors to systems.

Example deriving an SSD from a UC

In general SSDs can be used to show only the main success 

scenario, nevertheless relevant alternative scenarios should be 

represented



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

9

Domain model

A domain mode illustrates meaningful (to the modelers) 

conceptual classes in a problem domain; it is the most 

important artifact to create during OO analysis

A domain model is a representation of real-world conceptual 

classes, not of software components. It is not a set of 

diagrams describing software classes, or software objects with 

responsibilities



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

10

Domain model and UML

Using UML notation, a domain model is illustrated with a set of 

class diagram in which no operations are defined (sort of E/R 

diagram). It may show:
Conceptual classes

Association between conceptual classes

Attributes of conceptual classes



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

11

Domain model and UML

Lets draw an example together
flight booking system



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

12

Conceptual classes

The domain model illustrates conceptual classes or vocabulary 

in the domain. Formally, a conceptual class may be considered 

in terms of its symbol, intension, and extension:
Symbol – words or images representing a conceptual class

Intension – the definition of a conceptual class

Extension – the set of examples to which the conceptual class applies

Flight

Code
taking-off time
landing time

“A flight represents a connection
operated by an airline company
between two airport. It ha a code
a departing time and a landing time” 

:Flight1

AZ142
9.00
13.00

:Flight2

AZ342
7.00
8.00

:Flight3

AZ754
12.00
14.30



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

13

Domain analysis vs. Structured analysis

Software problems can be complex...divide and conques 

principle is a common strategy to deal with complexity

Structured analysis decomposes the problems in terms of 

functions and processes

OO analysis the decomposition is by things or entities in the 

domain



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

14

How can we identify conceptual classes?

It is useful to have “proven” techniques making easier the 

identification of conceptual classes...We would like to 

include everything is necessary!!!

Rule of thumb: it is better to overspecify a domain model with 

lots of fine-grained conceptual classes that to underspecify it
It is common to forget conceptual classes at the begin...you should it as 

soon as you discover it

It is possible to have conceptual classes with no attributes!! Nevertheless 

in that case they should have a behavioral role



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

15

How can we identify conceptual classes?

We discuss two main strategies to identify conceptual classes 

have shown their potential:
Conceptual Class Category list

Identify noun phrases

Analysis pattern another possible solution
Partial domain models defined by experts for the particular domain



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

16

Conceptual Class Category List Strategy

Start the creation of a domain model by making a list of 

conceptual class reading a cetegory list. Example with the flight 

reservation system

Conceptual Class Category Examples
Physical or tangible objects
Specifications, design, or descriptions of things Product Specification, Flight Description 
Places Store, Airport
Transactions Sale, Payment, Reservation
Transactions line items Sales Line Item
Roles of people Cashier, Pilot
Containers of other things
Things in a container Item, Passenger

Credit Payment System, Air Traffic Control
Abstract noun concepts Hunger, Acrophobia
Organisations Sales Department, Object Airline

Registers, Airplane

Store, Bin, Airplane

Other computer or electro-mechanical systems 
external to the system



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

17

Conceptual Class Category List Strategy

Conceptual Class Category Examples
Events Sale, Payment, Meeting Flight, Crash, Landing
Processes (may be) Selling a Product, Booking a Seat
Rules and policies Refund Policy, Cancellation Policy

Record of finance, work, contracts, legal matters Receipt, Employment Contract, Maintenance Log
Financial instruments and services Line of Credit, Stock
Manuals, documents, reference papers, books Daily Price Change List, Repair Manual

Catalogs Product Catalog, Parts Catalog



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

18

Noun Phrase Identification Strategy

Linguistic Analysis on the requirements (Use Cases here)
Identify noun and noun phrases in textual descriptions of a domain

Mechanical mapping noun-to-class mapping is not possible, words are also 

ambiguous

Weakness of this approach is the imprecision of natural 

language; different noun phrase may represent the same 

conceptual class or attribute

Lets try with the flight reservation system



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

19

Domain models the case of report objects

A report object provide information on other object in the 

domain model (as for instance a receipt) should we include it in 

our conceptual model?

In general including in the domain model such kind of concept 

only duplicates information found elsewhere

In some case however a report object has a business value (for 

instance a receipt gives to the client the right to return bought 

items)



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

20

The case of description conceptual classes

A description conceptual class only provides information on 

instances of other conceptual classes

Should we include such kind of classes in the domain model

The “item problem” all item instances include information on 

themselves

The item problem can be solved including in the conceptual 

model a ProductSpecification conceptual class (there will 

obviously be a relation with the described objects class)

When including a description conceptual class:
Description is independent from its existence

Deleting instances results in a loss of information

Reduce redundant or duplicated information



Ingegneria del Software I – A.A. 2006/2007
Andrea Polini

21

Steps in deriving a domain model

1. Apply the discussed strategies to identify relevant conceptual 

classes

2. Draw them in a domain model

3. Add the associations necessary to record relationship for which 

there is a need to preserve some memory

4. Add the attributes necessary to fulfill the information 

requirements


