
Towards an architectural approach for the dynamic and
automatic composition of software components

Antonio Bucchiarone
∗

, Andrea Polini
Istituto di Scienza e Tecnologie della

Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche

via Moruzzi 1 - 56124 Pisa, Italy

{antonio.bucchiarone,andrea.polini}@isti.cnr.it

Patrizio Pelliccione, Massimo Tivoli
Dipartimento di Informatica

Università dell’Aquila, I-67010
L’Aquila, Italy

{pellicci,tivoli}@di.univaq.it

ABSTRACT
In a component-based software system the components are spec-
ified, designed and implemented with the intention to be reused,
and are assembled in various contexts in order to produce a mul-
titude of software systems. However, this ideal scenario is not al-
ways the case, e.g., the integration with legacy components. In this
context, one main problem in component assembly arises. It is re-
lated to the ability to automatically and efficiently (i.e., by reducing
the state-explosion phenomenon) synthesize an assembly code for
a set of, possibly incompatible, software components. Moreover,
this assembly should be able to evolve when things change and to
be correct-by-construction, i.e., despite the changes, it always en-
sures a set of properties of interest. In this paper we propose a
Software Architecture (SA) based approach in which architectural
analysis and code synthesis are combined together in order to ef-
ficiently and correctly assemble a system out of a set of already
implemented components. The approach can be equally applied to
efficiently manage the whole re-factoring of the system when one
or more components needs to be substituted, still maintaining the
required properties. The specified and validated system SA is used
as starting point for the derivation of adaptors required to correctly
replace components in the composed system. The approach is ap-
plied and validated over an explanatory example concerning with a
“cooling water pipe” system.

1. INTRODUCTION
Software component composition is an important objective of soft-
ware engineering. It promises components reuse and therefore pro-
ductivity gains, because of shorter time-to-market and improved
quality. To make real this vision different research lines, within
the Component Based Software Engineering (CBSE) area, have re-
ceived great interest in the last decade, trying to address different
aspects of “componentization”, such as communication and defi-
nition of component technologies. A component-based (CB) soft-
ware system is an assembly of software components (usually imple-

∗IMT Graduate School, Via San Micheletto, 3 - 55100 Lucca, Italy

mented as either third-parties or in-house components), designed
to meet the system requirements identified during the “architect-
ing” phase. The studies conducted to model this kind of systems
have been relevant and have raised the interesting subject referred
as Software Architecture (SA). According to [24], 50% of bugs are
detected after component integration, not during component devel-
opment. In this context, the notion of SA assumes a key role since
it represents the reference skeleton used to compose components
and let them interact. In the SA domain, the interaction among the
components is represented by the notion of software “connector”.
Beyond the concepts of component and connector there is also an-
other basic element that characterizes an SA, which is the system
configuration. In other words, component and connectors can be
composed together to make up different system configurations. In
general, a different configuration guarantees different behavioral
properties. Thus, a further element to take into account are the
properties against which a SA configuration has to be validated.

Two common approaches can be used to carry on this validation
step:

1. Architectural Analysis: the analysis process is based on
checking if the specified properties hold in the SA design of
the assembled system via, e.g., model checking technique.

2. Code Synthesis: a code synthesis technique can be defined in
order to generate the “correct” assembly code for the (pre-
selected and -acquired) components forming the specified
system. This code is derived in order to force the composed
system to exhibit only the specified properties.

Both approaches have advantages and drawbacks. The architectural
analysis approach assumes that the running version of the system
will be completely conform with that defined in the SA, but unfor-
tunately this is not always the case. The code synthesis approach
generally produces a non-tractable model, given the large amount
of low level details contained in it, resulting from the considera-
tion of models representing real component implementations. This
kind of problem generally leads to the well known state-explosion
phenomenon, in which the dimension of the model and number of
states in it prevent the applicability of any analysis technique to
the whole model. This problem become particularly relevant when
run-time refactoring are required, asking for a complete revision of
the whole system. As showed in this paper our approach permits
instead to limit run-time modifications to a local extent.



In this work, we describe an SA-based approach that combines
architectural analysis and code synthesis together in order to ef-
ficiently and correctly assemble a system out of a set of already
implemented components. First, the system’s SA is validated and
refined respect to a set of properties of interest (i.e., standard anal-
ysis). Second, an initial version of the composed system is built by
taking into account the models of the components in the SA and
the ones of the actual component selected and acquired on the mar-
ket. The component integration code is automatically synthesized
in order to be correct-by-construction (i.e., code synthesis). This
code is derived in form of a set of adaptors, each of them for each
component in the SA. Third, our approach allows the system to be
able to evolve, at run-time, respect to architectural updates at com-
ponent level (e.g., adding, removing and replacing components).
These updates lead to modify (by substitution) the adaptors coor-
dinating the components affected by the change. In this work we
consider only the replacement of components as possible architec-
tural update. Nevertheless the approach seems promising for the
application to a more “extreme” version of run-time dynamicity.

The combination of architectural analysis and code synthesis is per-
formed by combining two previously developed approaches from
some of the authors. One is implemented in the CHARMY tool [18,
10] (architectural analysis) and one in the SYNTHESIS tool [22,
23] (code synthesis). The two approaches take advantage from
each other. On one hand, CHARMY provides SYNTHESIS with an
already validated system’s SA. SYNTHESIS can exploit this sys-
tem’s SA to perform adaptation locally to each component rather
than at level of global system interactions and, hence, reducing the
state-explosion phenomenon. On the other hand, SYNTHESIS adds
to CHARMY automation in assembling the designed and validated
system. In fact, in CHARMY this task is completely delegated to
the developer.

The paper is organized as follows. Section 2 points out the moti-
vations for an SA-centric approach to the dynamic and automatic
composition of components. Section 3 recalls the approaches im-
plemented in CHARMY and in SYNTHESIS. Section 4 provides an
overview of the method our approach is based on by distinguishing
three main phases of its utilization. Section 5 discusses in more de-
tail the described approach and validates it by means of an explana-
tory example concerning with a cooling water pipe management
system. Section 6 discusses related works. Section 7 concludes
and discusses future work.

2. CONSIDERATIONS ON THE SA-
CENTRIC APPROACH

SA emerged in the first nineties as a way of organizing and reason-
ing on software systems in a similar way of what has been done in
other more mature engineering disciplines [17]. Indeed, many soft-
ware companies have understood the importance of SA modeling
in order to obtain a better quality software reducing time and cost
of realization. However, putting SA in practice, software architects
have learned that the SA production and management is, in general,
an expensive task. Thus the introduction of SA into an industrial
development life-cycle is justified only by an extensive use of these
artifacts able to produce adequate benefits, such as the production
of a good software quality reducing at the same time realization
costs.

To use an SA just as a documentation artifact produces only an SA
documentation but this phase is completely untied from the other
phases and typically further modifications of the system are not

updated to the SA design. The result of this development process
is that the SA design quickly become obsolete.

Many works have instead demonstrated the usefulness of an SA
definition for discovering systems problems during the first phases
of software development [4, 20]. In fact, once the SA has been
completely validated, it can be used as the starting point for any
other analysis and exploited also to drive the next phases of the
system development.

Building on this trend, in the remainder of the paper we propose a
method which model-checks the SA of a CB system with respect
to desired requirements and assumes the SA as starting point for a
code synthesis process. This process is performed to automatically
derive a dynamic and correct component assembly. Although in the
system life-cycle the components change, the SA does not change
(if the requirements still remain unmodified). Thus, the SA can be
used as starting point for deriving adaptors to correctly replace (at
run-time) components in the composed system.

In our approach the applicability of the synthesis phase leads on
two basic requirements on the artifacts that we are considering. The
first concerns the nature of the SA description. To enable the adap-
tor synthesis the SA should in fact contain more low level details
with respects to the SAs traditionally used for other analysis pur-
pose. Clearly this will have a negative impact on the initial valida-
tion phase, as said carried on via model checking, requiring more
time and space to be completed. Nevertheless following the ap-
proach the validation phase will be carried on once and for all so
we do not consider this a major hurdle to the applicability of the
approach. The second hypothesis is more general and it is at the
base of any synthesis approach, i.e., it is necessary that the com-
ponent retrieved from the market encapsulates information on the
accepted protocol in terms of an automata that can be managed by
the chosen synthesis tool.

The added value of our approach, with respect to a classical soft-
ware development process, is that system reconfigurations concern-
ing with component replacing are applied in an automatic way and
can happen at run-time with limited influences on the whole system
configuration. The replacement of a component will only have in
fact local consequences requiring the replacement of the adaptors
directly interacting with the replaced component and still maintain-
ing the validated properties. Moreover, the SA design of a new ver-
sion of the system (due to a reconfiguration) is always up to date
with respect to its corresponding implementation, being continu-
ously integrated with the definitions of the new adaptor and of the
the assembled components.

In this paper we do not discuss the consequences that replacements
have on the state of a component and on the necessity of transfer-
ring the state from the replaced to the inserted component. This is
clearly relevant for our approach but certainly out of scope. Thus,
we assume that the middleware and component management in-
frastructure will support such an activity.

3. SA ANALYSIS TOOLS
In this section we briefly recall aspects of CHARMY and SYNTHE-
SIS that are relevant for the approach presented in this paper. Fur-
ther details about them will eventually be discussed in Section 5
during the presentation of an explanatory example.



3.1 Charmy: a tool for SA designing and
model-checking

CHARMY [18, 10] is a project whose goal is to apply model-
checking techniques to validate the SA conformance to certain
properties. In CHARMY the SA is specified through state diagrams
used to describe how architectural components behave. Starting
from the SA description CHARMY synthesizes, through a suitable
translation into Promela (the specification language of the SPIN [9]
model checker) an actual SA complete model that can be executed
and verified in SPIN. This model can be validated with respect to
a set of properties, e.g., deadlock, correctness of properties, star-
vation, etc., expressed in Linear-time Temporal Logic (LTL) [15]
or in its Büchi Automata representation [6]. Instead of writing di-
rectly temporal properties, which is a task inherently error prone,
CHARMY permits to describe them by using an extension of UML
2.0 Sequence Diagrams. These diagrams are called Property Se-
quence Charts (PSCs) [3, 19]. CHARMY automatically translates
a PSC into a temporal property representation understandable by
SPIN. The model checker SPIN, is a widely distributed software
package that supports the formal verification of concurrent systems
permitting to analyze their logical consistency by on-the-fly checks,
i.e., without the need of constructing a global state graph, thus re-
ducing the complexity of the check. SPIN is the core engine of
CHARMY and it is not directly accessible by a CHARMY user.

The state machine-based formalism used by CHARMY is
an extended subset of UML state diagrams: labels on arcs
uniquely identify the architectural communication channels,
and a channel allows the communication only between a
pair of components. The labels are structured as follows:
‘[‘guard‘]‘event‘(‘parameter list‘)“/‘op1‘; ‘op2‘; ‘ · · · ‘; ‘opn

where guard is a boolean condition that denotes the transition
activation, an event can be a message sent or received (denoted by
an exclamation mark “!” or a question mark “?”, respectively),
or an internal operation (τ ) (i.e., an event that does not require
synchronization between state machines). Both sent and received
messages are performed over defined channels ch, i.e., simple
connectors. An event can have several parameters as defined in the
parameters list. op1, op2, · · · , opn are the operations performed
when the transition fires.

PSCs are an extension of UML 2.0 Sequence Diagrams stereotyped
so that: (i) each rectangular box represents an architectural compo-
nent, (ii) each arrow defines a communication line (a channel) be-
tween two components. Between a pair of messages we can select
if other messages can occur (loose relation) or not (strict relation).
Message constraints are introduced to define a set of messages that
must never occur in between the message containing the constraint
and its predecessor or successor. Messages are typed as regular
messages (optional messages), required messages (mandatory mes-
sages) and fail messages (messages representing a fault).

3.2 Synthesis: a tool for synthesizing failure-
free component adaptors

SYNTHESIS [22, 23] is a tool for assembling component-based sys-
tems out of a set of already implemented heterogeneous compo-
nents by ensuring the correct functioning of the system at level of
component interaction protocol.

Its aim is to analyze and prevent interaction mismatches (i.e., dead-
locks, livelocks, etc.) that can arise from component composition.
It implements an architectural “coordinator”-based approach. The

idea is to build applications by assuming a formal architectural
model of the system representing the components to be integrated
and the connectors (i.e., communication channels) over which the
components will communicate. Using SYNTHESIS the developer,
whenever it is possible, can derive in an automatic way, from the
COTS components, the code that implements a new component that
has to be inserted into the composed system. This new component
implements a software coordinator. The coordinator mediates the
interaction among components in order to prevent possible integra-
tion failures.

For its aims, SYNTHESIS assumes that a specification of the ex-
ternally “observable” behavior of each actual component (forming
the system to be assembled) is available in the form of state dia-
grams. For externally “observable” behavior of the component,
we mean the behavior of the component in terms of the messages
exchanged with its expected environment. Under this assumption
SYNTHESIS is able to automatically derive the assembly code (i.e.,
the coordinator’s actual code) for a set of components. This code
is derived in order to obtain a deadlock-free system that performs
specified1 coordination policies. For our purposes, in the follow-
ing, we will use SYNTHESIS only to prevent possible deadlocks in
the assembly code and, hence, we do not take into account specified
coordination policies.

4. METHOD DESCRIPTION
In this section we describe our method by giving a high-level
overview of it. The explanatory example introduced in Section 5
will help us in order to better detail every single aspect of the ap-
proach. Our method can be described by distinguishing three main
phases of its utilization. We, now, look at each phase.

4.1 Design-time phase: validating the system
SA

At design-time, our approach assumes that an architectural specifi-
cation of the system to be assembled is provided in terms of state
diagrams and PSCs. State diagrams are used to describe how archi-
tectural components behave, PSCs to describe the behavioral prop-
erties against which the composed system must be validated. By
taking into account this initial specification, the goal of the design-
time phase is to perform standard analysis to incrementally obtain
the correct (with respect to the specified properties) specification of
the actual components that should be acquired in order to assem-
bly the specified and validated system. More precisely CHARMY,
starting from the state diagrams representing components behavior,
synthesizes, through a suitable translation into Promela, an actual
SA model that can be executed and verified in SPIN. This model
can be validated with respect to a set of properties expressed in
PSC notation and automatically translated into Büchi automata.

At the end of this step we have a system specification (and, hence,
also the specification of the components forming it) which respects
the properties of interest.

4.2 Compile-time phase: component compo-
sition through static adaptation

In order to correctly build component-based systems by practicing
CBSE and to fully utilize its well known advantages, the next step
after SA-level analysis is to assemble the designed and validated

1In terms of Büchi Automata.



component-based system out of a set of already implemented third-
party or Commercial-Off-The-Shelf (COTS) components, when it is
possible. Note that, it might be the case that a component available
on the market for our purposes does not exist. In this case the only
choice that we have is to implement it by scratch and conforming
to its specification in the validated SA. The third-party components
are selected by looking at the functionalities that they implement.
They have to “contain” (possibly by interacting one another) the
same functionalities implemented by the corresponding component
in the system SA model. In general, this criterion is not enough. In
fact, other criteria should be considered for a correct component
selection, e.g., QoS constraints. However, it is worth mentioning
that this work represents an ongoing work and, for now, we only
focus to the component protocol (i.e., the sequences of messages
exchanged with its expected environment) and we will consider
more realistic selection criteria in possible future work. Although
we make the assumption to be just interested on the component
protocol, it might be the case that we are not able to find, for each
component in the validated SA, directly corresponding ones on the
market. In fact, the interaction protocol of one or more cooperating
actual components might not fit the one of the component speci-
fied in the validated SA model. Moreover, the interaction of the
actual components can lead to failures (e.g., deadlocks) since these
components may have an incompatible interaction behavior. Thus,
static (i.e., at compile-time) adaptation can be done to eliminate the
resulting mismatches (e.g., to prevent component events that lead to
deadlocks) and force the behavior of one or more interacting actual
components to perform the interactions specified by the architec-
tural component. The compile-time phase of our approach goes
in this direction. Once selected and acquired the actual compo-
nents providing the functionalities of the components in the system
SA specification, a set of adaptors is automatically build. This is
done by using SYNTHESIS. We assume to have a state diagrams
specification of the actual components interaction behavior. From
this specification and from the specification of the corresponding
components in the system SA model, the static adaptation phase
restricts (or, when needed, even extends) the behavior of the actual
component(s) in order to fit the specified one and avoid possible
deadlocks. This is done by automatically synthesizing a suitable
adaptor. This adaptor serves as deadlock-free assembly code for the
actual component(s) and its environment (i.e., all the other compo-
nents in the system). The adaptor mediates the interaction of the
actual components connected to it in order to perform the interac-
tion specified by the corresponding architectural component. This
is done by using an exception-handling2 mechanism that considers
as exceptional events the ones that lead to deadlocks or that do not
respect the specified protocol. In other words, the composition of
the actual component(s) with the synthesized adaptor is deadlock-
free and it behaves as the component specified in the system SA
model. At this point, a first version of the composed system has
been automatically build and it is correct by construction. It is
important to note that the state machines used by CHARMY and
SYNTHESIS are exactly the same.

Note that although, in general, the synthesis process suffers the
state-explosion phenomenon, our approach makes it feasible. In
fact, it exploits the system SA model (previously validated) in order
to perform adaptation locally to each specified component rather
than at level of global system interactions. In this way, within our
approach, the synthesis process has to face a problem that has a

2It is only one of the possible solutions and requires to be inves-
tigated deeply cause of possible side effects that are concerned, in
general, with the usage of exception-handling mechanisms.

reduced complexity in terms of its “space-size”.

4.3 Run-time phase: component composition
through dynamic adaptation

Before speaking about dynamic adaptation we introduce some def-
initions in order to well define the kind of systems that we are able
to manage. By considering the component and connector architec-
tural elements, we will make use of the following definitions [7]:

Weakly-Closed System: A Weakly-Closed System is a system
with a fixed number of components.

Closed System: A Closed System is a system with a fixed number
of component instances and fixed connectors.

Weakly-Opened System: A Weakly-Opened System is a system
with variable number of component instances and with fixed con-
nectors.

Opened System: An Opened System is a system with variable
connectors and number of component instances.

Opposite to static adaptation, dynamic adaptation is performed at
run-time. In static adaptation, detection and correction can be per-
formed before the system is run, hence yielding systems correct by
construction. This can be achieved because systems are Closed. If
we want to deal with Weakly-Closed, Weakly-Opened or Opened
Systems, in which the components and their protocols may change
over time, dynamic adaptation is required. The method that we
present in this paper does not give a solution for dynamic adapta-
tion of Weakly-Opened and Opened Systems but give a solution for
Weakly-Closed ones.

The dynamic adaptation process might be incremental. A first
adaptor is built (if needed) at compile-time, and then adaptation
has to evolve when things change in the system. This discussion
is concerned with the run-time phase of our approach. We do not
consider other possible system changes beyond component replace-
ment and modification of component bindings.

During the execution of the system we keep stored both the actual
components specification and the modeled components specifica-
tion.

Once an actual component AC is replaced by a different one, e.g.,
AC′, the current adaptor Adt, to which AC were connected, raises
an exception due to, e.g., some unexpected event generated by
AC′. By referring to Section 4.2, we recall that Adt raises an
exception also whenever AC generates an event that would lead
to a deadlock or that is not expected with respect to the protocol
specified by the architectural component associated to AC. Thus,
in order to correctly deal with unexpected events, Adt is able to
distinguish between unexpected events generated by AC or by the
component introduced in place of AC (i.e., AC′). In the case of
an exceptional event has been generated caused by the replacing of
the old component with the new one, Adt handles the raised excep-
tion by starting the dynamic adaptation phase. Firstly, the dynamic
adaptation phase, at run-time, re-synthesizes off-line Adt produc-
ing a new version of it denoted by Adt′. This is done by taking into
account the specification of the new actual component (i.e., AC′),
of the possible actual components that have to cooperate with it
and of the architectural component that was associated to AC. In
the meanwhile, the dynamic adaptation phase also intercepts all re-



Figure 1: State machines of the water pipe management system

quests performed towards and from AC′. They are temporarily ig-
nored and “bufferized” in a queue that can be globally accessed by
both any adaptor in the system and the process performing the dy-
namic adaptation phase. Secondly, the part of the system affected
by the change is temporarily blocked and Adt′ is deployed in the
composed system. Finally, the execution of the composed system
is triggered and it proceeds by first consuming the queued requests.
Once the queue of the pending requests is empty, the system execu-
tion proceeds by following the normal flow. In this way, the initial
version of the system is dynamically converted into a new one by
still ensuring the validated properties. Note that this solution is
not suitable for systems that specify “hard” timing constraints, e.g.,
real-time systems.

5. EXPLANATORY EXAMPLE: A COOL-
ING WATER PIPE SYSTEM

The example that we use in this paper to better explain, detail and
validate our method is concerned with the automatic assembly of a
cooling water pipe management system that collects and correlates
data about the amount of water that flows in different water pipes.

The water pipes are placed in two different zones, denoted by p and
p1, and they transport water that has to be used to cool industrial
machinery. The zone p (resp. p1) is monitored by the server C1
(resp. C2). C1 (resp. C2) supports cooperative work and allows the
access to a collection of data related to the water pipes that it mon-
itors. C1 (resp. C2) implements the interface I1 (resp. I2). Since
some of the water pipes do not include a Programmable Logic Con-
troller (PLC) system, the two servers cannot always automatically
obtain the data related to the water that flows in those water pipes.
Therefore, I1 (resp. I2) provides the method p (resp. p1) to get an
exclusive access to the data collection related to the water that flows
in the pipe of the zone p (resp. p1). This allows a client to (i) read
the data automatically stored by the server and (ii) manually update
the report related to the water that flows in the pipes, which are not
monitored by a PLC. Correspondingly, I1 (resp. I2) provides the
method FreeP (resp. FreeP1) to both publish the updates made on
the data collection and release the access granted to it. Moreover,
I2 provides also a method Connect to authenticate the clients.

By referring to the method described in Section 4, we want to
assemble a client-server cooling water pipe management system
formed by C1, C2 as servers and two clients (called C3 and C4). In
doing so, we want to automatically ensure deadlock-freeness and
other specified behavioral properties. Moreover, we wish to obtain

a system which can tolerate component replacement at run-time.

Now, we discuss the application of our method to the above exam-
ple by describing each phase of it.

5.1 Design-time phase
Figure 1 shows the state machines that describe the desired be-
havior of the components C1, C2, C3 and C4. As we can see in
this figure the server C2 contains also the connection functionality
(above mentioned) required to access to the p1 zone.

These state machines are designed by using the CHARMY tool that
generates the Promela code needed for the verification with SPIN.
At the beginning is not sure that the desired behavior specified by
the designer is correct (especially for large systems). Thus, the
intention of the designer is to verify the correctness of its model
in order to refines it and produce the correct specification of the
system that must be assembled. In modeling the desired behavior of
the components forming the system the designer distinguishes the
method calls performed by C3 and C4 towards C1 and C2. This is
done by adding a suffix to each message label (i.e., message labels
ending with “3” and “4” denote method calls performed by C3 and
C4, respectively).

The step of verification is to check if the model is deadlock-free
and if it satisfies the properties of interest.

About deadlock-freeness, nothing has to be shown because by us-
ing CHARMY we automatically verify that the parallel interaction
of the component shown in Figure 1 is already deadlock-free.

For the sake of simplicity, we make use only of one desired prop-
erty. This property represents the desired interaction protocol for
accessing the information related to the water flowing in the pipe
of zone p1. That is, it is mandatory for C3 to be authenticated be-
fore accessing to the information related to the zone p1. Thus, if C3
is connected then C4 cannot connect before that the granting ticket
will be discarded. It happens after that C3 publishes its updates on
the information related to the zone p1, represented with the action
C2FreeP13.

The property is described in Figures 2.B and 2.C in terms of its
corresponding PSC [3, 19] notation and Büchi automaton, respec-
tively. PSC is a simple and graphical formalism for specifying
temporal properties. For the sake of brevity we recall only the el-
ements of PSC required to understand the property in Figure 2.B.



Figure 2: (A) C2 modified to validate the desired property; (B) sequence diagram and (C) Büchi automaton of the desired property

As already introduced in Section 3.1 there are three different kind
of messages and in this example we make use of two fail messages
(messages prefixed by the label “f:”). We recall that fail messages
are used to identify messages that should never be exchanged. We
make use also of two constraints that impose “restrictions” on the
set of messages that can be exchanged before the message consid-
ered and after its predecessor (the predecessor of the first message
of a PSC is the startup of the system). In [3, 19] is presented also
an algorithm, PSC2BA able to translate PSC to Büchi automata.
PSC2BA is used to generate the Büchi automaton for the PSC rep-
resentation of the desired property.

Coming back to the desired property, referring to the PSC notation,
two are the messages considered: C2p13 and C2Connect4. The
first one has C2Connect3 as constraint of the message that imple-
ments the restriction imposed to C3 to make a connection before
gaining the access to the p1 zone. The second one has the mes-
sage C2FreeP13 as constraint. The meaning is that the component
C4 can connect only when the component C3 leaves the p1 zone.
CHARMY and its engine SPIN return a not valid result for this prop-
erty, essentially caused by the C2 component that is to simple and
without logic, i.e., no order is imposed on the messages that this
component exchanges with its environment.

Thus the interaction behavior of C2 has to be changed. Figure 2.A
reports the modifications made on the component C2. Now, the
component C2 contains explicitly an order for the messages ex-
changed with its environment, i.e., the connections of C3 and C4,
and the access for the same components to the p1 zone.

At this point the design-time phase of our method is terminated and
we have obtained a correct specification of the system that we want
to assemble. This system is formed by the components C1, C3,
and C4 shown in Figure 1, while C2 is shown in Figure 2.A. The
connectors that we consider are simple communication channels
connecting each of C3 and C4 with both C1 and C2.

5.2 Compile-time phase
Now, let us consider five COTS components that we have selected
and acquired in order to assemble the validated system. Let us de-

note them as AC1, AC2, AC3.1, AC3.2 and AC4. They “correspond”
to the actual version (available on the market) of C1, C2, C3 (for
AC3.1 and AC3.2) and C4, respectively. We recall that to perform
the compile-time phase of our method we assume that the inter-
face specification of the COTS components (e.g., the IDL speci-
fication) has been extended with extra-information related to the
component interaction behavior with respect to the expected envi-
ronment. Let us suppose that AC1, AC2 and AC4 behave exactly as
specified for C1, C2 and C4, respectively. Conversely, suppose that
we did not find on the market a component that corresponds exactly
to C3. The best thing that we did has been finding two components
(i.e., AC3.1 and AC3.2) whose interfaces3 contain, in conjunction,
the same interface of C3. The interaction protocol specification of
these two components is shown in Figures 3.A (for AC3.1) and 3.B
(for AC3.2).

The compile-time phase of our method uses SYNTHESIS to auto-
matically synthesize an adaptor (i.e., AdtC3). It has to mediate all
interactions between AC3.1, AC3.2 and their environment in order
to exhibit only the interactions specified by C3. The adaptor is built
also to prevent (if possible) deadlocks that may raise from possible
mismatching interactions. That is, AdtC3 is synthesized in such a
way that the parallel composition of it with AC3.1 and AC3.2 is
deadlock-free and behaves as specified by C3. In other words, the
deadlock-free implementation of C3 is automatically derived and
distributed in three actual components. Two of them are AC3.1 and
AC3.2 acquired from third-parties. The other one is AdtC3, which
is automatically built by taking into account the behavioral specifi-
cation of AC3.1, AC3.2 and C3. This aspect concerns the advantage
that CHARMY takes from being combined with SYNTHESIS. That
is, the component integration code (if possible) is automatically de-
rived correct-by-construction without requiring the developers to
work on it.

In Figure 4 we show the state machine (also called automaton) au-
tomatically synthesized for AdtC3.

For the sake of brevity, here, we do not show the synthesis pro-
cess in detail. Refer to [23] (and references therein) for a detailed
description of the deadlock-free adaptor synthesis.

3Here, a component interface is seen as a list of provided/requied
methods.



Figure 3: State machines of (A) AC3.1 and (B) AC3.2

Informally, the adaptor’s automaton is automatically built by con-
sidering the following criteria: (i) an adaptor has a strictly sequen-
tial input-output behavior. That is, it has to receive a request (resp.
notification) and delegates it towards the component expecting to
receive such a request (resp. notification). For instance, the adap-
tor shown in Figure 4 can, from its initial state (i.e., S6), receive a
request of p3 from AC3.2 towards C1 (i.e., the message ?C1p3[2]
from S6). After receiving this request, the adaptor delegates it to C1
(i.e., the message !C1p3 from S11); (ii) at a first stage, the adaptor
has to model all possible component interactions, i.e., it is analo-
gous to the product automaton of the automata modeling the inter-
action behavior of the components assembled by the adaptor. As
mentioned before, this product automaton must take into account
the input-output interaction model of the adaptor. For instance, let
us denote by EnvC3 the automaton equal to C3 where input actions
have been converted into output ones, and viceversa. The adaptor
shown in Figure 4, is built by considering the product automaton
of AC3.1, AC3.2 and EnvC3, and by imposing on it an input-output
structure (i.e., one transition on the product automaton becomes
two transitions on the adaptor’s automaton, that is receive and send
transitions). In other words, EnvC3 models the environment ex-
pected by C3 in order to not block. This aspect concerns the advan-
tage that SYNTHESIS takes from being combined with CHARMY.
That is, SYNTHESIS has to solve a problem that has been reduced
in space since, for instance, it is enough to consider EnvC3 as envi-
ronment for AC3.1 and AC3.2 rather than considering the parallel
composition of C1, C2 and C4. This is true because C3 has been al-
ready validated (by CHARMY) with respect to the interaction with
C1, C2 and C4. Note that, for large systems, considering as envi-
ronment a single component rather than the parallel composition of
many components represents, in general, a significant optimization.
Thus, within our context, the approach implemented by SYNTHE-
SIS (that, in general, suffers the state-explosion phenomenon) is
more feasible in practice.

By referring to Figure 4, by using SYNTHESIS, we automatically
obtain a first version of the adaptor’s model. At this stage the adap-
tor simply routes component messages and each input it receives
is strictly followed by its corresponding output. If there are dead-
locks, the adaptor model allows SYNTHESIS to detect them. Each
“deadlocking” state is denoted by a dark-gray filled node. A dead-
locking state is a sink node or a state leading only to deadlocking
states.

In our example, a deadlock occurs in two cases. One case is when
AC3.2 requires the access to, first, the zone p and, then, to p1. In
fact, in this situation AC3.2 would release the access granted to p1
but its environment expects to release the access granted to p, first.

This scenario is modeled by the path from S6 to S29 of the adaptor’s
automaton (see Figure 4). The second case is when AC3.1 requires
the access to the zone p and, then, AC3.2 accesses to p1 (i.e., the
path from S6 to S24). At this point, the only possible message
that can be exchanged is the releasing of the access granted to p
from AC3.1 (i.e., the path from S24 to S26). After performing this
message, all components in the system are blocked waiting for a
message that will never be performed. In fact, the environment
of AC3.1 and AC3.2 expects that the access granted to p1 will be
released but both AC3.1 and AC3.2 are unable to do this.

To prevent these deadlocks, SYNTHESIS automatically prunes all
the deadlocking paths of the adaptor’s automaton (i.e., the path
from S13 to S26 and the one from S12 to S29).

In this way, by using SYNTHESIS, the model of the deadlock-free
adaptor is automatically obtained.

Before deriving the actual code of the deadlock-free adaptor, there
is a last check that must be performed. That is, the parallel compo-
sition of AC3.1, AC3.2 and the deadlock-free adaptor AdtC3 has to
be “equivalent” to C3. This check is required because, after that all
the deadlocks have been removed, AdtC3 might exhibits behaviors
that cannot be performed by C3 and vice versa. Let us denote that
parallel composition by S.

Our notion of behavioral equivalence is called CB-Simulation and it
is based on stuttering equivalence [16]. We are based on stuttering
equivalence because S, beyond the transitions labeled with C3’s
actions, has also “tau” transitions. As usual, they come from the
synchronization with AC3.1 and AC3.2 .

For the sake of brevity we refer to [11] for a formal definition of
CB-Simulation. Here it is enough to say that, as usual in the au-
tomata theory, the aim of the equivalence check is to verify that S
simulates C3 and vice versa, under a suitable notion of simulation
(i.e., CB-Simulation). That is, SYNTHESIS automatically checks
that S performs4 all the behaviors of C3 and vice versa.

By referring to the deadlock-free version (i.e., the one without
finite paths) of the adaptor’s automaton shown in Figure 4, S
has the same automaton where all transitions labeled with actions
performed by AC3.1 and AC3.2 (i.e., the ones terminating with
“[1]” and “[2]”) are tau transitions. S and C3 are not equivalent
(under our notion of behavioral equivalence defined through CB-
Simulation). In fact, if AC3.1 accesses to p before that the com-
posed system has performed any other interaction (i.e., the path

4By taking into account a stuttering interpretation.



Figure 4: Behavioral model of AdtC3

from S6 to S13) only one behavior of C3 can be performed (i.e.,
the path from S13 to S6). This behavior corresponds to releasing
the access granted to p. The execution of all other behaviors (i.e.,
accessing to p1) is disallowed. That is, there is a possible execution
of AC3.1 that cannot guarantee the execution of all behaviors spec-
ified by C3. To prevent this problem, SYNTHESIS automatically
prunes the cycle from S6 to S13 and, again, to S6. The states of this
cycle are denoted by light-gray filled nodes in Figure 4.

After this check, by using SYNTHESIS, we automatically obtain
the model (a state machine) of the adaptor that is deadlock-free and
allows S to exhibits a behavior equivalent to C3.

Using the same technique described in [23], from this state ma-
chine, by taking into account the information stored in its nodes
and arcs, SYNTHESIS is able to derive the actual code implement-
ing AdtC3.

The compile-time phase concludes by assembling the COTS com-
ponents and the adaptor together. At this point, a running imple-
mentation of the validated system is automatically obtained and it
is correct by construction.

Note that if the combined execution of AC3.1 and AC3.2 would
“contain” only a sub-set of the set of interactions specified by C3
(plus different ones), then performing adaptation by only restricting
its behavior (as we have done previously) is not enough. In fact, in
this case, the set of interactions modeled by AdtC3 must be also
extended in order to perform the C3 interactions that are missing
in the specification of AC3.1 and AC3.2. This case occurs when,
e.g., the interface signature (i.e., method and parameter names) of
AC3.1 and AC3.2 does not match with the one of C3.

In [23] such a protocol-enhancing technique is described and since
it is out of the scope of this paper we refer to [23] for a detailed
description of it.

Informally, it is based on the original idea, in the area of proto-
col specification, of Yellin and Strom [25]. Analogously to their
work, to semi-automatically enhance the protocol of the adaptor,

we require a specification of a protocol-enhancing policy, e.g., a
set of correspondences of method and parameter names belonging
to different component interfaces. Each enhancing policy is used
to derive a wrapper component that must be interposed between
the adaptor and the components affected by the enhancement. In
this way the behavior of the adaptor is enhanced in order to deal
with incompatibilities that cannot be solved by simply restricting
the composed system behavior.

A similar approach has been adopted also by Bracciali, Brogi and
Canal in the area of component adaptor specification [5].

5.3 Run-time phase
During the compile-time phase, the implementation of the adaptor
has been enriched with suitable mechanisms that makes the adaptor
able to detect and react to the replacement of the components that
it controls.

A possible solution for this is the use of exception handling tech-
niques and in particular Architectural exceptions [12, 21] that are
exceptions that flow between two components. Fault tolerance is
intended to preserve the delivery of correct services in the pres-
ence of active faults. It is generally implemented by error detection
and subsequent system recovery. Error detection originates an error
signal or message within the system.

Coming back to our context, supposing that a component need to
be replaced, this activity could be represented as an exception that
triggers the component replacement. System recovery techniques
can be used to bring the system in a consistent state before com-
ponents replacement. For instance, if the component that must be
replaced is in execution, system recovery techniques can help the
system to reach the state before the component execution.

This is the starting point of the run-time phase of our method. Let
us consider a scenario in which AC3.1 is replaced (at run-time) by
a different component (i.e., AC3.3). AdtC3 catches the event asso-
ciated to the replacement of AC3.1 and triggers the event associ-
ated to the possible off-line synthesis of a new version of it (i.e.,
AdtC3.3). If AC3.3 “contains” the interaction specified by AC3.1



(plus different ones) then it is not required to re-synthesize AdtC3
(into AdtC3.3) because, by construction, it is already able to re-
strict the behavior of AC3.3 to perform only the AC3.1 interactions.
Thus, in this case, the system can evolve at run-time without per-
forming any further adaptation. Otherwise, AdtC3.3 is synthesized
off-line by also using (if it is required) the previously mentioned
protocol-enhancing technique. During the off-line synthesis (and
before that AdtC3 is substituted by AdtC3.3) AdtC3 ignores the
messages from and towards AC3.3 since they are stored in a queue
of pending requests. When AdtC3.3 is deployed in place of AdtC3,
it is forced to first handle the pending requests in the queue and then
the composed system execution proceeds by following the normal
flow. This is done to prevent a possible failure due to, e.g., the exe-
cution of a request on a component which is not the expected one.
This makes our adaptation process safe since it is able to prevent
failures during the adaptation phase. Obviously, this implies that
during the adaptation phase, if a failure occurs, the system might
not temporarily progress. Thus, our current approach is not suitable
for systems with hard timing constraints (e.g., real-time systems).

6. RELATED WORK
The architectural approach to the dynamic and automatic compo-
sition of software components presented in this paper is related to
a large number of other problems that have been considered by re-
searchers over the past two decades. For the sake of brevity we
mention below only the works closest to our approach. The most
strictly related approaches are concerned with the problem of dy-
namically composing and adapting software components.

As part of the RAPIDware project, Zhang et al. [26] introduced an
aspect-oriented approach to add dynamic adaptation infrastructure
to legacy programs in order to enable dynamic adaptation. They
separate the adaptation concerns from the functional ones of the
program, resulting in a clearer and more maintainable design. We
believe that this concept of separation of concerns is crucial to per-
form adaptation especially when it has to be performed at run-time.
In our approach, this concept is implemented by means of the ar-
chitectural model that we impose on the SA of the system to be
assembled. That is, each third-party component (that requires to
be adapted) cannot directly communicate to the other third-party
components in the system but all its interactions must go through
its associated adaptor which, in turn, is connected to the other com-
ponents (or adaptors) in the system.

Kulkarni et al. [14] propose a distributed approach to compose dis-
tributed fault-tolerant components at run-time. They use theorem
proving techniques to show that during and after an adaptation, the
adaptive system is always in correct states with respect to satisfy-
ing specified transitional-invariants. Their approach, however, does
not guarantee the “safeness” of the adaptation process in the pres-
ence of failures during the application of the adaptation strategy.
Although our approach is not able to solve possible failures dur-
ing the adaptation phase, differently from their work, we are able
to prevent failures during the adaptation phase and, hence, we can
guarantee a safe adaptation process.

Appavoo et al. [13] proposed a hot-swapping technique that sup-
ports run-time object replacement. In their approach, a quiescent
state of an object is the state in which no other process is currently
using any function of the object. We argue that this conditions is
not sufficient in cases where a critical communication segment be-
tween two components includes a series of function invocations.
Also, they did not address global conditions for safe dynamic adap-

tation.

Amano et al. [2] introduced a model for flexible and safe mobile
code adaptation, where adaptations are serialized if there are depen-
dencies among adaptation procedures. Their approach supports the
use of assertions for specifying pre-conditions and post-conditions
for adaptation, where violations will cancel the adaptation or roll
back the system to the state prior to the adaptation. Their work
focuses on the dependency relationships among adaptation pro-
cedures, whereas our work focuses on dependency relationships
among components.

As mentioned in Section 5, our research is also related to work
in the area of protocol adaptor synthesis developed by Yellin and
Strom [25]. The main idea is to modify the interaction mecha-
nisms that are used to glue components together so that compati-
bility is achieved. This is done by integrating the interaction pro-
tocol into components by means of adaptors. However, they are
limited to only consider syntactic incompatibilities between the in-
terfaces of components and they do not allow the kind of interaction
behavior that our synthesis approach supports. Moreover, they re-
quire a formal specification of the adaptor dictating, for example,
a mapping function among events of different components. Al-
though requiring this kind of specification enhances applicability
of their approach respect to the one implemented by SYNTHESIS,
it is in contrast with our need to be as automatic as possible. In fact
even if other kinds of techniques to specify the adaptor are possi-
ble, providing the adaptor specification requires to know too many
implementation details thus missing part of the goals of the work
presented in this paper. However, if we assume to have as input
that detailed adaptor specification, SYNTHESIS can be used to deal
with the kind of incompatibilities that Yellin and Strom face in their
work. In [23], we extended the synthesis process implemented by
SYNTHESIS in order to not only restrict the coordinator behavior
but also augmenting it in order to consider also such incompatibil-
ities, e.g., interface signature mismatches.

In other work from Bracciali, Brogi and Canal [5], in the area of
component adaptation, it is shown how to automatically generate
a concrete adaptor from: (i) a specification of component inter-
faces, (ii) a partial specification of the components interaction be-
havior, (iii) a specification of the adaptation in terms of a set of cor-
respondences between actions of different components and (iv) a
partial specification of the adaptor. The key result is the setting of a
formal foundation for the adaptation of heterogeneous components
that may present mismatching interaction behavior. Analogously to
the work of Yellin and Strom, although this work provides a fully
formal definition of the notion of component adaptor, its applica-
tion domain is different from our. Since, in specifying a system,
we want to maintain a high abstraction level, assuming a specifi-
cation of the adaptation in terms of a set of correspondences be-
tween methods (and their parameters) of two components requires
to know many implementation details (about the adaptation) that
we do not want to consider in order to synthesize the adaptor.

7. CONCLUSIONS AND FUTURE WORK
In this work we proposed an SA based approach for automatically
assembling component-based systems out of a set of already imple-
mented components. By referring to Section 4.3, the component-
based systems we deal with are Weakly-Closed. That is, the de-
scribed approach allows the system to be able to evolve, at run-
time, with respect to architectural updates at component level such
as component replacement. The models that we use belong to state



and sequence diagrams. The combination of architectural analy-
sis and code synthesis is performed by combining two previously
developed approaches from some of the authors. One approach is
implemented by CHARMY that is for performing architectural anal-
ysis of an SA model. The other one is implemented by SYNTHESIS
that is for performing code synthesis.

The approach that we proposed promotes engineering approaches
that starting from high-level specifications allow for the design and
the implementation of UML state and sequence diagrams, hence
providing effective tool support for model analysis and code syn-
thesis.

Future work concerns the handling of architectural updates that go
beyond the only replacement of components, e.g., adding and re-
moving components. This would allow us to deal with Weakly-
Opened and Opened systems. Moreover, to make our method a sys-
tematic engineering approach, processes that helps the developer in
performing a realistic COTS components selection phase must be
investigated (see [1], [8] and references therein). Another inter-
esting aspect concerning future work is the possibility to include
in the models not only functional aspects but also extra-functional
ones such as timing information. This would extend the applica-
bility of our approach to systems where taking into account the
elapsing of time of a component request is a critical task such as
embedded real-time systems. Furthermore, a better investigation
of the current technologies and mechanisms needed to implement
our self-healing adaptors must be conducted. Finally, a validation
of our approach on a single example is not enough. Moreover the
case study described in this paper is not a large-scale one and,
hence, we have not been able to conduct a systematic estimation
of our tolerance with respect to the state explosion phenomenon.
We just experimented that we reduce it with respect to performing
directly code synthesis. Thus, future work concerns also the valida-
tion of the approach on other case-studies dealing with large-scale
systems.

8. REFERENCES
[1] C. Alves and J. Castro. Cre: A systematic method for cots

components selection. In SBES’01, 2001.

[2] N. Amano and T. Watanabe. A software model for flexible
and safe adaptation of mobile code programs. in Proceedings
of the international workshop on Principles of software
evolution, ACM Press, 2002.

[3] M. Autili, P. Inverardi, and P. Pelliccione. A graphical
scenario-based notation for automatically specifying
temporal properties. In SCESM’06, Shanghai, China, May
27, 2006.

[4] M. Bernardo and P. Inverardi. Formal Methods for Software
Architectures, Tutorial book on Software Architectures and
Formal Methods. SFM-03:SA Lectures, LNCS 2804, 2003.

[5] A. Bracciali, A. Brogi, and C. Canal. Systematic component
adaptation. ENTCS, 66(4), 2002.

[6] J. R. Buchi. On a decision method in restricted second order
arithmetic. In Proc. of the International Congress of Logic,
Methodology and Philosophy of Science, pages 1–11.
Standford University Press, 1960.

[7] M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal
analysis of architectural patterns. In First European

Workshop on Software Architecture - EWSA 2004, 21-22
May 2004, St Andrews, Scotland.

[8] L. Chung and K. Cooper. Matching, ranking, and selecting
components: A cots-aware requirements engineering and
software architecting approach. In MPEC’04, 2004.

[9] G. J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, September 2003.

[10] P. Inverardi, H. Muccini, and P. Pelliccione. Charmy: an
extensible tool for architectural analysis. In ESEC/FSE-13,
pages 111–114, New York, NY, USA, 2005. ACM Press.

[11] P. Inverardi and M. Tivoli. Software Architecture for Correct
Components Assembly. Springer, LNCS 2804, Sept. 2003.

[12] V. Issarny and J. P. Banatre. Architecture-based exception
handling. In HICSS, 2001.

[13] K. H. J. Appavoo, C. A. N. Soules, and et al. Enabling
autonomic behavior in systems software with hot swapping.
IBM System Journal, vol. 42, no. 1, 2003.

[14] S. S. Kulkarni and K. N. Biyani. Correctness of
component-based adaptation. in CBSE7, May 2004.

[15] Z. Manna and A. Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag New York, Inc., 1992.

[16] R. D. Nicola and F. Vaandrager. Three logics for branching
bisimulation. Journal of the ACM, 42(2):458–487, 1995.

[17] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering
Notes, 17(4):40–52, 1992.

[18] C. Project. Charmy web site. http://www.di.univaq.it/charmy,
February 2004.

[19] PSC home page: http://www.di.univaq.it/psc2ba, 2005.

[20] D. J. Richardson and P. Inverardi. ROSATEA: International
workshop on the role of software architecture in analysis
e(and) testing. In ACM SIGSOFT Software Engineering
Notes, volume 24, July 1999.

[21] C. M. F. Rubira, R. de Lemos, G. R. M. Ferreira, and F. C.
Filho. Exception handling in the development of dependable
component-based systems. Softw. Pract. Exper., 35(3), 2005.

[22] Synthesis Project. Synthesis web site.
http://www.di.univaq.it/tivoli/SYNTHESIS/synthesis.php,
September 2004.

[23] M. Tivoli and M. Autili. Synthesis: a tool for synthesizing
correct and protocol-enhanced adaptors. L’Object journal,
12(1), 2005.

[24] J. Voas, F. Charron, G. McGraw, K. Miller, and
M. Friedman. Predicting how badly “good” software can
behave. IEEE Softw., 14(4):73–83, 1997.

[25] D. M. Yellin and R. E. Strom. Protocol specifications and
components adaptors. ACM Transactions on Programming
Languages and Systems, 19(2), March 1997.

[26] J. Zhang, B. H. C. Cheng, Z. Yang, and P. K. McKinley.
Enabling safe dynamic component-based software
adaptation. In Architecting Dependable Systems III, LNCS.
Springer-Verlag, 2005.


	Introduction
	Considerations on the SA-centric approach
	SA Analysis Tools
	Charmy: a tool for SA designing and model-checking
	Synthesis: a tool for synthesizing failure-free component adaptors

	Method description
	Design-time phase: validating the system SA
	Compile-time phase: component composition through static adaptation
	Run-time phase: component composition through dynamic adaptation

	Explanatory example: a cooling water pipe system
	Design-time phase
	Compile-time phase
	Run-time phase

	Related work
	Conclusions and future work
	References 

