
Architectural Verification of Black-box

Component-Based Systems

Antonia Bertolino1, Henry Muccini2, and Andrea Polini1

1 Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche
via Moruzzi, 1 – 56124 Pisa, Italy

{antonia.bertolino, andrea.polini}@isti.cnr.it
2 Dipartimento di Informatica,

University of L’Aquila
Via Vetoio, 1 - L’Aquila, Italy

muccini@di.univaq.it

Abstract. We introduce an original approach, which combines moni-
toring and model checking techniques into a comprehensive methodol-
ogy for the architectural verification of Component-based systems. The
approach works by first capturing the traces of execution via the in-
strumented middleware; then, the observed traces are reverse engineered
into Message Sequence Charts, which are then checked for compliance
to the Component-based Software Architecture, using a model checker.
The methodology has been conceived for being applied indifferently for
validating the system in house before deployment and for continuous val-
idation in the field following evolution. A case study for the first case is
here illustrated.

1 Introduction

Two antithetical approaches which emerge today for the verification of large
complex distributed systems are model-based and monitoring. These two ap-
proaches are generally used in different stages of the software life cycle, and
serve different purposes. The former enforces the rigorous derivation of a set
of test cases from the system model, and aims at validating before deployment
that the implemented system behaviour actually conforms to the modeled one.
The latter collects and analyse runtime data during system execution to identify
failures and to evaluate critical quality and performance attributes in the field.

In this paper we describe an original approach we are working on, which draws
from both model-based verification and monitoring concepts, and combines their
respective strengths into a comprehensive methodology for verification in a con-
tinuum between in-house and in the field. In particular we describe here how
the behaviour of a component assembly is validated against the corresponding
software architecture.



A software architecture (SA) provides high-level abstractions for representing
the structure, behavior, and key properties of complex software systems [12]. SA-
driven development assigns to the SA specification a central role in the software
life cycle, both to the phase of design and integration, and to analysis and test-
ing activities. Most methodologies for SA-based analysis and testing generally
assume a model-driven approach, in which the SA specification constitutes the
reference model and the system is subject to a thorough and accurate validation
of the required architectural properties before being deployed. In such paper we
describe the validation phase and techniques for the off-line testing.

Advances in SA have greatly contributed to the advent of the Component-

Based paradigm of development. In fact, the SA specification provides the blue-
print for developing systems by properly composing “pieces” of software against
it. A Component-Based Software System (CBS) can be roughly considered as an
assembly of reusable components, designed to meet the quality attributes iden-
tified during the architecting phase [9]. A component can be defined [20] as a
unit of composition, with contractually specified interfaces. In a CB approach, a
big challenge is posed by the scarce information that is generally available about
the components. Various approaches for testing CBSs have been recently pro-
posed spanning over a varying spectrum of assumptions made on the metadata
accompanying the component, which can be merely in form of pre- and post-
conditions, or even as detailed as state machines. However, such a paradigm
needs also to assume there is a time for validation before deployment; with the
fast and ceaseless increase of systems complexity and pervasiveness, and the
consequent emergence of dynamic global SAs, such a model needs to be revised.

In antithesis to a proactive approach to testing such as model driven, sev-
eral proposal for monitoring, or passive testing, are today spreading. Referred to
with differing terminology, such as “monitoring”, “tracing”, and similar, what
this approach to verification foresees is to observe the system during execution
and to profile the obtained traces with different purposes. Hence, while in model-
based testing the system must be stimulated so to reproduce some predefined
behaviour, in monitoring the actual behaviour is observed and a posteriori anal-
ysed to see whether this conforms to desired properties. This prevents the burden
of reproducing preselected test sequences as in model driven testing; we adopt
the model-based approach in that we derive some architectural properties from
the specification that we want to verify, and we verify the collected traces against
these properties. In particular, for the latter purpose, we apply model-checking
techniques, by which we check that the CBS derived traces conforms with the
expected event sequences in the CBSA model.

Our medium-term objective is to define an approach that can be equally
applied to off-line and on-line validation of CBS systems. With off-line testing
we refer to the test of the assembly before its deplyment in the final environment
and real usage. This means that in the case of off-line validation the system must
be stimulated with test cases appositely derived. Moreover in such case it will
make sense to derive the test cases from the same models used for the following



verification steps. On-line validation is meant to verify the behaviour of the
system during its normal execution. In such case a particularly interesting goal
of the approach is to ensure that the “core” of the implemented system fulfills the
SA expectations even when new plugin component are attached to the system,
as figuratively illustrated in Figure 1.

C2
C1

C3

User

System SA

User

System Implementation

C1

C2

C3

Conceptual
components

COTS
components

PlugPlug

Regression
Conformance Analysis

Conformance Analysis
via Testing, Model-

checking and
Monitoring

Component-based
Implementation

Component-based
Software

Architecture

Fig. 1. Architectural Verification of Component-based Systems

In the next two sections we provide an overview of the proposed approach,
and of related work. Then, in Sections 4 and 5 we describe the monitoring and
model-checking steps, and in Section 6 we discuss the application of the approach
to a case study. Finally some conclusions of results reached so far are drawn in
Section 7.

2 Related Work

As discussed in the introduction of this paper, our approach wants to integrate,
in a novel approach, (model-based) verification applied at the architecture level,
monitoring applied during system execution and model-checking techniques cov-
ering implementation and software architectures. Much research has been con-
ducted in these areas, and main results are briefly surveyed in this section.

Monitoring and Black-Box Monitoring: Due to the complexity of understanding
and configuring modern complex systems, several different approaches to moni-
tor their functioning on-line have been recently proposed. For a recent compre-
hensive assessment of strategies and testing opportunities for profiling deployed
software we refer to [10], while for a quite interesting approach that shares many
of the problems and goals with our approach we mention [1]. In the latter, the



authors however adopt a different solution, since they instrument the architec-
tural description, and not the middleware. Moreover, they require the developers
to define a set of rules used to analyse the traces. Another interesting approach
to derive execution traces using Aspect-Oriented Programming is presented in
[15]. However even in this case no analysis technique is proposed.

SA-based Model-Checking: Software Model-Checking [8] analyzes concurrent
systems behavior with respect to selected properties by specifying the system
through abstract modeling languages. Model-checking algorithms offer an ex-

haustive and automatic approach to completely analyze the system. When errors
are found, counterexamples are provided. Initial approaches for model-checking
at the architecture level have been provided by the Wright architectural lan-
guage [5] and the Tracta approach [16]. More recently, Fujaba [4], Æmilia [6],
and Charmy [19] have been proposed. Fujaba is an approach tool supported
for real-time model-checking of component-based systems: the system structure
is modeled through UML component diagrams, the real-time behavior is mod-
eled by means of real-time statecharts (an extension to UML state diagrams),
properties are specified in TCTL and the UPPAAL model-checker is used as the
real-time model checker engine. Æmilia is an architectural description language
based on the stochastic process algebra EMPAgr: initially introduced for per-
formance analysis, it permits to apply symbolic model-checking. TwoTowers 5.1
is a software tool for the verification of Æmilia specifications. Charmy [19] is
our proposal to model-check software architecture compliance to certain func-
tional temporal properties. The software architecture is specified according to
the Charmy UML-based specification of software architecture. More details will
be provided in Section 5.

Integration of analysis techniques: Integration of analysis techniques is a topic
which is recently receiving some attention in the software engineering community
(e.g., [3]). In [17] the authors integrate testing and monitoring activities, both
applied over component-based systems. While testing is used to collect informa-
tion on components interaction, monitoring is successively employed to identify
anomalous interactions when components are added or modified in the original
system. More related to some of the authors experience [7], we recently integrated
model-checking and testing activities during the life-cycle, where model-checking
techniques have been used to validate the SA model conformance with respect
to selected properties, while testing techniques have been utilized to validate the
implementation conformance to the SA model.

3 Approach Overview

A big synergy relates CB development and SA (the latter being the model that
should lead the assembly of a set of components to form the required system):
when developing components, our focus is on identifying reusable entities, with
well defined interfaces and proved quality. When building component-based sys-
tems (CBS), we move our focus to assemble the components so to build a high-



quality system. When modeling the software architecture of a component-based
system (CBSA), our goal is to provide a high-level blueprint on how real com-
ponents are supposed to be assembled (according to styles and patterns, con-
straints, and rules).

Therefore a CBSA specification plays a major role in validating the quality
of the assembly (even before the CBS components are developed or bought).
The main objective of the approach we propose is to verify the coordination
properties of components which are part of a CBS, against the specified CBSA.
The verification process we propose is composed by different steps, where:

CBSA Specification for Analysis: The CBSA of the system under analysis is
specified in terms of a structural model (which describes components, connec-
tors, interfaces, and ports) and a behavioral model (which specifies the internal
expected behavior and coordination of the CBS components).

Testing Input Selection: In case of off-line testing how do we select the test cases
to be executed? As the basis assumption of this approach is that a detailed
model of the real component is not available (assuming the component is off the
shelf), we use the only information that is anyhow available (it may be in various
forms), i.e. the expected Input/Output functions of the components that can be
retrieved from the architecture specification.

Monitoring Black-box Component-Based Systems: We execute the implementa-
tion on the selected test cases, by observing the traces of execution via monitoring
techniques. Traditionally, monitoring techniques are realized by instrumenting
the component code in order to capture desired information from execution.
However, since components can be black box with no available code, we cannot
instrument the component in traditional ways. For this purposes, we adopted a
middleware instrumentation.

Model-Checking CBS conformance to CBSA: The execution traces are used to
check the CBS conformance to the CBSA specification. We remind here that
while the CBSA specification described the intended/expected system usages,
the CBS execution traces (obtained via monitoring) represents how the imple-
mented CBS works. Model-checking techniques are then utilized to compare
expected and real behavior.

In this paper we will focus our attention on the Monitoring and Model-
Checking activities, while future work will investigate how such technologies
can be used for verifying dynamically evolving CBSs. For this purpose, we will
distinguish, as showed in Figure 1, among architectural components (the abstract
ideal components of the SA, specified by their interfaces and their expected
model of interactions), concrete components (the components of the implemented
CBS, obtained by refining SA components or by adapting existing components),
and real components (the building blocks of the concrete components, and can
be, for instance, Commercial-off the Shelf – COTS – components). Concrete and
real components may coincide, or a concrete component could be obtained by
the assembly or wrapping of real components.



4 Monitoring Black-box CB Systems

Monitoring is the activity intended to collect and check information about spe-
cific properties and behavior of a system during its real execution. Different
elements and issues can be recognised in a monitoring setting:

1. the monitored system is the software whose behaviour and properties are
of interest. The functionalities provided by such system are those that are
in general relevant for an external user.

2. the monitoring system is the software that collects specific information
on the monitored system. In general the monitoring system accepts as input
the information to be observed and collected, and the constraints on the
behaviour/properties of the system that must be respected.

3. If a violation is detected, the monitoring system communicates the anomaly
to a controlling component. The latter, that in some cases can also be a
human agent, should put in place a set of actions to manage the anomalous
condition and restore the system to a correct state (note this step is out of
the scope for the proposed approach).

Observability of the monitored system is certainly the basic element con-
straining what can be monitored: it refers to what an external observer can
notice about the system/component behaviour and properties evolution. In the
fortunate case that the system has been developed having already in mind what
is necessary to check, the set of information that can be observed generally en-
closes the set of what is necessary to monitor, but unfortunately this is not the
general case.

Monitoring becomes particularly tough when the source code of a software
component cannot be directly accessed and modified, as is the rule when black-
box reuse of software components externally acquired is considered. In such a
situation the only information that can be accessed by an external agent are
those expressly made available by the component developer. In CB program-
ming this will generally only include the information passed trough the public
interface.

Our approach requires to collect specific information for checking that the
interactions among the concrete components are actually allowed by the archi-
tectural description. Two basic elements are needed to put in place this kind of
verification activity:

1. a technique for representing the concrete interactions in a way that will be
suitable for the architectural checking step

2. a mechanism for observing component interactions as they happen at run-
time

In our approach the execution traces are abstracted to Message Sequence Charts
(MSCs) reporting the whole signature for each invoked method. It is worth noting



that these diagrams will not report any internal interactions within a concrete

component implementation, given that its implementation is transparent to the
system integrator.

The most obvious mechanism to observe component interactions might seem
wrapping each concrete component with code that in some way records all the
incoming and outgoing invocations. However, a concurrent behaviour of the
wrapped component (e.g., the simultaneous invocation of different methods ex-
posed by the component by at least two different threads of execution, or the
internal activation, within the invoked component, of another thread) hinders
the identification of the correct relations among incoming and outgoing call to
and from the component. An example can aid to understand the problem. In
Figure 2 component B invokes (b) component C while this component is already
processing an invocation (a) from component A. In this situation a standard
Wrapper of the C component could not recognize the thread that gave rise to
the invocation “c” towards component D. So when situations such as that rep-
resented in the figure happen, it becomes impossible, using only a “wrapping”
approach, to correctly associate outgoing invocations with the corresponding
incoming ones.

Comp_A Comp_B Comp_C Comp_D

a

b

c

Fig. 2. Wrapping cannot easily manage concurrent invocations

An alternative way to monitoring, the one we chose, is to base such activity
on the run-time environment of the application under verification, finding suit-
able mechanisms to observe the inteactions among the components “following”
threads of executions. In a local approach based on Java, for instance, this would
mean that we have to base the monitoring on direct interactions with the Java
Virtual Machine (JVM) or we have to define an appropriate version of the JVM
directly inserting monitoring features on it. In a distributed setting, instead,
this would mean to insert the monitoring activity as part of the middleware
level and not at the application level as in the case of the wrapping approach.
At this point the problem to solve is how can we retrieve the needed informa-
tion to derive meaningful execution traces. As stated before we can assume the
knowledge only of the interfaces to be implemented by the concrete component.
However inserting the monitoring “below” the application will permit to increase
the observability of the executed application to all the invocations it makes to
the middleware. At this point the idea is that the only additional information
we need is to observe all the actions and interactions on and among the pro-



cesses (thread of execution) activated by the execution of the application. So
starting with the “main” thread of the application we should observe, behaving
as a sort of debugger, when new processes are activated, when they interact or
when they stop. At the same time we should be able to record when a process
during its execution “hits” one of the methods of the interface implemented by
one concrete component. For each process the invocation sequence are stored
in different files successively used to recreate the traces that have been actually
executed. Considering the scenario in Figure 2, the result of the monitoring will
be two different files, the first reporting the sequence of invocations “C.a”,“D.c”
and the second the sequence “C.b”, providing the precise information on the call
sequences.

The above approach is implemented into a proof-of-concept monitoring tool
called Theseus, from the mythological character that used a thread to trace the
path to the way out from the minotaur’s maze. In the current version Theseus
can only monitor the execution of non distributed CBS (implemented using the
Java language); we are currently working to add support also for Java Remote
Method Invocations.

Theseus implementation is based on the Java Platform Debugger Architec-
ture (JPDA) API (Application Programming Interface). The tool takes as input
the .class files containing the interfaces defined for the concrete components,
then using the API defined in the JDA, it asks to the JVM to notify when meth-
ods on this interfaces are invoked. When this happens the JVM is stopped and
all the information concerning the invocation are retrievied and stored in the
corresponding file; then the machine can then be restarted. The JVM bloking
behaviour is consequence of the fact that the API and the JVM have not been
explicitly developed for monitoring purpose, and a non stopping behaviour will
raise the risk of loosing relevant information given the occurence of successive
method calls.

The tool Theseus also records all the invocations made on instances of the
java.lang.Thread class, that in Java ands in particular in the JVM are used
as the abstraction of processes. In such manner the tool can recognize when a
Thread interacts with another via a notify, or also when it activates another
thread creating and starting it, permitting to manage the issues raised by the
presence of concurrency. In Figure 3 the main window of Theseus is shown.

5 Model-Checking CBS conformance to CBSA in

TANDEM

As soon as execution traces have been collected after monitoring the component-
based system implementation, they have to be checked for consistency to ex-
pected architectural behaviors. This validation phase has to identify if and how
much the (behavior of) realized system complies to what has been previously
specified at the architecture level. In fact, while execution traces denote the real
system behavior when submitted to certain inputs, architecture-level behavioral
models identifies the expected behavior.



Fig. 3. Theseus start interface

The architectural model-checking approach we take in place here is Charmy,
a model-based approach for architectural checking.

Charmy[2] enables the specification of a software architecture through
diagrammatic (UML-based) notations, and the verification of the architectural
specification conformance with respect to certain temporal properties, represent-
ing how architectural elements are supposed to be coordinated. By focussing on
Charmy main features, we have that:

Specification: Charmy allows the specification of a software architecture by
means of both a topological (static) description and a behavioral (dynamic)
one [11]. The specification of the SA topology is realized in terms of stereotyped
UML 2.0 component diagrams, where components represent abstract computa-
tional subsystems and connectors formalize the interactions among components.
The internal behavior of each component and the coordination of the interacting
components is specified in terms of stereotyped UML 2.0 state machines.

Verification: once the SA specification is available, a translation engine auto-
matically derives from the model-based SA specification, a formal executable
prototype in Promela (the specification language of SPIN) [13]. On the gener-
ated Promela code, we can use the SPIN standard features to find, for example,
deadlocks or parts of states machines that are unreachable.



Figure 4 graphically summarizes how the tool supporting the Charmy ap-
proach works: the Charmy tool editor allows the graphical specification of the
SA topology and behavior and the properties in terms of UML diagrams. In
step 1, component state machines are automatically translated into a Promela
formal prototype. Once the Promela model is produced SPIN standard checks
may be performed. In Step 2, scenario specifications (in the form of extended
Sequence Diagrams) are automatically translated into Büchi automata (the au-
tomata representation for LTL formulae). Such automata describe properties to
be verified. Finally, in Step 3 SPIN evaluates the properties validity with respect
to the Promela code. If unwanted behaviors are identified, an error is reported.

Fig. 4. Tool Support for Charmy Main Features

6 Applying the Approach to the Charmy Plugin System

As a case study to experiment the approach we have taken the Charmy plugin
system. We provide an outline of the Charmy software architecture and its
specification (Section 6.1). Then, we identify some monitored traces and show
how Charmy can check some properties over its architectural model (Section
6.2). We conclude this section with some considerations and evaluation of results
(Section 6.3).

6.1 The Charmy Plugin Architecture and its Specification

The Charmy architecture is composed by two main parts: the Charmy Core

and the Plugin Package.
The Charmy Core macro-component is composed of the Data Structure

component, the Plugin Manager and File Manager which allows the handling
of plugins of type editor and file, respectively, the GUI which receives stimuli



from the system users, and the Event Handler which handles all those events
generated by plugins. The Charmy core handles the plugin management by
specifying: i) how a new plug should be implemented, ii) how the core system
has to recognize the plug and use it, and iii) how the core and plug components
should interact. Figure 5 graphically summarizes the interfaces to be imple-
mented in order to plug a new component in the system. Details on how to
implement and recognize a new plug, and plugs interaction are provided in [14].

The Plugin Package contains a set of plugins to specify and analyze software
architectures. The Topology, State, and Sequence editors permit to edit the soft-
ware architecture topology, the architectural state machines and the scenarios,
respectively. The PSC2BA and Promela Translation plugins allow an automatic
translation from sequence diagrams to Büchi automata and from state machines
to Promela code. Such translations permit the application of model-checking
techniques at the software architecture level. The TesTor component allows the
generation of architectural test specifications. The Composit component allows
for compositional analysis of middleware-based SA. For more details, please refer
to [19].

Plugin Manager

Data
Structure

Charmy Core
UserBase

GUI

File Manager

IMainTabPane

Plug
(of type editor)

<<implements>>

SerializableCharmyFile

Plug
(of type file)

<<implements>>

<<implements>>

IFilePlug

Fig. 5. Plug and Core

By means of the Promela Translation plugin, the Charmy architectural spec-
ification has been automatically translated into a formal executable prototype
in Promela, and checked through SPIN standard checks (step 1 in Figure 4).
After few modeling and checking iterations, we produced a stable correct (with
respect to SPIN checks) architectural specification.

6.2 Validating the Charmy Implementation with respect to its

Architectural Specification

The Charmy core and plugs implementation has been realized in the last three
years at the Computer Science Department, University of L’Aquila. When mov-
ing from version 0 to version 1, the tool implementation has been re-structured to
make it plugin-based. More recently, when moving from version 1 to the current
version 2.0 beta, some minor modifications have been made, while re-thinking
some interfaces and adding some utilities. Many plugins have been created and
unit tested. Since many of them have been realized thanks to students support,



our confidence on the plugin-core integration correctness has been mainly based
on beta testing.

We then decided to use the approach as a means to validate the plugin-core
integration (i.e., to check if the integration of a new plug in Charmy may violate
the Charmy core standard behavior). We submitted the Charmy system im-
plementation (together with its plugins) to three different analysis: i) we plugged
the Topology Editor component to monitor and check its correct integration into
the Charmy system, ii) we monitored an initially faulty version of the Explode-
Plugin component, in order to obtain an error trail enabling the localization of
the fault, and iii) we injected a fault on the Topology Editor final version, in
order to evaluate the approach ability to precisely localize an expected fault.

Analysis of type i): When running Charmy with the Topology Editor plugged
into the system, we can observe via Theseus only a subset of the entire flows
of events (since Theseus in its current version can monitor only interfaces). In
particular, it can collect information on how the Charmy Core loads the plugin,
how the copy/cut/undo operations are performed, how the resulting topology
diagram is stored and closed.

Figure 6 shows one of the typical traces produced when monitoring the Topol-
ogy Editor/Core integration. As we can see from the figure, the scenario is quite
complex, since it records a quite long list of events. In any case, all the internal
(to the plug) operations are not observed, since they are implemented without
any specific interface.

Indeed, analyzing the scenario by hand, will be extremely expensive. In-
stead, the scenario has been drawn into Charmy, automatically translated into
a Büchi automaton representation, and the SPIN verification has been run. No
errors have been detected.

Fig. 6. Monitoring the Topology Editor interaction with the Charmy Core



Analysis of type ii): In this second scenario, we selected the ExplodePlugin plugin
we knew had a bug. This plugin has been realized for testing purposes. It creates
incrementally a multitude of plugins to be loaded in Charmy. Our goal was to
evaluate how much Charmy scales and performs when a multitude of plugins
are plugged into the Charmy Core. We knew in advance the plugin was buggy,
but we did not know where the fault was localized.

When running the Theseus monitoring activity, many scenarios have been
recorded. For sake of space, we do not report them here. When applying the
Charmy model-checking approach to this scenario, the expected error trail has
been detected, highlighting the location of the first undesired (with respect to
the architectural model) interaction.

Analysis of type iii): Ultimately, we tested the monitoring + model-checking abil-
ity to precisely localize faults. While analysis ii) permits to localize the fault,
analysis iii) allows approach users to check how much the localized fault corre-
sponds to the expected (injected) one. Then, this activity represents a validation
of the approach precision in localizing faults.

A fault has been injected in the Topology Editor component. When loading
this faulty version into Charmy, and after Theseus monitoring, many traces
have been collected (not reported for space limits). When running the SPIN
verification feature, an error trail has been raised, indicating the unwanted be-
havior.

Indeed, we cannot expect the approach to identify all possible injected faults.
Only architectural coordination faults can be detected. Moreover, the fault lo-
calization ability of the approach strongly depends on the Theseus ability to
monitor events. Since in its current version Theseus monitors only such ser-
vices implemented via interfaces, the approach localizes the first architectural
interaction affected by the injected fault.

An interesting discover we made thanks to the application of the approach
has been that the students introduced many architectural mismatches using
direct reference to classes instead of using the defined interfaces. By executing
the Charmy tool in a monitored environment we did not notice any strange
behaviour; but subsequently the traces collected by Theseus did not expose all
the interactions we expected. Indeed we could see all the initial invocations made
by the core components to correctly initialise all the installed plug-ins, but after
these invocations we could observe less invocations with respect to the expected
ones. Initially we thought there was an error in the Theseus implementation
previously tested only on small case studies. After having analysed the code
of Theseus without finding a solution to the problem we tried to investigate
whithin the Charmy code. During this investigation we discovered that often
students preferred to use direct casting on objects or however direct reference
to external classes. So we were faced with an implementation containing many
architectural mismatches affecting the possibility of substituting components
with new versions implemented by different classes. Clearly this architectural
mismatches strongly affected our capability of analysis since Theseus is only able



to trace invocations occurring through interfaces. Indeed this kind of mismatches
could be discovered through static analysis, assuming any tool is available for
code-level checking of architectural properties.

6.3 Considerations and Evaluation of Results

With the use of the approach, we can test the system coordination, by integrat-
ing monitoring and model-checking techniques. If the system implementation
behaves accordingly to the system specification, an ok message is raised. Other-
wise, an error trace identifies where the execution trace differs from the expected
one.

When an anomalous behavior is known, the approach allows the detection
and localization of known but unwanted faults. It acts as a sort of debugger,
identifying which components are behaving incorrectly when integrated. In both
cases, the ability of the approach to detect and precisely localize a fault can be
evaluated via fault injection. Moreover, with respect to traditional specification-
based testing techniques, the approach permits to analyze the implementation
conformance to external input/output (as in traditional IOLTS-based testing)
and also the implementation conformance to the entire architectural trace (by
model-checking the execution scenarios compliance to the architectural model).

According to the experiment conducted over the Charmy system, we here
propose some initial considerations and evaluation of results (being conscious
more deeper investigation is required for providing more informative insights):

Automation: so far, a quite relevant part of the approach is supported by
tools. The architectural specification is made through the Charmy editors. Test
cases generation can be realized according to [18]. The monitoring activity has
been supported by the Theseus tool. The model-checking activity is realized
through the integration of Charmy features and the model-checking engine
SPIN;

Costs: monitoring black box components is generally an invasive and expen-
sive activity. Since Theseus requires to stop the JVM at each time an information
needs to be collected, the monitoring activity for a complex execution may re-
quired up to ten minutes. However, we are working on modifying the JVM in
order to reduce the monitoring time. Regarding the model-checking activity,
time effort is quite limited, since properties of interest “p” are submitted to an
existential check (i.e., check if “p” exists in the system model “m” ).

Scalability: even if more experimental results are needed for a finer evalu-
ation, the approach seems to be able to scale to larger systems (assuming an
improvement on the monitoring activity performance).

7 Conclusions and Future Work

We have presented a novel approach to the SA-driven verification of CBSs, in
that it combines the strengths of either approaches, trying to overcome the in-
herent difficulty of reproducing a predefined sequence of events of model-based



testing, but enriching the power of monitoring with a rigorous model-check stage
of the obtained traces. The goal of the approach is to verify that some important
SA properties are indeed satisfied by the implemented CBS, and continue to be
so even after evolution. The approach is in fact conceived as a comprehensive
methodology to be used without interruption both for in-house validation (off-
line testing), and for continuous verification in use (on-line testing). The goal
we pursue is quite ambitious, and of course we are not yet done, but several
pieces of the approach are already implemented. In this paper we have already
presented some promising results by applying the approach for off-line testing
of the Charmy architecture. Even though the approach proposed can show ap-
pealing opportunity, its usage should be carefully evaluated, particularly for the
case of on-line testing. Monitoring being executed concurrently with the applica-
tion strongly affects performance. The monitoring technique we propose seems
to be particularly powerfull but if not supported by adequate tools particularly
expensive. In the current implementation performance can be reduced up to
ten times when many threads are started. We are currently investigating some
tool improvements in order to make it applicable for the run-time monitoring of
multi-threades applications.

8 Acknowledgements

The authors wish to thank Alessia Bardi and Ezio Di Nisio for their important
contribution to the implementation of the tools enabling the proposed approach.

This work is partially supported by the PLASTIC Project (EU FP6 STREP
n.26955): Providing Lightweight and Adaptable Service Technology for pervasive
Information and Communication. http://www.ist-plastic.org.

References

1. An Approach for Tracing and Understanding Asynchronous Systems. ISR Tech.
Report UCI-ISR-02-7, 2002.

2. CHARMY Project. Charmy Web Site. http://www.di.univaq.it/charmy, 2004.
3. 2nd International Workshop on ”Rapid Integration of Software Engineering tech-

niques” (RISE 2005), Heraklion Crete, GREECE, September 2005. LNCS.
4. Fujaba Project. http://wwwcs.uni-paderborn.de/cs/fujaba/publications/index.html,

2005. U.Paderborn, Sw Eng. Group.
5. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM

Trans. on Software Engineering and Methodology, 6(3):213–249, July 1997.
6. M. Bernardo, L. Donatiello, and P. Ciancarini. Performance Evaluation of Complex

Systems: Techniques and Tools, chapter Stochastic Process Algebra: From an Alge-
braic Formalism to an Architectural Description Language. LNCS, 2459:236-260,
September 2002.

7. A. Bucchiarone, H. Muccini, P. Pelliccione, and P. Pierini. Model-Checking plus
Testing: from Software Architecture Analysis to Code Testing. In Proc. Inter-
national Testing Methodology workshop, LNCS, vol. 3236, pp. 351 - 365 (2004),
October 2004.



8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, second edition, 2000.

9. I. Crnkovic and M. Larsson, editors. Building Reliable Component-based Software
Systems. Artech House, July 2002.

10. S. Elbaum and M. Diep. Profiling Deployed Software: Assessing Strategies and
Testing Opportunities. IEEE Trans. on Software Engineering, 31(8):1–16, August
2005.

11. D. Garlan. Software Architecture: a Roadmap. In ACM ICSE 2000, The Future
of Software Engineering, pages 91–101. A. Finkelstein, 2000.

12. D. Garlan. Formal Modeling and Analysis of Software Architecture: Components,
Connectors, and Events. In Formal Methods for Software Architectures, pages 1–24.
LNCS, 2804, 2003.

13. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, September 2003.

14. P. Inverardi, H. Muccini, and P. Pelliccione. CHARMY: An Extensible Tool for
Architectural Analysis. In ACM Proc. European Software Engineering Confer-
ence/the Foundations of Software Engineering (ESEC/FSE), September 2005.

15. Kimmo Kiviluoma, Johannes Koskinen, and Tommi Mikkonen. Run-time moni-
toring of architecturally significant behaviors using behavioral profiles and aspects.
In Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA’06), pages 181–190, July 17-20 2006. Portland, Maine, USA.

16. J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour Analysis of Software
Architectures. In I Working IFIP Conf. Sw Architecture, WICSA1, 1999.

17. Leonardo Mariani and Mauro Pezze’. Behavior Capture and Test: Automated
Analysis of Component Integration. In IEEE Computer Society, editor, In 10th
IEEE International Conference on Engineering of Complex Computer Systems,
Shangai (China), 16-20 June 2005.

18. H. Muccini, A. Bertolino, and P. Inverardi. Using Software Architecture for Code
Testing. IEEE Trans. on Software Engineering, 30(3):160–171, March 2003.

19. P. Pelliccione. CHARMY: A framework for Software Architecture Specification and
Analysis. PhD thesis, Computer Science Dept., U. L’Aquila, May 2005.

20. C. Szyperski. Component Software. Beyond Object Oriented Programming. Addi-
son Wesley, 1998.


