
Systematic Generation of XML Instances to Test

Complex Software Applications⋆

Antonia Bertolino, Jinghua Gao, Eda Marchetti, and Andrea Polini

Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche
Via Moruzzi, 1 – 56124 Pisa, Italy

{antonia.bertolino, jinghua.gao, eda.marchetti,

andrea.polini}@isti.cnr.it

Abstract. We propose the XPT approach for the automated genera-
tion of XML Instances which conform (or do not conform) to a given
XML Schema. XPT can be a very useful instrument for testing those
applications that expect in input the XML instances, and have been
fruitfully exploited in the e-Learning domain. Indeed, we generate a
set of instances by systematically considering the possible combinations
of elements within the schema, according to the well known Category-
Partition strategy for black box testing. Here we trial the TAXI proof-
of-concept tool, that implements the XPT approach, to the IMS Content
Packaging XML Schema, and briefly discuss the results.

1 Introduction

More and more complex software systems are developed according to a modular
architecture, within which precise features can be identified and separately im-
plemented. Main objective of “componetization” is to permit the development
of the different features by diverse stakeholders still having the possibility of
integrating the subsystem into a unique working system. Nevertheless the inte-
gration phase clearly require to definition of clearly and checkable format the
exchanged data.

Certainly one of the most important innovation that strongly contributes to
solve this issue has been the introduction of the eXtensible Markup Language
(XML) [1]. In few years this language has established itself as the de facto stan-
dard format for specifying and exchanging data and documents between almost
any software application. Immediately following, the XML Schema [2] has then
spread up as the notation for formally describing what constitutes an agreed valid
XML document within an application domain. Thus, XML Schemas are used for
expressing the basic structure of data and parameters that remote components
exchange with each other, and restrictions over them, while XML instances, for-
matted according to the rules of the referred XML Schema, represent the allowed
naming and structure of data for component interaction and for service requests.

⋆ This work has been supported by the European Project TELCERT (FP6 STREP
507128)



The introduction of XML for specifying standard format of exchanged data
is certainly fundamental and strongly increases the possibility of correct inter-
actions, nevertheless XML related technologies do not solve the interoperability
problem per se. No information concerning the interpretation of data can be as-
sociated to an XML description, leaving the room for different interpretation by
various developer. Trying to make a further step toward guaranteeing interop-
erability our proposal here is to combine the great potential of XML Schema in
describing input data in open and standard form, with testing activity to assess
the common understanding of interacting e-Learning systems. In doing this, our
intention is to take advantage of the special characteristic of the data represen-
tation suitable for automated processing, which is clearly a big advantage for
testing. We find that the adoption of the XML Schema leads quite naturally to
the application of partition testing, a widely studied subject within the testing
community, since it provides an accurate representation of the input domain
into a format suitable for automated processing. The subdivision of the input
domain into subdomains, according to the basic principle of partition testing,
can be done automatically by analyzing the XML Schema elements: from the
diverse subdomains identified, the application of partition testing amounts to
the systematic derivation of a set of XML instances. Systematic generation of
XML instances, differently from a random based approach, clearly has impor-
tant consequences on the effectiveness of the generated test suite permitting to
derive meaningful statistics on the kind of instances generated, and then on the
covered features.

This paper wants to introduce the reader to the systematic generation of
XML instances and on corresponding advantages. At the same time the paper
reports a first evaluation of the approach to the generation of instances for the
IMS Learning Information Package specification. Also a short overview on a
proof-of-concept tool, called TAXI (Testing by Automatically generated XML
Instances), is provided. Such tool inputs an XML Schema and automatically
generate a set of XML instances for the black box testing of a component, whose
expected input conforms to the taken schema.

In the remainder of this paper we discuss some related works in Section 2,
then Section 3 provides a short introduction on the proposed strategy and on
the tool implementing it. Section 4 wants to give quantitative motivations to
the application of a systematic approach, then in Section 4.2 a simple compar-
ison with another possible approach is presented. Some conclusions are finally
discussed in Section 5.

2 Related work

Notwithstanding the intense production of XML-based methods and tools in
the latest years, we are not aware of XML-based test approaches comparable to
ours. Our interest is in automatically generating a comprehensive suite of XML
instances from a given XML Schema, for the purpose of testing applications that



will use such XML instances as input. Instead, what existing “test tools” based
on XML do, can be roughly classified under three headlines:

– testing the XML instances themselves;

– testing the XML Schemas themselves;
– testing the XML instances against the XML Schema.

Regarding the first group, a basic test on an XML file instance is called well-

formedness, aimed at verifying that the file structure and its elements possess
specified characteristics, without which the tested file cannot be even classified
as an XML file. For this aim, diverse sets of test suites (for instance [3], [4]) and
,

various tools aiming at validating the adequacy of a document instance to a
set of established rules, such as [5] have been implemented

With regard to the testing of XML Schemas themselves, several validators
exist for checking the syntax and the structure of the W3C XML Schema docu-
ment, and the definition of the systems (for instance, [6], [7]. [8] and [9], [10])

The third group enclose tools for automated instance generation based on
XML schema. Relevant elements of the group are [11], [12] and [13]. Neverthe-
less all the available tools for XML instances generation only implement random
or ad hoc generation. Instances are not conceived so to cover interesting combi-
nations of the schema. Indeed this characteristic is where our approach tries to
provide a comprehensive solution. Adopting a systematic criterion in generating
instances will have a double positive side effect: the generation of more accu-
rate and mindful XML instances and the automatization of black box test suite
specification.

Finally, regarding Category Partition, which has been previously applied also
by some of the authors of this paper [14], so far no proposal has really succeeded
in pushing the widespread adoption of automated black box testing as it would
deserve. We think that the widespread acceptance of XML, and its pragmatic
flavor, associated to the Category Partition methodology could finally be the
winning instruments to do so.

3 Automatic Instances Generation

In this section we briefly describe an original XML instances generation ap-
proach, called XML-based Partition Testing (XPT) [15]. At the same time a
proof of concept tool called TAXI (Testing by Automatically generated XML
Instances) implementing the proposed methodology is described.

The XPT methodlogy is composed by two different phases: XML Schema
Analysis(XSA) and Test Strategy Selection (TSS). The former, detailed in Sec-
tion 3.1, implements a methodology for analyzing the constructs of the XML
Schema automatically generating instances. The latter, described in Section 3.2,
implements diverse test strategies useful for both selecting the parts of the XML
Schema to be tested and opportunely distributing the instances on the Schema.



These two phases work in agreement, as shown in Figure 1, to realize the appli-
cation of a partition testing technique, as defined in [16], which constitutes the
overall basis on which the whole XPT approach relies on.

Introduced in the late 80’s and today widely known and used, the Category
Partition (CP) [16] provides a systematic and semi-automated method for test
data derivation, starting from analysis of specifications until production of the
test scripts, through the following series of steps:

1. Analyze the specifications and identify the functional units (for instance,
according to design decomposition).

2. For each unit identify the categories : these are the environment conditions
and the parameters that are relevant for testing purposes.

3. Partition the categories into choices :1 these represent significant values for
each category from the tester’s viewpoint.

4. Determine constraints among choices (either properties or special condi-
tions), to prevent the construction of redundant, not meaningful or even
contradictory combinations of choices.

5. Derive the test specification: processing. They are not yet a list of test cases,
but contain all the necessary information for instantiating them by unfolding
the constraints.

6. Derive and evaluate the test frames by taking every allowable combination
of categories, choices and constraints.

7. Generate the test scripts, i.e. the sequences of executable test cases.

The XML Schema leads quite naturally to the application of the Category
Partition, since it provides an accurate representation of the input domain. In
particular the subdivision of the input domain into functional units and the iden-
tification of categories can be done by exploiting the formalized representation
of the XML Schema.

3.1 XML Schema Analyzer

In this section we introduce the functionalities in charge of the XSA Component
as schematize in Figure 1. The XML Schema Analyzer collaborates with the
Test Strategy Selector part as visualized in Figure 1. Specifically XSA takes the
weighted version of the original XML Schema provided at the end of the first
activity as an input (details in Section 3.2) and foresees a Preprocessor activity
in which the XML Schema constructs, like all,simpleType,ComplexType and so
on, and the shared elements, like group, attributeGroup, ref type are analyzed
and manipulated. The choice elements are the only ones excluded from the
preprocessor activity because analyzed by the TSS component.

Considering, for instance, the all elements one of the possible sequence of
their children elements is randomly chosen, 2 and used for generating instances,

1 Note the usage of the same term “choice” both in XML schema syntax (written as
<choice>) and in the CP method (written as choice), which is purely accidental.

2 A random selection algorithm which provide the elements order has been imple-
mented for this purpose



Fig. 1. XPT main activities

while for group its body is copied in each element which refers them. These
preprocessing operations of course do not contribute to the definition of the test
instances, but simplifies their successive automatic derivation.

As will be detailed in Section 3.2 the next two activities have the purpose
of: extracting the Functional Units (i.e. a list of subschemas) from the original
XML Schema, by mean of the analysis of choice elements, and selecting the test
strategy that must be implemented (i.e. either covering a certain percentage of
subschema functionalities or distributing a fixed number of instances between
all the extracted subschema, or both) .

The implementation of the Category Partition methodology proceeds with
the activity called Categories Partitioning, and the Occurrences Analysis which
partition the categories into choices and determine constraints among them, re-
spectively. In particular the former takes as an input the set of set of subschema
selected by the test strategy and for each of them it extracts from the involved
Schema elements the required information for generating the intermediate struc-
tures that will be used for the final instances description. The latter activity an-
alyzes the occurrences declared for each element in the subschema and, applying
a boundary condition strategy, derives the border values (minOccurrences and
maxOccurrences) to be considered for the final instances generation.

The results of this two activities are combined together during the last but
two and last but one steps of the Category Partition methodology by deriving
a set of intermediate instances structure, each one derived by the combinations
of the elements couple occurrences. Finally, accordingly with the test strategy
selected and by giving values to the element listed into each intermediate in-
stance structure, the Final instance derivation activity produces the final set of
instances, which correspond to the test suite. For this purpose in the current
version of TAXI a set of specific algorithms have been implemented to provide



the required number of random values for each specific element type. In their im-
plementation, predefined values available in the Schema and various constraints
(for instance facets), have been also considered.

3.2 Testing Strategy Selection

As said before the XML Schema represents in a clear way the overall structure
of the input domain. A part from the advantages mentioned in the previous
subsection, this is an enormous benefit for test planning.The testing phase is an
expensive but essential part of development, which must be well-organized and
defined. Generally, it is not easy to decide on which parts the testing effort should
be concentrated and the amount of test cases to dedicate to each of them. Wrong
decisions could increase the overall cost an the completion time of the testing
phase Thanks to the XML Schema representation is possible to implement an
integrated, practical and automatic strategy planning a suitable set of instances,
i.e. test cases.

The part of the XPT methodology which is in charge of this task is the Testing
Strategy Selection. It completes the implementation of the Category Partition
and lets the selection of three specific test strategies to be applied. Referring
to Figure 1 it includes three activities Weights Assignments, Choice Analysis,
Strategy selection which respectively: assign weights to the children of the choice
elements; derive a set of substructure from the original XML Schema by means
the analysis of the textttchoice elements; select which test strategy must be
implemented; We describe them in detail in the following subsection. Of course
if the Schema does not include any choice element the first two activities are
not executed.

Weights Assignments The idea underneath the Weights Assignments activity
is that the children of the same choice may have not the same importance for
instances derivation. There could be options rarely used or others having critical
impact into the final instance derivation. Because according with the definition of
choice element only one child per time can appear into the set of final instances,
from the user point of view the possibility of selecting those more important could
be very attractive. He/She can pilots the automatic instance derivation forcing
it to derive more instances including the most critical choice options.

The XML Schema doesn’t provide the possibility of explicitly declare the
criticality of the diverse options, but often this information is implicitly left to
the sensibility and expertise of the people deriving instances. The basic idea
here is asking the XML Schema expert or user to make explicit this knowledge.
For this we provide them with a systematic strategy in order to use such in-
formation for test planning. In particular XPT explicitly requests to annotate
each children of a choice element with a value, belonging to the [0,1] interval,
representing its relative ”importance” with respect to the other children of the
same choice. This value, called the weight, must be assigned in such a manner
that the sum of the weights associated to all the children of the same choice



element is equal to 1. The more critical a node the greater its weight. Several
criteria for assigning the importance factors could be adopted. Obviously this
aspect in the proposed approach remains highly subjective, but here we are not
going to provide a quick recipe on how numbers should be assigned. We only
suggest expressing in quantitative terms the intuitions and information about
the peculiarity and importance of the different options, considering that such
weights will correspondingly affect the testing stage.

Once the weights have been assigned, XPT uses them to derive, for each
option in the diverse choice elements, the relative importance factor, called
final weight, in terms of how risky is that child and how much effort should be
put into the derivation of instances containing it. In a simplified version the final
weight of every child is then computed as the product of the weights of all nodes
on the complete path from the root to this node. Note that the sum of the final
weights of the leaves is still equal to one.

Choice Analysis As shown in Figure 1 after the Preprocessor activity the
XPT methodology foresees the analysis of choice elements for deriving a set of
subschema. These allow only one of the elements contained in their declaration
to be present within a conforming instance. This means that for any alternative
within a choice construct, a separate sub-XML Schema containing it can be
derived. Stretching somehow the original meaning of a functional unit, each
possible sub-schema is put in correspondence with the notion of a Category
Partition functional unit. In other terms, in XPT functional units are meant as
”domain units” and are thus assimilated to subsets of XML Schema elements
that can originate correct testing instances by managing separate set of data
inputs.

The problem is of course the possible occurrence of several choices within
one schema, which gives rise to several possible combinations. In this case during
the Choice Analysis activity as many subschemas as number of the possible
combination of the children of the choice nodes are produced. In Figure 2, we
report an example in which for aim of simplicity we omit the assigned weights .
In this case element a is a choice element, which includes a simple element b and
another choice element c which has two children x and y. For aim of simplicity
we avoid to represent the weight assignments for each node. In particular a

transform to three sequence elements, one from b, and two from the children
selection of c. By this way the original schema is divided into three subschemas.

During this operation the final weights previously derived are not modified:
They will be used once once derived the set of possible substructures. Using
the final weights of the leaves in each substructure, it is possible to derive a
unique values, called subtree weights, useful for test strategy selection as will
be described in the next subsection. Specifically considering each substructure,
starting form its root the set of the deepest node having a final weights is derived.
These numbers are then summed together for obtaining a partial subtree weight.
The final subtree weight is then derived dividing this value for the overall sum
of the partial subtree weight of each substructure. This operation normalize the



Fig. 2. Diverse subschema derived by the tag <choice>

set of the partial subtree weights so that the sum of the subtree weights over the
entire set of substructure is equal to 1.

Test Strategy Selection Following the steps described so far each a set of
substructure has been defined and a specific subtree weights assigned to each
of them 3. Now it is necessary to determine test strategy to adopt for test case
derivation. For this we consider three different situations: either a certain num-
ber of instance to be derived is fixed, or the percentage of functional coverage
is chosen, or both is selected as a stopping rule. The first is the case in which
a fixed number of instances must be derived from a specific XML Schema. In
this case XPT allows to derive the most suitable distribution of the derivable
final instances cases among the subschemas previously defined. The second sit-
uation considered occurs when a certain percentage of subschema, or in other
words functionalities, must be covered for testing purposes. In this case XPT
opportunely select those subschema that will be more suitable for testin pur-
poses. Finally in the last case a mixed test strategy is proposed where a certain
number of instances over a fixed percentage of functional coverage is considered.

As a practical point of view that mentioned above is applied as:

– Applying XPT with a fixed number of instances If a number NI of
final instance is fixed (that could be in practice the case in which a finite set
of test case must be developed) XPT strategy can be used to develop NI final
instance out of the many that could be conceived starting form the original
XML Schema. Using the subtree weights associated to each substructure,
the number of instance that will be automatically derived from each of them
is calculated as the NI times the subtree weight.

– Applying XPT with a fixed functional coverage If certain percentage
of functional test coverage (e.g. 80%) is established as an exit criterion for

3 Of course if the original XML Schema did not include choice at this point only one
structure is available having 1 as subtree weights



testing. In this case considering the fixed coverage C, the selection of the
substructure to be used can be derived by ordering in a decreasing manner
the subtree weights, multiplying them times 100 and adding them together,
starting from the heaviest ones, until a values greater or equal to C is reached.

– Applying XPT with a fixed functional coverage and number of

instances In this case the above mentioned strategies are combined. XPT
first selects the proper substructures useful for reaching a certain percent-
age of functional coverage (as described above). Then considers the subtree
weights of these selected subschemas and normalizes them so that their sum
is still equal to 1. The new derived subtree weights are finally used for dis-
tributing among the selected substructure the fixed number of instance to
be automatically derived.

3.3 Testing by Automatically generated XML Instances

In this section we briefly describe the architecture of the TAXI tool, which has
the purpose of implementing the XPT strategy. The current version of TAXI
can manage almost all elements of the XML Schema elements providing the
set of required XML instances, even if some improvements are currently under
implementation, such as the possibility of supporting namespaces or the usage
of ontology for values assignment. TAXI will be released as open source code
as soon as the development of the new added functionalities will terminate.
Nevertheless in its current version it has been used as a proof of concepts tool for
verifying the efficiency and the applicability of the XPT methodology, providing
encouraging results. TAXI, which takes an XML schema as an input and parses
it by using the W3C Document Object Model(DOM) [17], is mainly divided into
five components, (Figure 3): User Interface, test strategy selector, Preprocessor,
SIP (Skeleton of Instances Producer), FIP (Final Instance Producer), VP (Values
Provider).

Specifically the User Interface manages the interaction with the user, who can
influence and control the instance generation process accordingly with his/her
specific requirements. By means of this components TAXI acquires the input to
start the generation of the test case set. One of the task that required to the user
is therefore the selection of the XML Schema from which he/she wants to derive
the valid instance and from this point ahead the generation proceeds automat-
ically. After XML schema input user need to set the test weight of the schema,
and select the test strategy. The weight as described in the previous section is
used to represent the amount of test cases from different subtree. Using weight
and test strategy together TAXI can generate the proper amount of test cases
from each subtree. The XML Schema is then passed to the Preprocessor compo-
nent, which implements the preprocessor activities that described in the previous
subsection. The scope of this component is solving tags group, attributeGroup,
ref, type, restriction, extension and all. After preprocessor the input file
is not a well-formed schema, because the elements in the schema are not unique.
In this so called “schema” only sequence, choice and simpleType elements are
remained. Then TAXI pass this “schema” to test strategy selector. The first step



Fig. 3. Architecture of the tool TAXI

of this component is choice solver, which is producing multiple sub-schemas de-
pending on the number of the choice constructs. At this point the component
SIP (Skeleton of Instances Producer) retrieves and analysis each sub-schema,
extracting from each element only the necessary information useful for the con-
struction of the final instances. Meanwhile the weight of the child elements will
passed from the interface, and be attached to the sub-schema. Combining the
weight with the test strategy, the total test cases can be calculated by TAXI auto-
matically. In particular, when the condition minOccurrences < maxOccurrences
holds, collaborating with the component VP (Values Provider), it establishes
the exact number of occurrences of each element. By using the collected data,
the SIP component develops a set of skeleton files. These are mainly modified
tree representations of the various subschema in which special tags and instruc-
tions are introduced to make the final instance derivation easier. Specifically the
number of skeletons to be produced results from the all possible combinations
of the established occurrence values assigned to each element. Reflecting the ac-
tivities described in the previous section the skeletons of instances so produced
are finally analyzed by the FIP (Final Instance Producer) component. It uses
the instructions provided by the SIP component in the skeleton, and collabo-
rates with the VP component for receiving the correct values to be associated
to each element. The final result is a set of instances, which are by construction
conforming to the original schema and classified by sub-schemas. The VP (Val-
ues Provider) component has the task of providing the established occurrence
of each element and the values to be assigned to each elements during the final
instance derivation.



4 Considerations on Real Application of the Approach

As stated above TAXI is still under implementation, however in this section
we want to give a flavour of its functionality showing the generation of correct
content packaging XML instances 4. The purpose is to reduce the probability
of having incorrect interactions among cooperating e-Learning tools: if the test
cases are selected appropriately, a tool that pass all of them should be able
to interoperate with the other tools that have been submitted to the same test
campaign. As can easily imagined, in many cases the generation of all the possible
instances could not be feasible given that the number could not be finite (consider
for instance when an elements have an unbounded maxOccurence attribute).
Two different factors influences the variability of correct instances: instances
can have different values for the same elements (Data variability);instances can
have a different structure, i.e. they could contains different element or different
occurrences for the same elements (Structural variability). In case of structural
variability we can have three main reasons that lead to have structurally different
but still correct instances:

– the order of the elements in the instances (for instance the tag <all> lead
to such kind of variability)

– the presence or not of elements and/or attributes in the instances (for in-
stance the tags <choice> or <use> lead to this situation)

– the number of possible occurrences of an element in the instances (due to
the presence of attributes minOccurrences and maxOccurences)

Starting from this considerations and only focusing on structural differences,
the number of correct instances foreseen by a certain XML Schema (represented
as a tree strucuture), can be derived using the following formula:

ChoiceNode = 2♯{OptionalAttributes}
n∑

i=1

Subtreei (1)

AllNode = 2♯{OptionalAttributes}n!

n∏

i=1

Subtreei (2)

SequenceNode =

n∏

i=1

Subtreei (3)

minMaxOccurNode = 2♯{OptionalAttributes}
maxOccur∑

i=minOccur

(

n∏

j=1

Subtreej)
i (4)

LeafNode = 2♯{OptionalAttributes}(maxOccur − minOccur) (5)

4 It is worth to note that the developed tool can only generate part of a real Content
Packaging instance as the XML files. Nevertheless it can be integrated in a more
complex tool that taking in input a particular XML instance construct a correct CP
file



In the formula the variable n indicate the number of different subtrees of a
given node. The name of the left member of the formula indicate when to apply
it. For instance if the node contains a <choice> tag the formula to apply will
be the first. In order to calculate the number of possible instances a simple visit
of the XML Schema tree is sufficient. However in the general case this number
cannot be calculated when there are unbounded occurrences of an element or
loops in the structure of a subtree. Such as complex type that in one of the
corresponding subtrees contains an element of the same type. Just to give a
flavor we calculated the number of possible structurally different instances that
can be generated starting from the LIP XML Schema [18]. As the description of
the formula, under the restrictive assumptions that no maxOccurrences attribute
can assume values greater than three since in the case study if the maxOccurs
is “unbounded” or greater than three then it will be modified to default value
“3”, from the schema [18] there are 78912 valid instances that can be generated
from the main element “product”. In the case study in order to reduce the equal
instances, we use boundary condition strategy to select the occurrences, so that
if the minOccurs “¡” maxOccurs, only the minimum value and maximum value
will be taken and be used to do the combination. By using this simplified method
we obtained 35200 valid instances from the given schema.

Fig. 4. Partial schema tree

This result can probably provide the most intuitive reason to suggest the use
of a systematic approach to the generation of XML instances for testing purpose.
Given that only a small part of the possible instances can be used for testing
purpose, test strategy selector 3.2 is absolutely necessary. Using test strategy,
we need set the weights for choice elements after input the schema. From fig 4
which is a part of the schema tree, it is clear to see that there are two choice



elements in this schema. “choice1” is the child element of “contentype”, “choice2”
is element “referential”, which is a child element of “choice1”. We set the weight
for “choice1” first. There are three child elements in this complexType, we set
the weight of “referential” as 0.5, the weight of “temporal” and “privacy” are 0.3
and 0.2. Then we set the weight for another choice element “referential” which
has three child elements as well. We set the weight of “sourceid” as 0.3, “indexid”
as 0.2, and the other one as 0.5. After choice solver 5 subtrees are derived. TAXI
can calculate the weights for each subtree automatically according the weight of
each child element of choice node. The weights for sub-schemas are given below.

– The weight of subtree that includes “soureid” is 0.15
– The weight of subtree that includes “indexid” is 0.10
– The weight of subtree that includes “soureid” and “indexid” is 0.25
– The weight of subtree that includes “temporal” is 0.3
– The weight of subtree that includes “privacy” is 0.2

Concerning the effectiveness of the approach in discovering bugs, unfortu-
nately we did not have the possibility yet to provide the generated instances
to the software accepting it as input. Nevertheless the proposed approach is in
some way a useful way of applying the Category Partition methodology so we
expect that the approach will show similar properties with respect to Categoly
Partition.

4.1 Application of the XML instance derivation strategy to the

IMS Learning Information Package

Learner Information is a collection of information about a Learner (individual or
group learners) or a Producer of learning content (creators, providers or vendors).
As described in the IMS web site5 the IMS Learner Information Package (IMS
LIP) specification [18] addresses:

“. . . the interoperability of internet-based Learner Information systems
with other systems that support an Internet based learning environ-
ment. The intent of the specification is to define a set of packages that
can be used to import data into and extract data from an IMS compliant
Learner Information server, i.e. servers that in a eLearning environment
collects data concerning pupils and/or eLearning content providers. A
Learner Information server may exchange data with Learner Delivery
systems or with other Learner Information servers. It is the responsibil-
ity of the Learner Information server to allow the owner of the learner
information to define what part of the learner information can be shared
with other systems. The core structures of the IMS LIP are based upon:
accessibilities; activities; affiliations; competencies; goals; identifications;
interests; qualifications, certifications and licences; relationship; security
keys; and transcripts”.

5 http://www.imsglobal.org



It is not difficult to understand the importance of conformance testing when such
kind of open specifications are considered. The prefigured scenario foresee that
different stakeholder will start to indipendently develop complex software system
that will be able to take as input or generate in output conformant document.
The tacit assumption is that having considered an agreed specification they
would be able to interoperate. Clearly this is far from being completely true.
The problem is that even a simple XML based specification give raise to an
infinite possible different XML instances and it is not difficult to imagine that
a bug can be introduced in the implementation of a system, affectin then its
ability to interoperate. Moreover a XML Schema specification suffers per se of
problems due to its inherent complexity. In particular it is possible to specify the
same thing in many different way but it is not difficult to find diffenrent parser
that will disagree on the conformance of an XML instance when the starting
specification import many nested name spaces or complex tree structure.

Just to give a flavour we calculated the number of possible structurally dif-
ferent instances that can be generated starting from the IMS LIP XML Schema
[18]. We obtained the impressive number of 5,352,761,232,000 possible correct
instances under the restrictive assumptions that no maxOccurrences attribute
can assume values greater than three and unfolding all the loops until the first
level. This simple result can probably provide the most intuitive reason to sug-
gest the use of a systematic approach to the generation of XML instances for
testing purpose. Given that only a small part of the possible instances can be
used for testing purpose it is absolutely necessary to apply a systematic strat-
egy for the derivation of the test cases. The strategy should permit to focus on
conditions that the tester could judge particularly critical in a specific setting.
For instance for a particular application the tester could judge the variability on
the number of occurrences more important than the order of the elements.

4.2 XPT vs Random Generation

The possibility of automatically deriving instances from a XML Schema an
emerging problem in many fieds of application and some tool have been im-
plemented to this purpose as mentioned in 2. However all of them rely on the
random instance gneration, and do not implement any systemstic and specific
tesing strategies. In this section we want to compare the performance of such
a kind of toolwith our tool TAXI. Specifically we select XMLSpy [11], which
is an industrial standard XML development environment for modeling, editing,
debugging, and transforming all XML technologies. For generating the instances
XMLSpy asks the user to perform some preliminary configuration settings, in-
cluding: filling elements and attributes with data, whether generating the non-
mandatory elements and attributes, generating a priori selection of mandatory
choice element or not, and how many elements should be generated when max-
Occurs is more than one. Thus XMLSpy is different from TAXI both in the
strategy implemented and in thetypology of instances obtained. We list in the
following the mains aspects that characterize this two applications.



1. The amount of instances: XMLSpy generates several configurations, but and
from each of them only one instance can be derived. TAXI has the capability
of deriving large quantity of instances covering sistematically of the aspect
of a specific XMLschema.

2. The value of elements: XMLSpy always gives a fixed value for each data
type. For instance the <date> type is fixed to “1967-08-13”, and <string>

type to “string”. TAXI has the possibility of declaring a specific set of values
for each data type or randomly generate as many values as required.

3. The solution of <all> elements: XMLSpy does not make difference in deriv-
ing instances wherever there is a <all> or <sequence> element, i.e. in both
the cases the derived instance will have the same structure. TAXI generates
all the possible combination of the <all>’s child element, and then randoly
select one from them.

4. The solution of <choice> elements: In presence of a specific request from
the user the XMLSpy can get instances nly with the first child element of
<choice> element, otherwise XMLSpy leaves the content of choice element
as empty. TAXI derives diverse instances for each of the <choice>’s child
elements, covering in this manner all the possibilities.

5. The solution of occurrences: in XMLSpy the all values of occurrence must be
fixed between 1 to 99. TAXI leave the user both the possibility of declearing
the values of occurrences or using the some boundary values. In case of
unbounded occurrences TAXI, if there is not a user value, the tool adopts a
prefixed bound. The occurrences values are then combined for get instances
with variation in structures

Adopting the Content Packaging Schema with both the tool we obtain a max-
imum number of 402,472,960 instances from TAXI, and only 102 instances from
XMLSpy. The instances from TAXI cover with nearly possible combinations of
complex elements and occurrences, and each instance has the different values
inside, while the instances from XMLSpy vary only in the amount of repeated
elements. Concluding despite the good performance of XMLSpy, for the instance
generation this tool applies a quite simple algorithm, which gives only few flexi-
bility to the user and does not attempt to cover all the input domain. From the
tester’s point of view the derived instance cannot cover all the declared schema
elements and consequently the functionalities of the application to be tested.
Thus it could be claimed that TAXI is able to provide a more comprehensive
testing strategy, which covers all weaknesses of XMLSpy.

5 Conclusions

We have introduced the XPT approach for the systematic derivation of XML
Instances from a XML Schema. XPT applies to the XML notation a well-known
method for software black-box testing. Given the pervasiveness of XML in web-
based and distributed applications, we are convinced that the proposed method
can be very useful to check the quality of applications via a rigorous test cam-
paign. In fact, we are interested in generating both valid and invalid instances



(the latter for robustness test). On the tester’s side, XPT targets the long-
standing dream of automating the generation of test cases for black-box testing,
which is routinely done by expert testers that analyse specifications of the input
domain written in natural or semiformal language. If the input is formalized
into XML Schema, then XPT can provide a much more systematic and cheaper
strategy. The work we have described is still undergoing implementation. We
will continue investigate the applicability to real-world case studies, in particular
within the e-Learning domain. The most challenging issue that comes out from
the investigation in this paper is the infeasibly high number of test instances that
would be generated, therefore the identification and implementation of sensible
heuristic to reduce the generated instances is compelling.

References

1. W3CXML: W3cxml. http://www.w3.org/XML/ (1996)
2. W3CXMLSchema: W3c xmlschema. http://www.w3.org/XML/Schema (1998)
3. XMLTestSuite: Extensible markup language (xml) conformance test suites.

http://www.w3.org/XML/Test/ (2005)
4. NIST: Software diagnostics&conformance testing division: Web technologies.

http://xw2k.sdct.itl.nist.gov/brady/xml/index.asp (2003)
5. RTTS: Rtts: Proven xml testing strategy.

http://www.rttsweb.com/services/index.cfm (nd)
6. SQC: Xml schema quality checker. http://www.alphaworks.ibm.com/tech/xmlsqc

(2001)
7. W3CXMLValidator: W3c validator for xml schema.

http://www.w3.org/2001/03/webdata/xsv (2001)
8. XMLJudge: Xml judge. http://www.topologi.com/products/utilities/xmljudge.

html (nd)
9. EasyCheXML: Easychexml. http://www.stonebroom.com/xmlcheck.htm (nd)

10. Li, J.B., Miller, J. In: Testing the Semantics of W3C XML Schema. COMPSAC
2005 (2005) 443 – 448

11. XMLSpy: Xml spy. http://www.altova.com/products ide.html (2005)
12. Toxgene: Toxgene. http://www.cs.toronto.edu/tox/toxgene/ (2005)
13. SunXMLInstanceGenerator: Sun xml instance generator.

http://wwws.sun.com/software/xml/developers
/instancegenerator/index.html (2003)

14. Basanieri, F., Bertolino, A., Marchetti, E.: The cow suite approach to planning
and deriving test suites in uml projects. In 2460, L., ed.: In Proceedings Fifth
International Conference on the Unified Modeling Language UML 2002, Dresden,
Germany (2002) 383–397

15. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Partition testing from xml schema.
submitted to IEEE Software (2006)

16. Ostrand, T., Balcer, M.: The category-partition method for specifying and gener-
ating functional tests. Communications of ACM 31(6) (1988)

17. DocumentObjectModel: Document object model. http://www.w3.org/DOM/
(2005)

18. AAVV: IMS learning information package v.1.0.1. On-line at:
http://www.imsglobal.org/content/packaging/cpv1p2pd/imscp oviewv1p2pd.html
(2005)


