
A Framework for Component Deployment Testing

Antonia Bertolino, Andrea Polini
Istituto di Scienza e Tecnologie dell’Informazione - “Alessandro Faedo”

Area della Ricerca del CNR di Pisa, Italy�
bertolino, a.polini � @iei.pi.cnr.it

Abstract

Component-based development is the emerging
paradigm in software production, though several chal-
lenges still slow down its full taking up. In particular, the
“component trust problem” refers to how adequate guar-
antees and documentation about a component’s behaviour
can be transferred from the component developer to its
potential users. The capability to test a component when
deployed within the target application environment can
help establish the compliance of a candidate component
to the customer’s expectations and certainly contributes
to “increase trust”. To this purpose, we propose the CDT
framework for Component Deployment Testing. CDT
provides the customer with both a technique to early
specify a deployment test suite and an environment for
running and reusing the specified tests on any component
implementation. The framework can also be used to deliver
the component developer’s test suite and to later re-execute
it. The central feature of CDT is the complete decoupling
between the specification of the tests and the component
implementation.

1. Introduction

Component Based (CB) development is the emerging
paradigm in Software Engineering. It is receiving lot of
interest from both academy and industry, as testified by the
spreading of devoted events (e.g., [27], [28]) and journal ar-
ticles (e.g., [29], [30]), and by the launch on the market of
component-oriented technological products and platforms
(e.g., CCM [31], EJB [32], COM+/.Net [33]).

The captivating feature of CB development is the
promise of drastically reducing the high costs of software
production. A CB system is built by the assembly of al-
ready existing components, thus making true the long last-
ing myth of developing once for repeated deployment. De-
spite this very idea is older than thirty years [14], its high
potential just starts being exploited.

In our opinion the major obstacles to the taking up of the
CB paradigm are not technological, but relate to the process
[2]. In traditional development, the process is under the
control of one organization (at least in principle) and ex-
tends over a definite life cycle period. On the contrary, the
process for CB software production is non-deterministically
distributed across several organizations that do not neces-
sarily coordinate or communicate with each other and the
life cycle is correspondingly scattered over separate time
periods. In such a distributed process we identify (among
several others not of interest here) the figures of the com-
ponent developer (in a wide sense the organization that de-
velops and releases a component), and the component cus-
tomer (the organization that acquires the component to as-
semble it within a larger system).

A new challenge that arises from the inherently dis-
tributed nature of CB production is the so-called “compo-
nent trust problem”, which refers to the difficulty to under-
stand what a component really does. The trust problem is
strongly related to the customer capability to validate the
adequacy of a candidate component to his/her specific pur-
poses. Obviously this question is especially hard for com-
ponents built by third parties and for COTS (Component-
Off-The-Shelf), which are generally delivered without the
source code. However, also in the case of components
reused internally to an organization, the difficulties of com-
munication between teams and the lack of a clear documen-
tation can produce to some extent similar effects.

Several approaches have been proposed to address the
trust problem. Some [22][23] advocate a component certi-
fication strategy, with the establishment of independent cer-
tification laboratories that perform extensive testing of the
components, and then publish the results. The approach
relies on the conjecture that the customer puts more trust
on the results provided by an independent agency than on
those provided by the developer himself/herself. Moreover,
in order to increase the customer confidence, the developer
should adopt certified production standards.

Others authors have argued the paucity of valid accom-
panying information, often reduced to just the component

interfaces, which anyhow provide syntactic information, in-
sufficient for many analysis purposes. Therefore, they [18]
[20] suggest approaches to augment the components with
additional information (or metadata) aimed at increasing the
customer understanding and analysis capability of the com-
ponent behaviour. A related approach is to automatically
extract models of the interfaces of a class, e.g., as Finite
State Machines [26]; this information also goes in the di-
rection of increasing the customer understanding of a com-
ponent usage and scope. In the same approach, the usage of
a component is assessed to identify, for instance, wrong call
sequences of the component methods.

To deal with the trust problem, a focussed, coordinated
initiative [16], has been launched, acknowledging that the
solution cannot be univocal, instead a mix of formal and in-
formal approaches should be applied, including formal val-
idation, Design-by-Contract, testing techniques and others.

In this paper we focus on CB testing. As for the other
development phases, the testing stage as well needs a re-
thinking to address the peculiar characteristics of CB devel-
opment [2]. An important requirement, in our opinion, is
that the customer, on the basis of what he/she expects from
a searched component, and with reference to the system
specification/architecture, develops a test suite and can then
routinely (re)execute these tests -without too much effort-
to evaluate the potential candidate components.

In [19], Rosenblum outlines a new conceptual basis for
CB software testing, introducing the complementary no-
tions of C-adequate-for-P and of C-adequate-on-M for ad-
equate unit testing of a component and adequate integration
testing of a CB system, respectively (where C is a criterion,
P is a program and M is a component). A direct application
of this model is in the formalization of the problem of ad-
equate testing (with reference to a particular criterion) of a
component released by a developer and deployed by one or
more customers.

As also recognized by Weyuker [25], the tests estab-
lished and run by the developer lose much of their power
in the realm of the assembled system. In fact, the devel-
oper cannot account for all the possible deployment envi-
ronments. On the other hand, it is illusory to hope that reuse
diminishes the need for testing [25][5].

As a consequence of these considerations, a good prac-
tice could be to provide the component customer with the
test cases that the component already underwent. This ad-
ditional information can increase per se the customer’s trust
on the component. Moreover, the documented test cases
can also be used by the customer in several manners, for in-
stance, to better understand how to use a component, or, by
means of adequate mechanisms, to re-execute them in the
target environment. This practice can be particularly effec-
tive, since the retesting stage performed by the customers
can take benefit by the usage of the actual implementations

of the required interfaces, in place of the stubs possibly used
by the developer.

In view of all the needs depicted above, we have de-
veloped the Component Deployment Testing (CDT) frame-
work. CDT supports the functional testing of a to-be-
assembled component with respect to the customer’s speci-
fications, which we refer to as deployment testing. CDT is
both a reference framework for test development and cod-
ification and an environment for executing the tests over a
selected candidate component. In addition, CDT can also
provide a simple means to enclose with a component the
developer’s test suite, which can then be easily re-executed
by the customer. The key idea at the basis of the framework
is the complete decoupling between what concerns deriving
and documenting the test specifications and what concerns
the execution of the tests over the implementation of the
component.

Technically, to achieve such a separation, the framework
requires the capability of retrieving at run-time information
on the component, mainly relative to the methods signature.
In other words, the component to be tested must enable re-
flection mechanisms [12], allowing for the component run-
time introspection. As known, this is provided by the re-
flection API of Java [11].

Before going ahead with the description, it is necessary
to clarify what we intend by a “component”. In fact, the
term has not a univocal interpretation in the literature. A
clarifying and often reported definition is due to Szyper-
ski [21]: A software component is a unit of composition
with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third parties.
For the sake of generality, we adopt a more simplified view,
identifying a component as in [18] with a system or sub-
system developed by one organization, deployed by one or
more different organizations, and possibly provided without
the source code. According to this definition, we will con-
sider also a class or a set of class as a particular example of
a component.

In the next section we expand our speculations on the
needs for a revised process for CB development. In Section
3 we present in detail the CDT framework. In Section 4
we discuss the usage of the framework, its benefits and how
it could be improved. We further discuss related work in
Section 5, and briefly draw the conclusions in Section 6.

2. New process for CB software testing

In this section we briefly review how the software test-
ing process is modified in the context of CB production; we
discuss in particular what we mean by “Component Deploy-
ment Testing”.

Traditionally, the development of complex systems in-
volves three main testing phases. The basic phase is unit
testing and concerns a relatively small executable program;
for instance, in Object-Oriented systems a unit can consist
of a class or a group of logically related classes. A sec-
ond phase is generally referred to as integration testing. In
this phase a system or subsystem obtained from the inte-
gration of several (already tested) units is tested with the
purpose to evaluate their mutual interfaces and cooperation.
Finally, the phase of system testing focuses on the various
“ilities”, or quality attributes, and on the functionalities that
characterise the entire system [5]. These three phases are
performed along a defined process, keeping the pace with
the proceeding of system construction.

In CB development, the three traditional testing phases
have to be reconsidered and extended (see Fig.1). The
smallest test unit becomes here the component. Compo-
nent testing is performed by the component developer and
is aimed at establishing the proper functioning of the com-
ponent and at early detecting possible failures. The tests
established by the developer can rely not only on a com-
plete documentation and knowledge of the component, but
also on the availability of the source code, and thus in gen-
eral pursue some kind of coverage. However, such testing
cannot address the functional correspondence of the compo-
nent behaviour to the specifications of the system in which
it will be later assembled.

The phase of integration testing corresponds to the stage
we denote by deployment testing, however conceptually
the two tasks are very different. Even though devising a
new development process for building a system by the as-
sembly of software components is outside the scope of this
paper, we can certainly assume as a minimum within such
a process the following three phases:

1. a specification phase, in which the features of the re-
quired components are identified;

2. a searching phase, in which some candidate compo-
nents are identified, within or outside the organization;

3. a validation phase, in which the identified components
are validated, in particular by deployment testing.

With regard to point 3, we need to figure out a testing
methodology that can allow for the effective testing of a
component by someone who has not developed it, and
within an application context that was completely unknown
when the component was developed.

Performed by the component customer, the purpose of
deployment testing is thus the validation of the implemen-
tation of the components that will constitute the final sys-
tem. The real components identified at this stage are placed
in the specific application environment and integrated with
the already present components to form the logic structure
of the system. It is worth noting that potential mismatches

discovered by the customer during deployment testing are
not in general “bugs” in the implementation. Rather they
evidence the non conformance between the expected com-
ponent and the tested one (and hence the need to look for
other components).

Also for deployment testing (as usual for integration test-
ing) we can consider to adopt an incremental strategy, al-
lowing for the progressive integration of components into
larger subsystems. In the presentation of CDT we will al-
ways speak in terms of a single component, however the
framework could be identically applied to the deployment
testing of a subsystem (we return on this in Section 4.1).

A particular case of deployment testing is when a real
component comes equipped with the developer’s test suite,
and the customer re-executes those tests in his/her environ-
ment. These tests guarantee that the “intentions” of the de-
veloper are respected in the final environment and their ex-
ecution generally lead to a more comprehensive evaluation.
They can possibly include test cases not relevant for the cus-
tomer’s specific purposes, but that can be however useful to
evaluate the behaviour of the component under customer’s
unexpected entries.

Finally, system test does not show major conceptual dif-
ferences with respect to the traditional process (at this level
of the analysis) and is performed by the customer when all
the various components are integrated and the entire system
is ready to run.

Integration Test

System Test

Unit Test Component Test

Deployment Test

System Test

Component
Customer

Component
Developer

Figure 1. Adapting the test process

3. The CDT framework

In this section we introduce the CDT framework, de-
scribing its elements and how it can be used for deployment
testing. To help comprehension we provide examples from
the simple scenario of a component for managing bank ac-
counts.

In our investigation we suppose that the modelling of
a CB system is done by UML and specified following the
guidelines expressed in [7] for CB specification (or a sim-
ilar iterative process) according to which the relevant com-
ponents are described in term of their provided and required
interfaces. In this process we can identify two different lev-
els of components: the virtual components that are the di-

, and reflection APIrunTest()

Instance

Driver

Example of a

Real provided services

Instance of a
"Spy" class

Virtual method invocations
made by the test cases

"Tester" Component

Required

(stubs or
other
components)

adapting rules

getTable()

Class
Casting

It contains the

services

Instance of a
XMLHandler

XMLAdapter
real instance of the
Virtual component

To retrieve information on the mapping between virtual and real components

The Driver retrieves and starts the test cases

executeMethod(...)

Redirection of the invocation
towards the Driver Candidate

Component C1

Candidate
Component C2

Starts the test process

"Repository" of test cases
(uses JUnit)

execuTests()

Figure 2. Schema of the framework showing the most important interactions

rect result of the analysis phase, and the real components,
that will realize the virtual components once assmbled the
final system.

3.1. Framework goals

The CDT framework has been designed to suit the needs
for component deployment testing, as discussed in Section
2. CDT serves various goals:

� it allows the component customer to early specify and
document the test cases for a searched component
(independently from any possible component imple-
mentation);� it supplies an environment for the execution of the
specified test cases, once a candidate component is
identified;� it facilitates the reuse of the specified test cases for
choosing among several candidate components or for
substituting an existing one, making possible also the
selective reuse of test cases for regression testing pur-
poses;� as a by-product, it can be used by the component devel-
opers to deliver, together with a component, the test
suite used to test it, thus making easy the re-execution
of those tests in the customer’s application environ-
ment;� it is a standardised, systematic means to provide a
component with additional behavioural documenta-
tion.

A complete separation of the test derivation and documenta-
tion from the implementation of the components was instru-
mental to achieve these goals. The decoupling is expressly

imposed by the same framework architecture, as described
below.

3.2. Structure and elements of the framework

The architecture shown in Figure 2 provides an overview
of the elements in the CDT framework. For explanation
purposes, we can split its elements into three groups:

A. The classes “Spy” and “TestCase i”;

B. the XML file “XMLAdapter”, and the class
“CastingClass”;

C. the package “it.cnr.testing” and the class
“Driver”.

The first group allows for the early codification of the test
cases to be later executed on a candidate component. The
tests are referred to a virtual component model specified
within the “Spy” class. The elements in the second group
are used to put in relation the actual component with the
customer specifications. The package in the last group
drives the testing by opportunely applying the various test
cases to the actual component.

Although the three groups are strongly related, different
teams are responsible for building and managing them, as
we explain in Section 4. Besides, they are built at different
stages of development.

3.2.1. The classes “Spy” and “TestCase i”. As al-
ready highlighted, the main feature of CDT is the decou-
pling between test cases specification and the actual imple-
mentation of a component candidate for assembly. A key
role is played here by the classes “Spy”. In short, they re-
alize an abstraction of the components, or, in other words,

they specify the functionalities expected for the components
syntactically expressed by the methods of these classes.

For instance, if we consider a component for the manage-
ment of bank accounts, without referring to any specific im-
plementation, we can expect for it as a minimum the func-
tionalities expressed by the three methods of the Spy class
in Figure 3: deposit, withdraw, and balance. In
reality, when we look in a repository or on the market for a
bank account manager, we will find components much more
complex than this, and including multiple classes. Indeed,
the correspondence between the “Spy” abstract models and
the actual components might result quite complicated; in
general, the basic functionalities specified in the “Spy” class
might be provided across several objects. We will discuss
how we handle this by means of the “XMLAdapter” in the
next section.

The implementation of the Spy methods does not have
to be very elaborate (in Figure 3 only the implementation
of the method deposit is shown). The methods act as a
form of delegation towards the class Driver (presented in
Section 3.2.3.). In fact, each “Spy” class only constitutes a
syntactic reference; at run-time, the Driver redirects the
virtual method invocations towards the corresponding ones
in the real component. The name “Spy” of this kind of class
was inspired by this behaviour, in that the role of “Spy” is
to provide the Driver with the needed information about
what a test case does.

After the “Spy” class has been coded, we can develop the
deployment test cases taking as a reference the virtual com-
ponent. Each test case is codified in a class TestCase i
that contains the implementation of the method runTest.
The invocations included in the method runTest refer to
the methods defined in the corresponding “Spy” class pre-
cisely as if it were the component under test. In Figure 4 a
simple test case is shown, that invokes the methods of the
class Spy shown in Figure 3.

We observe that the only external dependence of Spy
and of TestCase1 is the package it.cnr.testing.
The latter is analysed in detail in Section 3.2.3., for the mo-
ment it is important to notice that this package is a fixed
element of the approach, independent from any specific ap-
plication context or system. It provides a support tool for
test execution, which is developed once and for all. There-
fore the classes “Spy” and TestCase i can be built in-
dependently from how any candidate real component is im-
plemented.

Finally, as shown in Fig. 2, we also use the well-known
framework JUnit [9]. This is a framework developed in-
side the eXtreme Programming (XP) comunity. Scope of
the framework is to give a means to the developer for the
easy codification and execution of the test cases concur-
rently with the development, following the motto “code a
little, test a little, code a little, test a little. . . ” The frame-

package it.cnr.isti.test.bank;
import it.cnr.isti.testing.*;
public class Spy extends InformationSwap {
/* performs a deposit and returns the

resulting balance */
public int deposit(String accNum, int amount) {
Object[] parameters = new Object[]

{accNum, new Integer(amount) };
Object ris = driver.executeMethod(

"deposit", parameters);
return ((Integer)ris).intValue();

}
/* performs a withdraw and returns the

resulting balance */
public int withdraw(String accNum, int amount)
{...}
/* returns the account balance */
public int balance(String accountNumber)
{...}

}

Figure 3. A “Spy” class for a bank account manager

package it.cnr.isti.test.bank;
import it.cnr.isti.testing.*;

/* Test codified following the JUnit schema */
import junit.framework.*;
public class BankTest extends TestCase {
public BankTest() {}
public void testCase_A() {
int init=((Spy)spy).balance("123");
int afterDeposit=((Spy)spy).deposit("123",500);

/* Control element as specified by JUnit */
assertEquals((init+500),afterDeposit);
int afterWithdraw=((Spy)spy).withdraw("123",

init+500);
assertEquals(0,afterWithdraw);

}
}

Figure 4. A possible test-case

work permits also the simple storing of test cases that can be
successively reused. Since we also need to store test cases,
we have integrated a part of JUnit in CDT; hence we fol-
low the same rules of JUnit to codify the test cases (see the
example in Fig. 4). In this manner we have provided the de-
veloped framework with the capability of splitting the test
cases in “target equivalence classes”. This feature is partic-
ularly important when we need to modify a virtual compo-
nent substituting some internal pieces, to avoide to have to
re-execute too many tests.

3.2.2. “XMLAdapter” and the classes
“CastingClass”. As said, a class “Spy” does
not represent a real component and its purpose is only
to codify the desired functionality for a component, so
to permit the early establishment of test cases. In this
sense, we can say that the role of the “Spy” class is not

<MataHari>
<testPackage name="it.cnr.isti.test.bank"/>
<testClass name="BankTest"/>
<realPackage name="real"/>
<createObject class="REAL_PACKAGE.RealComp" objectName="bank"/>
<VirtualMethod name="deposit" parameters="accNum amount">

<execMethod class="TEST_PACKAGE.CastingClass" name="par2Couple" putResultIn="c">
<parameter value="accNum"/>
<parameter value="amount"/>

</execMethod>
<execMethod object="bank" name="put">

<parameter value="c"/>
</execMethod>
<execMethod object="bank" name="howMuch" putResultIn="aCouple">

<parameter value="accNum"/>
</execMethod>
<execMethod class="TEST_PACKAGE.CastingClass" name="Couple2Int" putResultIn="output">
<parameter value="aCouple"/>

</execMethod>
</VirtualMethod>
<VirtualMethod name="withdraw" parameters="accNum amount">

. . .
<VirtualMethod name="balance" parameters="accNum">

. . .
</VirtualMethod>

</MataHari>

Figure 5. An excerpt of the “XMLAdapter” file

different from that of an interface. At a certain stage of
development, the component modelled by the “Spy” class
must be instantiated: at this point it will be necessary to
evaluate potential candidate components, using the devel-
oped test cases. Although the searching of the candidate
components is driven by the same system specification
used to build the classes “Spy”, we think it reasonable to
only focus on the behavioural aspects of the specification.
In other words, we search for components that provide the
desired functionality, but in this search we neglect possible
syntactic differences.

As a result, several differences at various levels can exist
between the virtual component (codified in a “Spy“ class)
and a real instance of it. The purpose of the “XMLAdapter”
and of the CastingClass is to overcome these differ-
ences and to permit anyway the execution of the specified
test cases. Clearly this can be done only after a real im-
plementation for the virtual component has been identified.
To establish the correspondence between the virtual com-
ponent and the real instance, a customer can rely on his/her
intuition of what the methods of the candidate components
likely do. This intuition can be based on the signatures of
the methods, and on any additional documentation that ac-
companies the components. Obviously this process (which
is always the most delicate part of a CB development) is
subject to misinterpretation (especially if the components
are not adequately documented). However, deployment test
execution should highlight possible misunderstandings. For
instance, in our case study we have analysed the following
levels of possible differences:

1. differences in the methods names and signatures:

a. the methods have different names;
b. the methods have the same number and types of

parameters, but they are declared in different or-
der;

c. the parameters have different types, but we can
make them compatible, through suitable transfor-
mations. It can be also necessary to set some de-
fault parameters;

2. one method in the “Spy” class corresponds to the exe-
cution of more than one method in the real implemen-
tation of the component.

Obviously the instances listed above are not mutually ex-
clusive, and for instance it is possible to have different name
methods with different signatures. It may be worth notice
that the symmetric case to 2 (more methods in the “Spy”
class correspond to one method in the real implementation)
is not generally relevant. In fact, the “Spy” class is kept
simple and typically contains a minimal number of neces-
sary methods. If, say, two methods in the “Spy” class cor-
respond to one method in the real implementation, then ei-
ther the real implementation is not compatible, or we do not
need to invoke the two methods alone, but always together
and in the same sequence. If so, then it would be more intu-
itive to indicate only one method in the specification of the
class “Spy”.

Item 2 also includes the case in the list enclose also the
case in which the real implementation of a virtual compo-
nent is achieved combining together more candidate real

package real;
public class RealComp {
private int sum;
public RealComp() { this.sum = 0; }
public RealComp(int sum) { this.sum = sum; }
public void put(Couple c) {
sum = sum + c.getSum();

}
public int get(Couple c) {
int imp = c.getSum();
if ((sum-imp) > 0) {
sum = sum - imp;

} else {
System.out.println("Not enough deposit");

}
return sum;

}
public Couple howMuch(String accNumber) {
return new Couple(accNumber,sum);

}
}

package real;
public class Couple {
int sum; String name;
public Couple(String name,int sum) {
this.sum = sum;
this.name = name;

}
public int getSum() { return sum; }
public String getName() { return name; }

}

Figure 6. A real component

package it.cnr.isti.test.bank;
import real.*;
public class CastingClass {
public static int Couple2Int(Couple c) {

return c.getSum();
}
public static Couple par2Couple(String name,

Integer amount) {
return (new Couple(name,amount.intValue()));

}
}

Figure 7. The CastingClass

components. In this case the methods executed in a test
case could belong to different real components. However
we think that a good design made in a well established CB
environment generally should lead to a one-to-one corre-
spondence between virtual and real components.

In Figure 5 we have reported an excerpt of the “XM-
LAdapter” for the candidate component in Figure 6 and the
“Spy” class in Figure 3. The file is structured in several sec-
tions delimited by specific tags. The first half of the files
reports information regarding the elements to be tested and
that can mostly be derived automatically. In detail, first we
put the specification of the packages containing the test case
classes. It can be in fact useful to group the various test

cases in more packages, according to suitable criteria, so
to permit a separate reuse of groups of tests. Afterwards
we specified the names of the packages containing the real
components (those to be tested), and then we have specified
the specific classes to instantiate within those packages.

The second half of the file is more complex and reports
the information on the correspondences among the various
methods in the considered “Spy” class and those in the real
candidate components. As an example, we have reported
the specified correspondence for the method deposit (see
Fig. 3) with regard to the real component in Figure 6. If we
observe the methods in Figure 6, we note how there is no
method in this class directly corresponding to the method
deposit as specified in the relative class “Spy”. How-
ever (e.g., by further analysing the class interface in the real
component or from the accompanying documentation), we
suspect that a compatible behaviour can be obtained by the
consecutive execution of the methods put and howmuch.
This case illustrates one of the trickiest case of correspon-
dence, where nothing seems to fit at first sight. Moreover
the returned type of the method howMuch is not the same
of that expected in deposit, and then, for compatibility
purposes, we need to perform a type conversion.

In general, type conversions can be also required for
the input parameters. It is possible in principle to per-
form these conversions in declarative way via XML. How-
ever in some cases the conversion can be very sophisti-
cated, disabling this possibility in practice. For this rea-
son we have introduced in CDT the other element of this
group, called the CastingClass, in which the “casting”
between objects is specified via class methods. In Figure 7
the CastingClass for the example discussed is shown.
It contains two methods that permit the conversion of the
basic parameters in the Spy class to the type Couple in
the candidate component and vice versa.

As a final consideration, the drawing up of the “XM-
LAdapter” is certainly not an easy task. Nevertheless this
task can be partially automated and alleviated with the im-
plementation of suitable tools and graphic interfaces.

3.2.3. The package “it.cnr.testing” and the class
“Driver”. The classes contained in this package form
the core of the approach. Differently from the elements de-
scribed so far, that have to be implemented and customized
for each new CB system, the elements contained in this
package are completely independent from the application
context.

There are two main elements in this package, the class
Driver and the XML parser (named XMLHandler). The
only duty of the latter is to retrieve the data from the XML
file and organize them into suitable data structures. The
information so organized can be used by the Driver to re-
direct, at run-time, the invocations made by the test cases to

the associated class “Spy”, towards the real methods of the
selected candidate components. More precisely, in the im-
plementation of the class Driver we have used the intro-
spection mechanisms provided by the component model (in
our case the reflection API of Java), to identify and invoke
at run-time the methods of the candidate implementation as
specified in the “XMLAdapter”.

The class Driver is quite large and for space reasons
we cannot report it entirely here, but present its most im-
portant features. There are only two public methods in the
class Driver:

1. execuTests(): the invocation of this method
starts the deployment test. Hence as first thing the
Driver retrieves the information reported in the
“XMLAdapter” via an instance of the XML parser (the
class XMLHandler in Fig. 2). Obtained this informa-
tion the Driver sets up an instance of the class “Spy”
that specifies the Virtual component under test, and
then instantiates the elements of the real implementa-
tion. At this point we need to identify the test cases to
execute. Hence, the Driver, using the provided re-
flection mechanisms, retrieves, from the packages con-
taining the test cases, the tests to execute, as specified
in the “XMLAdapter”, and provides them with the ref-
erence to the pertinent “Spy” class. This last step is
mainly performed reusing the mechanisms defined in
the JUnit framework. Now the Driver can start the
testing invoking on each suite retrieved the appropriate
method that as a result provides a “report” concerning
the test execution.

2. executeMethod (String name Object[]
par): this method is invoked by the instance of
the “Spy” class “to inform” the associated Driver
object of the method executed by the test case. On
the basis of this information and of the data retrieved
from the “XMLAdapter”, executeMethod in-
vokes the corresponding method/methods in the real
implementation of the component.

3.3. CDT described in terms of design patterns

Now that all the main elements of the framework have
been illustrated, to help comprehension it may be useful to
briefly look at it in terms of design patterns [8] (with the
warning that an accurate study of a framework, even a rel-
atively small one, in terms of design patterns would be too
long to fit into one paper, see, e.g., [9]).

Among the patterns presented in [8], the CDT frame-
work shares the intent of the Adapter pattern described
as: Convert the interface of a class into another inter-
face clients expect. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces.

In fact, the CDT structure is slightly different from the
one in [8], as a consequence of the high dynamic nature
required to set a clear distinction between tests and com-
ponent implementations, enabled by the use of introspec-
tion mechanisms, and to easily permit the integration in the
framework of additional functionality. Therefore more pre-
cisely we can say that CDT realizes a dynamic run-time
adapter that is reconfigured each time a new component is
deployed (by using the “XMLAdapter” as an input). Fig-
ure 8 shows how the adapter structure can be recognized in
the framework. The test case classes represent the clients of
the target object constituted by an instance of a “Spy” class.
The invocations made by the methods of this instance are
directed to an object within Driver that, on the basis of
the information contained in the XML file, “adapts” them
to an invocation, or a sequence of invocations, of the meth-
ods of the candidate implementation. This structure is not
static, but is visible only at run-time, after the instance of
the class Driver has acquired a reference to the candidate
components as consequence of the information contained in
the XML file.

Moreover, it should be now clear that the duties of each
instance of the class Driver are not limited to the adap-
tation of the invocations in a class “Spy”, but also include
the control of the test process, in particular retrieving and
instancing the test cases classes and invoking on these in-
stances the opportune method.

The choice of this kind of adaptation, i.e., the use of the
XML file instead of a more static one realized implement-
ing a class adapter, was mainly driven by the necessity of
obtaining an easily extensible architecture. In particular,
we want to avoid the need of building, each time, complex
adapters that have to contain additional logic to perform du-
ties as contract verification or traceability. In our solution,
all this logic in fact is implemented once and for all in the
Driver class, while in the “XMLAdapter” we only have
to explain the methods correspondences.

4. Considerations on the Framework

This section explains how the CDT framework can be
useful, in different regards, both to the component customer
and to the component developer. We illustrate which are the
main benefits gained by using the framework, and in which
directions our research will continue from here.

4.1. The good news for the component customer

With reference to the phases of specification, searching
and testing of a component (see Section 2), CDT can be
fruitfully used to support and distribute the relative tasks
among different teams. The “Spy” classes can be devel-
oped as a result of the specification phase: as said, the func-

"TestCase"

"TestCase"

"TestCase"

"Spy class"

target

adapter

XMLAdapter

input

Driver

run−time
only at

Candidate

adaptee

implementation

Figure 8. The CDT framework as a run-time adapter

tionalities required for a virtual component are specified as
methods of the class. After that, two different kinds of team
are involved: the searching teams and the testing teams.
The former, on the basis of the specifications for the virtual
component, looks for suitable implementation. If one seem-
ingly good candidate implementation is found, they develop
an appropriate “XMLAdapter” (the implementation, as al-
ready highlighted in paragraph 3.2.2., can consist of more
real components). In parallel, the testing teams can start de-
veloping functional deployment tests with reference to the
virtual component represented by the “Spy” class. When
a candidate implementation is identified, and at least a test
suite is ready, the deployment test phase can start.

So far, in the presentation of the CDT framework we
have mainly analyzed the validation of a single virtual com-
ponent, however the CDT framework can be used for in-
cremental deployment testing without any modification. In
fact, using an appropriate instance of a class “Spy” and
a suitable “XMLAdapter”, a set of interconnected compo-
nents can be viewed as a single component that exports the
necessary interfaces. More in general, we can figure out a
deployment test phase that is organized in incremental steps
(precisely as in traditional integration testing). In such a
scenario, a component may be tested first alone, and then
as part of a larger subsystem. In the latter case, the func-
tional tests are not related to the behaviour of the compo-
nent alone, but of the subsystem in which the component is
integrated.

In order to simplify the integration of more virtual com-
ponents, as well as the integration of more real components
to form a virtual one, we have presented in [3] a particu-
lar wrapper named WCT (Wrapper for Component Testing)
that permits the easy configuration of a system according to
the specified system architecture. WCT has a similar struc-
ture of the “Tester” component in Figure 2, and its main
duty is to adapt the services required by the contained com-
ponent to those provided by other virtual components. A
WCT foresees also mechanisms for execution tracing and
contract verification. This last feature results particularly

beneficial since it permits the early identification of a prob-
lem during test execution through the detection of a contract
violation in the interaction between the implementations of
the virtual components (this technique was presented in [6]
for the testing of OO systems).

4.2. The good news for the component developer

We have discussed in the introduction the benefits that
the component customer could gain from getting, together
with a component, the related functional test cases. As a
consequence, the opportunity to obtain the developer’s test
cases, established in a white-box context (i.e., with a full
knowledge and access to the source code), and packaged
in a way that makes them easily re-executable, can make a
big difference in the component customer’s choices within
a competitive market. This fact could convince the devel-
opers of the advantages to identify effective methods for
transferring their test suite to the customer.

In this respect, the CDT framework can also be usefully
applied by the component developer to transfer executable
test to the customers. The developer might define the test
cases on the basis of his/her own developed “Spy” class,
that in this case will obviously not show substantial differ-
ences from the actual component, and should also codify
the “XMLAdapter”, which will be trivial. The customer,
obtained these artefacts, will be immediately able to test
the component in the target environment, using the same
mechanisms employed to execute the internally developed
test cases. If the major advantages in the described scenario
will be for the component customers, also the developer can
gain benefits in codifing the test cases following the rules es-
tablished in the CDT framework, in order to test successive
versions of a component in which the interfaces definition
could be modified.

4.3. Major benefits and further developments

In developing the framework, the main purpose was to
provide the component customer with a means for the early
codification of test cases in a manner completely indepen-
dent from a specific real component and for easily executing
them to evaluate any candidate component. We can ascribe
several good qualities to the resulting framework:

1. the complete decoupling of tests and components, thus
facilitating the separate reuse of these two kinds of ar-
tifacts (inside the same organization);

2. the test suite flexibility, e.g., it results extremely simple
to add new test cases;

3. the grouping the test cases in different packages on the
basis of relevant criteria; this feature can simplify sub-
sequent regression test phases;

4. no specific interface implementation is requested on
the candidate components.

With regard to item 4, for this same reason the framework
does not permit the codification of tests that access the
private elements of the components, capability that other
methodologies, like Built-In Testing [24], foresee. How-
ever, by adding a simple requirement to the implementation
interfaces we could obtain, using the framework, the same
power of the built-in tests. Precisely, to obtain this, we have
to impose that each component implements a public method
that using the introspection mechanisms of the component
model, redirects the invocation on the private elements, sim-
ilarly to what is also presented in [10].

For instance, in Java we could impose the implementa-
tion of the method:
handlePrivateElement(

String Kind,String Name,
Object[] parameters,String op);

in which Kind ��� CONSTRUCTOR,METHOD,FIELD � ,
Name is the name of the private element, the vec-
tor parameters contains the parameters, and op �
� SET,GET � and specifies the type of the operation that
must be performed when accessing a field element.

We have already noted that the framework is easily ex-
tensible with new control functionalities. An extension cur-
rently under development is the integration in the frame-
work of mechanisms for contract verification. Design by
Contract (DbC) [15] seems one of the most promising
means in order to alleviate the “component trust problem”.
It can be exploited all along CB systems construction to
evaluate the conformance of the real component to the
searched one. In the area of testing, DbC can be used as
a further means to validate the execution of a test case. The
integration in CDT results quite simple and we think that,
thanks to the fine grained control of the Driver on the
methods invocation, the result can be effective. So far we
have already integrated in the framework the possibility of
instrumenting the virtual components with pre- and post-
conditions that are checked at run-time. A further devel-
opment on which we are working is the adding of trace-
ability features to the framework in order to simplify the
result analysis. Besides, another important piece of work
that we plan is the realization of a graphical tool to support
the compilation of the “XMLAdapter”. Such a tool would
obviously reduce the effort spent in test development and
moreover it would drastically reduce the probability of er-
rors.

5. Related work

The CDT framework is proposed as a practical contribu-
tion to alleviate the component trust problem. In the Intro-

duction we have already extensively discussed it and have
overviewed several approaches related to ours.

The special needs posed by CB development are widely
discussed in [13], and a prototype environment called
WREN is proposed. A strict relation clearly exists between
this and our approach, in that both studies call for a pro-
cess revision and start from similar requirements. However,
while WREN applies in general to component composition
issues, we specifically focus on the testing task. A combi-
nation of the two frameworks is not only feasible, but also
desirable.

With regard to our technical solution, we are not aware of
other projects specifically aimed at supporting the compo-
nent customer in developing test cases for the deployment
testing phase, without assuming any specific real implemen-
tation. In this respect we believe that our work is original
and hopefully pioneer of an important research direction.
Instead, some interesting approaches have been proposed,
that the developer can use to transfer the test cases to the
customer. In this direction, the authors of [17] present a
tool to allow the component developer to design and run test
cases. The test specification and the test results are stored
into a XML document to be successively packaged with the
component, thus providing to the component user a means
to verify the component compliance to the specifications in
the target environment.

Another well-known approach consists in enclosing the
test cases as public methods of the component (the already
cited Built-In Test approach [24]). The disadvantage of this
methodology is the growth of component complexity, which
soon makes the component hard to manage.

An interesting approach presented by Gao et al. [10] in-
troduces the concept of a “testable bean” as a component
with well defined built-in test interfaces. Goal of these in-
terfaces is to enhance the component testability and facil-
itate component testing. With a mechanism that uses the
introspection mechanisms of the component model, similar
to what we have described above, they obtain the capability
of built-in testing, but without enclosing a lot of code in the
component itself.

As CB testing is a very though and expensive task, we
believe that all the above approaches constitute important
contributions, but that the field is far from being settled, and
much more research is still needed.

6. Conclusions and future work

We introduced the CDT framework, to facilitate the test-
ing within a customer’s target environment of a component
independently developed.

The central feature of the framework is the complete de-
coupling between the tests and the component implementa-
tion, allowing for the early codification of deployment tests,

and for their reuse over different components.
This research goes in the direction of providing means

to increase the trust in a component. We believe that the
success of CB development passes through the adoption of
a rigorous, systematic test validation process.

We have implemented a trial version of the CDT frame-
work in Java and played it on a simple case study of a bank
account manager. The empirical work demonstrated the
feasibility of the idea and at the same time indicated sev-
eral interesting additions to the framework structure that we
plan to implement in the next future.

We plan also to investigate, in the next future, how to
derive useful test cases from specifications codified in UML
diagrams. In particular in a recent paper [4] we sketch some
ideas on adapting Cow Suite [1], a tool to derive test cases
for OO systems, to CB development, and on how this could
be integrated with the CDT framework.

7. Acknowledgements

Andrea Polini’s PhD grant is supported by Erics-
son Lab Italy in the framework of the Pisatel initiative.
http://www.iei.pi.cnr.it/ERI

References

[1] F. Basanieri, A. Bertolino, E. Marchetti, “The Cow Suite
Approach to Planning and Deriving Test Suites in UML
Projects”, in Proc. � UML � 2002, Dresden, Germany,
Sept. 30-Oct. 4, 2002, LNCS 2460.

[2] A. Bertolino, and A. Polini, “Re-thinking the Development
Process of Component-Based Software” in [28].

[3] A. Bertolino, and A. Polini, “WCT: a Wrapper for Compo-
nent Testing”, in Proceedings of Fidji’2002, Luxembourg,
November 28-29, 2002, to appear in LNCS.

[4] A. Bertolino, E. Marchetti, and A. Polini, “Integration of
“Components” to Test Software Components”, to appear in
Proceedings of TACoS 2003 workshop at ETAPS 2003, War-
saw, Poland, April 13 	�
 , 2003.

[5] R.V. Binder, Testing Object-Oriented Systems: Models, Pat-
terns, and Tools, Addison-Wesley, 2000.

[6] L.C. Briand, Y. Labiche, and H. Sun, “Investigating the Use
of Analysis Contracts to Support Fault Isolation in Object
Oriented Code”, Proc. ACM ISSTA 2002, Roma, Italy, July
22-24, 2002, pp. 70-80.

[7] J. Cheesman and J. Daniels, UML Components - a Sim-
ple Process for Specifying Component-Based Software,
Addison-Wesley, 2000.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Rusable Object-Oriented Software
Addison-Wesley, 1995.

[9] E. Gamma, and K. Beck, “JUnit a Cook’s Tour” available at:
http://www.junit.org

[10] J. Gao, K. Gupta, S. Gupta, and S. Shim “On Building
Testable Software Components”, in J. Dean and A. Gravel
(Eds) Proc. ICCBSS 2002, LNCS 2255, pp.108-121.

[11] Java Reflection Documentation, available at:
http://java.sun.com/products/jdk/1.1/docs/guide/reflection/

[12] G. Kiczales, J. des Rivières, and D.G. Bobrow, The Art of the
Metaobject Protocol, MIT Press, 1991.

[13] C. Lüer, and D.S. Rosenblum, “WREN - An Environment
for Component-Based Development”, in Proc. of ACM ES-
EC/FSE 2001, Vienna, Austria, September 10-14, 2001.

[14] D. McIllroy, “Mass Produced Software Components”, in P.
Naur and B. Randall Eds, Software Engineering: Report on
a Conference by the NATO Science Committee, Brussels,
1968, pp. 138-155.

[15] B. Meyer, “Applying Design by Contract”, IEEE Computer,
vol. 25, no. 10, October 1992, pages 40-51.

[16] B. Meyer, C. Mingins, and Heinz Schmidt, “Trusted Compo-
nents for the Software Industry” available at:
http://trusted-components.org/documents/
tc original paper.html

[17] J. Morris, G. Lee, K. Parker, G.A. Bundell, and C.P. Lam,
“Software Component Certification”, in IEEE Computer,
September 2001, pp. 30-36.

[18] A. Orso, M.J. Harrold, and D. Rosenblum “Component
Metadata for Software Engineering Tasks”, in W. Emmerich
and S. Tai (Eds) EDO2000, LNCS 1999, pp. 129-144.

[19] D. Rosenblum, “Adequate Testing of Component-Based
Software”, Univ. California, Irvine, T.R. UCI-ICS-97-34,
(1997)

[20] J.A. Stafford and A.L. Wolf, “Annotating Components to
Support Component-Based Static Analyses of Software Sys-
tems”, Proc. the Grace Hopper Celeb. of Women in Comput-
ing 2001.

[21] C. Szyperski, Component Software, Beyond Object-Oriented
Programming, Addison-Wesley, 1998.

[22] J. Voas, “Developing a Usage-Based Software Certification
Process”, IEEE Computer, August 2000, pp. 32-37.

[23] J. Voas, “Certifying Off-the-Shelf Software Components”,
IEEE Computer, June 1998, pp. 53-59.

[24] Y. Wang, G. King, and H. Wickburg, “A Method for Built-in
Tests in Component-based Software Maintenance”, Proc. of
the 3rd ECSMR, 1999.

[25] E. Weyuker, “Testing Component-Based Software: A Cau-
tionary Tale”, IEEE Software, Sept./Oct. 1998, pp. 54-59.

[26] J. Whaley, M.C. Martin, and M.S. Lam, “Automatic Extrac-
tion of Object-Oriented Component Interfaces”, Proc. ACM
ISSTA 2002, Roma, Italy, July 22-24, 2002, pp.221-231.

[27] 5th ICSE Workshop on CBSE, Benchmarks for Predictable
Assembly, Orlando, Florida, USA, May 19-20, 2002.

[28] ECBS 2002 Workshop on CBSE, Composing System From
Components, April 10-11, 2002, Lund, Sweden.

[29] IEEE Computer, July 1999, 32 (7).
[30] The Journal of Systems and Software, Special Issue on

CBSE, 2003, to appear.
[31] CORBA Component Model specifications:

http://www.omg.org/technology/documents/formal/compon-
ents.htm

[32] Enterprise Java Bean Technology:
http://java.sun.com/products/ejb/

[33] .Net resources available at: http://www.microsoft.com/net/

