
Re-thinking the Development Process of Component-based Software

Antonia Bertolino, Andrea Polini
IEI-CNR, Area della Ricerca di Pisa, Italy

{bertolino, a.polini}@iei.pi.cnr.it

Abstract

This paper contribution to the ECBS workshop is a

position statement that a wide gap exists between the
technologies for Component-based Software Engineering
and the scientific foundations on which this technology
relies. What is mostly lacking is a revised model for the
development process. We very quickly outline a skeleton
for re-thinking the models that have shaped the software
production in the last decades, and we start to make some
speculations, in particular for what concerns the testing
stages. As a working example, we take in consideration
the Enterprise Java Beans framework. However, our
research goal is to draw generally valid conclusions and
insights.

1. Position statement

Since its early moves in the 60’s, the history of

software engineering has seen on the user’s side the
progressive growth of expectancies and reliance placed on
the software services, and on the producer’s side a
strenuous attempt to master the consequent escalation of
products dimensions and complexity.

To make software production more predictable and
less expensive the research efforts have been driven by
the two keywords of “discipline”, in the form of process
models to control the development cycle, and of “re-use”,
favouring the adoption of OO paradigms. However,
despite the efforts, the implementation of a new system
“from scratch” involves each time long development
times, high production costs and difficulties in achieving
further evolution and adaptations to new demands.

A component-based approach to software engineering,
similarly to what is routine practice in any traditional
engineering domain, seems to provide finally "the
solution" to all problems inherent in traditional methods,
and we assist today to a sort of revolution in the ways
software is produced and marketed.

In Component-based Software Engineering (CBSE), a
complex system is accomplished by assembling simpler
pieces obtained in various manners. In principle, CBSE
perfectly combines the two leading SE principles of

“discipline” and “re-use”: in fact, only forcing a rigorous
discipline on how components are on one side developed,
and on the opposite side utilized, a component-based
system can be successfully obtained. Moreover, in CBSE
re-use of components is one of the leading concerns, and
is pursued since the early inception phases.

Ideally, by adopting a component-oriented approach,
production times can be reduced, more manageable
systems can be obtained, and, above all, such assembled
systems can be easily updated by substituting one or more
elements in the likely event that future market offerings
provide functionalities deemed better than those of the
components currently implemented in the system.

It is our concern, though, that current results are not
sufficient: the rapid technology advances (e.g., .Net, EJB)
are not backed by adequate parallel progress on the
theoretical side. In the absence of a reference scientific
framework, the proposed technological solutions appear
fragmented and unrelated, and their adoption remain
difficult and expensive. A software developer is provided
with technologies to use and combine components, but is
puzzled by the proliferation of partial solutions: a
paradigm in which to use them, and criteria to follow in
the selection of components and frameworks, are lacking.
Paradoxically, the technologies are there, but the
conceptual foundations to employ them must still be built.

It is clear that component-based software production
requires a major and urgent revision of both the processes
and the methods to be adopted in the development of
software products. The classical life cycle models are no
longer adequate, and also the professional figures that are
involved in the software production and business change.

To see why, and what need to be done on the research
side, we make some speculations in the following
sections. To make the discussion more concrete we
specifically focus this position paper on the testing stage
and on the EJB framework. However, it is our future
research aim to revisit the various stages of the traditional
development process, and to develop concrete example
within EJB as well as in other popular frameworks.

2. Considerations on the development process

for the component-based age

The “standard way” in software production is a phased
model in which essentially a phase starts where the
previous one finishes. Let us sort out for instance what is
typically found in the Table of Content of a traditional
textbook in software engineering. There will certainly be
a chapter dealing with the requirement analysis stage, a
following chapter dealing with design, a chapter dealing
with verification and testing, and finally a chapter dealing
with maintenance, plus a part putting all these pieces
together within a coherent process model. How well and
how much does this base structure, that came out from
decades of progress, fits within CBSE? The answer is
obviously not so well and not so much.

The point is that, even though iterations and concurrent
activities may be foreseen among the phases, a “partial
order” is always imposed or assumed between the various
stages above mentioned. Considering the opportunity of
using components requires a totally different process that
permits to manage the “non-determinism” introduced by
the new approach. We bring in this notion of a non-
deterministic process to highlight that, in this context, the
various development activities are no longer carried out in
any necessary sequence. In fact in the early phases of the
development you cannot know if you will find the
components already implemented or will have to develop
them internally. Also, the specification of the overall
architecture may depend on the adoption of certain
components. Then, in a certain sense, we need generic
process models that can account for the different
consequences induced by the use of components produced
externally or internally and that establish some
“synchronization” points among all the involved
stakeholders.

Besides, it is generally recognized that a condition to
increase the adoption of components is to design
components “for reuse”, and therefore to produce
adjustable components not too much shaped to fit within a
specific context. That is right, but it guarantees only a
part: the possibility. For successfully achieving reuse in
practice, it is necessary not to early commit to a fixed
system architecture independently from its constituent
components, but to consider the components features as
well since the early specification and design stages. In this
sense we think to an incremental process, whose various
phases are concurrent activities focused on recovering and
tailoring components or groups of components.

More specifically, in the development of a component-
based application we must initially focus on identifying
that or those components that provide the basic
functionalities. That is to say, we must elicit the
functional and non functional requirements for these
“basic” components. When candidate components are
found, we can test them, against the specified
requirements, and choose the best for our objectives.
After having identified the first basic components we can

go towards the expansion of the application
functionalities, in several directions, and look for new
components. The specifications for the new searched
components must now derive from considerations that
include the features of the components already acquired.
This cycle is repeated until all the application
functionalities are covered.

Perhaps sometimes the search task, for a component,
can fail. In this case you can choose to implement the
component or you can reduce the required functionalities
and retry the search.

Obviously this iterative search-and-refine process is a
preliminary idea yet, and it does not want to be complete
or definitive, it wants only to illustrate a possible path. In
the next section we concentrate the attention on a
particular point of the picture showed above, and explain
in more detail the testing phase as we imagine it might be
expanded in the component development model.

As said, we focus our investigation within the EJB
architecture, which has been conceived as a component-
based technology to develop server-side applications,
particularly in the commercial domain. The EJB platform
specification was defined by Sun [1], which has also
implemented a reference realization that is freely
available for download from the Sun web site [2].

The EJB architecture relies on a complex middleware
that manages all the aspects relative to concurrency,
security, persistence, and distribution. The management of
this complex task by the middleware permit the
implementation of simpler components and reduce the
risk of error, then the amount of testing.

3. Revising the testing process: a proposal

The distributed component approach makes many
traditional testing techniques inadequate or inappropriate,
and thereby calls for defining new processes, methods and
tools to support testing activities. Weyuker [3] claims that
in a component approach the testing performed by the
component developers is insufficient to guarantee the
component behaviour in new contexts and then underlines
the necessity of a retesting made by the component user.

Regarding the costs of production, the advent of true
CBSE presupposes the creation of a components market
that can make it economically viable to develop software
pieces for subsequent assembly. The success of the
component approach to development requires therefore
thinking in terms of system families, rather than single
systems. Consequently, testing procedures must also be
refocused: rather than on the definition and maintenance
of test suites for single applications, attention must be
directed to the development of test patterns for product
families. The need for Software Architecture models in
the development of component systems is widely
recognized [4]. In the stages of testing, such formal

models can also be used to generate test cases, either
automatically or assisted in some way.

One further complicating factor of the testing activities
is represented by components whose source code is
unavailable. Such components, in fact, require
verification, not only that the features declared by the
producer are fulfilled as expected, but also that no
undeclared hazardous features are present.

The practical approach that we are going to illustrate
seems to be well shaped to the component-based
production, and maybe it can reduce the problems
mentioned above. It originates from the considerations
made in the previous section and is strongly based on the
use of the reflection feature [5] of the selected language;
for this reason the easy choice for us was the Java
language.

In accordance with the process model sketched in the
previous section, we suppose to have a first phase in
which we establish the features that a certain component
must have. In our framework this specification must be
given in the form of a “virtual component” codified as a
class, henceforth named Spy, whose required interfaces
are established (so the methods and relative signatures).
The only duty of every method of this class is to pack the
parameters and invoke the method
executeMethod(String name, Object[] param) of a
Driver object (that we will illustrate afterwards), passing
also to the latter its own name.

From this specification, we can put at work several
teams with two different targets:

1. Developing test cases from the specification. If there
are more than one team on this target, each of them
can focus its attention on a particular feature;

2. Searching suitable components in the organization
repository or on the market.

The test cases will be developed on the basis of the
methods defined in the class Spy, and in a preliminary
version the test cases are progressively numbered, for
example, TestCase7, and each will form a class. All the
test cases classes must be collected in a package together
with the Spy class. Obviously the generated tests are
functional/black-box and independent from a real
implementation.

The test case and the Spy classes must extend
respectively the abstract class TestCase and
InformationSwap, both contained in the package
it.sssup.testing. These classes contain methods that
permit to set objects for the re-addressing of method
invocation.

The searching of a suitable component is not a trivial
task, in fact a real component can look very differently
from that defined by the Spy class. In particular, we can
list five different levels of accordance that, anyhow,
guarantee the possible usefulness of a component in the
particular application:

1. the methods name are different, but the related
names have equal signatures.

2. as above, but with different parameters order
3. virtual methods have less parameter (we must set

default values for the real parameter)
4. the parameters have different types, but we can

make them compatible, through suitable
transformations

5. the functionality of one virtual method is provided
collectively by more than one method.

It is however indispensable that these differences are
overtaken and for this reason we require that the searching
team draw up an XML file to be used by the Driver
object to drive the testing. In fact after the test packages
are developed and at least one component is identified, a
team can start the testing of it to verify that it is really
compliant with the specifications.

To clarify we can provide a simple example on how
we think the approach could work. The example is only
declarative and obviously trivial, but we think it can be
useful for the purpose.

Suppose that an Italian software house needs a simple
software component to manage a bank account, and for
this purpose it codifies the following Spy class:
package bankaccount.test;
import it.sssup.testing.*;
public class Spy extends InformationSwap{
 …
 public void versamento(String cod,int sum){}
 public void prelievo(String cod,int sum){}
 public int bilancio(String cod){}
}
From this Spy class, the testing teams can produce the
test case class as below:
package bankaccount.test;
import it.sssup.testing.*;
public class TestCase6 extends TestCase{
 public runTest(){
 int before=spy.bilancio(“123”);
 spy.versamento(“123”,500);
 spy.prelievo(“123”,300);
 if (spy.bilancio(“123”)!=(before+200)){
 System.out.println(“KO”);
 } else { System.out.println(“OK”); }
 } }

In the meantime let us assume that the searching team
has found a suitable component, but with different method
names (deposit, withdrawal, balance) and also with
different parameters order. This team produces the
corresponding XML file that specifies the mapping from
the virtual object to the real object.

Within the EJB framework, then, we can run the
following client, passing to it the name of the package
containing the test and the name of the XML file.
import it.sssup.testing.*;
public class ClientEJB {
 public static void main(String[] args) {
 try {
 Context initial = new InitialContext();
 Object objref =initial.lookup(

 "java:comp/env/ejb/TrivAcc");
 AccHome home =
 (AccHome)PortableRemoteObject.narrow(
 objref, AccHome.class);
 Driver dr =
 new Driver(args[0],args[1],home);
 dr.execuTests();
 } catch (Exception e) {}
}

Obviously the core of the approach is the package
it.sssup.testing that contains the specifications of the
class Driver and of the two abstract classes
InformationSwap and TestCase, that must be extended
by, respectively, the Spy and the test case classes. The
scope of Driver is to re-direct the invocation of the
virtual methods in Spy to the real methods in the
component, based on the information contained in the
XML file. It is important to note that, in our framework,
the implementation of Spy, of test cases and of test client
classes is sufficiently simple and must follows the various
specification above outlined.

This model is particularly suited to the context of a
complex middleware, such as EJB, because it might solve
many questions relative to component integration. In the
EJB framework the testing can be performed running a
simple tester client. EJB advantage is a strong
standardization, or, said in other terms, the “discipline”
that we mentioned above, which is the basic philosophy
of EJB. Each user-developed bean must comply to the
“bean-container contract”, which imposes the realization
of precise interfaces.

4. Research directions

The component-based approach opens up several new
areas for research. Before all, to permit the growth of
CBSE it is necessary to realize more suitable development
environments. A first effort in this sense can be found in
[6], where seven principal features that a development
environment must satisfy are also identified.

A component-oriented world then calls for determining
methodologies that can allow component builders and
users to agree on the tasks to be carried out by a given
component. Research in this field suggests that a
component must be endowed with a series of additional
information (apart from that making up its interface) that
allows it, in a certain sense, to be framed semantically.
This information can be used by the customer in the
different phases of a development cycle [7], [8]. This line
of investigation is particularly important in relation with
our approach, mainly regarding the searching task. We
have already outlined the difficulties concerning this task;
it is desirable, then, to identify information that must
reside in the specifications and in the component
definition, and that can aid the searching team.

Also in the perspective of establishing an agreement
between the customer and the seller, it has been

investigated the opportunity that a “certification
authority” is established [9]. The goal of this organization
is to certify components submitted by the developers.
Perhaps, also in this context the approach above depicted
can be useful. In fact, the SCL (Software Certification
Laboratories [9]) can define “virtual standard
components” and provide, for them, benchmarks for
several contexts in the form of a package containing the
Spy and the test cases classes. The developers can then
verify their components against these tests, after
downloading the package and compiling the XML file.
Perhaps this “modus operandi” can simplify the
standardization in the production of components. In fact
the SCL could define classes of components in the form
of the functionality that they must provide.

Regarding more specifically the approach depicted,
two directions mainly emerge as possible lines of
investigation. The first is a more conceptual work, and is
referred to the necessity to develop and clarify in more
detail the various phases of the incremental approach. In
particular we need to establish methods for extracting test
case from the specifications. Besides, by way of real case
studies, we want to value the real benefits that the
proposed approach can produce in the component-based
production.

The second line of investigation, instead, is more
practical and concerns the development of tools that assist
the different teams implied in the testing activities above
mentioned. We refer to the development of tools to aid the
drawing up of the XML file, for the searching phase and
for test cases extraction.

5. References

 [1] B. Shannon, “Java™ 2 Platform Enterprise Edition
Specification” http://java.sun.com/j2ee/download.html
[2] J2EE reference implementation.
http://java.sun.com/j2ee/sdk_1.3/index.html
[3] E.J. Weyuker, “Testing Component-Based Software: A
Cautionary Tale”, IEEE Software, Sept./Oct. 1998, pp. 54-59.
[4] D. Garlan, “Software Architecture: a Roadmap”, in
A.Finkelstein (Ed.) The Future of Soft. Eng., ICSE 2000.
[5] The Java Tutorial, Reflection,
http://java.sun.com/docs/books/tutorial/reflect/index.html
[6] C. Lüer and D. Rosemblum, “WREN – An Environment for
Component-Based Development”, in Proc. ESEC/FSE 2001,
ACM Sigsoft Vol. 26, N.5, September 2001, pp. 207-217
[7] A. Orso, M.J. Harrold, and D. Rosenblum, “Component
Metadata for Software Engineering Tasks”, EDO2000, LNCS
1999, pp. 129-144.
[8] J.A. Stafford and A.L. Wolf, “Annotating Components to
Support Component-Based Static Analyses of Software
Systems”, Proc. the Grace Hopper Celeb. of Women in
Computing 2001.
[9] J. Voas, “Developing a Usage-Based Software Certification
Process”, IEEE Computer, August 2000, pp. 32-37.

http://java.sun.com/j2ee/download.html
http://java.sun.com/j2ee/sdk_1.3/index.html
http://java.sun.com/docs/books/tutorial/reflect/index.html

