
Towards Anti-Model-based Testing

Antonia Bertolino and Andrea Polini
Istituto di Scienza e Tecnologie dell’Informazione

“A. Faedo” (ISTI-CNR)
Area della Ricerca CNR di Pisa 56100 Pisa, Italy

[antonia.bertolino, andrea.polini]@isti.cnr.it

Paola Inverardi and Henry Muccini
Dipartimento di Informatica

Universit́a dell’Aquila
Via Vetoio 1, 67100 L’Aquila, Italy
[inverard, muccini]@di.univaq.it

1 Software testing refers to the dynamic verification of a
system’s behavior based on the observation of a selected set
of controlled executions, or test cases [2]. While in tradi-
tional traditional approaches to software testing, test cases
are selected from the source code of the program to be tested
[5], nowadays, we can apply testing techniques all along
the development process, by basing test selection on differ-
ent pre-code artifacts, such as requirements, specifications
and design models [2].

Model-based testingconsists in deriving a suite of test
cases from a model representing the software behavior.
Such a model may be generated from a formal specification
or may be designed by software engineers through diagram-
matic tools. In principle, the derivation of the test cases can
be done automatically, and indeed several approaches have
been recently proposed that do this starting from models in
different languages [9, 1, 6]. By executing the model-based
test cases, the conformance of the implemented system to
its specification can be validated.

Even if we agree with the usefulness of model-based
testing, there can be several reasons why such an approach
cannot be appliedor is too expensivefor deployment in
a specific context. One generic barrier to a wide adoption
of model-based testing is itsinherent complexity, which re-
quires a deep expertise in formal methods, even where tool
support is available – as testified in the AGEDIS project [1].
Another obstacle is the difficulty inforcing the implementa-
tion to take a defined path as identified in the model derived
test sequences. The latter are generally expressed at an ab-
stract level, while the executable test cases must be more
concrete and more informative (e.g., [3]). Finally, one more
counter-motivation to the practice of model-based testing
can be the use oflegacy systemsor COTS, for which behav-
ior models are not available.

Considering in particularcomponent-based software de-
velopment, a system is generally obtained by assembling al-
ready existing components, for which we cannot a-priori as-

1 ho tolto la parte iniziale della intro di Anto per poterla riusare

sume that a specification or the source code are available. In
such cases, model-based testing is not applicable, or would
be too costly. We assume in fact that the system assembler
has a high-level specification of the global architecture, but
can only pose in practice very basic requirements on the be-
havior of the acquired components.

This is the rationale for an“anti-model-based testing ap-
proach” as the one we outline in this paper. While model-
based testing starts from an a-priori established model and
tries to execute some sequences derived from this model,
in “anti-model based” testing we take the opposite direc-
tion. We execute the implementation on some sample exe-
cutions, and by observing the traces of execution we try to
infer/synthesize a-posteriori an abstract model of the sys-
tem.

To reverse engineering a model from the test traces we
need to apply two technologies: first, we have toreverse en-
gineering some scenariosfrom the execution traces (as done
for different reasons in other research work (e.g., [4]); sec-
ond, from the so obtained scenarios, e.g. in form of UML
sequence diagrams, we synthesize a behavior model.

Figure 1 graphically summarizes the approach we are
working on:
Assumption:we assume to deal with a component-based
system, i.e., an assembly of component-based, black-box
components. A component specification is missing, as the
source code itself;
Step 1:Derive the usage profile based on a high-level spec-
ification of the global architecture;
Step 2:Launch the test cases and monitor the traces;
Step 3:Reverse-engineering of a set of (meaningful) se-
quence diagrams, in order to synthesize a behavior model.

In detail, when a software system wants to be produced
through assembly of components, wanted system require-
ments needs to be identified and specified. Whenever the
main system requirements are elicited, we may start iden-
tifying the architectural components which may reasonably
implement the system. We may thus buy the components
and create the glue code as a way to produce the desired



Launch the Test Cases and
capture execution traces

(through monitoring)

Synthesize a behavioral
model from execution traces

Step 2

Step 3

Extract Test Cases using
Usage Profiles

Step 1

Figure 1. Approach activities

system.
In Step 1, suitable test cases have to be identified. As

the basis assumption of this approach is that a component
model is not available, we use the only information that is
anyhow available (it may be in various forms): the expected
Input/Output functions of the components. This information
has to be available in some form, otherwise we could not
even use the components. In other words, as a very mini-
mum the component user must know how to solicit the com-
ponent and what to expect as a reaction. To make such an
approach systematic, we will stimulate the component in-
teractions by trying to reproduce the operational usage, i.e.
we will try to reconstruct an usage profile a la Musa.

In Step 2, we have to launch the test cases and monitor
the execution traces. Goal of this step is to stimulate the sys-
tem with inputs, capturing information on execution traces.
The idea of capturing traces from code execution is not new.
In particular, many strategies aimed to reverse-engineer dy-
namic models are reported in the literature, many of them
surveyed and compared in [4]. The general idea is to in-
strument the source code, adding some monitors, and run it
with some inputs. The monitors help collecting relevant in-
formation on run-time execution, such as methods execu-
tion, classes and/or objects communication, control or data
flow information.

What makes the difference between our monitoring ac-
tivity and many others is the assumption components are
black-box and a component specification is missing. This
assumption strongly impacts the way monitoring may be
performed. In our context, information is gained by instru-
menting the glue code used to assemble the components.
The information we wish to collect regards the integra-
tion between components requiring or providing services.
Therefore the tracing mechanism that we need should be
able of recording each invocation made by one component
on another component. This could be easily obtained trough
the use of specific wrappers used to trace either the incom-
ing calls and the outgoing calls for each component.

In Step 3, the execution traces collected in the previous
step are used to synthesize a behavioral model. This one is
the most interesting aspect of this research work. In fact,
in order to synthesize state machines from execution traces,
our idea is to extract scenarios from the execution traces and
eventually use such scenarios to synthesize state machines,
reusing existing synthesis algorithms (e.g., [7, 8]). An exe-
cution trace, in fact, may be considered as the interleaving
of different scenarios (as depicted in Figure 2).

Concluding, model-driven specifications have been re-
cently utilized by software engineers for analysis and test-
ing purposes with unobjectionable results. Unfortunately,
such analysis techniques cannot be applied whenever the
system model is unavailable.

Goal of this paper has been to propose some initial at-
tempts in this direction; even when system models and soft-
ware code are unavailable, we outlined how an anti-model-
based testing technique may produce relevant results.

In this paper we simply illustrated how a reverse-
engineered model may be produced by analyzing execu-
tion traces. However, in future work we desire to investigate
how such reverse engineering process may help to dis-
cover unexpected behaviors. In particular, our future work
will be directed to evaluate, through model checking tech-
niques, how much the implementation is good with re-
spect to expected qualities. Moreover, we may analyze if
the system specification produced contains unexpected be-
haviors. If it does, we may gain some information on how
good the selected test cases are.

References

[1] AGEDIS Project. http://www.agedis.de/index.shtml.
[2] A. Bertolino. Software Testing. In SWEBOK: Guide to the

Software Engineering Body of Knowledge,IEEE.
[3] A. Bertolino, P. Inverardi, and H. Muccini. An Explorative

Journey from Architectural Tests Definition downto Code
Tets Execution. InIEEE Proc. Int. Conf. on Software En-
gineering(ICSE2001), pp. 211-220, May 2001.

[4] L. C. Briand, Y. Labiche, and Y. Miao. Towards the Reverse
Engineering of UML Sequence Diagrams. In 10th Working
Conference on Reverse Engineering. November 2003, Vic-
toria, B.C., Canada.

[5] S. Rapps and E.J. Weyuker. Selecting Software Test Data
Using Data Flow Information. IEEE Trans. on Software En-
gineering, SE-11 (1985), pp. 367-375.

[6] J. Ryser, and M. Glinz. Using Dependency Charts to Im-
prove Scenario-Based Testing. Proc. of TCS2000 Washing-
ton D.C., June 2000.

[7] UBET, http://cm.bell-labs.com/cm/cs/what/ubet/.
[8] S. Uchitel, J. Kramer and J. Magee. Synthesis of Behavo-

rial Models from Scenarios. IEEE Transactions on Software
Engineering, Vol. 29, Number 2, February 2003.

[9] UMLAUT Project.
Available at http://www.irisa.fr/UMLAUT/.



C1 C2 C3 C4
Message1

Message2

Message3

Message4

Message5

C1 C2
Message1

Message3

Message4

C2 C3 C4
Message2

Message5

Scenario 1

Scenario 2

Execution trace Scenarios

Figure 2. From Execution Traces to Scenarios


