Electronic Notes in Theoretical Computer Science 82 No. 7 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 11 pages

Integration of “Components” to
Test Software Components

Antonia Bertolino 2, Eda Marchetti!?, Andrea Polini!*

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR
Pisa, Italy

Abstract

We present an ongoing research project aimed at developing a framework for com-
ponent-based testing, in which we re-use and suitably combine some existing tools:
the system architecture and the components are specified by the UML, and specif-
ically the recently proposed UML Components methodology; the test cases are
derived by applying the Cow_Suite, an environment for UML-based testing, previ-
ously conceived for the integration testing of OO systems; and the tests are codified
and executed within the CDT, a framework under development, allowing for the
decoupling between the abstract specification of tests, which is made against an
architectural model, and their concrete execution, which needs to take into account
the component implementations.

1 Introduction

Component-based (CB) development is today one of the focal trends in soft-
ware production. Although in the last years the first commercial frameworks,
e.g., .NET or J2EE, have appeared, research in this area is far from having
been completed, and many topics, such as component specification, develop-
ment tools, or performance predictability, are still open.

Our research aims at building a general framework for enabling the vali-
dation of component-based (CB) systems by testing them against the system
architectural specifications. Our study encompasses both the functional and
non-functional qualities of a system, and this paper focuses on methodologies
and tools for the functional testing taskd?].

L This research is carried on within Pisatel Lab under a cooperation agreement with Eric-
sson Lab Italy, Rome.

2 Email: bertolino@iei.pi.cnr.it

3 Email: e.marchetti@iei.pi.cnr.it

4 Email: a.polini@iei.pi.cnr.it

> A companion paper [3] discusses the related approach for performance-related parameters.

(©2003 Published by Elsevier Science B. V.

BERTOLINO, A., MARCHETTI, E., POLINI, A.

Our goal is specifically to lay out a test environment in which the system
developer can: (i) derive the test cases and (ii) codify and execute them. To
do this, we are taking a pragmatic approach: we try to combine, of course by
doing the necessary adaptations and extensions, two tools we have developed
in previous projects: the Cow_Suite for test derivation, and the CDT for test
execution within a CB development process. We illustrate here the respective
features of these two tools, and then discuss how and why we believe that by
combining them we can obtain a general framework for CB testing.

The Cow_Suite [2] is a tool originally developed in the context of OO in-
tegration testing. It is based on the widespread UML modeling notation.
Although UML was not conceived having a CB paradigm in mind, it is very
flexible and provides suitable mechanisms for extensions. In fact, some works
already start investigating appropriate UML applications for specifying com-
ponents and component assemblies. We follow the recently proposed UML
Components methodology [8]. Hence, we need to re-shape the input models
to Cow_Suite to allow for the analysis of specifications according to the UML
Components, and to revise the procedure followed by Cow_Suite for test case
generation.

The CDT [4] is a Java-based framework we have recently developed in
order to facilitate component deployment testing by CB system developers:
the framework is conceived so that the system developer can early codify the
test cases (derived from the system architecture), and later (re)execute them
each time a component instance is plugged into the system. The advantage
of CDT is that the wrapping required for launching the tests on the compo-
nent implementation is automatically performed by exploiting the reflection
mechanism of the Java language.

While the principles of integration have been settled, the combination of
Cow_Suite and CDT is currently under implementation. Therefore we cannot
yet provide here a definitive picture, or empirical results. This is meant rather
as a working paper to present the two tools, and the main directives we intend
to follow for their combination, adopting the UML Components methodology
as the input modeling notation. In this sense, our research approach is itself
component-based, and an overview is provided in Figure [IL

In the next section we introduce the component testing problem. Then, in
Section 3, we present in detail the existing tools that we are going to integrate.
In Section 4 an overview of the proposed approach is provided. Conclusions
are in Section 5.

2 Component Testing

A central challenge in CB practice is the development of a new process that
effectively addresses the peculiar features of this new methodology. In CB pro-
duction a system will result from the synthesis of the work of many, mainly
uncoordinated, stakeholders (the system assembler and the various component

2

BERTOLINO, A., MARCHETTI, E., POLINI, A.

developers). As a consequence a new problem arises, generally referred to as
the component trust problem. This is relative to the fact that the system as-
semblers have to make a “vote of confidence” each time they use a component
produced externally; the problem is exacerbated by the fact that components
are generally shipped as black boxes. What is needed are means allowing the
system developers to evaluate the component against their specific needs and
within their application environment. There is no univocal solution, but sev-
eral methodologies can be used, such as Design-by-Contract, formal methods,
and testing.

In particular, testing externally produced components is a quite delicate
and difficult task. Suitable techniques that increase the testing and analysis
capability of the system developer (i.e., the component user) must be devel-
oped. Several approaches have been proposed, which we classify as:

* the metadata approach: it is suggested that the component developer in-
cludes with the component some information specifically aiming at increas-
ing the customer capability for analysis and test derivation [I4]. For instance
some UML diagrams could be useful.

* the certification strateqy approach: the establishment of independent cer-
tification agencies is advocated, with the specific duty of evaluating the
components for the perspective users [16].

* the built-in test approach: the component is shipped instrumented with test
cases, directly coded within the component itself. The customer can then
re-execute them with the component plugged in the target environment [17].

* the testable architecture approach: this can be seen as an improvement of
the previous case, as it limits the component size growth implied by the
built-in tests by providing a specific component as a testing interface [10].

* the customer specification based approach: this approach foresees that the
system developer derives the test cases against the system specifications
using a virtual definition of the component, and then uses them to evaluate
the candidate components [4].

We take here the last approach; further details will be presented in the fol-
lowing.

3 Existing tools

Our goal is to develop a general framework suitable for test derivation and
execution in a CB environment. As said, we intend to build this framework
by integrating some available tools and methodologies, as sketched in Fig. [}

» UML Components [7] provides a modelling notation and a process for spec-
ifying CB systems;

» Cow_Suite [2] is a UML-based test environment, originally developed in the
area of OO testing;

BERTOLINO, A., MARCHETTI, E., POLINI, A.

Using the UML Components methodology
UML Components we define the diagrams necessary to apply
Methodology the Cow_Suite tool

Using Cow_Suite we derive
Cow Suite ——— suitabletest cases schemathat can
be codified following the CDT tools

Using the CDT toolswe
can executethe codified | CDT Framework
test procedures

Fig. 1. Overview of the testing framework

» the CDT framework [4] (including the WCT component [5]) supports the
system developer during the various steps of the validation phase of a com-
ponent based system.

3.1 UML components

While UML is today the de facto standard notation for the analysis and de-
sign of Object Oriented systems, its application to the specification of CB
systems is just starting. We adopt the methodology proposed by Cheesman
and Daniels [7], called the UML Components, which focuses both on the rep-
resentation of the components and on the process development applicable for
this purpose. We report briefly the mainly details of the specification process
adopted in [7], divided in interacting workflows as suggested by RUP [IT].
The tasks of the requirement workflow are the business concept model and
the use case model. The former is a conceptual model, which specifies the
key concepts, their relations and a common vocabulary useful for avoiding
misunderstanding and ambiguities. It is represented by a class model, but
the classes involved, as well as their associations, are only conceptual and not
related with the specification. The use case model represents instead the in-
teraction of the system with the external users. It is represented by a Use
Case Diagram, in which each Use Case is related to a different requirement.
The system behavior and main exceptions are represented for each Use Case
in the associated scenario, following the textual structure of the Cockburn’s
Use Cases [§].

The specification workflow is subdivided into three phases: (i) the identifi-
cation of the components: starting from the requirements, an initial system
architecture is produced; (ii) the interactions among the components, which
identify the system operations and responsibilities; (iii) the specification of the
components, which specifies the operations and interfaces of the components
themselves. A business model, represented by a class diagram, is used for
modeling the business information. The involved classes are defined at the
specification level, with no relation to a specific language. The notation used

4

BERTOLINO, A., MARCHETTI, E., POLINI, A.

for the component interfaces differs from that defined in the standard UML,
in which the interfaces represent implementation constructs typical of the OO
languages and that do not require attributes or associations. In the UML
Components, an interface specification consists in: the type, the information
model (the attributes, the interface roles in the association and their types),
the specification of the operation (prototypes, pre- and post-conditions), and
the invariants. All this information is grouped together in a package represent-
ing an interface specification, which can also import information from other
packages.

In UML Components, even the concept of a component is quite different than
in the standard UML, because it is completely independent from the imple-
mentation. To differentiate the specification of a component from its imple-
mentation or the installed component, a new stereotype <<comp spec>> is
introduced which has a set of interface types. The ways in which the com-
ponents interact via the interfaces are finally described using collaboration or
sequence diagrams.

Considering the provisioning workflow, it is aimed at ensuring that the re-
leased software is consistent with the given specification of the components.
For this purpose the components can be implemented, bought, readapted or
derived from the integration of existing software.

Finally the integration workflow connects together the various components,
the user interface, the application logic and the existing software to obtain an
efficient application.

3.2 Cow_Suite

Cow_Suite [2] is a methodology for the planning and generation of UML-based
test suites, since the early stages of system analysis and modeling. Cow_Suite
stands for COWtest pluS UIT Environment, and as the name implies it
combines two original components:

1. Cowtest (Cost Weighted Test Strategy) is a strategy for test prioritization
and selection;

2. UIT (Use Interaction Test) is a method to derive the test cases from the
UML diagrams.

These two components work in combination, as Cowtest helps decide which
and how many test cases should be planned from within the universe of test
cases that UIT could derive for the system under consideration.

3.2.1 Cowtest

This strategy is based on the analysis of the UML design, and in particular on
the Use Case (UC) Diagrams, Sequence Diagrams (SDs) and Collaboration
Diagrams (CDs). Starting from the main Use Case Diagram onwards, Cowtest
considers each developed diagram and, by using their mutual relationships, or-
ganizes the model elements into a defined structure. In particular the Actors,

5

BERTOLINO, A., MARCHETTI, E., POLINI, A.

UCs, SDs, CDs are organized in an oriented graph called the Main Graph, and
the packages and their components in another one called the Design Graph.
Both of them are then explored by using a modified version of the Depth-F'irst
Search algorithm [9] for producing a forest of several Main Trees and Design
Trees which constitute the basic hierarchical structures of the Cow_Suite ap-
proach. Each tree level evidences a different degree of detail of the system
functionalities and represents for us a specific integration stage. The nodes of
the derived trees are annotated with a value, called the weight, belonging to
the [0,1] interval and representing its relative “importance” with respect to the
other nodes at the same level: the more critical a node the higher its weight.
Different criteria can be adopted to define what ”importance” means for test
purposes, e.g., the component complexity, or the usage frequencies (such as
in reliability testing [12]). Finally, Cowtest calculates the final weight of each
node relative to a selected integration stage, i.e. the product of all the nodes
weights on the complete path from the root to this node. These final weights
are used for choosing amongst the tests to execute, in two different manners:

1. by fixing the number of test cases: then Cowtest selects the most suitable
distribution of the test cases among the functionalities on the basis of the
leaves weights.

2. by fixing a functional test coverage (e.g. 80%) as an exit criterion for
testing. In this case Cowtest can drive test case selection, by highlighting
the most critical system functionalities and properly distributing the test
cases.

3.2.2 UIT

Largely inspired by the well-known Category Partition method [I3], UIT was
originally conceived [I] for UML-based integration testing of the interactions
among the objects, or objects groups, involved in a SD. Within the Cow_Suite
approach, a simplified version UIT_sd is employed, by which test derivation
is applied once for each SD as a whole and not by separately considering
the objects involved. UIT _sd automatically constructs the Test Procedures
using the information retrieved from the UML diagrams. A Test Procedure
instantiates a test case, and consists of a sequence of messages, and of the
associated parameters. UIT_sd is an incremental test methodology; it can
be used at diverse levels of design refinement, with a direct correspondence
between the level of detail of the scenarios descriptions and the expressiveness
of the Test Procedures derived. All the SDs relative to a selected integration
stage constitute the basis for the UIT_sd method. For each selected SD, the
algorithm for Test Procedures generation is the following:

1. Define Messages_Sequences: Observing the temporal order of the mes-
sages along the vertical dimension of the SD, a Messages_Sequence is
defined considering each message with no predecessor association, plus,
if any, all the messages belonging to its nested activation bounded from

6

BERTOLINO, A., MARCHETTI, E., POLINI, A.

the focus of control [15] region.

2. Analyze possible subcases: the messages involved in a derived Messa-
ges_Sequence may contain some feasibility conditions (e.g., if/else condi-
tions), formally expressed using the OCL notation [I5]. If these feasibility
conditions exist, a Messages_Sequence is divided in subcases, correspond-
ing to the possible choices.

3. Identify Settings Categories: the Settings Categories are the values or
data structures that can influence the execution of a Messages_Sequence.

4. Determine Choices: for each Message choices represent the list of specific
situations or relevant cases in which the messages can occur; for the Set-
tings Categories, they are the set or range of input data that parameters
or data structures can assume.

5. Determine Constraints among choices: to avoid meaningless or even
contradictory values of choices inside a Messages_Sequence, constraints
among choices are introduced.

6. Derive Test Procedures: for every possible combination of choices, for
each category and message involved in a Messages_Sequence a Test Pro-
cedure is automatically generated.

3.8 CDT

This section shortly summarizes our ideas in [45]. CDT (Component Deploy-
ment Testing) was motivated by the objective of allowing a system constructor
to early codify the integration test cases of a CB system, even before a searched
component is identified. In our approach, we foresee that the system developer
establishes the architecture of the system in terms of virtual components with
precise interfaces. This specification is used by: a searching team to look for
suitable components, and a testing team to develop the test cases. In this
view, we distinguish two levels of component deployment testing:

1. a single virtual component (which may be obtained by one or more real
components) is tested in isolation by the system developer;

2. an integrated set of virtual components (a subsystem) is tested in the
final application environment.

To use CDT in either case, suitable test cases must be derived for each com-
ponent and/or subsystem that we intend to test. As soon as a real compo-
nent/subsystem is identified, it can be “attached” to a CDT by providing
some information necessary for customizing the test cases that were derived
for the virtual components.

It is important that the test cases are stored in homogeneous groups, so that
they can be selectively reloaded. To do this we have reused the structure of
JUnit 18], a well-known Java testing tool, originally developed in the field of
eXtreme Programming (XP).

BERTOLINO, A., MARCHETTI, E., POLINI, A.

CDT can be structured in three groups of elements:

* testing classes: the elements in this group concern the specification of the
test cases and the interfaces of the virtual components. Elements within a
same class refer to the testing of the same component/subsystem.

* the package it.cnr.testing: this package contains all the CDT logic that
does not depend on the specific context. By means of this package, the
invocations made by the test cases to a virtual component can be redirected
towards the corresponding instances of the real components.

* the adapter elements: this group includes the elements that adapt a virtual
component to the instances of the real components implementing it. In the
current implementation, the adaptation is made via a XML file compiled
with the information needed after the real component is available.

To facilitate the assembly of a component, or of a subsystem, we have also
developed the WCT (Wrapper for Component Testing) [5]. WCT yields a
structure similar to CDT, but its aim is to dynamically redirect the invoca-
tions made by the component, when it needs a service, and to dynamically
collect information on the execution, as, for instance, the services requested
in consequence of a service supply.

4 The proposed approach

In this section we show how we foresee to integrate the two “components”
of CDT and Cow_Suite, in order to obtain a component testing environment.
We discriminate between two different levels of test cases.

4.1 Test of the single virtual component

At this stage each component is tested alone, by means of suitable stubs when
necessary. We use, for each component, its UML specification to derive the set
of test procedures that will be used to verify the conformance of its instance.
Specifically we analyze every collaboration and/or SD in which an interface,
belonging to the tested component, is involved. We use the method invocations
to derive test procedures following the UIT methodology as described in [I].
The final weights derived by Cowtest for each SD, as described in subsection
B2l are now used for associating an importance factor to each method. This
value will be used to distribute the test cases among the methods of the same
component. In particular the importance factor is obtained following the steps
below:

1. for each SD in which an interface appears, we distribute the weight of
the SD on the invoked methods belonging to the considered interface;
2. for each method we sum all the values obtained in the previous step;

3. for each interface we normalize to 1 the sum of the values associated to
its methods.

BERTOLINO, A., MARCHETTI, E., POLINI, A.

The definition of a test procedure is made using the CDT framework, that
permits to codify test cases without references to any particular real imple-
mentation. In fact the invocations of the test cases refer to the interfaces of
the virtual component, as defined in the specification workflow, that will be
implemented using yet unknown components. Moreover, by assembling pre-
fabricated components to form a virtual component, it is likely that the real
implementation could supply more functionalities than those required. How-
ever, it is worth noting that the established set of test cases only stresses the
functionalities defined in the UML specification.

In order to provide the choices useful for the definition of the test pro-
cedures, belonging to the same test case, we intend to analyze the contract
associated to each method. To this purpose particular attention is dedicated
to the preconditions which can specify parameter intervals or values useful for
test cases generation.

4.2 Test of a group of integrated virtual components

The UML Component provide a description of the architecure incrementally
obtained by the refinement of the Use Case diagrams. In particular, as illus-
trated in subsection Bl in each Use Case the complete list of the exception
conditions (conditions that cause a different workflow from the standard es-
tablished by the Use Case) are described. In order to apply the Cow_Suite
methodology we use this information to derive a high-level SD, for each Use
Case, in which the different paths are expressed using if conditions.

We can distiguish two different cases:

1. The Use Case does not have exceptions: applying the Cow_Suite method-
ology a set of test cases is derived from each SD or CD belonging to the
sub-tree rooted in the considered Use Case. For each test case the invo-
cation of the first method in its message-sequence implies the execution
of the same, unique, path as specified in the SD. Every real implementa-
tion that does not reflect the behaviour subsumed by the test case, can
be therefore refused. For deriving the test procedures we revise the UIT
methodology, adapting it to a CB context. Specifically the choices cannot
anymore refer to internal features, for instance states of the components,
but only on those supplied by the interfaces. Similarly to the previous
subsection we can analyze the contracts of the components implied in the
SD, to derive parameters for the test procedures;

2. The Use Case contains exceptions: the Cow_Suite methodology, for each
SD as described in subsection B:Z2Z2, supplies the complete list of the pos-
sible paths obtained combining the if conditions. In particular each of
them corresponds to one exception expressed inside the Use Case dia-
gram. The condition is the direct consequence of a return value of a
method invocation included in the path. Therefore, differently from the
previous case the invocation of a method could imply more than one

9

BERTOLINO, A., MARCHETTI, E., POLINI, A.

path. It is a tester task to establish the parameters for the test proce-
dures in order to cover all the paths. To this purpose a controller of the
test behaviour can be implemented to force a path, as outlined in [5].

In both cases it can be useful, for the tester team, to recover the test cases
developed during the verification of the single components in order to obtain
parameters for the test procedures generation. The diagrams used to derive
test procedures can be fruitfully used, also as a guideline for the integration
workflow. In this manner we obtain a functionally driven workflow, rather
than a structural one (as for instance it would be using a class diagram).

In order to execute the test cases on the implementation of the virtual com-
ponents we use the framework provided by CDT to execute the test cases. To
do that, each test procedure is codified in a test written in Java and stored
following the JUnit framework. Then when a suitable implementation of the
subsystem can be realized we can use the CDT tools to execute the related
test cases. Moreover by means of the WCT we can control if the pre- and post-
conditions of each method invocation in the path are violated. To this purpose
we have integrated the free tool iContract [19)] in the framework. Therefore if
a contract violation is detected, during the testing phase, we stop the test and
immediately identify the wrong interaction between the components (similarly
to what is done in [6] for OO development).

5 Conclusions

As evident, this is a paper presenting ongoing work: we have settled the ground
for the development of an integrated testing framework for CB systems by
selecting the necessary ingredients: the UML Components methodology is the
adopted modelling notation; the Cow_Suite environment will be expanded so
to allow for the derivation of the test cases from the UML specifications; and
the CDT framework, in turn integrated with WCT,JUnit and iContract, will
serve as the test driver. Several technical challenges underly this project and
they are far from having been solved. We have identified some key issues:
for instance, with regard to Cow_Suite, how can we construct meaningful
test cases for components whose behavior and interaction are dynamically
determined? With regard to CDT, how can we force the execution of the test
sequences identified by Cow_Suite on a black-box component? For these and
many related questions, discussion at TACoS will certainly provide very useful
insights.

References

[1] Basanieri, F., Bertolino, A., A Practical Approach to UML-based Derivation of
Integration Tests, Proceedings of QWE2000, Bruxelles, November 20-24, 2000.

[2] Basanieri, F., Bertolino, A., Marchetti, E., The Cow_Suite Approach to Planning
10

BERTOLINO, A., MARCHETTI, E., POLINI, A.

and Deriwing Test Suites in UML Projects Proc. 5th International Conference
on the Unified Modeling Language - the Language and its applications, Dresden,
Germany, September 30 - October 4, 2002.

[3] Bertolino, A., Mirandola, R., Modeling and Analysis of Non-functional
Properties in Component-based Systems, in these Proceedings.

[4] Bertolino, A., Polini, A., A Framework for Component Deployment Testing, to
appear in the Proceedings of ICSE 2003, Portland, USA, May 3-10, 2003.

[5] Bertolino, A., Polini, A., WCT: a Wrapper for Component Testing, Proceedings
of Fidji’2002, Luxembourg, November 28-29, 2002, to appear as LNCS.

[6] Briand, L.C., Labiche, Y., Sun, H., Investigating the Use of Analysis Contracts
to Support Fault Isolation in Object Oriented Code, Proc. of ISSTA 2002, Roma,
Ttaly, July 22-24, 2002, pp. 70-80.

[7] Cheesman, J., Daniels, J., “UML Components - a Simple Process for Specifying
Component-Based Software”, Addison-Wesley, 2000.

[8] Cockburn, A., “Writing Effective Use Cases”, Addison-Wesley, 2001

[9] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., “Introduction to
Algorithms”, 2nd Ed., The MIT Press and McGraw-Hill, 2001.

[10] Gao, J., Gupta, K., Gupta, S., Shim, S., On Building Testable Software
Components, in J.Dean and A.Gravel Eds Proceedings of ICCBSS 2002, LNCS
2255, pp. 108-121.

[11] Kruchten, P., “The Rational Unified Process - An Introduction”, Addison-
Wesley, 1999.

[12] Musa, J.D., Iannino, A., and Okumoto, K., “Software Reliability -
Measurement, Prediction, Application”, McGraw-Hill, New York, 1987.

[13] Offutt, J., Abdurazik, A., Using UML Collaboration Diagrams for Static
Checking and Test Generation, Proceedings of UML 2000, University of York,
UK, October 2-6, 2000.

[14] Orso, A., Harrold, M.J., Rosenblum, D., Component Metadata for Software
Engineering Tasks, in W.Emmerich and S.Tai Eds. EDO2000, LNCS 1999, pp.
129-144.

[15] UML Documentation version 1.3 ~ Web Site. On-line at:
http://www.rational.com/uml/resources/documentation/index.jsp

[16] Voas, J., Developing a Usage-Based Software Certification Process, IEEE
Computer, August 2000, pp. 32-37.

[17] Wang, Y., King, G., Wickburg, H., A Method for Built-in Tests in Component-
based Software Maintenance, in Proc. of the 3" ECSMR, Amsterdam, March
03-05, 1999, pp. 186-189.

[18] On-line at: http://www.junit.org

[19] iContract downloadable from: http://www.reliable-system.com

11

http://www.rational.com/uml/resources/documentation/index.jsp
http://www.junit.org
http://www.reliable-system.com

	Introduction
	Component Testing
	Existing tools
	UML components
	Cow_Suite
	CDT

	The proposed approach
	Test of the single virtual component
	Test of a group of integrated virtual components

	Conclusions
	References

