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1. Introduction

The latest years can be certainly characterized by the increasing pervasiveness of
information processing systems. Many new application fields have been explored and
many new software systems have been developed. On the one end, this testifies that
the trust on software has generally grown, to the effect that it is more and more used
in risky activities, of which the on-line banks are perhaps one of the most evident
examples to the general public. On the other end, this also makes it mandatory to
enhance the “ilities” of the produced software, while assuring a high dependability,
or otherwise the consequences can be catastrophic. This trend does not give any
sign to be going to finish yet, and as a result the complexity of software systems is
continuously rising. At the same time the software developers, to stay competitive,
need to cope with the constant reduction of the time-to-market.

The answer to these challenges is being sought on the potential to obtain complex
systems by composing prefabricated and adequate pieces of software called “compo-
nents”. Following in this direction the example provided by other engineering disci-
plines, the simple idea underneath is that building complex systems by assembling
already produced subsystems (components) should be faster and easier than rebuild-
ing them from scratch. At the same time, it is supposed that reusing subsystems,
whose qualities have been verified as part of earlier “successful” systems, should grant
a higher reliability. However, some laboratory experiments [90] and even catastrophic
events [109] have soon warned that composing components is not an easy task and
much research is necessary to enable this vision. As a consequence a new research
branch inside the software engineering area has been established, with the aim of
studying and developing methodologies and technologies for the dependable compo-
sition of components. This branch is generally referred to as the Component Based
Software Engineering (CBSE). The raising interest from both academy and industry,
and then the raising importance of this new discipline, is testified by the spreading
of devoted events (e.g. conferences specifically oriented to discuss different compo-
nent related topics, such as [70, 80, 71, 52]),journal (e.g., [19, 69]) and books (e.g.
[160, 68, 48].

CBSE has to face many challenges. In [67] the author provides a quite long list of
research topics, related to CBSE, that need to be further explored. With a particular
reference to the contents that will be discussed in the following of this thesis, major
researches are certainly necessary in the area of:

1. Modeling languages: it is necessary to develop languages to express models of the
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software systems at an high level of abstraction, ignoring at that level unuseful
technical details. In particular such languages should permit to describe the
architecture of the system in term of coarse grained component and of their
required features.

2. Technologies: it is necessary to develop suitable technologies to make easier the
integration and communication of software components. Technologies should
provide high level services that permit to easily bind together components and
make them to cooperate without annoying the software assembler with network-
ing and non business logic details.

3. Development Process: it is necessary to better understand which are the steps
that can lead to the development of a system starting from components. It is
clear that we need a highly iterative process that permits to consider features of
reused elements starting from the first phases of the development. This process
will foresee phases specifically relative to CB development, such as a provisioning
phase that should permit the identification of suitable implementation for the
components in the architecture.

4. Tools: it is necessary to develop tools that assist the developer during all the
phases of the development process. With reference to testing it is particularly
important to implement tools that make easier the test of externally acquired
components. Testing could, in fact, be fruitfully used for the evaluation and
final choice of an external component, and this step could involve many different
components.

5. Composition Predictability: two different points of view can be considered for
this requirement. The first involves to infer interesting properties of a system
composed from components, starting from the known properties of the compos-
ing components. The second point of view takes the orthogonal starting point.
In particular it consists of inferring system properties starting from the study of
the logical architecture of the global system. A particularly relevant property
that will be further discussed in the thesis is performance.

All the elements in the list are strongly interrelated with the material presented in
this thesis. For the last two points novel solutions are proposed, instead the first two
points in the list constitute the necessary background in which the solutions proposed
find their justification. Finally, in this thesis I do not discuss in detail any specific
development process even though some simple assumption on the process will emerge
from the discussion. The hypothesis is that the solution proposed will not depend on
a specific process, since whatever is the process adopted the data necessary to apply
the approaches should be always available.




This thesis is structured in three parts. Part I serves to give an introductory
overview of the particular research field in which this thesis has been conceived and in
which the solutions proposed should find opportunities for being applied. It comprises
two chapters. Chapter 2 is on modeling.

The modeling phase of complex software system received a lot of interest in the last
ten years and useful instruments to address the problem have been provided mainly
by three research field, such as:

1. Software Architecture
2. Unified Modeling Language
3. Model Driven Development

These research domains are obviously strongly interrelated and study have been con-
ducted to merge the proposed solutions.

Chapter 3 is instead devoted to the discussion of the technological aspects of CBSE.
Therefore I present in it the two most important pieces in the CBSE picture, such as
middleware and CB models.

During my PhD I mainly carried out researches to find effective solutions for func-
tional and non functional evaluation of component based systems. Part II in this
sense wants to give an overview of the solutions proposed by other research groups
for problems similar or related to those that I studied during my PhD. In particular
Chapter 4 gives an overview on testing. The presentation will provide basic notions
about testing permitting a better understanding of the following chapters. In Chapter
5, then, I discuss the solutions proposed for testing execution when the considered
System Under Test (SUT) is a software component or a subsystem composed assem-
bling components. In that chapter I provide a classification of the other solutions
proposed in this area and I highlight how the focus is generally oriented on providing
techniques to transfer test cases, established by the component developer using its
specifications, to the final component user (or system assembler). Finally T discuss
the main drawbacks behind the adoption of this kind of solutions and I explain why
it is useful to have a framework that makes the testing of components easier by using
test cases defined by the final component user starting from the specifications that
he/she has developed.

In the following chapter of Part II I introduce the problem of evaluating the per-
formance of a complex software system from the first phases of the development. The
solutions proposed by other authors are classified as belonging to two big categories.
The first intends to use analytical approaches that are based on inferences derived
from the definition of a model of the system. Generally these solutions try to attach
to the model representing the system, that usually consists of diagrams defined using
the Unified Modeling Language (UML - see Chapter 2), information concerning per-
formance characteristics. After this step the general solution is to apply formalisms
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based on sound and precise mathematics that provide as result an approximation
of the actual system performance. The second proposal instead suggests the use of
testing to empirically derive an evaluation of the performance for the system. The
idea of testing could seem counterintuitive if we consider that we want to provide
an evaluation of the performance starting from the first phases of the development
and being testing a mechanisms that requires the real execution of a system. For
this reason solutions in this area require the definition of some kind of prototype for
the system under development that should approximate as much as possible the real
system at least for what concerns “performance behavior”.

Finally in Part III I discuss three main research studies that I carried out in the
area of component evaluation. In particular in Chapter 7 I describe a framework, that
I developed in collaboration with Antonia Bertolino, to facilitate the execution of test
cases against components acquired externally. Objective of the framework is to pro-
vide a useful mechanism to the system assembler for defining test cases that could be
successively used for testing software components and subsystems. In particular using
the framework the systems assembler can codify, starting from the first phases of the
development, test cases derived from the specific requirements for a components fore-
seen by the architecture of the system. When a real implementation for a component
in the architecture is identified, the test suite will be executed against the identified
component using a dynamic adaptation step. In that manner the framework permits
to separate the codification phase, made once and for all, from the adaptation phase,
with a real benefit in terms of effort saving and reducing the risk of making mistakes
during the tests codification phase.

In Chapter 8 I discuss an approach for the derivation of test cases for system that
will be developed assembling components. The work presented is still an ongoing
research that I am exploring in collaboration with Antonia Bertolino, Paola Inverardi
and Henry Muccini. In the chapter, starting from a “critic” to model based test-
ing when the system to be tested will be derived assembling components externally
acquired, I propose a novel approach that tries to derive a behavioral model of the
system from the execution of test cases derived using an operational profile. The
derivation of the model requires the introduction of tracing mechanisms, that are
discusses in the chapter, and the study of suitable synthesizing algorithms that will
enable the derivation of a behavioral model from a set of execution traces. As final
steps the approach proposes to use the derived model to apply techniques, such as
model checking, that permit to infer properties on the system under study.

The last chapter of Part III (Chapter 9) describes a novel approach for empirical
evaluation of CB systems, that I developed and studied in collaboration with Giovanni
Denaro and Wolfgang Emmerich. The approach wants to provide a methodology for
the early evaluation of system performance from the first phases of the development. It
has been developed considering as subject of study distributed systems that use com-
plex middleware. Since middleware is difficult to model using analytical approaches




and at the same time it strongly influences system performance, we think that these
approaches cannot provide trustable prediction of system performance. The solution,
that I describe, provides a way for deriving a prototype of the system, and use test
cases, selected following an operational profile to have an empirical evaluation of the
systems performance. I report also some initial experiments that seem to indicate the
real effectiveness of the proposed approach for performance prediction.

The thesis ends with Chapter 10 in which I summarize the concepts presented and
the solutions proposed. A brief overview of possible directions for further researches
is also discussed.







Part I.

Developing Component Based
Software Systems

This part depicts the general landscape in which the researches reported in this thesis
should be considered. In particular I introduce here the instruments that consti-

tute the theoretical and practical background for the conducted studies. Therefore I
discuss:

e In Chapter 2 languages for the definition of complex software systems, focusing
the attention on architectural concerns;

e In Chapter 3 the technologies that support and make practically tractable the
implementation of component based software systems.







2. Modeling Component-based
Software Systems

In the last years software industries have witnessed a growing rate of failures in the
development of software system projects. This trend emerged mainly as a consequence
of the current need of producing more and more complex software systems, often
within strict release deadline, and once again testifies that software engineering is not
a well established and mature discipline, yet. Lack of methodologies and techniques
for raising the logical level at which it is possible to reason and make inferences about
software systems can bring to failures. In fact, as the software system complexity
increases, the importance of the overall system structure, or model of the system,
become a more significant question than the choice of particular algorithms and data
structures for the computation. Objective of modeling is, in fact, to provide an
abstraction of a physical system allowing engineers to reason about that system by
ignoring extraneous details while focusing on relevant ones [57].

Models are used by all engineering disciplines to capture significant features/infor-
mation on the system under construction, having an abstract but correct represen-
tation of the system. The information captured in the model will be necessary to
perform all the following steps towards the obtainment of the real implementation.
No one could imagine the construction of a bridge or of a car without first the study
and development of specialized models. Nowadays, software artifacts are probably
the most complex systems that have ever been constructed, therefore, as Bran Selic
recognizes [149], the potential benefits on the use of models are significantly greater
in software than in any other engineering discipline. However, in spite of the assessed
software system inherent complexity, and of the past failures in software production,
the use of clear methodologies and languages for the definition of models is, in soft-
ware industries, relatively scarce. In a recent interview to Grady Booch and Bran Selic
about the use of modeling language emerged that, only the ten percent of the projects
developed by industries are carried on using precise models [154]. Industries gener-
ally prefer, in fact, to entrust their fortune on technical advances, such as advanced
development environments, or process improvement, rather than let the programmers
spending time making software models (as further confirmation, programmers value
are often assessed as line of code per day). In fact, technical advances, even though
they can improve efficiency at the lowest level of system development, do not have
beneficial influences at the more abstract levels. Therefore implementation phases
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Figure 2.1.: The modeling spectrum (from [57])

generally begin too early, putting too much effort on the coding stage. A funny sen-
tence, that sounds paradoxical but indeed hides some deep truth, and that should
be much more considered by software developers, with reference to the coding phase,
says: “later you start before you finish”, highlighting that a longer modeling phase
could guarantee a shorter coding phase and then a shorter release time.

Figure 2.1 outlines the possible relations between code and software model, in
what can be called a “modeling spectrum”. Each category identifies a particular
use of models in aiding software developers to create running applications. On the
left end side the code is the only artifact that will be built during the development
process; informal models will be directly expressed in the programming language
used. The second category represented, identifies the case in which models are derived
from the already developed code providing a concrete visualization of the developed
system. This should make easier the understanding of the system structure and the
manipulation of it, but obviously does not have any influences on the derivation of
the code. The category in the middle, called round-trip engineering, represents the
case in which a strict relation among code and model permits to directly modify one
of them having a correspondent modification on the other. The model in this case is,
in fact, defined at a very low level having the same level of detail of the source code.
However differently from the previous case, in this situation the model is also used
to directly bring modifications to the code. In the model-centric approach (in Figure
2.1 the second from the right end side), the code is derived starting from an abstract
model that synthesizes the important features of the system, disregarding unuseful
details. From the abstract model, through several phases in which further details are
added, the final code is defined. Finally on the right end side the model-only category
represent the case in which models are used mainly to communicate idea and to better
understand a proposed solution. In this case, there is no strict relation with a real
implementation.
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2.1. Modeling Views

In our discussion we focus the attention on those tools that are oriented to the
definition of complex systems using a model-centric view. As first example of this
kind of tool we can list methods that were mainly based on the use of box and
lines diagrams. Those kinds of tool mainly emerged as sporadic initiatives inside
different organizations, each one using different symbols, and without a clear semantic
associated to each element. Obviously the produced models resulted rather rough.
The presence of ambiguities caused lot of problem towards the obtainment of a real
system consistent with the model. Instead, what we need is to develop methodologies
and techniques on which a wider agreement can be reached, and permitting to express
models with an unambiguous meaning. A mature engineering discipline needs, in fact,
to express inexpensive models from which it should be possible:

e to analyze and derive system properties

e to maintain the system

e to evolve the system

e to understand the system structure and functioning
e etc...

The research in this area is not completed yet, but certainly important results have
been marked. The instruments that I present in this chapter have earned much
attention on the area of modeling for component based software systems, and even
though they have been derived to address the modeling phase at different levels of
abstraction they are strongly interrelated, and, as we report in the following, some
studies have been conducted trying to merge them.

2.1. Modeling Views

Capturing all the aspects of a complex system in a single diagram is practically im-
possible. As a consequence an important concept strongly related to that of modeling,
is that of “model views”. The idea has been borrowed from all the other engineer-
ing disciplines in which it is normal to use different description to illustrate different
aspects of the project. Perry and Wolf [139], in that is considered one the seminal
paper in Software Architecture investigation, with reference to the civil engineering
note that the construction of a building foresee the definition of different views such
as elevation and floor plans that provide the exterior views and the horizontal views
respectively. From this analogy becomes of basic importance to identify useful point
of view for the meaningful description of software systems.

Different aspects can be considered in the organization of a model views, and which
view should be included is not unambiguous. Obviously the definition of a “model

11



2. Modeling Component-based Software Systems

views” will reflect the aspects that are considered more important by the developer of
the model (e.g. major focus on functional aspects instead of nonfunctional aspects).
Perry and Wolf [139] proposed in their work a first list composed of three different
views, such as processing view, data view and connections view. Successively
another views model was proposed by Soni, Nord and Hofmeister [156]. In their
work the authors propose a model based on four view respectively called conceptual
architecture, module interconnection architecture, execution architecture,
and code architecture. However the model that have certainly had more fortune
until now, since is often used with the Unified Modeling Language [13], has been
defined by Kruchten [105] and is generally know as the “4+1 View model”. The model
views proposed by Kruchten is constituted by:

1. logical view, shows how the system’s functionality is provided. It provides
a representation of the inside of the system in terms of static structure and
dynamic behavior, providing information about the relation that must be hold
among the elements in the system.

2. process view, deals with properties such as performance and system availabil-
ity. This aspects, which are nonfunctional properties of the system, allows for
efficient resource usage, parallel execution and the handling of asynchronous
events from the environment. Besides dividing the system into concurrently
executing threads of control, this view must also deal with the communication
and synchronization of these threads.

3. development view, describes the software’s static organization in terms of
software modules in the software-development environment. The development
view takes into account internal requirements related to ease of development,
software management, reuse or commonality, and constraints imposed by the
tool-set of the programming language. This view also supports the allocation of
requirements and work to teams, and support cost evaluation, planning, moni-
toring of project progress, and reasoning about reuse, portability, and security.

4. physical view describes the mapping of the software onto the hardware and
reflects its distributed aspect. It takes into account nonfunctional requirements
such as system availability, reliability, performance, and scalability. In this view
the various elements defined in the other view must be mapped onto the various
hardware processing node.

4+1. use-cases view, describes the functionality the system should provide, as per-
ceived by the external actors. It constitutes a sort of glue among the other views
(from this the number 4+41) driving their development. This vie can be also used
to validate the system and to verify the functioning of the system by testing

12
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a) b)
Requirements Requirements
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Figure 2.2.: From Requirements to Code

the use-case view with the customer (“Is this what the customer wants?”)and
against its real implementation (“Does the system work as specified?”).

It is worth to note that the existence of separate views of the same system, raise
problems of consistency among the different description that must be suitably ad-
dressed. In other word it is of basic importance that the information that are defined
in one view do not contrast with choices described in another view. In [131] an inter-
esting method for view consistency checking, based on model checking, is proposed
as well as other possible options are discussed.

2.2. Software Architecture (SA)

Software Architecture emerged in the last decade as one of the most promising instru-
ment to partially fill the gap between requirements and specification/code (see Figure
2.2). The traditional answer to this transformation was that something “magic” hap-
pens producing software from requirements. This magic is mainly related to the work
carried out by experts on the specific field of development, that produce specifications
from requirements and final system from the requirements, and it is the result of the
high skill that they developed during the time. As consequence the process proceeds
in an ad hoc and unpredictable way and it is almost impossible to communicate to
third parties the choices taken during the process. The disadvantages of such de-
velopment process are quite obvious, in particular with reference to the production
of complex systems, and are related to the difficulties in carrying out the activities
that we listed at the beginning of this chapter, such as early system analysis, instead
enabled by the development and use of models and common notations.

Today Software Architecture is becoming an important subfield of Software Engi-

13
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neering and many researchers are currently working on this topic, at the same time
important industries have started to introduce Software Architecture as one impor-
tant step towards the development of the final system implementation [113, 101, 28§].
However, in spite of these efforts, a general agreement on a unambiguous and precise
definition of software architectures still has to emerge. In general we can say that the
architectural design of a software system is concerned with its gross structure and the
ways in which that structure leads to the satisfaction of key system properties [128§].
In particular structural issues of interest for the SA description of a system include
the composition of components, the definition of the global control structures, the def-
inition of the protocols used for the communication, synchronization and data access,
the assignment of functionality to design elements, the physical distribution of the
component in the architecture, the scaling and performance feature of the system, the
dimension of evolution of the system and finally the selection among different design
alternatives [91]. Therefore from the architectural definition of a system it must be
possible to identify the three basic elements that characterize a SA, such as compo-
nents, the elements in which the logical computation is “located”, the connectors,
the elements that mediate the interactions among the components, and the proper-
ties, such as pre/post conditions, signatures, and RT specs. This information will be
useful for construction and analysis phases.

Abstracting away from implementation details a good architecture description makes
a system intellectually tractable and, as observed in [88], it plays a basic role in at
least six aspects of software development:

1. Understanding: raising the level of abstraction at which the system is described,
and disregarding unimportant details, Software Architecture provides a useful
mean to describe the software system in a more understandable way. Facilitating
also communication between teams.

2. Reuse: Reusing piece of code is today a central target in order to reduce the time
to market in the development of complex system (we will extend the discussion
on this topic in the following sections). In this area Software Architecture
can play a central role grouping at a high level of abstraction the necessary
functionalities and at the same time identifying the components that should
provide such functionalities. Toward this objective the idea of framework and
architectural design patterns can give an important contribution [86, 147, 59].

3. Construction: The architectural description provides a partial blueprint to the
developers. In it, the different components and the relations among them are
showed. Important objective for the developers is to follow the guidelines pro-
vided by the SA obtaining then an implementation that is consistent with the
architectural description.

14



2.2. Software Architecture (SA)

4. Analysis: Architectural description provide new opportunities for software anal-
ysis. In particular it can enable the identification of system lack at an early stage
of the development reducing the cost spent to solve identified problem. Many
different kind of analysis are possible such as:

e system consistency checking

e conformance to constraints imposed by an architectural style
e dependence analysis

e conformance to quality attributes

e test derivation

5. Fwvolution: Software architecture can expose the dimensions along which a sys-
tem is expected to evolve. By making explicit the “load/bearing walls” of a
system, system maintainers can better understand the ramifications of changes,
and thereby more accurately estimate costs of modifications.

6. Management: Having an intellectually tractable description of the system sim-
plifies the action of developer that are responsible of system maintenance. Ob-
viously it is important at this stage that software developer really maintain
consistency with the architectural description.

These aspects mainly correspond to those advantages promised by the definition of
a good model that we listed at the beginning of this chapter and testify that SA
descriptions lead to the definition of good software models.

2.2.1. Architectural Description Languages (ADL)

So far we mainly discussed the benefits that a software engineer can gain from an
architectural description of the system under construction. We also discussed the main
motivation that brought to the success of this new discipline. However it is possible
to take advantage from a description of a system at the architectural level only if the
tools used to describe that system permit some kind of analysis and inference. This
generally means that it is necessary to develop formal languages for SA description.
In that manner it will be possible to unambiguously define specification of intended
system architecture, avoiding the problem of different interpretations, from different
stake-holders, of the same architectural description. As noticed in [91] some important
properties should be embodied by a good language for architectural definition in order
to obtain a valuable description. They are:

e Composition
“It should be possible to describe a system as a composition of independent com-
putational elements and intercommunication elements”. As a consequence it
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should be possible for the system developer to divide, in smaller units, complex
software systems. At the same time the defined units should be functionally un-
derstandable in isolation, and finally it should be possible separate implementa-
tion level and architectural level concerns. The defined units can be successively
reused in different “compositions” describing other systems.

Abstraction

“It should be possible to describe the components and their interactions within
software architecture in a way that clearly and explicitly prescribes the abstract
roles in a system”. This property permits the description of a system in terms of
roles of each elements in the structure but without introducing implementation
details such as definition/use dependencies among the internal modules hidden
behind the interfaces.

Re-usability

“It should be possible to reuse components, connectors, and architectural patterns
in different architectural descriptions, even if they were developed outside the
context of the architectural system”. The reuse is one of the basic feature of
component based software engineering, particularly important can be the reuse
of architectural level elements with the possibility of further instantiation and
refinement.

Heterogeneity

“It should be possible to combine multiple, heterogeneous architectural descrip-
tions”. Two different level of heterogeneity should be addressed. The first con-
cerns the ability of combining different architectural patterns in a single system
- e.g. components in a pipe-filter system can be conceived using a layered ar-
chitecture. The second aspect of heterogeneity concerns the possible necessity
of combining elements that will be implemented using different technologies.
In fact as noted in [135], the choice of a specific technology, as for instance
middleware, affects architectural descriptions. An ADL could usefully provide
mechanisms to consider the integration of different technologies.

Configuration

“ Architectural descriptions should localize the description of system structure,
independently of the elements being structured. They should also support dy-
namic reconfiguration”. As a consequence a language for architectural descrip-
tion should separate the definition of a composite structure from that of the
constituting elements. Dynamic reconfiguration instead permits to describe the
evolution of the architecture also at run-time.

Analysis
“It should be possible to perform rich and varied analysis of architectural de-
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scriptions”. This requirement address the ability to support automated and
non automated reasoning about architectural description. Analysis can concern
functional and non functional properties, such as performance and resource us-
age, and permit to reason about the effectiveness of the chosen architecture.

It has been observed that traditional programming languages present several weakness
in the complete satisfaction of the properties listed above, lacking specific support for
expressing architectural abstractions, forcing the researchers to start the development
of specific languages for architectural description - generally referred as ADL. Ma-
jor lack of traditional programming languages concern the low-level view that they
generally provide of the interconnections among the components. These languages
generally foresee, in fact, few communication paradigms for the definition of the in-
tercommunication among the components that correspond to those directly defined
in the language - as, for instance, procedure call or shared memory. Moreover with
traditional languages the interconnections structure tend to disappear inside the def-
inition of the computational elements (components), making harder the satisfaction
of different properties such as, for instance, “composition”. Finally traditional pro-
gramming languages have a weak support for abstraction, generally requiring explicit
definition of dependency among the different components (as the “include” statement
of the C language), embedding in that way dependency relations inside the component
definition. In [91] many other problems related to the use of traditional programming
language for architectural description are discussed.

Most important feature of languages specifically thought for architectural descrip-
tion, has been the identification of two “first-class” elements such as Components
and Connectors, promoting then the separate definition of the intercommunication
protocols among the components. If a component is the element that contains com-
putation and state of the system the connector is the element that specifies relations
among the components and the medium that permits the interactions among the
components. The identification of the connector as a first-class element is probably
the main improvement and difference from traditional programming languages. Con-
nectors description increases the expressiveness of intercommunication among com-
ponents raising the complexity of the interactions that can be described. A sort of
backbone can be produced in which the connector constitutes, as in hardware board,
the intercommunication framework among the components that, in such manner, can
be replaced with other functional equivalent components, maintaining the correct be-
havior of the system. An Architecture Description Language should provide primitive
connectors and some mechanisms to create composite connectors, making it possible
to define more and more complex interactions.

The provisioning of two different mechanisms for treating computation and com-
munication is particularly useful considering that:

e connectors can be quite complex, and no single component is the right place in

17



2. Modeling Component-based Software Systems

which to put this complexity;

e it must be possible to identify the definition of a connector as a whole. This task
becomes particularly difficult if the definition of the communication paradigm
is spread across several components;

e connectors define a template of interactions that could be instantiated more
times in the same system;

e components can be used differently depending on the connector to which they
are connected.

Several ADL have been defined and certainly further evolution will appear in the
future. Below I report a short list of some important examples of ADL with references
for the interested reader:

e Darwin [4, 115]

Wright [21, 89

C2 [1, 119

Unicon [151]

Rapide [14, 112]

All these languages provide suitable mechanisms for architectural description, even
though they often satisfy the properties listed above only partially. Each one of them
provides, however, some distinctive capabilities. For instance; C2 uses an event-based
style to describe the interactions among the components; Darwin supports the anal-
ysis of distributed message passing system; Rapide provides tools for architecture
simulation (to notice, it does not recognize connectors as first class elements); Uni-
con provides compilers for architectural design with heterogeneous component and
connector types; Wright supports the formal specification and analysis of the inter-
actions among architectural components and connectors. It uses CSP [100] as the
basis for formally describing the behavior of components and the interactions among
components described by connectors.

2.2.2. Architectural Styles

An important concept emerged in the field of SA is that of an Architectural Style.
In particular, the question which architectural styles address, is how to leverage past
experience to produce better design? The idea is to specify a precise idiom that
characterizes a family of systems that are related by shared structural and semantic
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properties [20]. Many architectural styles have been used unconsciously by system
developer over the years as system designers recognized the value of specific orga-
nizational principles and structures for certain classes of software. Certainly termi-
nologies as Client/Server architecture, or Pipeline architecture and many other, have
been defined as consequence of the necessity of communicating, in few words, complex
concepts related to complex system architectures.

To really provide such conceptual leverage, architectural styles must define:

e A precise vocabulary of design elements (components and connectors) types.

e A set of constraints that define the permitted compositions of those elements.
For example, the rules might prohibit cycles in a particular pipe-filter style,
specify a n-to-one relationship in a client/server organization.

e Semantic interpretation, whereby compositions of design elements, suitably
constrained be the design rules, have well-defined meanings

e Analyses that can be performed on systems built using that style. For instance
an important kind of analysis that can be carried out given an architectural
definition, can be deadlock detection and other behavioral properties for a client-
server message passing system as illustrated by [102, 161].

In [91] a rich list of identified architectural styles with a short discussion of related
advantages and disadvantages for each style is presented. They should constitute
the basic instruments of a good software architect that should recognize the more
appropriate architectural style for each system under development. Examples of ar-
chitectural style are:

e Pipes and Filters architectures

e Blackboard architectures

Publish-Subscribe or implicit invocation architecture

Call and return architecture

Layered architecture

Client/Server architecture

2.3. The Unified Modeling Language (UML)

2.3.1. UML generic

UML [18] is an acronym that stands for Unified Modeling Language. Nowadays it
is certainly the most famous and used language to define software models. Tt is
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a standard language for specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business modeling and other non-software
systems. The UML represents a collection of best engineering practices that have
proven successful in the modeling of large and complex systems. The UML is a very
important part of developing object oriented software and the software development
process. The UML uses mostly graphical notations to express design of software
projects. Using the UML helps project teams communicate, explore potential designs,
and validate the architectural design of the software.
The primary goals that drove the design of the UML were [55]:

1. Provide users with a ready-to-use, expressive visual modeling language so they
can develop and exchange meaningful models.

2. Provide extensibility and specialization mechanisms to extend the core concepts.

3. Be independent of particular programming languages and development pro-
cesses.

4. Provide a formal basis for understanding the modeling language.
5. Encourage the growth of the OO tools market.

6. Support higher-level development concepts such as collaborations, frameworks,
patterns and components.

7. Integrate best practices.

In the following of this chapter I give a brief overview of the main features of the
UML, considering that the upcoming specification of UML consists of four different
documents for an amount of more than one thousand pages. In particular I focus the
attention on the new mechanisms that have been added to the UML in the version
2.0. Until now UML have been generally used to model object-oriented system at
a quite low level of abstraction. The new version instead will enclose mechanisms
that have been mainly borrowed form the software architecture research field, trans-
forming in that way UML in a powerful mechanism for modeling component-based
software system. Another important requirement in the revision of UML has been
the introduction of a precise semantics for each element, towards the real affirmation
of the model driven development vision (that I illustrate in the last section of this
chapter).

2.3.2. UML a Bit of History

Identifiable object-oriented modeling languages began to appear between mid-1970
and the late 1980s as various methodologists experimented with different approaches
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to object-oriented analysis and design. The number of identified modeling languages
increased from less than 10 to more than 50 during the period between 1989-1994.
Many users of OO methods had trouble finding complete satisfaction in any one
modeling language, fueling the "method wars". By the mid-1990s, new iterations of
these methods began to appear and these methods began to incorporate each others
techniques, and a few clearly prominent methods emerged.

The development of UML began in late 1994 when Grady Booch and Jim Rumbaugh
of Rational Software Corporation began their work on unifying the Booch and OMT
(Object Modeling Technique) methods. In the Fall of 1995, Ivar Jacobson and his
Objectory company joined Rational and this unification effort, merging in the OOSE
(Object-Oriented Software Engineering) method.

The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the UML
0.9 and 0.91 documents in June and October of 1996. During 1996, the UML authors
invited and received feedback from the general community. They incorporated this
feedback, but it was clear that additional focused attention was still required.

While Rational was bringing UML together, efforts were being made on achieving
the broader goal of an industry standard modeling language. In early 1995, Ivar Ja-
cobson (then Chief Technology Officer of Objectory) and Richard Soley (then Chief
Technology Officer of OMG) decided to push harder to achieve standardization in the
methods marketplace. In June 1995, an OMG-hosted meeting of all major method-
ologists (or their representatives) resulted in the first worldwide agreement to seek
methodology standards, under the aegis of the OMG process.

During 1996, it became clear that several organizations saw UML as strategic to
their business. A Request for Proposal (RFP) issued by the Object Management
Group (OMG) provided the catalyst for these organizations to join forces around
producing a joint RFP response. Rational established the UML Partners consortium
with several organizations willing to dedicate resources to work toward a strong UML
1.0 definition.

In January 1997 IBM, ObjecTime, Platinum Technology, Ptech, Taskon, Reich
Technologies and Softeam also submitted separate RFP responses to the OMG. These
companies joined the UML partners to contribute their ideas, and together the part-
ners produced the revised UML 1.1 response. The focus of the UML 1.1 release was to
improve the clarity of the UML 1.0 semantics and to incorporate contributions from
the new partners. It was submitted to the OMG for their consideration and adopted
in the fall of 1997.

Nowadays, after seven years, the UML is undergoing under a major revision that
will finish with the forthcoming release of the UML 2.0 specification; currently under
finalization stage.
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Figure 2.3.: UML Structure and Behavioral Diagram

2.3.3. UML Diagrams

Diagrams contain graphical elements arranged to illustrate a particular aspect of the
system. A complete description of a system generally requires several diagrams of
different type. Each diagram type can belong to one or more view depending on the
contents of the diagram. The “44-1 model views” is not the only model that can be
used to organize UML diagrams, even though this was the model that the UML’s
creators had in mind.

In the upcoming version 2, the UML provides thirteen different diagrams that can
be used to specify a software model. Figure 2.3, from [169], provides a graphical view
of how this diagrams can be organized in two different categories, such as:

e Structure diagrams mainly represent static concerns about, the system un-
der development. The diagrams that are included in this class are: Class Di-
agram, Object Diagram, Component Diagram, Deployment Diagram, Package
Diagram, and Composite Structure Diagram.

e Behavioral diagrams using the diagrams in this class the developer can specify
behavioral concerns. In this category are included: Use Case Diagram, Activity
Diagram, Statechart Diagram, and four different types of Interaction Diagram.

In the following we provide, for each diagram, a very short description, just to give
a glimpse on the UML modeling power. The interested reader can refer to [81, 169]
for more detailed information.
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Class Diagram. A class diagram provides a static view on the relation among the
classes in the system. Each class defines the properties and behavior of a type of
object. Different kinds of relations can be defined between classes, such as: associa-
tions, generalization, dependency, and abstraction [81]. Graphically a class diagram is
represented as a set of box, each box representing a class, and line connecting them,
each line representing a relation between the class.

Object Diagram. An Object Diagram shows a snapshot of the system during its exe-
cution. It can be considered as a variant of the class diagram in which the relationship
shown are only those actually active in a precise instant during execution.

Component Diagram. In the UML a component is an element from a logical archi-
tecture that encapsulates artifacts (source code or executable) that provide specific
services. Therefore a component diagram shows in a single picture more components
and their respective relations.

Deployment Diagram. The deployment diagram depicts the runtime architecture
of devices, execution environments, and artifacts that reside in this architecture. It
is the ultimate physical description of the system topology, describing the structure
of the hardware units and the software that executes on each unit. Graphically a
deployment diagram contains a set of boxes, representing computational resources
upon which artifacts may be deployed and the respective deployed artifacts, and line
connecting the node, representing communication paths.

Package Diagram. A package provides a grouping mechanism for organizing UML
elements. In UML, a package is used to group elements and to provide a namespace
for the grouped elements. Graphically a package is represented as the classical folder
symbol, with the name of the package specified in the upper-left smaller rectangle.
Inside the “folder” the specific content is represented. It is possible to have a hier-
archy of packages. In a package diagram one or more packages are represented with
corresponding relations within them.

Composite Structure Diagram. The composite structure diagram provides a mech-
anism to describe the connections between the elements that work together within a
particular classifier such as a use case, object, collaboration, class, or activity.

Use Case Diagram. Use-case diagrams shows the relations among the external ac-
tors and the functionality provided by the system. The description of the use case
is generally done using a textual form. Different from have been proposed for the
textual description each one foreseeing different class of entry. Probably the most
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used proposal is that of Cockburn [65]. A use case diagram is graphically represented
as a set of stick man, representing the actors, a set of oval, representing the use cases,
and line connecting the use cases to the actors interested in the specific uses case.
Relation, such as defined for the classes, can be defined among actors and use cases.

Statechart Diagram. A state machine can be a complement to the description of a
class. It shows all the possible states that can be assumed by the object of the class
during it life cycle. At the same time the state machine report the event that has
triggered the state transition. The UML 2 define two different kind of state machine:

e the behavioral state machine describes all the details of a class life cycle.

e the protocol state machine focuses only on the transition of states and rules
governing the execution order of operations. This kind of state machine can
provide guidelines for the implementation of a specific interface. At the same
time the protocol state machine define the rules that must be followed by exter-
nal elements to correctly interact with the described class (component). Clearly
the introduction of this kind of state machine fosters the adoption of the UML
for the description of component based software.

Graphically a state machine is represented as a set of node (the states) and directed
edge (transitions). Each edge is generally marked with the event that has caused the
state transition.

Activity Diagram. An Activity Diagram shows a sequential flow of actions. It is
used to describe the activities performed in the a general process workflow. Typical
situation in which an activity diagram is used, are:

e to capture the activities that will be performed when an operation is executing.

e To capture the internal actions carried out in an object when a methods is
invoked

e To show how a set of related actions can be performed and how they affect
objects around them

e To show how an instance of a use case can be performed in terms of actions and
object state changes

e To show how a business works in term of workers, workflows, organization, and
objects.

24



2.3. The Unified Modeling Language (UML)

Sequence Diagram. A sequence diagram is a particular kind of interaction diagram,
it shows a dynamic collaboration between a number of objects, in terms of the mes-
sages that this two objects have exchanged during a period of time. Graphically a
sequence diagram is represented with a line of rectangles, representing the objects
involved, and with vertical line attached to each rectangle, representing the life-line
of the associated object. Within the life-line arrows represent messages exchanged
among the objects. Starting from the last version of the UML it is possible to give
further semantics to the diagram representing possible behaviors such as alternative
messages, parallel messages, loops, critical regions, weak sequencing, strict sequencing
and other.

Communication Diagram. The communication diagram is another kind of interac-
tion diagram, that results to be similar to a sequence diagram. However communica-
tion diagram focus the attention also on the existing relations among the collaborating
objects. The sequencing of messages is given through a sequence numbering scheme.
Graphically a communication diagram contains rectangle, representing the collaborat-
ing objects, that are linked by line, representing the existence of a relations between
the objects. Finally a small arrow is placed alongside the line for each message that
is being modeled between the two objects, the arrow is labeled with a number that
express the order following the numbering scheme.

Interaction Overview Diagram. An interaction overview diagram define interactions
through a variant of activity diagrams where the nodes are actually interactions.

Timing Diagram. Timing diagrams are used to show interactions among objects
when the primary objective is to reason about time. Timing diagrams focus on
conditions changing within an among life-lines along a linear time axis.

It is worth to note that it is possible to extend the set of elements that can be used
within a diagram using the extension mechanisms that the language provide. The
language provides three standard way to extend the set of elements available, tagged
values, constraints and stereotype. Using this mechanisms the modeler can use the
predefined elements to create new elements with added semantics. An important
tool for defining extension is the Object Constraint Language (OCL) [172], that is a
language defined by the OMG that permit to express logical constraint on the element
of a diagrams. Another alternative to extend the UML is to intervene at the meta
level defining in such manner a UML like notation.
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2.4. Using UML for Software Architecture and
Component-based System Modeling

The UML has been initially defined to aid the development of object-oriented systems,
providing visual representation for OO related concepts. From the beginning it was
clear that the language could be used to describe any kind of systems, even non soft-
ware systems. Thanks to the extension mechanisms that the UML provides, several
initiatives started trying to adapt/extend UML for use in different development fields.
The increasing availability of tools for diagrams management and the spreading diffu-
sion of the language, pushed other modeling communities, such as the SA community,
to study the possible use of UML for architecture description, even though the first
versions of the UML did not provide a precise and clear semantic for the elements in
the diagrams. An obvious strong relation exists between the UML and the software
architecture, being both two instruments for software modeling. However the use
of the UML for software architecture description, even though it can appear quite
natural, is not so obvious. Three main concepts, whose importance has been assessed
by the software architecture community, are not directly supported by the UML. In
particular the UML lacks direct supports for modeling and exploiting architectural
styles, explicit software connectors, and local and global constraints. Even though the
upcoming version 2 of the UML provide a better support for describing connectors,
such as ports and protocol state machines, there is not yet a complete inclusion of the
software architecture abstractions, such as those discussed in Section 2.2, in the UML.
Then two different approaches can be thought for representing software architecture
using the UML:

e use the extension mechanisms to define constraints on the UML meta model

e extend the UML meta model defining new elements to represent the lacking
abstractions

Of this two options only the first can be considered practical. The second option, in
fact, disable all the advantages of using the UML for architectural description. The
resulting language , in fact, will not be anymore standard and all the extension will not
be understood by any one of the UML compliant tool. Certainly the most extensive
work on this topic is that of Medvidovic et al. [120]. In their work the authors
proposed possible extensions to the UML. In particular they successfully extended
the UML to represent software architectures following the C2 [1], Wright [21], and
Rapide [14] styles.

2.4.1. UML Components

“UML Component” is a proposal for using the UML to model component based soft-
ware systems. It has been one of the the first proposal focused on the use of the UML
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for component-based system description, and it has been described by Cheesman and
Daniels in [63]. The idea, underneath this proposal, is to increase the number of
elements that can be suitably used to represent software components via the defini-
tion of particular stereotypes. However the “UML Component” proposal seems to me
having big lack for what concerns the support for architectural concepts such those
highlighted by the Software Architecture community (e.g. connectors), and certainly
is nowadays overtaken by the advent of the UML version 2, that as illustrated in the
previous section, provide better mechanisms for CBS description. However in their
book Cheesman and Daniels illustrate an interesting iterative process, illustrated in
a fairly intuitive way in Figure 2.4, for the development of the component based
software system that can produce good results.

Business requirements
1 Use Cases
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Requirements

Existing elements

Business conceptual
models Technological

r Constraints —l ’7 Components —l

Use Cases ___| : i System
Models Design H Provisioning H Integration

Components Architectures 1 |
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Figure 2.4.: “UML Component” Development Process (from [63])

2.5. Model Driven Architecture (MDA)

The most advanced frontier in the use of models in software systems production is
certainly that prefigured by the Model Driven Development (MDD) methods. The
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Figure 2.5.: The three main steps in the MDA process

idea underneath this visionary approach is the possibility of having models automat-
ically transformed into the corresponding final executable code. As a result a new
generation of languages and tools will be available to the system developer, providing
a level of abstraction never experimented until now. The benefits of such an approach
are obviously numerous, most important, from an architectural point of view is the
possibility of automatically verifying models on a computer, that will be successively
better refined to become the final program. In Chapter 9 I present an approach,
developed in cooperation with Giovanni Denaro and Wolfgang Emmerich, that will
certainly benefit from the availability of tools suitable for the MDD analysis, in par-
ticular for what concerns the performance analysis. The importance of having tools
for the analysis of the system architecture from the first phases of the development
has been generally recognized as one of the basic factors to reduce the risk of missing
system requirements in the final system implementation, with corresponding loose of
big quantity of money, since the fundamental decisions are taken in the early stage of
the development.

The most concrete effort towards the realization of the MDD view is certainly
the Model Driven Architecture (MDA) initiative. As defined by the OMG, that is
the no profit organization that has launched and is driving the project, MDA is a
way to organize and manage enterprise architectures supported by automated tools
and services for both defining the models and facilitating transformations between
different models types. MDA is based on the use of the forthcoming version of the
Unified Modeling Language that will be based on a precise semantic that will enable
the unambiguous transformation of software models. A basic transformation in MDA
is that between the Platform Independent Model (PIM) and the Platform Specific
Model (PSM).

the Platform Independent Model. The PIM is the first model that will be defined
during the modeling of a system following the MDA method. A the name says it does
not contain any particular reference to a specific platform on which the system will
be successively deployed. Developing the model the architect will concentrate his/her
attention to how the system can better support the particular business for which it
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Figure 2.6.: MDA interoperability using bridges [104]

is developed.

the Platform Specific Model. When the PIM has been defined the next step will be
to transform it in the PSM. This model adds to the PIM all the specific information
that will better adapt the model to a specific platform. For instance an Enterprise
Java Beans (EJB - see Chapter 3) PSM is a model of the system in terms of EJB
structures. From the PSM it will be possible to directly and automatically obtain the
final code/implementation.

In the MDA view the transformation between the different models will be executed
in automatic with the support of specific tools following the steps represented in Figure
2.5. Since the level of detail of the PSM is fairly high the automatic transformation
into the final code is not a so difficult and new task. The real challenge of the MDA
approach is the transformation between the PIM and PSM. There is not a wide
number of tools enabling the MDA view, yet, however considering the benefits that
the real success of this methodology to software production will bring it is not difficult
to foresee that many tools will be released in the near future (first examples of MDA
tool are emerging, in [11] a short list is provided).

Among the several benefits that the MDA development process will bring such as
productivity, maintenance, and documentation, of particular importance are
certainly portability and interoperability that have nowadays great importance
since the continue integration of different systems. In fact as Figure 2.6 well illustrate
the PIM model can be transformed in different PSM and at the same time this
models contains all the information that can be automatically used by suitable tools
to generate bridges permitting the easier interoperability of different parts of code
deployed on different platforms.
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Software Systems

The previous chapter gave an overview of the most advanced methodologies and lan-
guages developed to describe complex software systems. However, the development
of modern software systems probably would not even possible without the great de-
velopment in the area of software technologies that we had in the last years. We can
certainly affirm, in fact, that the area of software tools and technologies to aid the
development of complex software systems is far more mature then the correspondingly
modeling tools and languages.

Among the technologies defined to assist the implementation of complex software
system, two of them received a lot of interest from research and industry communities.
They are:

e middleware
e component based software models

These technologies are strongly interrelated and nowadays commercial products, such
as J2EE and .NET [150, 12], provide mechanisms of both categories. As a general
rule we can distinguish middleware functionalities as those addressing interoperability
and distributions issues, instead component models mainly focus on reuse issues, and
define rules for packaging and for accessing to services. In the following I separately
discuss middleware and component-based software highlighting which have been the
motivations that lead to their development and for each area some of the different
models and solutions proposed.

3.1. Middleware

In the last years many different causes contributed to the increasing demand for
distributed software systems. Particularly relevant are both the recent trend to have
company spread in many different places, also as consequence of the great number of
companies merging, and the advent of the World Wide Web that led to the creation
of “e-facilities”, i.e. to the possibility of creating a set of electronic services that is
going to have a great impact on the way in which services (provided by government
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or commercial companies) are going to be provided and used. In the development
of a new application some general non-functional requirements/features lead to the
choice of a distributed architecture, instead of a centralized one, in particular the
most important are [76]:

1. Scalability: The system must be capable of accommodating growing load in
the future. Distributed system can be "easily" scalable adding new computers
in the original configuration;

2. Resource Sharing: Often is necessary to share hardware, software and data;

3. Heterogeneity: Use of different technology for the implementation of services
and availability of legacy components (differences can be present at the level
of programming languages, operating systems, hardware platforms, network
protocols);

4. Fault-Tolerance: Operations should continue also in presence of faults. Gen-
erally obtained by means of redundant components;

5. Openness: Distributed system can be easily extended and modified with new
functionalities.

It is worth noting that performance issues it is not per se a motivation that should lead
the software engineer to the choice of a distributed architecture. In fact, even though
the possibility of having real parallelism through the use of more real processors,
generally not available on single PCs, the benefits obtainable could be spoiled by the
higher cost (up to 2000 times more) of interprocess communications. In his book
[76] Emmerich observes that the option for a distributed system should be a “last
chance option”, in the sense that it is better to avoid it if not really necessary. In fact
development difficulties and therefore costs are considerably higher in the development
of a distributed system.
In [152] the authors provide the following definition for a distributed system:

A distributed system is a collection of processors that do not share memory
or a clock. Instead, each processor has its own local memory, and the
processors communicate with each other through various communication
lines. The processors in a distributed system vary in size and function.
They may include small microprocessor, workstations, minicomputers, and
large general purpose computer systems.

A distributed system must provide various mechanisms for process syn-
chronization and communication, for dealing with the deadlock problem,
and for dealing with a variety of failures that are not encountered in a
centralized system.
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The easy possibility of connecting different hardware systems, the trend in companies
development and the emerging requirements, listed above, enormously raised, in the
last years, the need for distributed software systems. However the development of such
complex software systems requires the availability of tools and technologies that make
it a “feasible the task”. The development of a distributed software is, in fact, far more
complex than the development of a centralized one. For this reason it is useful to hide,
as much as possible, to system developers the issues strictly related to distribution
providing higher level services, and permitting to them to concentrate the attention
on the business logic of the application. This is the rational for the development of
what is generally referred as middleware. As a general idea middleware is a kind of
connectivity software that allows applications and users to interact with each other
across a network. However it is hard to define middleware in a technically precise way.
Middleware components have several properties that, taken together, usually make
clear that a component is not an application or platform specific service. In particular
middleware component should provide services that are generic across applications
and industries, that run on multiple platforms, that are distributed, and that support
standard interfaces and protocols [33]. For the sake of clarity can be useful to further
extend the discussion and provide some example of middleware starting from the
requirements above.

A middleware service meets the need of a wide variety of applications across many
industries. For example a message switch that translate messages between different
formats, is considered middleware if it makes it easy to add new formats and is
usable by many applications. If it deals with formats only for a single industry and
is embedded in a single application, then it is not middleware. The second properties
requires that middleware service must have implementation that run on multiple
platforms. Otherwise, it is a platform service. An example of middleware are Data
Base Management Systems (DBMSs). To have good platform coverage, middleware
services are usually programmed to be portable with minimal and predictable effort.
The third properties requires that a middleware service must be distributed. That
is, it either can be accessed remotely or enables other services and applications to be
accessed remotely. A remotely accessible middleware usually includes a client part,
which supports the service’s Application Programming Interface (API) running in
the application’s address space, and a server part, which support the service’s main
functions and may run in a different address space. Finally the fourth properties
requires that a middleware service supports a standard protocol or at least a published
one. That way, multiple implementations of the service can be developed and those
implementations will cooperate. Moreover a middleware service should support a
standard API. A middleware service is transparent with respect to an API if it can
be accessed via that API without modifying that APIL

Figure 3.1, from [77], wants to give a graphical representation of the description pro-
vided above, suggesting that middleware can be considered in respect to the ISO/OSI
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Figure 3.1.: Middleware in Distributed System Construction

standard as mainly providing 5th and 6th layer services. Figure 3.2, from [165], gives
example of services that are generally considered or not middleware (in the figure the
hierarchy among the middleware layers do not imply a real relation).

Main objective of middleware is to make transparent, to the average application
engineer, the new dimensions of complexity introduced by distributed systems. Em-
merich [76] identifies eight main dimensions for desirable transparency features. The
considered dimensions are not necessarily orthogonal and could not be possible to
pursue one of them without considering some other. The eight dimensions listed in
[76], that corresponds to new issues introduced by the distribution, are:

1.

Access Transparency, the interface to a service do not depends from the
location of the components that use it. Otherwise is not an easy task to move
the service to a different host;

. Location Transparency, a request for a service can be made without knowing

the physical location of the components that provide the service. Otherwise
moving components becomes almost impossible;

. Migration Transparency, components can be migrated to different host with-

out that the user are aware of that, and that the developer of clients components
take a special consideration;

. Replication Transparency, the user of a service and the application pro-

grammer are not aware that a service they are using are provided by a replica;

. Concurrency Transparency, several components may concurrently request

services from a shared component while the shared component’s integrity is pre-
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Figure 3.2.: Middleware examples (among middleware elements, hierarchy is not
meaningful)

served and neither users nor application engineers have to see how concurrency
is controlled;

6. Scalability Transparency, to the users and designers is transparent how the
system scales to accommodate a growing load;

7. Performance Transparency, the users and the application programmers are
not aware of how the system performance is actually achieved;

8. Failure Transparency, the user and the application programmer are unaware
of how the system hides the failure. They believe that the service cannot fail;

Figure 3.3 shows a kind of “X is necessary for Y” relation among these different kinds
of transparency

3.1.1. Distributed Computing Models

The restriction of no shared memory and information exchange through messages
is of key importance in distributed computing system and it makes the difference
between this kind of systems and shared memory multiprocessor computing systems.
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Figure 3.3.: Dimensions of Transparency and Relations among Dimensions (from [76])

Distributed computing can be logically achieved through one or more of the following
[165] model:

1. File Transfer Model: this was one of the first model trying to exploit the re-

sources distribution. Following this paradigm the applications, that need data
residing in another machine, make the log-on on it and then transfer the data.
Therefore, when the transferring is ended, the foreseen computations are per-
formed off-line. In this model the distribution regards only the data and it is
applicable only with low load and low concurrency.

. Client /Server Model: Client/server model is a concept for describing commu-

nications between computing processes that are classified as service consumers
(clients) and service providers (servers). In this context C/S refers to a software
architecture and not to an hardware architecture.

. Peer-to-Peer Model: following this paradigm more processes, located on dif-

ferent machines, cooperate to reach the solution of the problem. In different
moments a process perform both server and client duties. This paradigm is
receiving more and more interest from the scientific community, also because
it permits to reach great computation power collecting the spare CPU cycles
of voluntary users sitting in front of their desktop. Interesting campaigns have
been promoted using this distributed paradigm such as the “Intel Philanthropic
Peer-to-Peer Program” [8].

The Client/Server model is certainly the most used paradigm for business applications,
nowadays, and for this reason I provide in the following some more information on it,
instead the discussion on the other two paradigms it will not be further extended.
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Client/Server Computing. Client/Server computing attempts to leverage the capa-
bilities of the network used by a typical corporations, that are composed of many
relatively powerful workstations and a limited number of dedicated servers. Its im-
portance is growing up enormously in the last years, also thanks to the advent of the
World Wide Web and related technologies, such as web servers, browsers, HT' TP and
so on. In a client/server application it is possible to distinguish at least among three
different levels of computation:

o Graphical interface: it concerns the final user interface and how the results of
the computations will be provided to the user;

e Business logic: it can be considered the core of the specific application and
concerns the logic for what the application has been developed for;

e Data Management: it concerns the retrieval of the data relevant for the appli-
cation.

The different levels of computation listed above can be differently structured on differ-
ent tiers and depending on this distribution different client/server architectures have
been identified. In particular we can have [107]:

e two-tier architectures in which the three logical levels are distributed among
the client and the server with a further distinction among fat-client/thin-server
architecture, in which the business logic is mainly put in the client, and thin-
client/fat-server, in which the business logic is mainly put in the server.

o three-tier architectures in which each logical level is reflected in the appli-
cation architecture that contain a different tier for each level. Standard Web
applications are probably the most common example of three-tier systems.

e n-tier architectures, that can be considered an extension of the previous one
in which the business logic is further split in more tiers.

The organization on more tiers of an application obviously open the opportunity for
an easier reuse of part of the application itself, and is the reference architecture for
web based applications developed using modern framework such as .Net [12] and J2EE

[6]-

3.1.2. Types of Middleware

Above I discussed the motivations that lead to the choice of a distributed application
and the model that can be used to logically organize a distributed applications. In
this section, instead, I briefly introduce the technologies that have been proposed
to enable and make easier the development of distributed software (i.e. middleware
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technologies). In particular middleware technologies, for implementing Client/Server
applications, are generally divided in four main categories, such as transactional,
message oriented, procedural, object based middleware. An interesting comparison
and discussion of the points of strength and weakness of the different technologies can
be found in [77].

Transactional Middleware. A transaction is a unit of work that execute exactly once
and produces permanent results. Transaction oriented middleware provide mecha-
nisms that make easier the implementation of applications that requires the execu-
tion of transaction on distributed systems/databases. Often transaction is referred
to have “ACID” properties, that means that a transaction should have the following
properties:

e Atomicity: A transaction allows for the grouping of one or more changes to
tables and rows in the database to form an atomic or indivisible operation.
That is, either all of the changes occur or none of them do. If for any reason the
transaction cannot be completed, everything this transaction changed can be
restored to the state it was in prior to the start of the transaction via a rollback
operation.

e Consistency: Transactions always operate on a consistent view of the data and
when they end always leave the data in a consistent state. Data may be said to
be consistent as long as it conforms to a set of invariants, such as no two rows in
the customer table have the same customer id and all orders have an associated
customer row. While a transaction executes these invariants may be violated,
but no other transaction will be allowed to see these inconsistencies, and all
such inconsistencies will have been eliminated by the time the transaction ends.

e Isolation: To a given transaction, it should appear as though it is running all
by itself on the database. The effects of concurrently running transactions are
invisible to this transaction, and the effects of this transaction are invisible to
others until the transaction is committed.

e Durability: Once a transaction is committed, its effects are guaranteed to
persist even in the event of subsequent system failures. Until the transaction
commits, not only are any changes made by that transaction not durable, but
are guaranteed not to persist in the face of a system failure, as crash recovery
will rollback their effects.

An important example of this kind of middleware are Transaction Processing (TP)
Monitors, that are deeply described in [32]. TP monitor is a technology emerged
more than 30 years ago that provides functionalities that easily permit to the system
developer to implement an application with support for distributed transactions. The
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Figure 3.4.: Transaction Processing Monitor

basic idea is to introduce a layer among databases and clients that works as a mon-
itor for transactions execution. The it accepts messages specifying transactions and
queues them for processing them against the database. Figure 3.4 gives a graphical
idea of how transaction monitor systems are structured. A implementation of TP
monitor should accomplish to several tasks, in particular a TP monitor should man-
age processes, should provide an interprocess communication abstraction that hides
networking details, and should help system managers efficiently an easily control large
networks of processor and terminals. Then the main function of a TP monitor is to
coordinate the flow of transaction requests between terminals or other devices and
application programs that can process these requests.

Message Oriented Middleware (MOM). Message Oriented Middleware supports
the communications between processes in a distributed application providing mech-
anisms for exchanging messages. Generally MOM middleware implements queue be-
tween interoperating processes, so if the destination is busy, the message is held in a
temporary storage until it can be processed. This means that with MOM clients and
servers can proceed concurrently without the necessity for the client to block waiting
for server response. MOMs generally support multi-cast messaging permitting the
distribution of the same message to more than one receiver. With the advent of mo-
bile devices the importance of this kind of middleware grow up since it is well suited
for implementing distributed event notification [72], and publish/subscribe-based ar-
chitecture [61].

Procedural Middleware. The idea of Remote Procedure Calls (RPC) is quite simple.
It is based on the observation that procedure call is a well-known and well-understood
mechanism for transferring control and data within a program running on a computer.
Therefore, it is proposed that the same mechanism could be extended to provide for
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Figure 3.5.: Typical components in a Remote Procedure Call Implementation

transferring of control and data across a communication network [50]. The idea be-
hind the implementation of a RPC mechanism is outlined in Figure 3.5. In the figure
a fake version of the service is available on the client side (the stub). When the
service is invoked the stub component packs the data and sends it to the correspond-
ing component on the remote machine (the skeleton). The skeleton unpacks the
data, invokes the actual service and returns the results to the stub (and from this
element the data will be received by the original client). The generation of the cou-
ple stub/skeleton and the underlining communication mechanisms is hidden to the
application developer.

Object-based Middleware. Object middleware can be considered as an evolution
of RPC middleware. The intention in this case it to bring into the distribution en-
vironment the object method invocation paradigm, permitting to an object in one
machine to invoke a method of another object stored in the memory of another ma-
chine. Object middleware manages a remote method invocation in a similar way of
what illustrated in Figure 3.5 for RPC. In object middleware, the distributed soft-
ware that provide services for remote method invocation is referred as Object Request
Broker (ORB). The relevant functions of an ORB technology are:

e the Interface Definition Language (IDE): this is a language that permit to
define the service provided by a remote object and to generate local stub and
skeleton components. In particular the language and the associated compilers
permit to solve language heterogeneity enabling the cooperation among objects
defined using different languages.

e location and possible activation of remote objects: this refer to services provided
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by ORB to retrieve remote object location and to activate remote object on the
remote machine.

e communication between clients and objects: ORB enables, using the services
and components described in the previous two points, and the mechanisms from
the network layers below, the communications among remote objects.

ORB technology is nowadays a quite mature discipline and three main products have
been developed by consortia/industries. In particular the first notable proposal has
been the Common Object Request Broker Architecture (CORBA [15]) that is a
specification released by the Object Management Group and that has had a great
success with many companies that have provided their own implementation [5]. Sun
Microsystems proposed an ORB for Java based application (no language heterogene-
ity is supported in this case) that have been called Java Remote Method Invocation
(Java RMI) [9]. Finally Microsoft has developed the Distributed COM architecture
(DCOM), that permits to an object inside a COM component (COM is the com-
ponent model developer by Microsoft - see Section 3.2 for further details) to invoke
services from another distributed component [2]. In [76] an accurate discussion on
the subject of object middleware is provided.

3.1.3. A General Note on Transparency

So far we discussed technologies that permit to simplify the development of distributed
applications providing high level services that free the developer from knowing too
much about distribution details. However, it is worth noting that it is not in general
possible, and sometimes neither desirable, to completely hide the nature of distri-
bution to the developer, since this could lead to a systems wrongly structured and
dimensioned, and to scarce performance. For instance for the particular case of OO
middleware many different motivations suggest the importance of making informed
choices concerning distribution issues. In particular we can enclose in the list the
following elements [170, 76]:

1. Life Cycle: the creation of a remote object cannot be performed using a stan-
dard constructor that create an object in the same address space of the invoking
object. This requires the implementation of some service such as a factory ser-
vice that will create and return an object reference for a specified type on a
remote machine. Another problem that is not present with local objects is mi-
gration. Migration refers to the possibility that at some point in time an object
could move to another host. In this case heterogeneity problem will rise. Fi-
nally differences between the two paradigm are evident for the deletion of the
objects. In particular it is in general difficult to implement distributed garbage
collections algorithms. Referential integrity is another rather expensive task.
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It is, in fact, difficult to know all the existing references to an object, since it
can be passed around among the objects in the system, without a central point
that can trace the added reference. With distributed objects could be necessary
to deal with server objects no more available because for instance the server in
which the object was residing, went down. Some of the mentioned problems
could require the direct involvement of the application developer to manage the
different situations.

. Activation: in distributed OO programming new issues such as:

a) machines hosting server objects could be sometimes stopped and restarted

b) resources required by all the server objects on a host may be greater than
the resources available

c) server object could be idle for long time between two invocations than
could be opportune do not waste resources

requires the introduction of mechanisms to “hibernate” object state and to re-
sume them when a call for the object arrives. Middleware generally hide this
behavior from the developer but sometimes, also in order to save memory space,
the engineer could be interested in managing activation and deactivation of re-
mote objects explicitly.

. Latency: in [76] the author reports that a local call requires, in modern work-

stations, 250 nanoseconds instead a remote request could require between 0.1
and 10 milliseconds. Therefore a remote request is about 2,000 times more
expensive than a local one. This fact suggests that the location of an object
could become a design problem that requires a careful evaluation by the system
developer. In particular could be important to locate objects that communicate
a lot between them on the same machine.

. Memory Access: remote references are quite big data structures, in complex

middleware the necessity of space for a reference can be 100 times bigger than in
"normal" OO programming. As consequence an application could not be able to
maintain a lot of reference to remote objects. Engineer should consider memory
issues caused by distribution and in some cases they should try to reduce the
number of objects in the systems.

. Concurrency: access to server objects must be controlled since real parallelism

become available independently from the use of threads.

. Failures: distributed objects have to deal with major probability of failures.

In particular new kinds of failures can occur. A special treatment is required
by the occurrence of Partial Failures. These are special kind o failures in
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which an operation is executed by the server object but as consequence of a
failure, for instance in the network device, the confirmation of the execution is
not returned to the invoking object that then could think that the operation has
not been performed. Middleware generally permit to associate different kinds of
semantic to a distributed request, such as exactly once, at most once, maybe,at
least once and atomic. Obviously more is assumed on middleware reliability
more the service will cost in terms of resources and time (differently local call
assume always an exactly once semantic).

7. Communications: due to the many cause of delay that can affect an invoca-
tion, could be, in some cases, more appropriate to use non-blocking calls. At
the same time could be useful, for saving time, to have and use multicast invo-
cations. This kind of communications, that are not generally foreseen by local
paradigm, permit to collect in a single invocation more remote invocations and
then to receive the results as soon as they are made available.

8. Security: distributed objects use the network for communications. Centralized
applications trust that the user will not make the session available to unau-
thorized users, instead in distributed applications each request might require
authenticated sessions.

3.2. Component Based Software Models

3.2.1. CBSE Basic Concepts

The nature of component should be intuitively clear from the name, that suggest
that components indicates some kind of entities that should be used to be composed.
Fortunately the intuitive idea reflects the reality and component are actually pieces
of code, which complexity can be varying, that should be “easily” assembled with
other components originating a more complex system. It is interesting to note that
anything that can be done with components can be done without component, the
difference is in the time that we need to reach the final implementation [160]. The
last observation clarify the strong attention that the software community reserved to
this topic in the last years and the current pressure toward the “componetization”
of software production. Even though the concepts expressed above could seem fairly
clear and intuitive, a wide agreement on the concepts leading to components and on
a general definition of components still has to emerge. One of the most accepted and
reported definition can be found in [160]:

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
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can be deployed independently and is subject to composition by third par-
ties.

This definition covers different peculiar aspects of components. In particular it has
a technical part, with aspects such as independence, contractual interfaces, and com-
position. It also has a market related part, with aspect such as third parties and
deployment. It is worth to highlight the differences between the concept of compo-
nent and that of object. The first think that should be noted is that a component
is not a running elements, as an object, but rather a static elements that can be
deployed on a system. Moreover a component should not depend from other specific
components and could be deployed independently from them. Objects, instead, gen-
erally require services from other specific objects and this relation is embedded within
the object itself. However, given this and other differences, it is certainly true that
components and objects are strongly interrelated and they share many characteris-
tics, moreover components are generally developed using object oriented concepts and
languages and then at run time they take the form of a collection of objects.

With reference to the work that is presented in the next chapters, components can
be classified considering as critical characteristic the capacity for the external user
(the third part in the definition) of looking inside the component. Authors generally
use the terms of black- gray- and white-box components with reference to different
level of closure of the component internal essence. In particular a black-box com-
ponent do not discover anything about its internal implementation. At the opposite
end side of this spectrum, instead, a white-box component completely shows to the
user its internal implementation. In the middle we can have different levels of gray-
box components depending on how much details are made public to the user. The
discussion about the opportunity of using one or the other of these different kinds of
transparency is endless. However it is important noting that, even though the knowl-
edge of implementation details could be useful, for example for analysis purpose, it
should not lead per se to the selection of one component in place of another. The
risk of making choices that will bind the system to a specific implementation of a
component, loosing the possibility of successive easy substitutions of the component
with other implementation, is, in fact, fairly high. Even though the classification
that we discussed here take as discriminating factor the possibility for the user of
accessing to implementation details, another dimension of this concept can be con-
ceived considering software components. Experiences suggest, in fact, that it is a
good practice to attach to a software component either information revealing specific
component properties, or simplified models of the component itself, or any other de-
tail that could improve the understanding on component behavior to the component
user (i.e. system assembler). In this sense the classification above can be extended
considering the quantity of information made available to the system assembler.

The Interface is another important concept cited in the definition above. An inter-
face of a component defines the access point to a service provided by the component
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itself. A single component could provide different services specifying different inter-
faces. It is interesting noting that the choice of the interface to implement is of basic
importance, also from a pure market point of view. The service that a component
provides should be necessary to someone else otherwise the component has no market
and there is no reason in developing it. In this context also aspects of granularity
play an important role. The component should provide services sufficiently complex
to justify the existence of a component. Simple component, in fact, can be more
easily developed in house by system assembler. However to much complex services
reduce the market for the component and therefore the convenience in developing it.
The book of Szyperski et al. [160] is probably the best book on components with
reference to the discussion of market aspects of component based engineering. The
interested reader can certainly found in it many other interesting arguments related
to the commercial nature of components.

In an ideal component world an interface should be completely characterized by a
description that provides to the system assembler, a precise and complete informa-
tion on the service that is implemented by the component. For instance using some
formal mechanism. However, this is not the case, since the specification of a complex
service is not easy to produce using such formalisms. At the same time could not
be easy to check if the specification of a component matches with that for the com-
ponent searched by the system assembler. An interesting and quite successful way
to associate semantic to an interface is the use of contracts. The use of contracts
in the development of object oriented system has been strongly promoted by Meyer
[125], and also an object oriented language, such as Eiffel [124], has been developed
with specific supports for defining contracts. A contract describes a services using
first order logic and specifying condition that should hold before the invocation of
the services and condition that will be true after the execution of the service. At
the same time a contract can specify invariant condition that remain true during the
whole execution of the service. Contracts seem to be a really useful mechanism in
component based development and many research focus on the use of it for many
different objectives. However the use of contract can raise some problems in partic-
ular when callbacks are considered. Different mechanisms and disciplines have been
proposed to address this problem (this topic is extensively discussed in [160]), that
however highlights the extreme difficulty in having a simple formalism for providing
guarantees, to the system assembler, on component behavior when it is deployed in
the final system.

3.2.2. Component Models and Platforms

In this section I briefly give some information on component models, that refer to all
the specific technologies that provide mechanisms for easily bind together software
components. Basically all these technologies provide a set of services that permit to
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produce and use components responding to the definition of component given above.
At the same time they generally impose a set of rules concerning the packaging of
the component and some times require the implementation of specific interfaces, that
will be used by the technology for managing purpose.

Before all two different kinds of component models have been defined. The first,
called desktop components, provide mechanisms that permit the integration of
component deployed on the same system. This is the case of COM and JavaBeans.
The second model, referred as distributed components, provide mechanisms for
integrating components that could be dispersed on more than one physical system.
Distributed component technologies obviously rely on middleware technologies at least
for what concern the necessary communications among components deployed on dif-
ferent hosts.

The implementation choices made by the different component model technology
providers are strongly different and it is not possible in general to take a component
from one world (a component model technology) and deploy it into another world.
However apart from implementation details one service constitute the basic starting
point for defining a component model. This service is referred as naming and lo-
cating service and its task it to provide, at run time, to the components that need a
service, a reference to another component that provide the specified service. Through
the implementation of a naming and location service a component model permit the
real implementation of software elements that do not contain embedded references to
the final providers of the required services.

Several different component models have been defined so far, however three of them
currently lead the scenes (COM/.NET [2], CCM/CORBA [3], EJB/J2EE [129]) and
are supported by big companies/organizations such as Microsoft, Sun Microsystems
and OMG. The technologies providing the support for such component models are
really complex stuff. In particular EJB and CCM are a proposal for server side
components for which the objective is to make easier and faster the development of
complex server side services. Many different services are provided to components
by the the applications server implementing such technologies, such as transaction
management, life cycle management, security management and many other.

These and other component models are briefly described in [82], in which for each
model details concerning, interface implementation mechanisms, packaging, deploy-
ment details, and services to the component provided by the different technologies
are discussed.
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Part II.

Testing in the Component
Based Software Arena

In this part I introduce concepts related to software testing with particular emphasis
on the Component Based field. In particular I discuss:

e In Chapter 4 the general concepts behind software testing;

e In Chapter 5 the implications for functional software testing execution when
CB systems are considered;

e In Chapter 6 the application of testing to performance evaluation of complex
software systems.
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4.1. Software Testing Generic

Testing is a fundamental activity in the development process of a software system. Its
importance has been traditionally underestimated and often research results in the
area encounter great problems in becoming state of the practice, moreover testing,
which is an activity that to be really effective requires the support of specific automatic
tools, is often carried on, within software industries, in a manual way (a particular
case is that of eXtreme Programming in which testing is considered a “first class”
activity in the development of the final code [29]).

Many different types of testing techniques and strategies have been studied and
developed, however all of them share the same final objective that is to increase the
confidence in the correct functioning of the system when it will be released. To this
end testing searches for discrepancy among expected and observed behavior of the
system on a finite number of execution. In software testing theory the occurrences
of a discrepancy is referred as a failure. The originating cause of a failure is instead
referred as a fault. A fault can reside in the system for a long time before a concrete
manifestation of it leads to an observed effect (a failure). The intermediate unstable
state of a system before the manifestation of a fault is generally referred to as an error
[35]. We can restate the above definitions saying that the ultimate goal of testing is
to look for software executions that lead to the manifestation of faults. Before going
in a deeper technical explanation about concepts related to this discipline, it is useful
to remember that, as firstly stated by Dijkstra [75], testing can reveal the presence
of faults but can never prove their absence. Another interesting consideration, on
the particular nature of software and of the connected difficulties in testing software
systems, has been firstly stated by Hamlet [96]. In particular Hamlet refers to the
inherent discontinuity of software systems that, differently from other engineering
artifacts, hinder the possibility of making inferences on system behavior starting from
samples. In other word this means that it is generally impossible to derive the correct
behavior of the system on a input, starting from the correct behavior of the system
on another test case.

Pfleeger [141] provides a useful classification of different kinds of faults. The pro-
posed list should lead the tester to different choices depending on the type of faults
that he/she looks for, trying to create, each time, specific conditions to increase the
“probability of manifestation” for the searched fault. In particular in [141] the author
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proposes the following categories of faults:

e syntax faults: occurs when the programming language constructs are not
properly used;

e algorithmic faults: occurs when a part of the program logic do not provide the
proper output for a given input because something is wrong with the processing
steps;

e computation and precision faults: occur when a formula’s implementation
is wrong or does not compute the result to the required precision;

e documentation faults: occurs when the documentation description does not
actually match to the program behavior;

e stress or overload faults: occur when the size of the data structures used in
the program are less dimensioned than necessary;

e capacity of boundary faults: occur when the system’s performance become
unacceptable as system activity reaches its specified limits;

e timing or coordination faults: particularly relevant for real-time systems,
they occur when the code coordinating these events is inadequate;

e throughput or performance faults: occur when the system does not perform
at the speed indicated by the requirements.

From the list above it descends that testing can involve many different activities
related to the verification of a piece of software. In the following of this chapter I
mainly focus the discussion on what is generally referred dynamic testing that concerns
the evaluation of a piece of software through its execution. We can better characterize
this kind of testing giving the following definition firstly proposed by Bertolino in [34]:

Software testing consist of the dynamsic verification of the behavior of a
program on o finite set of test cases, suitably selected from the usually
infinite executions domain, against the specified expected behavior.

In the above definition the author highlighted the words that contribute to establish
the main distinctive characteristics of software testing. In particular dynamic implies
that testing requires the execution of the program on some inputs; finite means that
the number of execution must be finite even if the complete execution of a complete
test would require an infinite number of executions; selected refers to the fact that
testers should apply rules to select test cases from the infinite possible executions,
being aware that different techniques lead to completely different results; exzpected
refers to the necessity of having some means for evaluating the result of the test
deciding if it is acceptable or not. This problem is generally referred in the literature
as the oracle problem.
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4.2. Verification Techniques and Objectives

Many different techniques have been developed to discover faults. Tester teams should
be aware of them and applying the most promising for finding specific faults. In
literature the different techniques are generally grouped in two categories:

e static analysis techniques: the techniques included in this category do not
foresee the execution of the system, instead intend to find faults in the sys-
tem only manually or automatically scrutinizing the artifact produced (such as
code, documentation, software models). Main elements in this category can be
considered code inspection, algorithm analysis and tracing and formal proof. In
particular different formal techniques can be applied to prove the correctness of
an artifact depending on its nature. The most famous approaches proposed are
symbolic execution, theorem proving, model checking.

e dynamic analysis techniques: this category includes such techniques that
foresee the execution of the system to derive information on it. Testing, profiling,
simulation, prototyping, timing analysis and other, are the main elements of this
category.

In the previous section I listed a possible classification of faults that should drive
the tester to the choice of a specific technique. However another important parameter
that must be considered in the definition of a testing suite (that is a set of test cases
that can be executed to assess a particular characteristic) is the final objective of
the testing (the property of the system that we want to empirically evaluate). In [38]
the authors provide the following list (obviously not complete):

e Acceptance/qualification testing: this is the last test action before the
deployment of the system in the final application environment. Its main goal is
to verify that the software respects the customer’s requirements.

e Installation testing: this test action is carried out when the system is installed
in the final execution environment. As in the previous case the main goal is to
assess the conformance to the customer’s requirements, but in this case in the
final application environment. At the same time it is useful to check that the
procedure that must be followed to complete the installation it is correct and
lead to a right installation.

e Alpha testing: this test activity is performed installing a partial or complete
system on an in-house environment and exploring already implemented func-
tionality and business task, before a possible release.

e Beta testing: the same as in the previous point but in this case the system is
provided to external user that test the system on different environment.
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e Reliability achievement: in this case test are performed for assessing the
behavior of the system for the most likely execution request. In this sense an
operational profile must be defined and test cases selected to stimulate corre-
sponding use cases.

e Conformance testing/Functionality testing: in this case the test are exe-
cuted to assess the functional conformance of a system or a piece of system to
the specifications.

e Regression testing: in this case after a piece of the system is modified /sub-
stituted test session will be performed to have a new evaluation of the resulting
system.

e Performance testing: this is specifically aimed at verifying that the system
effectively provides the necessary performance specified.

e Usability testing: in this case we need to assess that the system is easily
usable for the user, that its functionality are easily understandable, that the
documentation is clear and so on.

4.3. Unit, Integration and System Test

We can start this section saying that even in the testing field, modularization gives its
useful contribution. In fact it is a standard way, in testing, to proceed with different
successive phases of testing, each one focused on a different size of an agglomerate
of “pieces” of software. Three different kind of granularity for these agglomerates are
generally considered for testing purpose, such as Unit, Integration, and System.
The scope of unit testing typically comprises a relatively small executable. Gener-
ally the interest is focused on functionality instead than on other characteristics.
Even when a complete test is successfully executed on two or more units, there
will be no guarantees on the correct behavior of the system obtained integrating such
units. Scope of the integration testing is to verify the correct interactions among the
aggregated units. Depending on the order used to aggregate the different units and
the relations - uses/is used - among these units different strategies can be applied. If
the relation among the different units can be organized in a hierarchy we distinguish
among bottom-up integration, the system is integrated starting from the low level
element of the hierarchy, top-down integration, in this case the integration start
from the element at the top of the hierarchy and necessary stubs! are provided, big-
bang integration, the complete system is immediately created after each unit being

lthese are pieces of code that simulate the behavior of a unit for another unit that need services
from the first unit
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Figure 4.1.: Testing steps (partially from [141])

tested, sandwich integration, obtained mixing steps of top-down and bottom-up.
For a comparison of the different approaches see [141].

Finally System testing focus the attention on the whole system with particular
reference to functional requirements, even though different analysis can be performed
considering the whole system. Figure 4.1 illustrates how some testing steps can be
ordered to derive a final functioning system. As we can see the system test phase is
split in more phases depending on the specific objective that is pursued.

4. 4. Test Case Selection

Probably the test case selection phase is the most important activity of the testing
process, and certainly the one that can make a difference. Several different strategies
have been proposed to select test cases from the generally infinite set of the possible
executions. Tester teams should define the strategy to apply on the base of the
specificity of the system under test and of the available information that can be
fruitfully used for testing purpose. Using an analogy from a real life domain Hamlet
[97] considers testing similar to fishing, it is generally necessary to make several tries
before catching something, further expanding the analogy we can say that to increase
your chances of having a good catch you need to know the habits of the specific kind of
fish that you want to fish and you have to choose the most suitable fishing techniques.
However even when you do not fish anything you cannot say that there is no fish in
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the sea. Being the testing phase one of the most expensive in software production the
analogy suggest the importance of the testing team and of its expertise to find the
greatest number of faults within the limited resources.

Given the great number of possible executions, even for a small program, it is of
basic importance to derive an automatic procedure for the selection of the test cases
when a strategy has been chosen. The procedure should derive a test suite according
to the selected test criterion. A formal definition of a test criterion is provided by
[35]:

A test criterion C is a decision predicate on triples (P,RM,T), where P
is a program, RM is a reference model related to P, and T is a test suite.
When C(P,RM,T) holds, it is said that T satisfies criterion C for P and
RM.

Test criterion is the basic ingredient of those approaches referred as “partition testing”.
In fact the adoption of a criterion induce a partitioning of the program input into
equivalent subdomains, where the equivalence relation is referred to the ability of
a test case of discovering a faults. An opposite way to proceed for selecting the
tests is called random testing, in which the inputs are selected from the infinite
set in a random way with no reference to a test criterion. Three main techniques
[49], referred as code based, specification based, and fault based, can be used for
selecting test cases. The starting point of these techniques are different, the first
being applicable only when the source code are available, the others instead foresees
the presence of some model related to the system under development. For each one of
these categories, several different strategies have been proposed. However it is worth
to note that previous researches highlighted that the combination of more than one
selection technique produces better results [110] and that different test criteria aid to
discover different types of faults [27].

Code-based techniques. The motivation behind the code based testing is that a
fault can be discovered only if the parts of code related to the faults are executed.
The program is represented as a flow-graph and different criteria of coverage can be
adopted. The ideal but unreachable target, since it requires an exponential number
of test with respect to the number of conditions in the source code, is to cover all the
possible paths along the program flow. Many different coverage strategies have been
proposed in literature starting from the statement coverage that require to execute
all the possible statement in the code, to the branch coverage, that requires to cover
all the possible different branch in the flow, until the already cited path coverage. In
figure 4.2 the relative strengths of many different strategies, deeply discussed in [30],
are illustrated. Although code based seem a captivating strategy, two major problem
in the automatic application of it must be at least cited:
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Figure 4.2.: Coverage strategies relations [30]

1. it is possible that the code contains path that can never be reached by an exe-
cution (infeasible path) so invalidating the effort for searching an execution.

2. finding an execution that cover a particular path has been demonstrated to
be an undecidable problem [175], and so a quite difficult problem to solve in
practice.

Specification-based techniques. With specification-based strategies the RM in the
test criterion is derived form the documentation describing the system. Depending
on the nature of the resulting reference model completely different strategies can
be applied. The advent of the Unified Modeling Language rejuvenated this topic
since diagrams seem the natural instruments for the application of specification based
strategies. In particular in [26] the authors propose a tool for selection of test case
starting from sequence, class and use cases diagrams. A European project recently
terminated (AGEDIS [98]) explored the use of state diagrams for test case selection
and execution. However specification based strategies have been initially proposed
for software model defined using formal mechanisms such as Z [99] and LTS [162].
Also interesting approaches have been proposed for the selection of test cases starting
from an architectural description [132, 37]. Finally considering as a starting model
the usage profile of the system the resulting strategy is that generally applied for
reliability evaluation. In Chapter 9 an application of this criterion will be presented
for performance testing purpose.

55



4. Software Testing

Fault-based techniques. Techniques in this area foresee the introduction of faults
into the code to verify how many faults will be revealed by a test suite (mutation
testing [85]) or try to reuse the expertise of programmer in the specific domain to
guess where faults are more probably hidden (error guessing [134]).

4.5. Test Execution

So far we have mainly presented testing as a theoretic matter that tries to select
the best test cases to execute when a precise objective has been defined. In reality
also the execution of a test case presents per se challenging questions such as, the
launching of a test case, or how to decide that the obtained result of a launched test
is correct or not. In particular the former problem concerns how to create the initial
conditions that permit the execution of the test and how to monitor the execution
of the test to impose that precise interactions take place, the second, instead, refers
to the problem of creating a test oracle that can be used to check if the result of the
test is correct or not. The latter problem is far from easy and requires, in the general
case, the implementation of a system that should provide for each test the correct
answer that we expect. Obviously if we can have such a system the oracle system
itself can be considered a right implementation of the system that we are trying to
develop. Therefore the implementation of the oracle should be much cheaper that
that of the system. Generally the oracle provides only approximated solutions and
check for necessary conditions. In [176] the author deeply investigate the problems
related to the development of a test oracle, instead for a survey of proposed solutions
see [25].

4.6. Testing Object-Oriented Software

On the previous survey I did not refer to any particular technology used to implement
the system, therefore the considerations made above are generally valid. In this
section I want to give some more details on testing object-oriented software illustrating
how the specificity of the object-oriented language raises new problem to the testers
and create new and specific possibility for bug hazard, that is a circumstance that
increases the change of a bug. Since in a certain sense the world of components can
be considered as an evolution or the extreme consequence of certain object-oriented
characteristics, the discussion that follows is relevant also for the component-based
community, especially when the reuse is made using object-oriented constructs, such
as inheritance.

Graham [93] proposed an interesting classification of the specific features of the
Object Orientation for testing purpose. As illustrated in Figure 4.3 she considered in
the first group the features that make testing easier when OO languages are used, in
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Figure 4.3.: Easier and Harder parts of testing object-oriented systems [93]

the second group she inserted the elements that make testing harder. For instance
giving the concept of class the test of the unit became easier since the unit are generally
smaller and clearly defined. However nothing comes free since this advantage will
be paid during integration testing when the kind of interactions are generally more
complex, as a consequence of more complex relations among the objects. Following
the indication given by Graham and using a fault-based strategy, as first level selection
mechanisms, we should focus the attention, in testing object-oriented systems, to the
new features such as polimorphism, that is the possibility of redefining methods in
subclasses and then the consequent different behavior of the same object (method) in
different context, inheritance, the possibility of inheriting definitions from the super
classes, and at the interface and integration level.

The characteristic of OO code that probably most hinder the possibility of testing is
Dynamic Binding. Using this mechanism it is possible to change the object provider
of a service in any instant at run time. Moreover in association with polimorphism,
dynamic binding permits the definition of the binding to the method providing the
service, only when the method is actually invocated. For a comprehensive discussion
of OO oriented testing see [49], in which the interesting notion of testing pattern
is introduced with a strict analogy to the design patterns [86] defined for the design
phase of a software system.

In this chapter I have given general information on the testing phase. In the follow-
ing three chapters I provide a deeper insight on particular aspects of testing consider-
ing component based software as the development paradigm. In particular in Chapter
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5 I give an overview of the proposed mechanisms for test cases execution when com-
ponent are considered. Finally in Chapter 6 I discuss the proposed solutions for
the empirical evaluation of performance characteristics of complex middleware based
software applications.
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Although it is generally agreed that the implementation of a system out of compo-
nents needs specific approaches, clear guidelines and new processes have not yet been
established. As for the other development phases, the testing stage as well needs a
rethinking to address the peculiar characteristics of CB development [44]. One dis-
tinctive feature of CB production is the co-existence all along the development process
of several and new stake-holders. A CB process must in fact foresee and manage the
spreading, in time and space, of different tasks among several uncoordinated subjects
[44]. For testing purposes, in particular, we must distinguish at a very minimum
between two subjects, the component developer and the component user. The first
needs to test the software component in order to validate its implementation, but
cannot make any assumption on the environment in which the component will be em-
ployed. The second, instead, needs to (re)test the component as an interacting part of
the larger CB system under development. In this respect, an important requirement
is that the component user, on the basis of what he/she expects from a searched
component, i.e., with reference to the system specification /architecture, can develop
a test suite and can then routinely (re-)execute these tests - without too much effort -
to evaluate any potential candidate components. The latter is precisely the question
that we address here.

A testing campaign by the component user, possibly in combination with usage of
formal methods and Design by Contract (DbC) approaches [125], is also recognized as
a suitable means to alleviate a new emerging problem in the area of CB production,
generally referred to as the Component Trust Problem [126]. This problem points
at the component user’s exigency of means to gain confidence on what a component
produced by someone else does and how it behaves. Obviously this issue is especially
hard for components built by third parties and for COTS (Component-Off-The-Shelf),
which are generally delivered without the source code. However, also in the case of
components reused internally to an organization, the difficulties of communication
between teams and the lack of a clear documentation can produce to some extent
similar effects. Moreover, even though a component has already undergone extensive
testing by its developer, since complete testing is clearly impossible and the developer
cannot know in advance all the possible application domains or what components will
interact with the produced component, some kind of testing against the component
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user’s specifications remains always necessary [173]. In this sense, it is also illusory
to hope that reuse drastically diminishes the need for testing [49, 173].

On the foundational side, Rosenblum [145] outlines a new conceptual basis for
CB software testing, formalizing the problem of test adequacy (with reference to a
particular criterion) for a component released by a developer and deployed by one or
more customers. He introduces the complementary notions of C-adequate-for-P and of
C-adequate-on-M for adequate unit testing of a component and adequate integration
testing of a CB system, respectively (where C is a criterion, P is a program and M is
a component). This work constitutes a starting point for a revision of the theoretical
concepts related to testing components, but a lot of work remains to be done.

Instead, concerning the practical aspects of testing from the component user point
of view, we cannot talk about one generic testing approach. For testing purposes, in
fact, components can be classified depending on the information that is carried on
with the component itself. In this sense, we could figure out a continuous spectrum
of component types, at one extreme of which there are fully documented components,
whose source code is accessible (for instance, in the case of in-house reuse of compo-
nents or open-source components). At the other extreme of the spectrum there are
components for which the only available information consists into the signatures of
the provided services, which is the typical case of COTS (commercial off-the-shelf)
components. Clearly, the testing techniques to be used by the component user will
be quite different depending on the type of component. For instance, in the case of
COTS, the unavailability of code hinders the possibility of using any of the traditional
code based testing techniques.

5.1. CB Development Process and Testing Phase

In this section we discuss some issues related to the definition of a CB development
process. It is not our intent (nor it could be done in only one section) to completely
unroll this topic. The interested reader can refer to [63, 68]), while an overview of
CB life cycle processes embedding quality assurance models can be found in [60].
Our goal is to relate the framework that we have developed to the relevant phases of
the development process. Besides this overview provides information useful to better
understand how the framework can be used by a hypothetical component customer.

The very idea of producing software systems out of components is older than thirty
years [117], but it is only in the last years that strong efforts have been made towards
the real affirmation of this new methodology. Today, many component models exist,
and from a pure technological point of view it is quite “easy” to build systems by com-
posing components. Technology advances have in fact delivered component models
and middleware addressing the questions of composition, interaction and reuse of com-
ponents. However, a comparable progress has not been done regarding the definition
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of a process apt to develop component-based systems. Thus, designing a system that
will be implemented by “composing components” still remains a challenging activity,
and further study on the subject is needed.

Some general considerations concerning such a process and the various activities
that compose it can be done. The implementation phase mainly deals with the devel-
opment of what is generally referred to as the “glue” code. This code is the necessary
instrument to facilitate the correct interactions among the different components. The
components instead are not generally implemented, but are looked for in the in-house
repositories or on the market, through what is generally referred to as the provisioning
phase. After one or more candidate components have been identified, it is necessary
to evaluate their behavior when integrated with the other already chosen components.
This phase can be referred to as the selection and validation phase. Obviously in this
phase testing can play an important role. In fact on the basis of the specifications
for the searched component, testers can develop useful (functional and architectural)
tests to be executed to evaluate each candidate component.

If the above requirements for the implementation phase can seem quite obvious,
less clear but perhaps most important considerations must be done for what concerns
the specification phase. In the new process, the emphasis of this phase must be on the
re-usability and interoperability of the elements that will be part of the system. As
said in the Chapter 2, an important instrument towards this target has been identified
in the software architecture. In fact, using the specification mechanisms developed for
the software architecture, the structure of a system is explicitly described in terms
of components and connectors. In a CB development environment it is important to
establish a direct correspondence between the architectural components and the run-
time components. In other terms, the components forming the software architecture
and the interconnections among them must remain clearly identifiable also dynami-
cally, during execution. This feature, in fact, affects the quality of the system in terms
of reuse, replaceability and then makes easier the management of system evolution.
All of these features are clearly major targets in a CB development process.

Finally, we make some considerations concerning the testing phase. For this activ-
ity, what we need to figure out is a testing methodology that can allow for the effective
testing of a component by someone who has not developed it, and within an applica-
tion context that was completely unknown when the component was developed.

Traditionally, the development of complex systems involves three main testing
phases as illustrated in Chapter 4. In CB development, the three traditional test-
ing phases have to be reconsidered and extended (see Fig.5.1). The smallest test unit
becomes here the component. Component testing is performed by the component
developer and is aimed at establishing the proper functioning of the component and
at early detecting possible failures. The tests established by the developer can rely
not only on a complete documentation and knowledge of the component, but also on
the availability of the source code, and thus in general pursue some kind of coverage.
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Figure 5.1.: Adapting the test process

However, such testing cannot address the functional correspondence of the component
behavior to the specifications of the system in which it will be later assembled. In
fact it is not possible for the developer to consider all the environments in which the
component could be successively inserted.

The phase of integration testing corresponds to the stage we denote by deploy-
ment testing, however conceptually the two tasks are very different. Performed by
the component customer, the purpose of deployment testing is thus the validation of
the implementation of the components that will constitute the final system. In our
study we divided this phase in two successive sub-phases. In the first sub-phase the
component will be tested as integrated in an environment constituted of stubs that
roughly implement the components as foreseen by the specifications. In that manner
we check if the component correctly interact with the “ideal” environment. To do this
we need a driver that executes the test cases by directly invoking the services provided
by the component. In the second sub-phase, we verify the integration between several
chosen components. To do this we need means to monitor the interactions among
the actual implementations of the architectural components during the execution of
some test cases. In this manner we can check whether some wrong interactions among
the components occur. Particularly useful to this purpose can be the definition of a
“contract” [125] between the provider and the client of a service, as we will better ex-
plain in the following. It is worth noting that potential mismatches discovered by the
customer during deployment testing are not in general “bugs” in the implementation.
Rather they evidence the non conformance between the expected component and the
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tested one (and hence the need to look for other components).

Also for deployment testing (as usual for integration testing) we can consider to
adopt an incremental strategy, allowing for the progressive integration of components
into larger subsystems. In the presentation of Component Deployment Testing frame-
work (CDT), that is the specific framework that I developed as part of my Ph.D. (see
Chapter 7 for major details), for clarity we speak in terms of a single component,
however the framework could be identically applied to the deployment testing of a
subsystem (we return on this in Chapter 7), with the introduction of specific mecha-
nisms allowing for monitoring the interactions among its components.

A particular case of deployment testing is when a real component comes equipped
with the developer’s test suite, and the customer re-executes those tests in his/her en-
vironment. These tests guarantee that the “intentions” of the developer are respected
in the final environment and their execution generally lead to a more comprehen-
sive evaluation. They can possibly include test cases not relevant for the customer’s
specific purposes, but that can be however useful to evaluate the behavior of the
component under customer’s unexpected entries.

Finally, system test does not show major conceptual differences with respect to the
traditional process (at this level of the analysis) and is performed by the customer
when all the various components are integrated and the entire system is ready to run.

To deal with the component trust problem, a focussed, coordinated initiative [126]
has been recently launched, acknowledging that the solution cannot be univocal, in-
stead a mix of formal and informal approaches should be applied, including formal
validation, Design-by-Contract, testing techniques and others.

In the next section we give a glance to several proposed approaches, in some man-
ner related to testing from the component user’s view. The approaches cannot be
considered alternative, rather the combined usage of more than one of them can cer-
tainly give better results than only selecting one. Obviously the list is not exhaustive,
but reflects our comprehension and best knowledge of the literature. We omit the
approaches proposed for testing components from the perspective of the component
developer, since they address the problem from an opposite perspective (developer
view), in which the information available on the components internal structure (such
as the source code) permit the use of different, more white-box oriented, methodolo-
gies (the interested reader can find useful information on this topic in [122]).

5.2. User Oriented Approaches for Component
Testing
Built-in testing approach. The idea behind the “Built-in testing” (BIT) approach

is that the component developer can increase the trust of the component user by
augmenting the provided component with executable test cases. Running the pro-
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vided test cases, the component user can thus validate, in the final environment, the
hypotheses made by the component developer. To provide test cases with the com-
ponent, the basic technique [171] is to distinguish between two different “modes” of
component execution: the normal mode and the maintenance mode. In the mainte-
nance mode the component user can invoke particular methods, enclosed with each
class constituting the component, that have been added to codify dedicated test cases.
Being part of the class, these methods can access every private variable and invoke ev-
ery method. So the mechanism provides the component user with a powerful means of
evaluation, without requiring the component customer to use any specific framework
or tool for testing purposes.

The proposed approach though suffers of some drawbacks. The first, and technical
in kind, is that the memory required at run-time to instantiate the objects from a
class, can become huge and mainly dominated by the need of space to allocate the
testing methods; these, obviously, are completely useless in normal mode. The second,
and more conceptual problem, concerns the meaningfulness for the component user
of developer’s defined test cases. As advocated by different authors [173], it is in
fact important that the customer develops his/her own test suites so to ascertain
that a candidate component be “compliant” with the requirements for the searched
component.

Further details on the BIT approach can be found in [24, 95].

Testable Architecture Approach. This approach can be seen as a special case of the
previously described approach, and in fact shares the same aims. However, differently
from built-in testing, this one prevents the problem concerning the huge amount of
memory required at run-time. The idea is to develop a specific testable architecture
that allow the component user to easy re-execute the test cases provided by the
developer, without the need of enclosing them in the component itself.

In [87], Gao and coauthors require that each component implements for testing pur-
poses a particular interface. This interface has the goal of augmenting the testability
of the component. In that manner the developer can then provide the component user
with test cases coded in terms of clients that use the testing interface. By foresee-
ing the presence in the test-oriented interface of methods that use the introspection
mechanisms, which are generally provided by component standard models, the same
power of the built-in testing approach can be obtained in terms of access to methods
and variables otherwise not visible to clients.

Another interesting approach also relying on the definition of a particular framework
for component testing has been proposed by Atkinson and Grof[22]. Differently from
the previous approach, in this case there is no use of the introspection mechanisms
provided by the various component models. As a consequence the framework cannot
reach the same power of the built-in testing approach. However this framework is
not intended for the execution of generic test cases, but it focuses on providing the
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customer with specific test cases derived from contract specifications. In order to
check the validity of a contract the authors suppose that a component developer
implements particular methods for state introspection. In particular these states are
defined at a logical level using a component model based on KobrA [83], a modeling
tool developed in the area of Product Line (PL) design.

Certification Strategy Approach. The approaches belonging to this class are based
on the general observation that the customer of a component is generally suspicious
about the information and proof of quality provided by the component developer.
Hence, to increase the trust of a customer on a component some authors have pro-
posed different forms of “component certification". A first approach proposes the
constitution of independent agencies (or Software Certification Laboratories [167])
for software component evaluation. The main duty of such an agency should be the
derivation and verification of the qualities of a component. To this end the agency
should extensively test (from a functional and performance point of view) the compo-
nents and then publish the results of the executed tests and the used environments.
However, the inherent difficulties in establishing these agencies suggested that in al-
ternative warranties be derived as the result of extensive operational usage, following
some notable Open Source example (e.g. Linux). By coordinating the users of a
particular software, a “user-based software certification” could be established [168].

A different approach to certification has been proposed by Morris et al. [58, 130],
starting from the remark that using the services of a certification agency could be
particularly expensive for a small software company. To overcome this problem a
developer’s software certification approach is proposed. This approach relies on the
specification and release to the component customer of test cases written in a XML
format. This format should guarantee a better understanding, on the component
customer’s side, of the test cases that have been executed by the developer on the
component. According to the authors, on the one hand this should increase the trust
of the customer on the component behavior. On the other hand, by using suitable
tools, it should be possible for the customer to (re-)execute the XML test cases in the
target environment. Thanks to this feature, the approach can also be seen as another
variant of built-in testing.

Metadata Approach. As said many times, the scarcity of information is the main
source of customer suspicion. Then the proposal behind the metadata approach [136]
is to augment the component with additional information in order to increase the
component customer’s analysis capability. Obviously, it is important at the same
time to develop suitable tools for easing the management and use of the provided
metadata. Different kinds of information can be provided by the developer such as
a Finite State Machine (FSM) model of the component, information on pre- and
post-conditions for the provided services, regression test suites [137], and so on. Also
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the proposal of Stafford and Wolf [158], who foresee the provisioning of pathways
expressing the potential of an input to affect a particular output, can be re-conducted
to this approach. Whaley et al. [177] propose to supply models that express acceptable
method calls sequences. In this manner the customers can evaluate their use of the
component and check whether not illegal calls are permitted. Finally an aspect-based
approach to classify metadata information, so to better support test selection, is
suggested in [62].

Customer’s Specification-based Testing Approach. To different extents, all of the
above approaches relay on some cooperation and good will on the component devel-
oper’s side: that some specified procedure is followed in producing the component,
or that some required information or property about the component behavior and/or
structure is provided. However we cannot assume that this is the general case and
often components are delivered supplemented of really little information. At this
point the unique means, in the hands of the customer, to increase his/her trust on
the component behavior remains the execution of test cases that he/she has defined
on the basis of the specifications for the searched component. This is the approach
that I have developed in Chapter 7. The use of test cases developed on the basis
of the component user’s specification and in the target environment is useful in any
case, but especially when only black-box test techniques can be used. The applica-
tion of this kind of approach requires, however, the development of suitable tools and
methodologies for test case reuse and derivation. It is also of primary importance to
develop new means for the derivation of relevant test cases from the specifications.

In our work we consciously make the least restricting assumptions on how the
component is developed or packaged, taking the move from the observation that in
practice COTS components may still today be delivered with scarce, if any, useful
information for testing purposes. Starting from this assumption we developed our
framework (see Chapter 7 for details) for easing the execution of test cases derived
from the customer architectural specifications.
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Component Based Software
System

Performance is one of the most critical factor in developing software systems. A
system that perfectly responds to the functional requirements but fails to meet per-
formance requirements can be certainly considered faulty. Indeed in [174], the authors
report that in their researches performance issues account for one of the three major
fault categories. Starting from the early nineties performance evaluation has been
reconsidered to be an important architectural issue, more than a technical matter,
and Software Performance Engineering (SPE) [155] starts to make the first steps to
become an important branch of software engineering.

As generally recognized today, in the development of complex software systems
it is important to consider performance requirements from the first steps of the de-
velopment and not as one of the last steps before system release. Real experiences
demonstrate that neglecting performance issue in the system architecture develop-
ment is hazardous, since to fix a performance lack when the system is ready to be
run generally leads to the refactoring either of the whole system with generally huge
losses of money, or to the use of a not completely satisfactory system.

Performance can be evaluated using two different and orthogonal approaches. The
first considers the definition of specific models, abstracting system structure and be-
havior, that on the base of precise and sound mathematics tools, logically bound to
the model, permit to infer the final system performance properties. As we will dis-
cuss in the following, the precision of the results provided by this approach are strictly
related to the precision of the defined model. We refer to this kind of solutions as an-
alytical approaches. Another possibility for system performance evaluation, which
can be called empirical approaches, is instead the use of test cases that, simulating
the use of the final system, exercise some kind of system prototype. It is worth to
note that the prototype should reflect as much as possible the final behavior of the
system and its development should be greatly cheaper than that of the final system.
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6.1. Analytical approaches

The idea at the base of the analytical approaches is to construct a logical model of
the system, using tools based on sound and precise formalisms, that permit to infer
the performance properties of the systems. Formalisms that are generally used for
such objectives are Petri Nets, Markov Chains, and Queueing networks.

Even though the availability of powerful formalisms, that provide reliable predic-
tions on performance properties of the system, is certainly necessary, two major prob-
lems are related to the use of them, and effectively hinder their usage. The first prob-
lem is referred to the difficulties in representing the system, using an analytical model,
starting from the specifications or the final implementation. The second problem, in-
stead, is related to the inherent complexity in the use of such formalisms, which gen-
erally require people with specific skills and strong mathematical background; these
qualities are not necessarily in the hand luggage of a software designer.

Researchers, to solve the mentioned problems, are today turning their eyes to the
emerging, and today definitively affirmed, modeling mechanisms, such as those intro-
duced in Chapter 2. The very basic idea is to augment the mechanisms provided by
the different modeling languages with performance connotations. This additional in-
formation will successively enable the definition and analysis of a performance model.
In this process the general rule is to hide, as much as possible, any technical per-
formance detail from the system designer, that at this point results only indirectly
involved in the definition of the performance model for the system.

Several interesting works have been published in the last years in this area and
in particular a lot of them focus the discussion to the modeling of complex system
following the component-based paradigm. In particular some recent published work:

1. in [140] the authors consider the use of software architecture as the modeling
tool. Following the idea sketched above the authors provide a way to attach
a performance description to architectural patterns. The performance prop-
erties of an architectural pattern is defined using Layered Queueing Network
(LQN) [144, 84] that is an extension of the traditional Queueing Network (QN)
model. Considering the final architecture as a combination of pattern the au-
thor propose to derive the performance model as the combination of the model
associated to patterns.

2. in [66] the authors propose an interesting approach, called PRIMA-UML, that
introduces an UML based methodology that encompasses the performance val-
idation task as an integrated activity within the development process through
the use of performance model derived form early available UML models.

3. in [94] the authors define a language for making predictive analysis of perfor-
mance requirements for system obtained assembling software components . At
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the same time they map the constructs of the defined language on elements of
the Real Time UML profile, providing to such elements a precise “performance
semantics”.

4. in [148] the authors discuss the design and implementation of a composer, which
assembles library components based on a classification of their declarative XML-
based performance description.

5. in [166] the authors propose an approach based on Model Driven Architecture,
which foresees a tool that automatically augments a PSM high level model with
performance details deriving from the choice of a specific middleware. The
resulting PSM models contains enough detail to be directly transformed in a
performance models and analyzed using suitable tools.

6. in [178] the authors propose a language called Component-based Modeling Lan-
guage (CBML), that is based on UML and XML. The language permits to
describe performance models of software component and component-based sys-
tems. It has the capability to capture the performance-related features of soft-
ware components, their integration and deployment in the system.

7. in [43, 42] the authors describe a methodology, called Component Based Soft-
ware Performance Engineering (CB-SPE), and the corresponding tool that per-
mits to infer the performance characteristic of a component based system. The
approach proposed is based on the use of the RT-UML diagrams and foresees
the composition of performance evaluations made both by the component devel-
oper, that annotates the component developed with performance characteristic,
and by the component assembler, that inserts component performance charac-
teristics into the model describing for the whole system.

6.2. Empirical approaches

Weyuker and Vokolos reported on the weakness of the published scientific literature
on software performance testing in [174]. To this date no significant scientific advances
have been made on performance testing. Furthermore the set of tools available for
software performance testing is fairly limited. The most widely used tools are work-
load generators and performance profilers that provide support for test execution and
debugging, but they do not solve many unclear aspects of the process of performance
testing. In particular, researchers and practitioners agree that the most critical perfor-
mance problems depend on decisions made in the very early stages of the development
life cycle, such as architectural choices. Even though iterative and incremental devel-
opment has been widely promoted [127, 54, 106], the testing techniques developed so
far are very much focused on the end of the development process.
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Weyuker and Vokolos report on the industrial experience of testing the performance
of a distributed telecommunication application at AT&T [174]. They stress that,
given the lack of historical data on the usage of the target system, the architecture is
key to identify software processes and input parameters (and realistic representative
values) that will most significantly influence the performance. The work presented
in Chapter 9 extends this consideration to a wider set of distributed applications,
i.e., distributed component-based software in general. Moreover, in it we provide a
systematic approach to test-definition, implementation and deployment that are not
covered in the work of Weyuker and Vokolos.

Performance Testing of Distributed Applications Some authors exploited empirical
testing for studying the performance of middleware products. Gorton and Liu com-
pare the performance of six different J2EE-based middleware implementations [92].
They use a benchmark application that stresses the middleware infrastructure, the
transaction and directory services and the load balancing mechanisms. The com-
parison is based on the empirical measurement of throughput per increasing num-
ber of clients. Similarly, Avritzer et al. compare the performance of different ORB
(Object Request Broker) implementations that adhere to the CORBA Component
Model [108]. Liu et al. investigate the suitability of micro-benchmarks, i.e., light-
weight test cases focused on specific facilities of the middleware, such as, directory
service, transaction management and persistence and security support [111]. This
work suggests the suitability of empirical measurement for middleware selection, i.e,
for making decisions on which middleware will best satisfy the performance require-
ments of a distributed application. However, as Liu et al. remark in the conclusions
of their paper ([111]), “how to incorporate application-specific behavior in the equa-
tions and how far the results can be generalized across different hardware platforms,
databases and operating systems, are still open problems.”

6.3. Final Considerations

The work presented in Chapter 9 starts from the consideration that nowadays complex
component-based software system make use of complex middleware to cooperate. As a
consequence we supposed that final system performance should be mainly consequence
of execution inside middleware elements, and related to the particular use of the
middleware. This hypothesis partly invalidates the use of pure analytical approaches,
given the inherent complexity in modeling middleware components. As a consequence
the prevision provided by the analytical model are generally rather rough. Tt is
worth noting that even when middleware component could be introduced inside the
analytical model it is necessary to refer the specific implementation of the middleware
that will be used. In fact, as already highlighted above, different implementations of
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the same middleware can provide completely different performance results [92].

In this area we think that empirical evaluation could have a good change of success
since middleware is generally a “legacy” component that is used for more than one
software implementation and therefore it is already present when the architecture is
defined. We also note that it is the middleware functionality, such as transaction and
persistence services, remote communication primitives and threading policy primi-
tives, that dominates distributed system performance. Current practice, however,
rarely applies systematic techniques to evaluate performance characteristics. We ar-
gue that evaluation of performance is particularly crucial in early development stages,
when important architectural choices are made.

Drawing on these observations, Chapter 9 presents a novel approach to performance
testing of distributed applications. We propose to derive application-specific test cases
from architecture designs so that the performance of a distributed application can be
tested based on the middleware software at early stages of a development process. A
first promising result of the application of the methodology is also reported.
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Part III.

Proposed Approaches for
Component-based Software
Systems Testing

In this part I illustrate proposed solutions to the issues presented in the previous part.
The result that I report are mainly consequence of fruitful collaborations with other
researchers. In particular I introduce:

e In Chapter 7 a framework that make easier the codification and execution of
test cases for CB software. This research topic have been explored at ISTI-CNR
in collaboration with Antonia Bertolino and has successfully lead to two main
publications [46, 142].

e In Chapter 8 an approach for the evaluation of system developed integrating
different component, on the base of models derived form the analysis of execution
traces. This research topic is still an ongoing work conjunctly explored at ISTI-
CNR and University of L’Aquila in collaboration with Antonia Bertolino, Paola
Inverardi, and Henry Muccini, and has been shortly illustrated in [47].

e In Chapter 9 an approach for performance evaluation of component based dis-
tributed system. This research topic have been mainly explored at University
College of London (UCL) in collaboration with Giovanni Denaro and Wolfgang
Emmerich and has successfully lead to two main pubblications [73, 74].
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7. CDT a Framework for
Component Deployment Testing

In view of all the needs depicted in Chapter 5, and considering a scenario in which
no information is made available by the component developer in addition to the
component interface signatures (the extreme COTS example), we have developed the
Component Deployment Testing (CDT) framework. CDT supports the functional
testing of a to-be-assembled component with respect to the customer’s specifications,
which we refer to as deployment testing. CDT is both a reference framework for
test development and codification, and an environment for executing the tests over
a selected candidate component. In addition, CDT can also provide a simple means
to enclose with a component the developer’s test suite, which can then be easily
re-executed by the customer.

The key idea at the basis of the framework is the complete decoupling between
what concerns deriving and documenting the test specifications and what concerns
the execution of the tests over the implementation of the component. Technically,
to achieve such a separation, the framework requires the capability of retrieving at
run-time information on the component, mainly relative to the methods signature.
In other words, the component to be tested must enable introspection mechanisms
[103], allowing for the component run-time introspection.

The CDT framework [46] has been designed to suit the needs for component deploy-
ment testing, as discussed in Section 5.1. In particular we have focused on developing
suitable means for facilitating customer’s specification-based testing, as above
outlined. Our objective is to develop an integrated framework within which the com-
ponent user can evaluate a component by testing it against its expected behavior
within the assembled system. The main features of such a framework should include:

e the possibility of the early definition of the test cases by the component
user, based on the expected component behavior within the target system;

e an easy re-use of the defined test cases, in order to evaluate a set of
candidate components;

e the easy configuration/re-configuration of the assembled system, in
order to execute the test cases;

75



7. CDT a Framework for Component Deployment Testing

e the easy extensibility of the testing framework, in order to add new fea-
tures and functionality for testing control purposes;

e the reduction of the number of test cases to be re-executed when a com-
ponent is substituted.

In our approach we distinguish among “virtual”, “concrete” and “real” component.
The first represents an ideal component fully conforming to the architectural defi-
nition. A concrete component is instead a possible implementation of this virtual
component, that can be validated through testing. Finally, a real component is a
component as it can be retrieved from the market or the in-house repositories. It is
generally possible to implement a concrete component by combining more than one
real components.

We assume that the component user has identified some requirements for a com-
ponent derived, for instance, from the system architectural specifications. On the
basis of such requirements, (s)he devises a reference component model that we call
the “virtual component”. With reference to the previous classification, the framework
allows for the codification of the virtual component interface in a particular class that
will be used as the target of testing (we will expand on this on Section 7.2).

The framework subsumes a component user’s development process, according to
the considerations expressed in Section 5.1. We intervene at the stage in which the
component user is searching a real component matching the virtual component’s re-
quirements. The process can be roughly summarized in the following steps:

1. definition of the system architecture, with identification of the components and
of the associated provided and required interfaces;

2. coding of the interfaces, as identified in the previous step, into precise interface
specifications implemented by the virtual component (these specifications will
be successively used as a sort of wrapper for the candidate component);

3. definition of the test cases, starting from the architectural description, to test
the defined virtual component;

4. identification of one or more candidate components that could match the virtual
component;

5. evaluation of each candidate component on the defined test cases, possibly using
stubs if not all services required by them are already implemented.

A main feature of the CDT framework is the decoupling between the specification
of the test cases and the actual implementation details of a component candidate for
assembly. In other words, our framework allows a component user to start designing
the executable test cases before any specific component implementation is available.
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Figure 7.1.: A CDT use example

We illustrate this feature in Figure 7.1. As shown on the left side, following a
conventional test strategy, the design of a test case can only start after a concrete
component has been identified. Moreover, different test designs can be necessary for
each concrete component. Using CDT, instead, the process is simplified, as shown on
the right side of Figure 7.1. In fact, CDT makes it possible to perform test design in
advance, based on the virtual component specification. Later on, when one or more
candidate components are identified, these can be tested by using the framework,
without the need to revise the test design. It is the framework that switching from
a concrete component to another performs the redirection of the invocations (that
a test case always makes to the virtual component) towards the different candidate
components. In this manner a clear saving of coding effort can be obtained.

7.1. A Case Study

In this section we present a case study that will be used in the following to illustrate
the features of the CDT and how it can be employed during development. It is a
proof-of-concept system that has been developed to validate our ideas and to conduct
a first experimentation.

Our idea was to develop a CB FTP service system allowing for multiple session
clients, i.e., a client can maintain several FTP sessions open at the same time and
transfer files between the various servers to which a connection is established. A
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simple client/server system for FTP service was already available in our laboratory,
earlier developed as the result of an undergraduate exam project. However we were
completely unaware of the structure of this piece of code. We decided to make an
attempt to reuse the real components from this existing system, and to employ the
CDT for evaluation.

We started from the specification phase, inspired at large from the process followed
in [63]; we identified in the system to develop two main components:

1. a session manager component, i.e., a component able of maintaining a ref-
erence to all open connections,

2. an ftp client component, i.e., a component able of establishing a connection
with an ftp server and transferring files via this connection.

For both components, we then defined an interface according to their architectural
specifications and the interactions foreseen between them. In particular, for the ftp
client component we defined the following interface, with an intuitive meaning for
each method:

1. connect(IPAddress: String, clientPort: Integer,
serverPort:Integer),

2. close(),
3. 1ist(): Stringl],
4. download(file:String),

5. multipleDownload(files: Stringl]),
6. upload(file: String),
7. multipleUpload(files:String[])

Hence, we passed to the implementation phase. We decided to develop in house
the session manager component. This was, in fact, a rather specific component.
Instead we decided to reuse the ftp client already available to realize the virtual ftp
client component. Therefore, we started to analyze the services provided by the real
component (the already existing one). To adhere to our hypothetical process allowing
for the reuse of black box components, even though we could have had access to the
source code, we tried to understand the services that were effectively provided only by
analyzing the associated documentation in Javadoc format. The real ftp component
implemented the following interface:

1. open(IP: String, portaC:int, portaS: int),
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2. exit(),

3. list(): Stringl],

4. put(file:String),

5. get(file:String) :String

Several differences between the interfaces of the actual and the virtual component can
be noticed. From the syntactic point of view, no two methods in the two interfaces had
a same signature, and the differences were at various grades. At a first level there were
some methods that presumably were performing the same service and differed only
in the method’s name. A little more difficult were those cases in which the difference
concerned the parameters types. Finally, the biggest problem was the absence of
methods in the real ftp component allowing for the multiple download /upload service
foreseen in the definition of the virtual component. In the following section, we
illustrate how using the CDT framework we were able of overcoming these differences
and how we defined and used some test cases to validate the implementation.

We notice that CDT is meant for use during development in order to evaluate
selected candidate components for reuse within a specified architecture. Once and
if the CDT testing is successful, then adequate coding (e.g., wrapping) might be
necessary to allow for the effective deployment of the tested component within the
system assembly.

7.2. Using CDT

In this section we illustrate how a system developer, who intends to build a complex
system by assembling components externally produced, can use the CDT framework
for evaluating any possibly retrieved component. To use the framework, essentially the
component user must develop for each component three main artifacts, as introduced
by the following list:

1. The “Spy” classes: constitute the fully conforming codification, in some pro-
gramming language, of the services provided by the “virtual component”.

2. The test cases: must be developed to validate a possible implementation of a
virtual component. They refer to the virtual component interface referred to in
the previous point.

3. The XMLAdapter: is a file in which the user must establish some rules ex-
pressing how a virtual service is provided at run-time by a concrete component.
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public class SpyFTPClient extends InformationSwap {

public void connect(String IPAddr, Integer cPort, Integer sPort) {
Object[] parameters = new Object[] {IPAddr,cPort,sPort};
Object ris = driver.executeMethod("connect”, parameters);

}
/* A1l the other methods foreseen in this interface are not shown
* since they share a similar structure with the connect method

*/
}

Figure 7.2: Extract of the virtual component codification for the ftp client component

In the following of this section we provide more details of how and when these artifacts
can be built, with reference to the presented case study.

Clearly such artifacts are not conceived to be used during normal operational usage
due to the high performance overhead caused by the reliance on introspection mech-
anisms. However they can be usefully employed for the development of application
prototypes as cooperative glue code.

“Virtual Components” and “Spy” Classes. The “Spy” classes play a key role to fa-
cilitate the decoupling between the virtual components and the real components. In
short, we foresee that once an architectural component is specified, sufficient infor-
mation are available to codify a plausible interface (as that illustrated for instance
in the case study section). Using this interface as a reference, the component user
can thus implement a “virtual component”, that has the same interface and can be
invoked by the test cases. This “virtual component” is implemented in a “Spy” class.
The implementation of the methods of “Spy” has not to be very elaborate, in fact,
the methods act only as a form of delegation towards the CDT “Driver” component
instance (this component will be presented in Section 7.3). Considering the case study
of the previous section, we can codify the required component interface as shown in
Table 7.2.

Therefore, the “Spy” represents an interface of the services necessary in order to
launch the test cases. But, as illustrated in the following, the association between the
services provided by the “Spy” and a real implementation will be established only at
run-time.

Besides, we also introduced, at this level, mechanisms for the specification, and for
the run-time checking, of contracts. The approach to the specification of provided
services using contracts has emerged first in the area of Object-Oriented programming
[125]. However, with the advent of the CB paradigm the emphasis on this approach
has grown: in fact, contracts have been recognized as a valuable means to transfer
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information concerning the service behavior between the component developer and
component user.

Considering the good potential of this approach, we decided to foresee that the
system architect could specify contracts for the services of the virtual components,
as an additional means to validate the choice of a concrete component. To do this,
the component user should annotate the “Spy” with the definition of the expected
behavior for the component in the form of a contract. The syntax to specify the
contracts depends from the specific components (as explained in the next section).
Basically, contracts can be enclosed in the codification of the “Spy” and they will be
checked at run time for each invocation of the “Spy” methods.

Developing the Test Cases. After the “Spy” has been implemented, the testing
teams can develop the deployment test cases taking as a reference the “virtual com-
ponent” codification. Each test case is coded as a method that belongs to a class, that
in turn is part of a suite, according to the JUnit [10] conventions. The latter is a well-
known Open-Source test tool developed and used inside the eXtreme Programming
(XP) community. The goal of JUnit is to provide the developers with a means for
the easy codification and execution of the test cases concurrently with development,
following the motto “code a little, test a little, code a little, test a little...”. JUnit
fixes some conventions for the naming and organization of the test cases. Two main
reasons convinced us to follow the same syntactic conventions (with some minor ex-
ception) established by JUnit. The first reason is reducing the learning effort required
to the testers (already knowledgeable with JUnit) to use the CDT framework. The
second reason, instead, is related to reducing the effort of developing our framework,
as we could directly integrate part of JUnit in it. Moreover, by reusing JUnit we
have provided CDT with the capability of organizing the test cases in “target equiva-
lence classes”. Thanks to this feature, when we need to modify a virtual component
substituting some internal parts, we can reduce the number of test cases that on av-
erage must be re-executed. Obviously it is necessary to apply regression test selection
mechanisms to identify the test cases that it is necessary to re-execute.

Due to the reuse of JUnit, it is very easy to add a new test case to a test suite.
This is obviously an important factor since new test cases can always be derived as
development proceeds. At the end of the test cases elicitation stage, the test cases
are in fact packed in a file Jar containing also the corresponding “Spy”. Then, to add
a new test class, it is sufficient to identify the file Jar containing the specific suite.

With reference to the FTP case study, in Table 7.3 we report an example of a test
case that checks the behavior of the component for what concerns the overriding of
a file (i.e., when a file with the same name of that just downloaded is found in the
directory).

We are also introducing mechanisms for tracing of the execution of the test cases
[45]. We foresee to use wrappers for the real components to intercept all the invoca-
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public void testNoOverwrite() {
java.io.File file = new java.io.File(serverDirectory + forDownload);
((SpyFTPClient) spy) .download(serverDirectory + forDownload) ;
long lastModified_1 = file.lastModified();

((SpyFTPClient)spy) .download(serverDirectory + forDownload) ;
long lastModified_2 = file.lastModified();

assertTrue(lastModified_1 == last_Modified_2);
}

Figure 7.3: A possible test-case codification

tions. For each invocation the wrapper records all the parameters and return values
to reuse them when the component will be modified and/or substituted.

Drawing up the XMLAdapter. As said, a “Spy” is not a real component and its
purpose is only to codify the desired functionality for a component, so to permit the
early establishment of test cases. In parallel, on the basis of the same specifications,
a searching team can start searching the internal repository or the market for com-
ponents that match the virtual components. We think it reasonable to only focus at
this stage on the behavioral aspects of the specification. In other words, we search for
components that (seem to) provide the desired functionality, neglecting in this search
possible syntactic differences. As a result, several differences at various levels can
exist between the virtual component (codified in a “Spy”) and the found candidate
instances of it.

Now we clarify which is the second artifact that the system developer needs to
build for using CDT: the XMLAdapter serves the purpose of specifying the corre-
spondence among real and virtual components, to overcome the possible differences
among them, so to permit the execution of the specified test cases. To establish this
correspondence, a customer can rely on his/her intuition of what the methods of the
candidate components likely do. This intuition can be based on the signatures of the
methods, and on any additional documentation possibly accompanying the compo-
nents, such as the Javadoc description of each method. Obviously this process (which
is always the most delicate part of a CB development) is subject to misinterpretation
(especially if the components are not adequately documented), and candidate compo-
nent could behave actually differently from what is expected. However, deployment
test execution should highlight such misunderstandings.

An ad-hoc XMLAdapter must be drawn up every time a possible implementation for
the virtual component has been identified. We defined a Document Type Definition
(DTD) scheme that specifies the legal building box of the XMLAdapter. The infor-
mation that must be specified in this file can be classified in two different categories,
that are reflected also in the structure of the file. In the first part the component user
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must specify which are the candidate real components that we intend to test. In the
current implementation it is possible to specify the real components using the name
of a package that contains the component. Alternatively, it is also possible to specify
a name registered in a naming service registry. In the first part the user must specify
also which are the test cases to be executed on the candidate implementation. They
are simply identified specifying the name of the package and of the class containing
them. The necessary test cases will be retrieved from one of the file Jars created by
the the testing teams by packaging the test cases and the corresponding “Spy”. The
second part of the XMLAdapter contains information that specifies, for each method
in the virtual component codification, how it can be implemented by the methods in
the real candidate components. In other words, this part allows for the adaptation of
the virtual interface to the real provided service. In particular we have analyzed the
following levels of possible differences between these two types of components:

1. differences in the methods names and signatures:

a. the methods have different names;

b. the methods have the same number and types of parameters, but they are
declared in different order;

c. the parameters have different types, but we can make them compatible,
through suitable transformations. It can be also necessary to set some
default parameters;

2. one method in the “Spy” class corresponds to the execution of more than one
method in the real implementation of the component.

Obviously the instances listed above are not mutually exclusive, for instance it is
possible to have different name methods with different signatures. It may be worth
noticing that the symmetric case to 2 (more methods in the “Spy” correspond to one
method in the real implementation) is not generally relevant. In fact, the “Spy” is
kept simple and typically contains a minimal number of necessary methods. If, say,
two methods in the “Spy” correspond to one method in the real implementation, then
either the real implementation is not compatible, or we do not need to invoke the two
methods alone, but always together and in the same sequence. If so, then it would
be more intuitive to indicate only one method in the specification of the “Spy”. We
imagine that generally the differences between a virtual component and a candidate
implementation are generally not so big. We think in fact that big differences in the
interfaces can hardly lead to the adoption of the candidate component. Nevertheless,
even though it is in principle possible to have a correspondence of type one-to-many
in the implementation of a virtual component, we think that in a well established
development process, an architecture developed by experts should generally lead to a
one-to-one correspondence between virtual and real candidate components.
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<?xml version="1.0" 7>
<!DOCTYPE Matahari>
<matahari>
<test_package name="it.cnr.isti.test.components” />
<test_class name="ClientFTPTest" />
<real_package name="it.car.isti.component.clientFIP" />
<create_object class="REAL_PACKAGE.Client" object_name="client" />
<virtual_method name="connect' parameters="serverName portallient portaServer'>
<exec_method object="portallient"” name="intValue" put_result_in="clientP" />
<exec_method object="portaServer"” name="intValue” put_result_in="serverP" />
<exec_method object="client" name="open'>
<parameter value=‘serverName" />
<parameter type="int" value="clientP" />
<parameter type="int" value='"serverP" />
</exec_method>
</virtual_method>
<virtual_method name="close'>
<exec_method object="client' name="ezit" />
</virtual_method>
<virtual_method name="download"” parameters="file'>
<exec_method object="client'" name='"get'>
<parameter value=‘file"” />
</exec_method>
</virtual_method>
<virtual_method name="upload" parameters="file'>
<exec_method object="client" name="put'>
<parameter value="file" />
</exec_method>
</virtual_method>
<virtual_method name="multiplelownload"” parameters="files'>
<recover_field object="files" field="length" put_value_in="length" />
<for counter="i" from="0" to="length-1'">
<exec_method object="client"” name="get'>
<parameter value="files[i]" />
</exec_method>
</for>
</virtual_method>
<virtual_method name="multiplelpload" parameters="files'>
<recover_field object="files" field="length" put_value_in="length" />
<for counter="i" from="0" to="length-1'>
<exec_method object="client’ name="put'>
<parameter value="files[i]" />
</exec_method>
</for>
</virtual_method>
<virtual_method name="list'>
<exec_method object="client' name="1ist" put_result_in="output" />
</virtual_method>
</matahari>

Figure 7.4: Example of XMLAdapter related to the case study

As a final consideration, the drawing up of the XMLAdapter is certainly not an
easy task. However this task can be partially automated and alleviated with the
implementation of suitable tools and graphic interfaces.

In Table 7.4 we reported an excerpt of the XMLAdapter for the case study illus-
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trated in the previous section. In this file we reported all the information that permit
to an instance of the “Driver” component (see next section) to create the environment
for the test phase. In particular we solved all the differences between the two inter-
faces in this file. As interesting result we discovered, executing the test case in Table
7.3, was that the component overwrote any file with the same name of the file that
was currently downloaded. Since we required a more careful behavior we needed to
implement a “patch” to this component.

The Graphical User Interface To make easier the use of the framework we are
planning the development of a graphical interface that aids as much as possible the
user of the CDT framework. Nowadays the developed interface can interact with
the user only to start the test phase. We are studying possible extensions for the
semi-automatic drawing up of the XMLAdapter, when the candidate implementation
of a component has been identified. We briefly describe the features of the current
implementation of the CDT interface as shown in Figure 7.5.

Since the interface provides, at this time, functionalities only for the test execu-
tion phase, it subsumes that the previous steps, such as “Spy” codification, test case
codification and XMLAdapter drawing up, have been already performed. Then as
first steps the user must choose an XMLAdapter, drawn up by a searching team, that
specifies the virtual component that the user intends to test and the test cases that
it is necessary to execute. After the choice of the file the user can choose the run test
option (the two check boxes in the upper part of the interface in Figure 7.5 provide
this choice). A first possible use case is to run the application only in order to instru-
ment a “Spy” definition with contract specifications. In such a case the framework will
retrieve the file Jar containing the test cases and the virtual component codification
and create another Jar file that contains the same test cases and an instrumented
version of the “Spy”. A second possible use case is to execute a testing session. In this
case the application will “create” the system architecture instantiating the real com-
ponents specified in the XMLAdapter, and then the specified test cases are retrieved
and executed. It is also possible to execute the two tasks in sequence.

In the lower part of the interface the user, when the test phase execution mode
has been chosen, can identify the test cases that, for some reasons, did not finish
correctly. In particular we distinguish between the two different cases of ‘“failed test”
(the obtained result does not match with the expected one) and “interrupted test” (as
a consequence of the raising of an exception). In particular the test cases interrupted
because of the violation of a contract belong to the second set.
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# CDT - Grophical User Interface
Option About

Choose at least an option
[~ Run test

Input xml adapter name

[ Instrument Spy and compile the test package

Test failed list

Choose...

Testinterrupted list

Figure 7.5.: The CDT framework interface

7.3. Framework Architecture

Although the development of the CDT framework, as a proof-of-concept tool, did
not follow a-priori a CB paradigm, at the end of the process we strongly revised the
code to make it compliant with an a-posteriori developed architecture. In fact, we
were conscious of the actual advantages of having a precise correspondence of the
code to a high level architecture. Therefore the revision was aimed at isolating as
much as possible functionalities belonging to different architectural components, and
we created a different Jar file for each one of them. What we would like to have was
a modifiable, flexible and extendible implementation. To this purpose we have used
the interface construct of the Java language and strongly limited direct references
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2. To retrieve information on the mapping between virtual and real components
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Figure 7.6.: The Structure of the CDT framework

among classes belonging to different Jar files (components).

In the rest of this section we describe the main elements (components) of the
CDT architecture and how they interact in order to test a software component, or a
component-based sub-system. We have identified the following five main elements in
the architecture of the CDT framework:

1. Repository component

2. Contract instrumenting components,
3. Test execution driver component,

4. XML parser component,

5. Interface and coordinator components.

In Figure 7.6 it is shown how, at run time, instances of the main elements in the
approach, that will be described in the following, cooperate in order to test a real
instance of a virtual component.

Repository Component. We have seen in the previous paragraph how a generic user
must codify, following the JUnit test “template”, the test cases that will be successively
used to test a real implementation of a virtual component. Correspondingly we need
to foresee in the system architecture, a repository component which should provide
suitable services for the storage of a specified test suite, and suitable services for the
retrieving of one of them when its name is specified. In our implementation we have
chosen to pack a test suite and its corresponding “Spy” class in a Jar file. At this
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point we can identify the test suite by the name of this file. Therefore, in the current
implementation, the component providing the repository service is abstracted by the
Java API for file management, and it is actually implemented by the file system
running on the machine. The services provided by the file system are used by two
other components

9

1. the component that can be used to instrument the “Spy” class with contract

definition,

2. the component that need to retrieve a test suite to start a test phase

Contract Instrumenting Component. As seen in the previous section we allow
testers to insert contract specifications in the definition of the methods of a “Spy”.
Obviously in the case of the virtual component definition the specification of a con-
tract can only contain reference to the methods foreseen in the definition of the “Spy”.
No access to a feature of a real implementation of the component, as a field, can be
done. We chose to integrate an externally developed component for the management
of contracts, and all technical details concerning contract definition (e.g. source in-
strumentation using special tag in Javadoc comments) reflect the requirements of the
integrated component. There are several alternatives to introduce contract checking
in the Java language and we choose to integrate iContract, a free component (not
open source) that can be downloaded from the Internet [7].

iContract works as a preprocessor and generates, from an instrumented Java source
file, a source and a class file in which each method starts and finishes with contract
checking invocations. The tag that must be used to define a contract are “invariant”,
“post” and “pre”, that will be followed by strings conforming to the following format:

< ContractExpression>[#ExceptionClassName]

in which <ContractExpression> it is a boolean expression that codes the contract, and
[#ExceptionClassName] is the name of an exception that must be raised if the boolean
expression is evaluated to false (if no exception is declared a RuntimeException is
launched). A contract can be defined using any legal boolean expression following the
Java syntax. Moreover iContract provides the following operators that can be used
to define more complex contract expressions:

1. forall: this operator permits to specify a rule that must be true for all the
elements in a set,

2. exists: this operator is evaluated to true if the expression following it is true
at least on one element in a set,

3. implies: an expression in the form “I implies C” means “if I then check C”.
Then if the expression I is true also C must be evaluated.
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The contract instrumenting component interacts with the Repository component in
order to retrieve “Spy” classes that must be instrumented, and to store the instru-
mented version of the retrieved virtual component definition.

Test Execution Driver Component. It constitutes the core of the approach. Main
duties of this component are the correct setting of the test environment and the
redirection of the invocations made on the virtual component to the real implemen-
tation of it. To set up the test environment the component asks to the XML parser
component information concerning the correspondence among the virtual component
and the real components. The real components can be provided as packages and
classes that must then be instantiated by a specified constructor or simply by names
registered in the registry used by a naming service.
Two different services are provided on an instance of this component:

1. execuTests(): the invocation of this method starts the deployment test. Hence
as first thing the Driver retrieves the information reported in the “XMLAdapter”
via an instance of the XML parser component, and acts as described above. At
this point it needs to retrieve the test cases to be executed. Hence, the Driver,
using the service provided by the repository component, retrieves the Jar file
containing the test cases corresponding to the virtual component under test.
The tests to execute can also be a subset of the tests contained in the package,
and the choice is made following the JUnit rules. After having identified the
tests and the “Spy” the Driver instance sets itself as the target for the invocations
of the retrieved “Spy” class. At this point the test phase can be started with
the execution of the first test case.

2. executeMethod (String name Object[] par): this service is invoked by the
instance of the “Spy” class that has been created by the invocation to the method
described above. The aim of this invocation is “to inform” the Driver instance of
the method invoked by the test case. On the basis of this information and of the
data retrieved from the “XMLAdapter”, the Driver can decide the corresponding
method /methods in the real implementation of the component to invoke.

From the description it is clear that this component is at the center of the system
architecture, from where it interacts with the repository component to retrieve the
test cases, with the XML parser component to retrieve information concerning the set
up of the system under test. At the same time the Driver is started by an instance
of the interface and coordinator component.

XML Parser Component. This component provides a parser to handle the XML
file that we defined to define the information concerning the “test plan”. Its services

89



7. CDT a Framework for Component Deployment Testing

are accessed by the Driver component in order to retrieve information for setting up
the test environment.

Interface and Coordinator Components. This component implements the function-
alities for the interactions with the user. We have already described the elements of
the interface that can be used by the user to instrument a “Spy” class or to execute a
test session. After that the information on the task to execute have been inserted in
the graphical interface this component creates an instance of the Driver component
and starts the execution of the test phase.

7.4. Conclusions and Future Work

In this chapter I presented a framework for the easier and efficient execution of test
cases in a component based environment. The framework is meant to give a partial
answer to the need of new techniques for test derivation and execution since the tra-
ditional ones have been recognized as inadequate. In particular the main intention
of the framework is to provide a simple mechanism for the execution of test cases
derived by the component user on the basis of the system architecture specification,
to validate the choice of possible candidate components. We intend to release shortly,
for free download, a beta version of the framework implementing the illustrated func-
tionality. We verified our ideas on a simple case study that has been used in this
chapter to present how a generic component user can take advantage from the usage
of the framework. In the next future we will further investigate the advantages that
the use of the framework can bring, and develop add-on tools to aid the user of the
framework. In summary, the main advantages that we have experimented using the
framework include:

e Decoupling of test specification and test design from the components implemen-
tation;

e No ad hoc requirements imposed on the candidate components for testing pur-
poses;

e FEasy reuse of test cases;
o Test suite flexibility (it is easier to add new test cases to a suite);
e Simple mechanisms to group test cases for regression testing purposes;

Currently we are also focusing on the definition of new methodologies for the deriva-
tion of test cases. In particular we conducted a first investigation on the use of test
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cases, derived from a system architectural description, for functional component vali-
dation [40]. We are also planning an integration of the framework with new method-
ologies for the non functional analysis, in particular with reference to performance
analysis [41].
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8. An Anti-Model-Based Approach
for Component Software

In the previous chapter I presented a framework that has been developed to make
easier, and better shaped to the CB software needs, the execution of test cases. The
framework does not make any assumption on how test cases have been selected and
on how the results of the executions of them should be used for deriving particu-
lar properties for the system under test. Objective of this chapter is to introduce a
novel approach, that I started to investigate in collaboration with Antonia Bertolino
from ISTI/CNR, Paola Inverardi and Henry Muccini from the Computer Science De-
partment of the University of L’Aquila, for the testing based analysis of software
systems developed assembling software components. The work is still an on going
work and certainly more experimental results must be collected and analyzed to bet-
ter understand the actual relevance of the approach for the evaluation of CB systems.
Nevertheless the results obtained so far and the approach interesting promises, in-
duced me to thinking that it is worth to introduce and shortly discuss the approach
even in this PhD thesis.

Even if we agree with the usefulness of model-based testing, there can be several
reasons why such an approach cannot be applied or is too expensive for deployment in
a specific context. One generic barrier to a wide adoption of model-based testing is its
inherent complezity, which requires a deep expertise in formal methods, even where
tool support is available — as testified in the AGEDIS project [98]. Another obstacle
is the difficulty in forcing the implementation to toke a defined path as identified in
the model derived test sequences. The latter are generally expressed at an abstract
level, while the executable test cases must be more concrete and more informative
(e.g., [36]). Finally, one more counter-motivation to the practice of model-based
testing can be the use of legacy systems or COTS, for which behavior models are not
available.

Considering in particular component-based software development, a system is gener-
ally obtained by assembling already existing components, for which we cannot a-priori
assume that a specification or the source code are available. In such cases, model-
based testing is not applicable, or would be too costly. We assume in fact that the
system assembler has a high-level specification of the global architecture, but can only
pose in practice very basic requirements on the behavior of the acquired components.

This is the rationale for an “anti-model-based testing approach” as the one I
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outline in this chapter. While model-based testing starts from an a-priori established
model and tries to execute some sequences derived from this model, in “anti-model-
based” testing we take the opposite direction. We execute the implementation on some
sample executions, and by observing the traces of execution we try to infer/synthesize
a-posteriori an abstract model of the system.

8.1. The Approach

The objective of our research is to develop a tool that should assist the system devel-
oper/assembler in the evaluation of a component based software system. In particular
the analysis proposed by the approach is an “after composition” technique that re-
quires,to be applicable, the complete integration of the system under test and the
successive collection of specific data derived from test cases execution. Opportunely
collected data will be the starting point for the derivation of a system behavioral
model successively used for analysis purpose. From a first glance the approach could
seem similar to other approaches proposed in the area of reverse engineering. In par-
ticular in [56] the authors propose the use of monitoring mechanisms to derive real
execution paths that will be successively transformed in UML sequence diagrams.
Despite this work partially shares a similar objective with respect to that proposed
in this chapter, to be applicable it foresees the instrumentation of the system source
code with suitable mechanisms that permit the collection of necessary information
for deriving execution traces and so UML sequence diagrams. In our research we
turned our eyes to component-based software systems, that invalidate the possibil-
ity of instrumenting the source code requiring the adoption of different mechanisms
based on component wrapping. Moreover in [56] the analysis step terminates with
the derivation and analysis of the sequence diagrams, instead in our approach we are
interested in the derivation of a more complete system behavioral model to which
analysis techniques such as model checking [64] can be applied. The use of tracing
mechanisms for component-based verification has been also proposed by Mariani in
[116]. However the goal of his approach and of the consequent collection of execution
traces, is not to derive a system model for analysis purpose, but he uses traces as a
sort of oracles for regression testing purpose, applicable when one of the components
in the system is substituted.

Figure 8.1 summarizes the approach we are working on, and as the picture illustrates
it is based on four main steps:

1. Derivation of the usage profile for the assembled system, based on a high-level
specification of the global architecture;

2. Launch of the test cases derived in the previous steps and monitoring of the
system to excerpt execution traces
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Step 1

Select Test Cases using
a Usage Profile for the
assembled System

Step 2

Test case execution and
recording of execution traces

Step 3

Sequence Diagram extraction
and behavioral model synthesis

Step 4

Model Analysis and
identified problems analysis

Figure 8.1.: Approach activities

3. Reverse-engineering of the set of sequence diagrams, in order to synthesize a
behavior model.

4. Analysis of the model to find possible flaw and further investigation in the case
of positive search.

In detail, when a software system has to be produced through assembly of compo-
nents, wanted system requirements needs to be identified and specified. Whenever
the main system requirements are elicited, we may start identifying the architectural
components which may reasonably implement the system. We may thus buy the
components and create the glue code as a way to produce the desired system.

8.1.1. Step 1: Test Case Selection

In Step 1, suitable test cases have to be identified. As the basic assumption of this
approach is that a model for the components is not available, we use the only informa-
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tion that is anyhow available (it may be in various forms): the expected Input/Output
functions of the components. This information has to be available in some form, oth-
erwise we could not even use/search for the components. In other words, as a very
minimum the component user must know how to solicit the component and what to
expect as a reaction. To make such an approach systematic, we will stimulate the
component interactions by trying to reproduce the operational usage for the system
under test as proposed by the Musa in his works on usage profiles [133].

8.1.2. Step 2: Test Execution and Trace Recording

In Step 2, we have to launch the test cases and monitor the execution traces. Goal of
this step is to stimulate the system with inputs, capturing information on execution
traces. The idea of capturing traces from code execution is not new. In particu-
lar, many strategies aimed to reverse-engineer dynamic models are reported in the
literature, many of them surveyed and compared in [56]. The general idea is to in-
strument the source code, adding some monitors, and run it with some inputs. The
monitors help collecting relevant information on run-time execution, such as methods
execution, classes and/or objects communication, control or data flow information.

What makes the difference between our monitoring activity and many others is
the assumption components are black-box and a component specification is missing.
This assumption strongly impacts the way in which monitoring can be performed. In
our context, information is gained by instrumenting the glue code used to assemble
the components. The information we wish to collect regards the integration between
components requiring or providing services. Therefore the tracing mechanism that we
need should be able of recording each invocation made by one component on another
component. This could be easily obtained trough the use of specific wrappers used to
trace either the incoming calls and the outgoing calls for each component. However
the tracing task become particularly hard when concurrency, that is the normal case
for real component based system, is considered. If concurrency is introduced the tools
cited above for tracing executions are not anymore adequate. We need instruments
to record the “horizontal” execution of a focus of control inside a component. In
other word we need to put in relation the incoming invocations to a component with
the respective outgoing invocations. When more foci of control are present at the
same time this is not an easy task. The best way to address the problem is the use
of an “instrumented run-time” that permits to observes the behavior of the system
during the execution and that in particular provides an horizontal view of each focus
of control. We started some experiments with Java based components using an old
version of the JVM ! that provides suitable mechanisms for tracing purposes [16].

lthis has been a major problem
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8.1.3. Step 3: Model Derivation and Analysis

In Step 3, the execution traces collected in the previous step are used to synthesize a
behavioral model. This one is the most interesting aspect of this research work. In
fact, in order to synthesize state machines from execution traces, our idea is to extract
scenarios from the execution traces and eventually use such scenarios to synthesize
state machines, reusing existing synthesis algorithms (e.g., [17, 164]). In particular
this problem can be reconducted to that studied in formal languages and generally
referred as grammar inference problem [138]. In fact a sequence of invocations
can be considered as a particular production of the automata constituted, in the
specific case, by the system under test. Therefore the problem is to derive a FSM
that can produce the words (scenarios) observed during the execution of the system.
An execution trace may be considered as the interleaving of different scenarios (as
depicted in Figure 8.2), that successively can be integrated with other traces to derive
a behavioral system model as illustrated in the next step. To derive a useful model that
infer other system behavior besides those actually observed it is generally necessary
to provide to the synthesis algorithms rules for combining scenarios. For instance in
[164] the authors consider the introduction of high Message Sequence Charts (hMSC)
in which the different scenarios are organized in a tree structure. That information
can be retrieved from the monitoring step or provided by the developer.

8.1.4. Step 4: Model Analysis

When a FSM, abstractly representing the system, has been derived we use such model
to infer properties on the assembled system. This step is certainly, together the
previous one, the most challenging in the process. The techniques that we want to
apply are those that follow the model checking methodology. For instance we would
be interested in verifying that in the produced model there is no deadlock situation.
Particularly critical for this steps is the possible presence of implied scenarios [163],
that are scenarios not really present in the system but only on the model, which
have been introduced as consequence of the inevitable incompleteness of the definition
(traces) used to derive the model and of the rules used to combine scenarios. Therefore
when the model checking tool finds a counterexample that invalidates the properties
that we were checking it will be necessary to extend the investigations on the nature
of such counterexample in particular verifying that the scenario actually is present
in the real system. The best tool to conduct this steps is probably the derivation of
further critical test cases.
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Figure 8.2.: From execution traces to scenarios to behavioral model

8.2. Conclusions and Future Work

Concluding, model-driven specifications have been recently utilized by software engi-
neers for analysis and testing purposes with unobjectionable results. Unfortunately,
such analysis techniques cannot be applied whenever the system model is unavailable.

Goal of this work is to propose some initial attempts in this direction; even when
system models and software code are unavailable, we outlined how an anti-model-
based testing technique may produce relevant results.

In this chapter I simply illustrated how a reverse-engineered model may be pro-
duced by analyzing execution traces. However, in future work we desire to investigate
how such reverse engineering process may help to discover unexpected behaviors.
In particular, our future work will be directed to evaluate, through model checking
techniques, how much the implementation is good with respect to expected qualities.
Moreover, we may analyze if the system specification produced contains unexpected
behaviors. If it does, we may gain some information on how good the selected test
cases are.

Currently we have correctly identified the problem and we have addressed some
important questions for the real application of the approach. We started also some
experiments using a software that simulate the behavior of a set of elevators, developed
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using the C2 architectural language ([1]) and a framework that provide a simple direct
way of implementing a C2 architecture in the Java language.
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9. Early Performance Testing of
Component Based Software

In the context of this chapter, we take the perspective of the producer of a component-
based system, who is interested in devising systematic ways to ascertain that a given
distributed software architecture meets the performance requirements of their target
users. Performance can be characterized in several different ways. Latency typically
describes the delay between request and completion of an operation. Throughput
denotes the number of operations that can be completed in a given period of time.
Scalability identifies the dependency between the number of distributed system re-
sources that can be used by a distributed application (typically number of hosts or
processors) and latency or throughput. Despite the practical significance of these
various aspects it is still not adequately understood how to test the performance of
distributed applications.

As a consequence of the need for early evaluation of software performance and the
weakness of testing, the majority of research efforts has focused on performance anal-
ysis models [23, 143, 140, 31, 39, 79] rather than testing techniques. This research
shares in general the approach of translating architecture designs, mostly given in the
Unified Modeling Language (UML [53]), to models suitable for analyzing performance,
such as, Layered Queuing Networks (e.g. [140]), Stochastic Petri Nets (e.g. [31]) or
stochastic process algebras (e.g. [143]). Estimates of performance are used to reveal
flaws in the original architecture or to compare different architectures and architec-
tural choices. Although models may give useful hints of the performance and help
identify bottlenecks, they still tend to be rather inaccurate. Firstly, models generally
ignore important details of the deployment environment. For example, performance
differences may be significant when different databases or operating systems are used,
but the complex characteristics of specific databases and operating systems are very
seldom included in the models. Secondly, models often have to be tuned manually.
For example, in the case of Layered Queued Networks, solving contention of CPU(s)
requires, as input, the number of CPU cycles that each operation is expected to use.
Tuning of this type of parameters is usually guessed by experience and as a result it
is not easy to obtain precise models.

With the recent advances in distributed component technologies, such as J2EE [150]
and CORBA [123], distributed systems are no longer built from scratch [77]. Mod-
ern distributed applications often integrate both off-the-shelf and legacy components,
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use services provided by third-parties, such as real-time market data provided by
Bloomberg or Reuters, and rely on commercial databases to manage persistent data.
Moreover, they are built on top of middleware products (hereafter referred to as mid-
dleware), i.e., middle-tier software that provides facilities and services to simplify
distributed assembly of components, e.g., communication, synchronization, threading
and load balancing facilities and transaction and security management services [78].
As a result of this trend, we have a class of distributed applications for which a con-
siderable part of their implementation is already available when the architecture is
defined, for example during the Elaboration phase of the Unified Process. In this
chapter, we argue that this enables performance testing to be successfully applied at
an early stage.

The main contribution of this chapter is the description and evaluation of a method
for testing performance of distributed software in an early stage of development. The
method is based on the observation that the middleware used to build a distributed
application often determines the overall performance of the application. For example,
middleware and databases usually contain the software for transaction and persis-
tence management, remote communication primitives and threading policies, which
have great impact on the different aspects of performance of distributed systems.
However, we note that only the coupling between the middleware and the application
architecture determines the actual performance. The same middleware may perform
very differently in the context of different applications. Based on these observations,
we propose using architecture designs to derive application-specific performance test
cases that can be executed on the early available middleware platform a distributed
application is built with. We argue that this allows empirical measurements of per-
formance to be successfully done in the very early stages of the development process.
Furthermore, we envision an interesting set of practical applications of this approach,
that is: evaluation and selection of middleware for specific applications; evaluation
and selection of off-the-shelf components; empirical evaluation and comparison of
possible architectural choices; early configuration of applications; evaluation of the
impact of new components on the evolution of existing applications.

The chapter is further structured as follows. Section 9.1 gives details of our ap-
proach to performance testing. Section 9.2 reports about the results of an empirical
evaluation of the main hypothesis of our research, i.e., that the performance of dis-
tributed application can be successfully measured based on the early-available com-
ponents. Section 9.3 discusses the limitations of our approach and sketches a possible
integration with performance modeling techniques. Finally, Section 9.4 summarizes
the contributions of the chapter and sketches our future research agenda.
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9.1. Approach

In this section, we introduce our approach to early performance testing of distributed

component-based software architectures. We also focus on the aspects of the problem

that need further investigation. Our long-term goal is to provide an automated soft-

ware environment that supports the application of the approach we describe below.
Our performance testing process consists of the following phases:

1. Selection of the use-case scenarios (hereafter referred to simply as use-cases)
relevant to performance, given a set of architecture designs.

2. Mapping of the selected use-cases to the actual deployment technology and
platform.

3. Generation of stubs of components that are not available in the early stages of
the development life cycle, but are needed to implement the use cases.

4. Execution of the test, which in turn includes: deployment of the Application Un-
der Test (AUT), creation of workload generators, initialization of the persistent
data and reporting of performance measurements.

We now discuss the research problems and our approach to solving them for each of
the above phases of the testing process.

9.1.1. Selecting Performance Use Cases

As it has been noticed by several researchers, such as Weyuker [174], the design of test
suites for performance testing is radically different from the case of functional testing.
In performance testing, the functional details of the test cases, i.e., the actual values
of the inputs, are generally of limited importance. Table 9.1 classifies the main pa-
rameters relevant to performance testing of distributed applications. First, important
concerns are traditionally associated with workloads and physical resources, e.g., the
number of users, the frequencies of inputs, the duration of tests, the characteristics
of the disks, the network bandwidth and the number and speed of CPU(s). Next,
it is important to consider the middleware configuration, for which the table reports
parameters in the case of J2EE-based middleware. Here, we do not comment further
on workload, physical resource and middleware parameters, which are extensively
discussed in the literature [174, 159, 111].

Other important parameters of performance testing in distributed settings are due
to the interactions among distributed components and resources. Different ways of
using facilities, services and resources of middleware and deployment environments
are likely to yield different performance results. Performance will differ if the database
is accessed many times or rarely. A given middleware may perform adequately for
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Table 9.1.: Performance parameters

Category Parameter

Workload Number of clients
Client request frequency
Client request arrival rate
Duration of the test

Physical resources Number and speed of CPU(s)
Speed of disks
Network bandwidth

Middleware configuration Thread pool size
Database connection pool size
Application component cache size
JVM heap size
Message queue buffer size
Message queue persistence

Application specific Interactions with the middleware
- use of transaction management
- use of the security service
- component replication
- component migration
Interactions among components
- remote method calls
- asynchronous message deliveries
Interactions with persistent data
- database accesses

applications that stress persistence and quite badly for transactions. In some cases,
a middleware may perform well or badly for different usage patterns of the same
service. The last row of Table 9.1 classifies some of the relevant interactions in dis-
tributed settings according to whether they take place between the middleware and
the components, among the components themselves! or to access persistent data in
a database. In general, the performance of a particular application will be largely
dependent on how the middleware primitives are being used to implement the appli-
cation’s functionality.

We argue that Application-specific test cases for performance should be given such

L Although interactions among distributed components map on interactions that take actually
place at the middleware level, they are elicited at a different abstraction level and thus they are
considered as a different category in our classification.
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that the most relevant interactions specifically triggered by the AUT are covered.
According to this principle, the generation of a meaningful test suite for performance
testing can be based on either of two possible sources: previously recorded usage
profiles or functional cases specified in the early development phases.

The former alternative is viable in cases of system upgrade. In this situation,
“histories” of the actual usage profiles of the AUT are likely to be available because of
the possibility that they have been recorded in the field. The synthesis of application
specific workloads based on recorded usage profiles is a widely studied and fairly well
understood research subject in the area of synthetic workload generation (e.g.[114,
157]).

When the development of a completely new application is the case, no recorded
usage profile may exist. However, modern software processes tend to define the re-
quired functionality of an application under development in a set of scenarios and
use cases. To build a meaningful performance test suite, we can associate a weight
to each use case and generate a synthetic workload accordingly. The weight should
express the importance of each use case in the specific test suite. Obviously to have
a reliable evaluation of the performance characteristics of the application, we need to
consider as many use cases as possible. This should be a minor problem because it
is often the case that most of the use cases are available in early stages of a software
process. For instance, the iterative and incremental development approaches (such
as the Unified Software Development Process [54]) demand that the majority of use
cases be available at the end of the early process iterations. In such settings, we can
therefore assume that the software system developer can use these use cases to derive
test cases to evaluate the performance of the final application, before starting with the
implementation phase. On the base of the obtained results the developer can even-
tually revise the taken decisions in order to obtain better “expected” performance.
To this end, several possibilities are available at this stage, (at a less expensive costs
with respect to a late system refactoring, which might be required due to poor per-
formance), such as, a revision of the architecture or a “re-"calibration of some choices
concerning the middleware configuration.

9.1.2. Mapping Use Cases to Middleware

In the initial stages of the software process, software architectures are generally de-
fined at a very abstract level. The early use-cases focus on describing the business
logic, while they abstract the details of the deployment platform and technology.
One of the strengths of our approach is indeed the possibility of driving software en-
gineers through the intricate web of architectural choices, off-the-shelf components,
distributed component technologies, middleware and deployment options, keeping the
focus on the performance of the final product. The empirical measurements of perfor-
mance may provide the base for comparing the possible alternatives. Consequently,
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Figure 9.1.: An sample use-case (a) and part of a corresponding performance test case
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to define a performance test case, the abstract use-cases must be augmented with the
following information:

e The mapping between the early available components (if any) and the compo-
nents represented in the abstract use-cases;

e The distributed component technology and the actual middleware with respect
to which the performance test is to be performed;

e The characteristics of the deployment of the abstract use-cases on the actual
middleware platform, i.e., the specification of how the described component
interactions take place through the selected component technology and middle-
ware.

The two former requirements can be trivially addressed. For example, Fig. 9.1 (a)
illustrates a sample abstract use-case, in which an actor accesses the service m1 pro-
vided by the component App, which in turn uses the service m2 provided by the
component DB. Correspondingly, Fig. 9.1 (b) illustrates a performance test case in
which: the component DB is instanced as the available MySql database engine, while
the component App is not early available; the whole application is deployed using the
J2EE component technology and the JBoss application server as middleware. The
rest of this section discusses the problem of specifying the deployment characteristics.
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At the architectural level, the properties of the component interactions can be de-
scribed in terms of software connectors®. Recent studies (e.g., [118]) have investigated
the role that software connectors may play in software design, showing that they may
relevantly contribute to bridge the gap between the high-level application view of a
software architecture and the implementation support provided by distributed com-
ponent technologies and middleware. [121] attempts to classify software connectors
and identifies a general set of connector types, their characteristics (dimensions) and
the possible practical alternatives for each characteristic (values). For instance, the
procedure call is identified as a connector type that enables communication and
coordination among components; synchronicity is one of the dimensions of a pro-
cedure call connectors; and synchronous and asynchronous are the possible values
of such dimension. When all dimensions of a connector type are assigned to specific
values, the resulting instance of the connector type identifies a connector specie, e.g.,
the remote method invocation can be considered as a specie of the procedure call
connector type. Our approach to the specification of the deployment characteristics
leverages and extends the connector taxonomy of [121].

Up to now, we identified an initial set of connector types that specifically apply
to the case of component interactions that take place through a J2EE compliant
middleware. Giving values to the dimensions of these connectors allows for specifying
the characteristics of the deployment of an abstract use-case on an actual middleware
platform based on the J2EE specification. Specifically, we identified the following
connector types: J2EE remote service, J2EE distributor, J2EE arbitrator and J2EE
data access.

The J2EE remote service connector extends and specializes the procedure call con-
nector type of [121]. This connector specifies the properties of the messages that flow
among interacting components. We identified the following relevant dimensions for
this connector:

e Synchronicity: A remote service can be either synchronous or asynchronous.
Specifying a value for the synchronicity dimension allows to select if the service
must be instanced as a synchronous method invocation or as an asynchronous
event propagation, respectively.

e Parameters: This dimension specifies the number of parameters and their ex-
pected size in bytes. This allows for simulating the dependences between perfor-
mance and the transfer of given amounts of data among components. Moreover,
if the component that provides the service is one of the early available compo-
nents, also types and values of the parameters must be provided to perform the
actual invocation during the test. In this latter case, if the service is expected

2This is, for example, the spirit of the definition of software connectors given by Shaw and
Garlan [91]: connectors mediate interactions among components; that is, they establish the rules
that govern component interaction and specify any auziliary mechanisms required.
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to be invoked a number of times during the test, we can embed in the connector
a strategy for choosing the values of the parameters:

1. a single value may be given. This value will be used every time the service
is invoked during the test;

2. a list of values may be given. Each time the service is invoked a value of
the list is sequentially selected;

3. a list of values and an associated probability distribution may be given.
Each time the service is invoked a value of the list is selected sampling the
distribution.

The J2EE distributor connector extends and specializes the distributor connector
type of [121]. This connector allows to specify the deployment topology. We identified
the following relevant dimensions for this connector:

e Connections: This dimension specifies the properties of the connections among
the interacting components, i.e., the physical hosts on which they are to be
deployed in the testing environment and the symbolic names used to retrieve
the component factories through the naming service.

e Types. This dimension specifies the (expected) implementation type of the
interacting components. Possible values are: client application, session bean,
entity bean® and database table.

e Retrieving. This dimension specifies how to use the component factories (for
components and interactions this is applicable to) for retrieving references to
components. In particular, either the default or finder method can be specified
(non standard retrieving methods of component factories are called finders in
the J2EE terminology).

The J2EE arbitrator connector extends and specializes the arbitrator connector
type of [121]. This connector specifies the participation in transactions and the se-
curity attributes of the component interactions. We identified the following relevant
dimensions for this connector:

e Transactions: This dimension specifies the participation in transactions of a
component interaction. Possible values are: none, starts and participates: none,

3Session beans are J2EE components that provide business services. Thus, session beans are
often used as the interface between J2EE applications and client applications. Entity beans are
J2EE components that represent persistent data within an application. Each database table is
generally associated to an entity bean. The data in the entity bean are taken synchronized with
the database. Thus, entity bean are often used as the interface between J2EE applications and
databases.
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if the interaction does not participate in any transaction; starts, if the interac-
tion starts a new, possible nested, transaction; participates, if the interaction
participates in the transaction of the caller.

e Security: This dimension specifies the security attributes of a component in-
teraction. In particular, it specifies if services can be accessed by all users,
specific users, or specific user groups, and which component is responsible for
authentication in such two latter cases.

The J2EE data access connector extends and specializes the data access connector
type of [121]. This connector mediates the communication between J2EE components
and a database, specifying the structure of the database and how the interactions
are handled. In particular, we identified the following relevant dimensions for this
connector:

e Tables: This dimension specifies characteristics of the tables and their respective
fields in the database.

o Relationships: This dimension specifies the presence of relationships among the
tables in the database.

e Management: In J2EE components persistence can be handled either imple-
menting the access functions (e.g., queries) in the component code (this is called
bean managed persistence, BMP) or using standard mechanism embedded in
the middleware (this is called container managed persistence, CMP).

Fig. 9.2 illustrates the application of connectors to the sample use-case of Fig. 9.1.
As specified by the J2EE remote service connectors, the interactions m1 and m2 are
both synchronous (i.e., they are assumed to be remote method invocations) and have
just one input parameter. In the case of m1, only the parameter size is worth it, being
the server component App not early available. Conversely, in the case of m2, also the
actual value of the parameter is needed, being the database available. The specified
parameter is the actual SQL code to be executed on the database and the “single
value” strategy is used. The assumed database structure is specified in the J2EE
data access connector da2 and consists of a table (T1) with two integer fields (F1 and
F2) and no relationship, while the interactions between the component App and the
MySql database are supposed to follow the bean managed persistence paradigm. The
two J2EE distributor connectors, d1 and d2, specify that the component App and the
database are deployed on the same host (host2), while the client is on a different
host (host1). The interface between the client and the component App is provided
by a session bean EJB component and the interface between App and the database is
handled by an entity bean EJB component. The retrieving strategy, when applicable,
uses the standard methods provided by the platform. Finally, the J2EE arbitrator
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Figure 9.2.: A performance test case associated with the use-case in Fig. 9.1

connector specifies that m1 starts a transaction in which m2 participates and no special
security policy is considered. The information given in Fig. 9.2 identifies a specific
performance test case associated with the use-case in Fig. 9.1.

Notice that Fig. 9.2 is meant just for exemplification purpose and not to suggest an
approach in which use-case diagrams must be annotated with connector information
before testing. In a mature and engineered version of our approach, we envision the
possibility that a tool analyses the abstract use-cases and extracts the simple list of
alternatives for each interaction dimension. The performance engineer would then
have the choice of selecting the best suited alternatives according to the performance
requirements or test different alternatives to find out the one that works best (in a sort
of what-if-analysis fashion). Software connectors provides the reasoning framework
towards this goal. Furthermore, our current knowledge about all needed connector
types and their dimensions is limited because it is based on a simple case in which
we have experimented the application of the approach (Section 9.2 gives the details
of this initial experience). We believe that we are on the right path, even though we
are aware that further work is still needed to understand the many dimensions and
species of software connectors and their relationships with the possible deployment
technologies and platforms.
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Putting MDA in the Picture. In Chapter 2 we extensively discussed the different
alternatives for the modeling of a complex software system. Particularly interesting
in the context of the work presented in this section will be possible development in the
area of Model Driven Development (MDD). In fact, as the reader probably has already
guessed, the approach described above can be considered a particular way of providing
a development driven by the use and refinement of software models, defined using
some kind of Architectural Description Language. As already discussed in Chapter
2 we think that the Software Architecture approach is the right approach to model
complex system logically composed of many different interacting components. In
particular the definition of the “connector” as a first class construct bring great logical
improvement with respect to other modeling languages, permitting the definition of
complex components interactions (see Chapter 2 for further details). The work that we
described in this section it is a first attempt to identify connector features that should
“easily” lead the developer to the deployment of the software architecture on the target
platform through the phase of refinement that math an architectural connector to a
real implementation depending on the selected platform. In Chapter 2 we discussed
the relation between ADL and the upcoming version of the Unified Modeling Language
(UML). The use of UML for the architectural description can bring great benefit to
the approach that we described above, in particular in the context of the Model Driven
Architecture methodology. Being able to express architectural concepts, such as that
of connector, in UML will permit the reconsideration of the problem outlined above
in term of PIM and PSM (see Chapter 2). In particular the transformation function
between PIM and PSM (Figure 2.5) should solve the matching problem discussed.
Being UML and MDA two greatly supported specifications, from the OMG consortium
[13], we expect, in the near future, the availability of suitable tools that provide semi-
automatic way (assisted by the developer) to make the mapping discussed in this
section.

9.1.3. Generating Stubs

So far, we have suggested that early test cases of performance can be derived from
use-cases and that software connectors can be exploited as a means to establish the
correspondence between the abstract views provided by the use-cases and the concrete
instances. However, to actually implement the test cases, we must also solve the
problem that not all the application components that participate in the use-cases
are available in the early stages of the development life cycle. For example, the
components that implement the business logic are seldom available, although they
participate in most of the use-cases. Our approach uses stubs in place of the missing
components.

Stubs are fake versions of components that can be used instead of the correspond-
ing components for instantiating the abstract use-cases. In our approach, stubs are

111



9. Early Performance Testing of Component Based Software

specifically adjusted to use-cases, i.e., different use-cases will require different stubs
of the same component. Stubs will only take care that the distributed interactions
happen as specified and the other components are coherently exercised. Our idea of
the engineered approach is that the needed stubs are automatically generated based
on the information contained in use-cases elaborations and software connectors. For
example, referring once again to Fig. 9.2, if the component App is not available, its
stub would be implemented such that it is just able to receive the invocations of the
service m1 and consequently invokes the service m2, through the actual middleware.
The actual SQL code embedded in the remote service connector of m2 would be hard-
coded in the stub. As for m1, it would contain empty code for the methods, but set the
corresponding transaction behavior as specified. Of course, many functional details of
App are generally not known and cannot be implemented in the stub. Normally, this
will result in discrepancies between execution times within the stubs and the actual
components that they simulate.

The main hypothesis of our work is that performance measurements in the presence
of the stubs are good enough approximations of the actual performance of the final
application. This descends from the observation that the available components, e.g.,
middleware and databases, embed the software that mainly impact performance. The
coupling between such implementation support and the application-specific behavior
can be extracted from the use-cases, while the implementation details of the business
components remain negligible. In other words, we expect that the discrepancies of
execution times within the stubs are orders of magnitude less than the impact of the
interactions facilitated by middleware and persistence technology, such as databases.
We report a first empirical assessment of this hypothesis in Section 9.2 of this chapter,
but are aware that further empirical studies are needed.

The generation of the fake version can be made easier if we can use UML to describe
the software architecture. The use of UML enables, in fact, the use of all the UML-
based tools. A first interesting investigation in this direction can be found in [120]. In
this work the authors propose different techniques to introduce concepts as connectors
and architectural styles as a first order concepts inside an “extended” fully conform
UML.

Putting MDA in the Picture. As discussed in the previous section, concerning ar-
chitectural mapping issues, also for the step described in this section the novelties
introduced in the area of UML and MDA can bring useful support to the stub gen-
eration. In fact we can consider the “fake” application as a particular application
that can be obtained in the first steps of the refinement steps. In other words the
application using stub elements can be considered as a less refined version of the fi-
nal application in which the information concerning the business logic are missing.
Therefore, the availability of tools supporting the MDA methodology should provide,
for our objectives, an easily way to produce the version based on stubs component. It
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is worth to note that the deployment details for this version of the application should
not be redefined later, but in some case only augmented with business logic dependent
details, since the obtained performance evaluation will be strongly dependent to the
specified deployment details such as localization of the components.

9.1.4. Executing the Test

Building the support to test execution shall mostly involve technical rather than scien-
tific problems, at least once the research questions stated above have been answered.
Part of the work consists of engineering the activities of mapping the use cases to
deployment technologies and platforms, and generating the stubs to replace missing
components. Also, we must automate deployment and implementation of workload
generators, initialization of persistent data, execution of measurements and reporting
of results.

In particular workload generator can be characterized in several different way, and
many different workload can be found in literature (e.g.[66, 153]). It is a developer
duty to choose the one that better represent the load that it expects for the appli-
cation during the normal usage. Then after that the type of workload have been
chosen, for instance from a list of possible different choice, and that the probability
distributions have been associated to the relevant elements in the particular work-
load, it is possible to automatically generate the corresponding “application client”
that generate invocations according to the chosen workload type and distributions.

9.2. Preliminary Assessment

This section empirically evaluates the core hypothesis of our research, i.e., that the
performance of a distributed application can be successfully tested based on the mid-
dleware and/or off-the-shelf components that are available in the early stages of the
software process. To this end, we conducted an experiment in a controlled envi-
ronment. First, we considered a sample distributed application for which we had
the whole implementation available. Then, we selected an abstract use-case of the
application and implemented it as a test case based on the approach described in
Section 9.1. Finally, we executed the performance test (with different amounts of
application clients) on the early available components and compared the results with
the performance measured on the actual application.

9.2.1. Experiment Setting

As for the target application, we considered the Duke’s Bank application presented
in the J2EE tutorial [51]. This application is distributed by Sun under a public
license, thus we were able to obtain the full implementation easily. The Duke’s bank
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Figure 9.3.: The Duke’s Bank application

application consists of 6,000 lines of Java code that is meant to exemplify all the main
features of the J2EE platform, including the use of transactions and security. We
consider the Duke’s bank application to be adequately representative of medium-size
component-based distributed applications. The Duke’s bank application is referred
to as DBApp in the remainder of this chapter.

The organization of the DBApp is given in Fig. 9.3 (borrowed from [51]). The
application can be accessed by both Web and application clients. It consists of six EJB
(Enterprise Java Beans [150]) components that handle operations issued by the users
of a hypothetic bank. The six components can be associated with classes of operations
that are related to bank accounts, customers and transactions, respectively. For each
of these classes of operations a pair of session bean and entity bean is provided.
Session beans are responsible for the interface towards the users and the entity beans
handle the mapping of stateful components to underlying database table. The arrows
represent the possible interaction patterns among the components. The EJBs that
constitute the business components are deployed in a single container within the
application server (which is part of the middleware). For the experiment we used
the JBoss application server and the MySql database engine, running on the same
machine.

Then, we selected a sample use-case that describes the transfer of funds between
two bank accounts. Fig. 9.4 illustrates the selected use-case in UML. A client appli-
cation uses the service Transfer provided by the DBApp. This service requires three
input parameters, representing the two accounts and the amount of money, respec-
tively involved in the transfer. The business components of the DBApp realize the
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Figure 9.4.: A sample use-case for the Duke’s Bank

service using the database for storing the persistent data: the database is invoked four
times, for updating the balances of the two accounts and recording the details of the
corresponding transactions. We assume that the database engine is software that is
available early in the software process. Thus, for the test, we used the same database
engine, table structure and SQL code than in the original application. This is why
we represented the database as a shadowed box in the figure. Differently from the
database, the business components of the DBApp are assumed to be not available,
thus we had to generate corresponding stubs.

For implementing the stubs, we had to map the abstract use-case on the selected
deployment technology, i.e., J2EE. We already commented on the role that software
connectors may play in the mapping. As for the interaction between the clients and the
DBApp, we specified that the service Transfer is invoked as a synchronous call and
starts a new transaction. As for the interaction between the DBApp and the database,
we specified that: the four invocations are synchronous calls that participate to the
calling transaction and embed the actual SQL code; we set up the database factory
such that the database connection is initialized for each call*; the DBApp uses entity
beans and bean managed persistence to handle the interactions with the database
tables. Based on this information, we implemented the stubs as needed to realize the
interactions in the considered use-case and we deployed the test version of the DBApp
(referred to as DBTest) on the JBoss application server.

Finally, we implemented a workload generator and initialized the persistent data

4 Although this may sound as a bad implementation choice, we preferred to maintain the policy
of the original application to avoid biases on the comparison.
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in the database. The workload generator is able to activate a number of clients
at the same time and takes care of measuring the average response time. For the
persistent data, we instantiated the case in which each client withdraws money from
its own account (i.e., there exists a bank account for each client) and deposits the
corresponding amount to the account of a third party, which is supposed to be the
same for all clients. This simulates the recurrent case in which a group of people
is paying the same authority over the Internet. Incidentally, we notice that, in an
automated test environment, initialization of persistent data would only require to
specify the performance sensible part of the information, while the actual values in the
database tables are generally of little importance. For example, in our case, only the
number of elements in each table and the relationships with the instanced use-case,
i.e., whether all clients access the same or a different table row, are the real concerns.

With reference to the performance parameters of Table 9.1, we generated a work-
load, to test both DBApp and DBTest, with increasing numbers of clients starting
from one to one hundred. The two applications were deployed on a JBoss 3.0 appli-
cation server running on a PC equipped with a Pentium IIT CPU at 1 GHz, 512 MB
of RAM memory and the Linux operating system. To generate the workload we run
the clients on a Sun Fire 880 equipped with 4 Sparc CPUs at 850 MHz and 8 GB
of RAM. These two machines were connected via a private local area network with a
bandwidth of 100 MBit/sec. For the stubs we used the same geographical distances
as the components of the actual application. Moreover, in order to avoid influences
among the experiments that could be caused by the contemporary existence of a lot
of active session beans, we restarted the application server between two successive
experiments. JBoss has been used running the default configuration. Finally, the
specific setting concerning the particular use case, as already discussed in the previ-
ous paragraphs, foresaw the use of remote method calls between the components and
the use of the transaction management service, in order to handle the data shared by
the various beans consistently.

9.2.2. Experiment Results

We have executed both DBApp and DBTest for increasing numbers of clients and
measured the latency for the test case. We repeated each single experiment 15 times
and measured the average latency time. Fig. 9.5 shows the results of the experiments.
It plots the latency time of both DBApp and DBTest against the number of clients,
for all the repetitions of the experiment. We can see that the two curves are very near
to each other. The average difference accounts for the 9.3% of the response time. The
experiments also showed a low value for the standard deviation. The ratio between o
and the expectation results, in fact, definitively lower of the 0.15, both for the DBApp
and for the DBTest.

The results of this experiment suggest the viability of our research because they
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Figure 9.5.: Latency of DBApp and DBTest for increasing numbers of clients

witness that the performance of the DBApp in a specific use-case is well approximated
by the DBTest, which is made out of the early-available components. However, al-
though the first results are encouraging, we are aware that a single experiment cannot
be generalized. We are now working on other experiments to cover the large set of al-
ternatives of component-based distributed applications. We plan to experiment with
different use-cases, sets of use-cases for the same test case, different management
schemas for transactions and performance, different communication mechanisms such
as asynchronous call, J2EE-based application server other than JBoss, CORBA-based
middleware, other commercial databases and in the presence of other early-available
components.

9.3. Scope and Extensions

Our results support the possibility that using stubs for the application code, but the
real middleware and database proposed for the application, can provide useful infor-
mation on the performance of a distributed application. This is particularly true for
enterprise information system applications that are based on distributed component
technologies, such as J2EE and CORBA. We have already commented that for this
class of distributed applications the middleware is generally responsible for most of
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the implementation support relevant to performance, e.g., mechanisms for handling
distributed communication, synchronization, persistence of data, transactions, load
balancing and threading policies. Thus in most cases critical contention of resources
and bottlenecks happen at the middleware level, while the execution time of the
business components is negligible.

Our approach allows providers of this class of distributed applications to test
whether, and to which extent, a given middleware may satisfy the performance re-
quirements of an application that is under development. In this respect, our approach
may perform better than pure benchmarking of middleware (e.g., [92, 108, 111]), be-
cause it enables application-specific evaluation, i.e., it generates test cases that take
into account the specific needs of a particular business logic and application architec-
tures. Moreover, the approach has a wider scope than solely testing the middleware.
It can be generalized to test all components that are available at the beginning of the
development process, for example, components acquired off-the-shelf by third parties.
Based on the empirical measurements of performance, tuning of architectures and
architectural choices may also be performed.

Despite these valuable benefits, however, we note that our approach cannot identify
performance problems that are due to the specific implementation of late-available
components. For example, if the final application is going to have a bottleneck in
a business component that is under development, our approach has no chance to
discover the bottleneck that would not be exhibited by a stub of the component.
Performance analysis models remain the primary reference to pursue evaluation of
performance in such cases.

Currently, we are studying the possibility of combining empirical testing and per-
formance modeling, aiming at increasing the relative strengths of each approach. In
the rest of this section we sketch the basic idea of this integration.

One of the problem of applying performance analysis to middleware-based dis-
tributed systems is that the middleware is in general very difficult to represent in the
analysis models. For instance, let us consider the case in which one wants to provide
a detailed performance analysis of the DBApp, i.e., the sample application used in
Section 9.2. To this end, we ought to model the interactions among the business
components of DBApp as well as the components and processes of the middleware
that interact with DBApp. The latter include (and are not limited to) component
proxies that marshal and unmarshal parameters of remote method invocations, the
transaction manager that coordinates distributed transactions, the a database con-
nectivity driver that facilitates interactions with the database, and the processes for
automatic activation and deactivation of objects or components. Thus, although the
application has a simple structure, the derivation of the correspondent analysis model
becomes very costly.

We believe that this class of issues can be addressed by combining empirical testing
and performance modeling. Currently we are investigating the possibility of using our
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approach as a preliminary steps to performance evaluation of systems features. In fact
using the approach we can assess how the the application interacts with the specific
middleware. In that manner we can derive useful values, expressing the performance
characteristic of the specific application when deployed on the specific middleware,
that can be successively used inside an analytical model to represent the middleware
solving the problem of representing the it with rough models that generally lead to
imprecise results.

9.4. Conclusions and Future Work

Distributed component technologies enforce the use of middleware, commercial databases
and other off-the-shelf components and services. The software that implements these

is available in the initial stages of a software process and moreover it generally embeds
the software structures, mechanisms and services that mostly impact the performance
in distributed settings. This chapter proposed to exploit the early availability of such
software to accomplish empirical measurement of performance of distributed appli-
cations at architecture-definition-time. To the best of our knowledge, the approach
proposed in this chapter is novel in software performance engineering.

This chapter fulfilled several goals. It described a novel approach to performance
testing that is based on selecting performance relevant use-cases from the architecture
designs, and instantiating and executing them as test cases on the early available soft-
ware. It indicated important research directions towards engineering such approach,
i.e.: the classification of performance-relevant distributed interactions as a base to
select architecture use-cases; the investigation of software connectors as a mean to
instantiate abstract use-cases on actual deployment technologies and platforms. It
reported on experiments that show as the actual performance of a sample distributed
application is well approximated by measurements based only on its early available
components, thus supporting the main hypothesis of our research. It finally identi-
fied the scope of our approach and proposed a possible integration with performance
modeling techniques aimed at relaxing its limitations.

Software performance testing of distributed applications has not been thoroughly
investigated so far. The reason for this is, we believe, that testing techniques have
traditionally been applied at the end of the software process. Conversely, the most
critical performance faults are often injected very early, because of wrong architec-
tural choices. Our research tackles this problem suggesting a method and a class of
applications such that software performance can be tested in the very early stages of
development. In the long term and as far as the early evaluation of middleware is
concerned, we believe that empirical testing may outperform performance estimation
models, being the former more precise and easier to use. Moreover, we envision the
application of our ideas to a set of interesting practical cases:
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e Middleware selection: The possibility of evaluating and selecting the best

middleware for the performance of a specific application is reckoned important
by many authors, as we already pointed out in Chapter 6. To this end, our ap-
proach provides a valuable support. Based on the abstract architecture designs,
it allows to measure and compare the performance of a specific application for
different middleware and middleware technologies.

COTS selection: A central assumption of traditional testing techniques is
that testers have complete knowledge of the software under test as well as of
its requirements and execution environment. This is not the case for compo-
nents off-the-shelf (COTS) that are produced independently and then deployed
in environments not known in advance. Producers may fail in identifying all
possible usage profiles of a component and therefore testing of the component
in isolation (performed by producers) is generally not enough [146]. Limited to
the performance concerns, our approach allows to test off-the-shelf components
in the context of a specific application that is being developed. Thus, it can
be used to complement the testing done by COTS providers and thus assist in
selecting among several off-the-shelf components.

Iterative development: Modern software processes prescribe iterative and
incremental development in order to control risks linked to architectural choices
(see e.g., the Unified Process [54]). Applications are incrementally developed in
a number of iterations. During an iteration, a subset of the user requirements is
fully implemented. This results in a working slice of the application that can be
presently evaluated and, in the next iteration, extended to cover another part of
the missing functionality. At the beginning of each iteration, new architectural
decisions are generally made whose impact must be evaluated with respect to
the current application slice. For performance concerns, our approach can be
used when the life cycle architecture is established during the elaboration phase,
because it allows to test the expected performance of a new software architecture
based on the software that is initially available.

We are now performing further experiments to augment the empirical evidence of
the viability of our approach and providing a wider coverage of the possible alterna-
tives of component-based distributed applications. We are also working for engineer-
ing the approach, starting from the study of the research problems outlined in this
chapter, and to this end we are considering the use of MDA based tools.
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This thesis discussed different methodologies for the functional and non-functional
evaluation of systems implemented through the assembling of components, possibly
externally acquired. I highlighted how the emergence of this new paradigm raises
new problems, in particular with reference to the evaluation step. Assembling com-
ponents to implement complex systems generally precludes, in fact, the possibility
of using traditional analysis and testing techniques, since components are generally
acquired from external providers and come without any information about internal
characteristics. Moreover I discussed the basic importance of finding methodologies
that can provide partial evaluation for a system under construction starting from the
first steps of the development, since a belated identification of a flaw in the project
generally implies the loss of huge amount of money, and in some cases leads to the
failure of the project. Following this demand I discussed how some emerging modeling
languages can be fruitfully used to make inferences on the final system behavior from
a functional and non-functional point of view so reducing the risk for late detection of
project flaws. In particular in Chapter 2 three main modeling paradigms have been
introduced, such as Software Architecture, UML and MDA. I also highlighted both
the respective relations of the three paradigms in the modeling of component based
software systems, and why the concepts firstly introduced by Software Architecture,
such as the concept of connector, are of basic importance in CB software development.

In this thesis two different chapters are dedicated to discuss two different proposals
that try to make profit from an architectural description of a system. In particular in
Chapter 7 T introduced the Component Deployment Testing Framework (CDT). The
intention of the framework is to provide a simple means for the early codification of
test cases defined to assess the conformance of components retrieved from the market,
against those defined in the system architecture. By using the framework the system
assembler can codify the test cases one time and successively use them to evaluate
different components that could possibly be integrated in the system. The framework
is based on the separation of the codification step from the adaptation step, reduc-
ing in that manner the probability of making errors. At the same time the defined
test cases will be easily reusable when the system manager wants to substitute one
component with a new one providing the same functionalities. Differently from other
frameworks for component testing, CDT does not requires that the component devel-
oper implements, in the component, specific interfaces for testing purpose. Finally,
CDT has been conceived to be used by the system assembler that, as deeply discussed
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in Chapter 7, must develop test cases on the base of his/her specifications with the
advantage of having a component evaluation that reflects more closely the real final
component usage and can also take into consideration the real environment.

The framework has been implemented in a proof of concept version and applied
to the verification of a simple system (a dummy version of an FTP client) composed
of two components, and it has given promising results. However the experiments
highlighted that the adaptation phase, via the drawing up of the XMLAdapter file,
could be quite difficult if there is a great difference between the component defined in
the architecture and that selected to be possibly integrated in the system. This fact,
suggested that the adaptation step should take advantage from the development of a
graphical interface for the generation of the XMLAdapter. In the current version the
framework is easy to use to functionally test a component in isolation, using stubs
for the services required, or when it is integrated with other components providing
the necessary services to the component itself. However the interactions of the com-
ponents “behind the scene” are not checked during the execution of a test case. To
improve the capability of the framework a sort of test-bench could be developed to
track also the interactions among the components behind the component under test,
so improving much more the capability of finding faults.

A second approach that strongly uses information from the architectural description
of a system has been presented in Chapter 9. In this case the discussion is not focused
on functional behavior but on performance evaluation. The starting point of the
approach is the observation/hypothesis that the performance of a complex system
implemented on top of a complex middleware is mainly consequence of the specific
implementation and setting of the used middleware. For this reason we suggest that
the use of analytical models generally leads to rough evaluations. Since middleware is
a piece of code that is generally present when the system assembler starts to develop
the architecture for the system, we proposed a methodology for the derivation of a
prototype from the early architectural description of the system. Our hypothesis is
that the obtained prototype, that uses the middleware in a similar way to how it will
be done by the final system, reasonably approximate the behavior of the final system,
at least for what concerns performance issues. The evaluation of the prototype is
carried on by executing, on the derived prototype, opportunely defined test cases.
We suggest that the selection of test cases, should be driven by the definition of
operation profiles. In that manner the evaluation will be strongly focused on the
scenarios that, with greater probability, will be activated in practice.

The approach has been used to foresee the performance of a simple application,
provided by Sun Microsystems, deployed on the reference implementation of the J2EE
application server. We compared the performance evaluation obtained running a
test suite against the prototype derived from our approach, and against the real
implementation. The results show that there is a strong relation among the two
evaluations, that confirms the feasibility and quality of the proposed approach to
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performance prediction. However, even though the approach has gives encouraging
results, it is not a panacea. In particular it is not applicable to find bottlenecks of
an application when they reside in the business logic. For this reason we think that
the approach proposed can be fruitfully used in combination with analytical models,
and probably in that combination it can provide the best contribute. In fact, from
our study we can conclude that the weakness of an approach are the point of strength
of the other and vice versa. The investigation on how to better integrate the two
different approaches is ongoing work.

Finally in Chapter 8 I discussed an approach for the behavioral evaluation of a
system implemented assembling components. We start from the consideration that it
is generally difficult to apply model-based testing to component based systems, as a
consequence of the general black-box nature of external acquired components. So we
propose a novel approach that tries to infer a model from the execution of the assem-
bled system. The very general idea is to derive a set of test cases from an operational
profile of the system under development. After that the system has been completely
instantiated we execute the test cases on it, and from opportunely placed probes, we
derive execution traces. From these traces and applying opportunely chosen synthesis
algorithms we intend to derive a behavioral model that we can evaluate, using model
checking for instance, to verify interesting system properties. The setting up of the
approach to be really applicable still requires deeper investigations in different direc-
tions. Many difficulties both technical and theoretical must be solved. For instance,
how to derive meaningful executions traces when concurrent processes are considered.
At the same time it is necessary to derive from the executions a partial order among
the observed traces to fruitfully apply the synthesis algorithms. Nevertheless I think
that the approach can be an interesting contribute to the problem of obtaining a deep
evaluation of a component-based software system. It is our intention to continue the
investigation on this topic.
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