
A Dynamic Hybrid Scheduling Algorithm with
Clients’ Departure for Impatient Clients in

Heterogeneous Environments
Navrati Saxena, Kalyan Basu and Sajal K Das

Comp. Science & Engg. Dept.
University of Texas at Arlington

Arlington, Texas, USA
{nsaxena, basu, das}@cse.uta.edu

Christina M. Pinotti,
Dept. of Mathematics and Informatics,

University of Perugia,
Perugia, Italy,

pinotti@unipg.it

Abstract— The essence of efficient scheduling and data trans-
mission techniques lies in providing the web-applications with ad-
vanced data processing capabilities. In this paper we have efficiently
combined the push and the pull scheduling to develop a new,
practical, dynamic, hybrid scheduling strategy for heterogenous,
asymmetric environments. The proposed algorithm dynamically
computes the probabilities and the optimal cutoff-point to separate
the push and the pull data sets. The data items are also assumed to
be of variable lengths. While the push strategy uses the flat, round-
robin scheduling, the pull items are determined by stretch-optimal
(max-request min-service time) scheduling policy. In order to make
the scheduling more practical, we have considered the impact of the
impatience of the clients waiting to get the service of a particular
data item. The effects of this impatience can lead to departure of
specific client(s) from the system. Our proposed hybrid scheduling
strategy takes care of these effects to capture a real portrayal of the
system dynamics. These scenarios are modelled by suitable birth
and death process to analyze the overall expected delay of the
system. Subsequently, simulation results corroborate the average
system performance and points out significant improvement over
existing hybrid systems in terms of average waiting time spent by
a client.

I. INTRODUCTION

The recent advancement and ever increasing growth in web
technologies has resulted in the need for efficient scheduling
and data transmission strategies. The emergence of wireless
communication systems have also added a new dimension to
this problem by providing constraints over the low-bandwidth
upstream communication channels. Guaranteeing precise qual-
ity of service (QoS), such as the expected access-time or
delay, is perhaps the most salient feature of such data services.
To extract the best performance and efficiency of a data
transmission scheme, one needs a scalable data broadcasting
technology.

Broadly, data dissemination applications can be categorized
into two basic systems: (1) push-based and (2) pull-based.
In a push-based broadcast system, the server periodically
transmits the data items. The clients continuously monitor
this broadcast process and obtain the data items they require,
without making any requests. On the other hand, in a pull-
based system, the clients explicitly sends requests, and the

server then makes a schedule on demand to satisfy these
requests. Both push- and pull-based scheduling have their own
advantages and disadvantages. While push-based scheduling
solves the problem of uplink channel constraints, it might
waste valuable bandwidth by repeatedly transmitting less
popular (cold) items. Moreover, for large number of data items,
the delay associated with the cold items becomes half of
the entire broadcast cycle-length. On the contrary, the pull-
based scheduling transmits data items on demand, but suffers
from uplink resource constraints. Thus, a better performance
could only be achieved when the two scheduling approaches
are combined in an efficient manner. Although, there exists
some works on hybrid scheduling schemes in the literature [1],
[8], [5], however, but none of those schemes considers the
following factors simultaneously:

• Heterogenous System: The above hybrid scheduling
schemes assume that data items have the same length
(size). However, in most practical systems, the data items
are of varying sizes. In this situation, the most fair
approach is to serve the data items of lower length more
quickly than those of higher length. Thus, the decision
to choose a particular data item for service should be
dependent on its length.

• Dynamic computation of data access probabilities: The
dynamics of today’s Internet and web services need an
online hybrid scheduling scheme, which can adapt to
the changes of the system. However, existing hybrid
scheduling techniques make a priori assumption of data
access probabilities.

• Client Impatience : In practical systems, the clients often
looses their patience, while waiting for a particular data
item. This results in forcing the client to leave the system
after waiting for a certain time. Hence, the effects of
client’s impatience needs to be carefully considered to
capture a more accurate, practical behavior of the system.

The above discussions motivate us to design an efficient,
online/dynamic, hybrid scheduling strategy, which will take
clients’ impatience into consideration, while minimizing the
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overall waiting time in heterogenous, asymmetric communi-
cation environments.

In particular, this paper proposes a dynamic, hybrid schedul-
ing that effectively combines broadcasting of more popular
data (push data) and dissemination upon-request for less
popular data (pull data), for asymmetric heterogeneous envi-
ronments. In this approach, the server continuously broadcasts
one push item and disseminates one pull item. The clients send
their requests to the server, which queues them up for the
pull items. At any instance of time, the item to be broadcast
is selected by applying a flat scheduling, while the item to
be pulled is the chosen from the pull-queue by applying
stretch-optimal (max-request min-service-time first) scheduling
algorithm. The performance of the proposed hybrid scheduler
is analyzed to derive the expected waiting time. The cut-off
point between push and pull items is chosen so that the overall
waiting time of the system is minimized.

Specific contributions and novelty of our work are summa-
rized below.

1) We design a new dynamic hybrid algorithm for het-
erogeneous (variable length) data items. The varying
length of data items introduces variation in service time.
In such systems stretch is the most fair measure to
select the request for a particular data item. The stretch-
optimal scheduling proposed in [17] works for pure
push systems. The R × W algorithm [3] also considers
data items with uniform size for on demand, pull-based
systems.

2) The cut-off point that separates the push and pull sets
is computed dynamically to better analyze the system
behavior and more practical scenarios. This has the
power to achieve optimal performance.

3) In most practical systems, the clients often get impatient
while waiting for the designated data item. After a
tolerance limit, the client may depart from the system,
thereby resulting in a drop of access requests. This
behavior significantly affects the system performance,
which needs to be properly addressed. Although an
introduction of impatience is investigated in [10], the
work considers only pure push scheduling. One major
contribution of our work lies in minimizing the overall
drop request as well as the expected waiting time.

4) Simulation experiments are conducted starting with a
pure pull system, without prior knowledge of data access
probabilities. Later, the probabilities are re-computed
dynamically to determine the cut-off-point between the
push and pull sets. Simulation results closely match with
analytical results.

The rest of the paper is organized as follows: Section II
reviews related works. The hybrid scheduling strategy is
proposed in Section III. To analyze its performance, a queuing
model is developed in Section IV. Simulation results in
Section V corroborates the performance analysis and points
out the efficiency of the hybrid scheduling strategy. Finally,
Section VI concludes the paper with pointers to future re-

searches.

II. RELATED WORK

As mentioned earlier, scheduling algorithms can be broadly
classified into push and pull based techniques. In order to
achieve optimal expected access time, the broadcast scheduling
has been related to the packet fair queuing problem [8]. How-
ever, the optimal solution for data broadcast problems with
non-uniform transmission time and multiple data items [11]
are shown to be NP-hard, thus leading to the develop-
ment of various approximation techniques. A three-player
client-provider-server model [4], which logically separates the
servers from service providers, is proposed for asymmetric
communication environments. In order to capture the time-
varying dynamism of mobile client’s data accesses, a broad-
casting strategy needs to be adaptive [14], [9]. Asymptotically
optimal algorithms for obtaining data access-costs, which are
not proportional to their own waiting time, are provided
in [5]. However, we also need to consider the clients’ behavior
that often affects the performance of the dynamic system as
follows. While waiting for a data item, a client might get
impatient and leave the system. The scheme in [10] is the only
work that considered this effect for push-based broadcasting.

On the other hand, many preemptive and non-preemptive,
pull-based algorithms like First Come First Served (FCFS),
Most Requests First (MRF) and R × W algorithm [3] exist
in the literature. While MRF provides optimal waiting time
for popular set of items, it suffers from unfairness. Although
FCFS is fair, it suffers from sub-optimality and convoy effect.
A combination of these two as suggested in [3] often provides
an acceptable solution. While the performance of the on-
demand pull systems are often estimated by response time,
recently the average of access time cost, tuning time cost
and cost of handling failure [16] is proposed as a more
appropriate performance metric. The pull-based real-time data
dissemination system, discussed in [6], proposes Aggregated
Critical Requests (ACR) scheduling algorithm to meet the pre-
determined timing constraints.

While push-based scheduling is suitable for asymmetric
environments, it often wastes resources by repeatedly broad-
casting less popular items. This is solved by on-demand pull-
based scheduling. Unfortunately, pull-based scheduling suffers
from resource scarcity in uplink channels. Naturally, a hybrid
approach that combines the flavors of both push-based and
pull-based algorithms in one system, appears to provide a
better solution. In [2], the server pushes all the data items
according to some push-based scheduling, but simultaneously
the clients are provided with a limited back channel capacity
to make requests for the items. The adaptive real-time data
transmission strategy in [12] combines broadcast push and
on-demand pull strategies to achieve a near-optimal system
response time even with inexact data access information.
Instead of transmitting the request for data items, in the
lazy data request approach [13], the clients first monitor the
channel condition for a specific time. If the required data
item is already being broadcasted, then the client does not
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send any request to the server; otherwise the client transmits
the request and the data items are delivered on demand. Our
previous work on hybrid scheduling [15] partitions a set of
heterogenous data items into two sets according to their access
probabilities. Subsequently, it minimizes the overall waiting
time by broadcasting (push) the higher probable set of items
and disseminating (pull) the lower probable set.

III. DYNAMIC HYBRID SCHEDULING

In this section we first provide the basic definitions and
preliminary concepts, and then describe our new hybrid
scheduling strategies with practical considerations.

A. Definitions and Assumptions

We assume that the server has a total number of D data
items of variable sizes, stored in the memory, so that they
could be retrieved immediately by the server. The length of
an item i is denoted by Li. Each item is again divided into
equal-sized pages, where each page takes 1 unit of time to be
broadcasted/disseminated in the air. The cutoff point K divides
the entire set of D items into the push and pull set such that
K items are pushed and remaining D − K are pulled.

There are a certain number of clients in the system and
different items can be accessed or requested by different
clients. Depending on clients’ requests, a particular data item
is associated with certain degree of popularity or access prob-
ability. Access probability for an item i is denoted as �i. We
have assumed that the access probabilities obey the Zipf’s dis-
tribution with skew coefficient θ such that �i = (1/i)θ∑D

j=1
(1/j)θ

.

For small values of θ, the access probabilities �i, for 1 ≤
i ≤ D are well balanced but for increasing values of θ, they
become skewed. Data items are arranged in decreasing order
of their access probabilities, i.e., �1 ≥ �2 ≥ �3 ≥ ... ≥ �D.

B. Hybrid Scheduling Algorithm

As highlighted before, one major novelty of our strategy lies
in its consideration for clients’ impatience. The impatience of
a client results in a departure from the system. This strategy
is termed as Hybrid Scheduling with Clients Departure. In
general, the system begins with operating as a pure pull
system providing on-demand service for every client. When
the number of client’s access request rate increases and broad-
casting the same item to different clients causes downstream
bandwidth wastage, the algorithm shifts to the hybrid mode.
The items are now divided into two disjoint sets: the push
set of cardinality K and the pull set of cardinality D − K.
The items to be pushed are governed by flat round-robin
scheduling. On the other hand, the item which maximizes
stretch (max-request min-service time) is selected to be pulled
by the server. Every push is followed by a pull, provided
that the pull-set (queue) is not empty. If there are no items
in the pull queue, then the server simply continues pushing
the items using flat schedule. However, after transmitting each
page the server attempts λ more access requests arriving into
the system. If the request is for a push item, the server simply
ignores the request as the item would be pushed anyway

according to the broadcast schedule. If the request is for a
pull item, then the server first checks whether the request is
for a new item or an already requested item. If it is for a new
item, the item is inserted into the pull queue and its stretch
value is calculated. Next, the server checks for the client’s
impatience and tolerance.

Hybrid Scheduling with Impatience:
If the request is for an existing item, the server checks whether
one or more clients are getting impatient and loosing there
tolerance limit. Anticipating departures of such clients, the
server drops their requests and stores their previous waiting
time (departure time − arrival time). It then updates the stretch
value of the data items in the pull queue considering only the
request of existing clients which are not impatient. A pseudo-
code of the strategy is depicted in Figure 1. The procedure
Take-Access-with-Drop() considers the set of arriving requests,
process them and insert in the pull queue, after considering the
number of requests dropped due to the client’s departure. A
pseudo-code of this procedure is shown in Figure 2.

HYBRID SCHEDULING with IMPATIENCE;
while true do
begin
Broadcast all the pages of an item, selected
according to the flat scheduling;
After broadcasting each page
Take-Access-with Drop();
if the pull-queue is not empty then

extract an item from the pull-queue
that optimizes the stretch;
clear the number of pending requests for
that item and pull it;

Take-Access-with-Drop() /*procedure call */
end;

Fig. 1. Hybrid Scheduling with Client’s Departure

Procedure: Take-Access-with-Drop();
Take λ more accesses;
if the request is for push items then

ignore the requests;
if the request is for pull items then

Compute number of impatient clients
leaving and remaining;
insert request in pull queue (with arrival time);
update its stretch value based on
number of remaining clients;

Fig. 2. Take Access with Drop-requests

IV. PERFORMANCE MODELLING

In this section we analyze the performance of our hybrid
scheduling algorithm. Before proceeding further, let us enu-
merate the parameters and assumptions used.

A. Assumptions

1) The arrival rate in the entire system is assumed to obey
the Poisson distribution with mean λ′. This includes the
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arrival rate in both push and pull systems. Although
the arrival rate of the push system is assumed fixed,
the departure of impatient clients and/or their spurious
requests changes the arrival rate of the pull system at
every step. The initial arrival rate of the pull system
is assumed to be λ. The pull queue contains data items
which are yet to be served. Thus by the term pull system,
we mean the items waiting in pull queue, together with
the item(s) currently getting service.

2) The service times of both the push and pull systems are
exponentially distributed. Again, the mean service time
of push system is fixed, however, the clients’ impatience
changes the service time of the pull system. We represent
the initial service time of pull system by µ2.

3) Let C, D and K respectively represent the maximum
number of clients, total number of distinct data items,
and the cut-off point. The server pushes K items while
clients pull the remaining (D − K) items. Thus, the
total probability of items in the push- and pull sets
are respectively given by

∑K
i=1 �i and

∑D
i=K+1 �i =

(1 − ∑K
i=1 �i), where �i denotes the access probability

of item i. Basically, it gives a probabilistic measure
of item’s popularity among the clients. We have as-
sumed that the access probabilities follow the Zipf’s
distribution with access skew-coefficient θ, such that
�i = (1/i)θ∑n

j=1
(1/j)θ

. Items are numbered from 1 to D

and are arranged in the decreasing order of their access
probabilities, i.e., �1 ≥ �2 ≥ ... ≥ �D. Table I lists the
symbols with their meaning used in the context of our
analysis.

Let us now analyze the system performance for achieving
the minimal waiting time.

TABLE I

SYMBOLS USED FOR PERFORMANCE ANALYSIS

Symbols Meanings
D Maximum number of data items
C Maximum number of clients
i Candidate data item
K Cut-Off Point separating push and pull sets
Pi Access Probability of item i
Li Length of item i
λ′ Overall System Arrival Rate
λ Initial Arrival Rate in pull queue
µ1 Push Queue Service Rate
µ2 Initial Service Rate in Pull Queue

E[Wpull] Expected Waiting Time of Pull System
E[W q

pull
] Expected Waiting Time of Pull Queue

E[Lpull] Expected Number of items in the Pull system
E[Lq

pull
] Expected Number of items in the Pull queue

B. Effect of Client’s Impatience

Here we assume that a client’s impatience results in its
departure from the system before the item is actually ser-
viced. This impatience generally takes two forms [7]: (1)
The reluctance of the customer to remain in the system is
known as reneging; (2) Excessive reluctance might restrain the
customer to even join the system, which is known as balking.

These two behaviors significantly affect the arrival/service rate
and average system performance. In our analysis, we have
assumed the duration of the waiting time of a client (before
leaving) to follow exponential distribution with mean 1/τ . If
λ̄m represents the request arrival rate for mth data item, then
λ̄m = �mλ, where λ is the initial request arrival rate of the
entire pull system. If the request arrives at time t and does not
depart the system before servicing the mth data at time Γ, then
expected number of requests, E[Ri], satisfied by transmission
of mth item is given by:

E[Rm] =
∫ Γ

0

λ̄me−τ(Γ−t)dt

=
�mλ

τ
(1 − e−τΓ) (1)

Also, for Poisson arrival, the expected number of requests
arriving in time period Γ is given by λΓ. Thus, the expected
number of drop requests, E[Rd], is measured as:

E[Rd] = λΓ − E[Rm]

= λΓ − �mλ

τ
(1 − e−τΓ) (2)

Our next objective is to estimate the expected waiting time of
our hybrid system considering the clients balking and reneging
due to client’s impatience.

0, 0 1, 0 2, 0 i, 0

i, 12, 11, 1

λ λ λ λ λ

λ λ λ λµ

µ µ µ
µ

µ

2

1 1 1

µ

1 2 (i−1) i

1 2 (i−1) i

2, 1

2, 2
2, i

µ
2, (i−1)

Fig. 3. Performance Modelling of the System

Figure 3 illustrates the birth and death model of our system.
For any variable i, the ith state of the overall system is
represented by the tuple (i, j), where i represents the number
of items in the pull-system and j = 0 (or 1) respectively
represents whether the push-system (or pull-system) is being
served. The arrival of a data item in the pull-system results in
the transition from state (i, j) to state (i + 1, j),∀i ∈ [0,∞]
and ∀j ∈ [0, 1]. The service of an item results in transition of
the system from state (i, j = 0) to state (i, j = 1),∀i ∈ [0,∞].
On the other hand, the service of an item in the pull results
in transition of the system from state (i, j = 1) to the
state (i − 1, j = 0),∀i ∈ [1,∞]. Note that, the arrival and
service rates in the pull system are both different at each state.
Naturally, the state of the system at (i = 0, j = 0) represents
that the pull-queue is empty and any subsequent service of the
elements of push system leaves the system in the same (0, 0)
state. Obviously, state (i = 0, j = 1) is not valid because the
service of an empty pull-queue is not possible. The arrival rates
at different states are now represented by λ0, λ1, . . . , λi, . . .,
where λ0 = λ. Furthermore, λi is different from λ̄m discussed
before. While λ̄m represents the request arrival rate for mth
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data item, λi denotes the total arrival rate of requests for all i
items present in the system, i.e., λi =

∑i
m=0 λ̄m. Similarly,

the service rates at different states are denoted by µ2,j where
1 ≤ j ≤ n and µ2,1 = µ2.

In the steady-state, using the flow-balance conditions
of Chapman-Kolmogrov’s equation [7], the initial system-
behavior is represented by:

p(0, 0) λ = p(1, 1) µ2 (3)

where p(i, j) represents the probability of state (i, j). The
overall behavior of the system for push (upper chain in
Figure 3) and the pull system (lower chain) are given by the
following two generalized equations:

p(i, 0)(λi + µ1) = p(i − 1, 0)λi−1 + p(i + 1, 1)µ2,i+1 (4)

p(i, 1)(λi + µ2,i) = p(i, 0)µ1 + p(i − 1, 1)λi−1 (5)

Balking [7] is generally estimated by using a series of mono-
tonically decreasing functions of the system size multiplying
by the initial arrival rate, λ. If bi is the balking function at
ith state, then λi = biλ, where 0 ≤ bi+1 ≤ bi ≤ 1, (∀i >
0, b0 = 1). The most practical discouragement (balking)
function is bi = e−iα, where α is a constant. This takes the
queue size into account and discourages the customers from
joining in large-sized queues. However, in practical systems,
the discouragement does not always arrive from excessive
queue sizes. These customers might instead join the system
and continuously retain the prerogative to renege if the waiting
time is intolerable. This reneging function r(i) [7] at ith state
is defined by:

r(i) = lim
∆t→0

Pr[unit reneges during ∆t]
∆t

(6)

The service rate of pull queue now takes the form: µ2 =
µ2 + r(i). A good possibility of the reneging function is:
r(i) = eiα/µ2 . Note that both balking and reneging functions
are assumed to follow exponential distribution, which is in
accordance with the distribution obeyed by request’s waiting
time.

From Equations (4) and (5) we get,

p(i, 0)(e−αiλ + µ1) = p(i − 1, 0)λe−α(i−1) +

p(i + 1, 1)µ2 + e
(i+1) α

µ2 (7)

p(i, 1)λe−αi + p(i, 1)µ2 + p(i, 1)e
α i

µ2 = p(i, 0)µ1

+ p(i − 1, 1)e−α(i−1)

(8)

The most efficient way to solve of Equations (7) and (8)
is using Z-transforms [7]. From the definition of z-transforms,
the resulting solutions are of the form:

P1(z) =
C∑

i=0

p (i, 0) zi and P2(z) =
C∑

i=0

p(i, 1) zi. (9)

Using subsequent Z-transforms, Equation (7) yields:

λ
[
P1

( z

eα

)
− p(0, 0)

]
+ µ1 [P1(z) − p(0, 0)]

= λz
[
P1

( z

eα

)]
+

1
z

[P2(z) − p(0, 1) − p(1, 1)]

+
1
z

[
P2

(
ze

α
µ2

)
− p(0, 1) − p(1, 1)

]
(10)

Similarly, transforming Equation (8) leads to:

λP2

( z

eα

)
+ P2

(
ze

α
µ2

)
= µ1P1(z) − p(0, 0)

+zP2

( z

eα

)
(11)

Now, putting z = 1 in Equation (10), we can obtain the
probability p(0, 0) of the idle state as:

λ

[
P1

(
1

eα

)
− p(0, 0)

]
+ µ1[P1(1) − p(0, 0)] =

λ

[
P1

(
1

eα

)]
+ µ2[P2(1) − p(1, 1)] + P2

(
e

α
µ2

)
− p(1, 1)

p(0, 0) =

µ2ρ − µ1(1 − ρ) + ρ

1−e
λ

µ2

λ
µ2

− µ1

(12)

Deriving closed form solutions of Equations (10) and (11)
to evaluate the state probabilities seems not possible. Instead
we measure the expected performance of the overall system.
In order to estimate the average number of items in the pull
system, Equation (10) is differentiated (at z = 1). Now, the
occupancy of push and pull states are respectively given by
P1(1) =

∑∞
i=0 p(i, 0) = 1−ρ and P2(1) =

∑∞
i=0 p(i, 1) = ρ,

where ρ = λeff

µeff
=

∑∞
i=0

λip(i,1)∑∞
i=1

µ2,ip(i,1)
. Differentiating Equa-

tion (10) and using these values of P1(1) and P2(1), we get

µ2
dP2(z)

dz
+

dP2

dz

(
ze

α
µ2

)
= µ1P1(1) + µ1

dP1

dz

−(λ + µ1)

µ1ρ − µ1(1 − ρ) + 1

1−e
α

µ2

λ/µ2 − µ1
−

λP1(1/eα) − λ
dP1

dz
(

1

eα
) + 2λP1(1/eα) + λP1(1/eα)

E[Lpull] =
dP2(z)

dz
|z=1 =

(
µ1 +

1

1 − e
α

µ2

)−1

[
µ1ρ + µ1E[Lpush] − (µ1 + λ)

µ1ρ − µ1(1 − ρ) + ρ

1−e
α

µ2

λ
µ2

− µ1

]

+λE[Lpush]eα/mu2 , (where E[Lpush] =
dP1(z)

dz
|z=1) (13)

Once we have the expected number of items in the pull
system from Equation (13), using Little’s formula [7], we
can easily estimate the average waiting time of the system
(E[Wpull]), average waiting time of the pull queue (E[W q

pull])
and expected number of items (E[Lq

pull]) in the pull queue as
follows:
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E[Wpull] = E[Lpull]
λ , E[Lq

pull] = E[Lpull] − λ
µ2

and
E[W q

pull] = E[Wpull] − 1
µ2

.

Since the push system is governed by flat scheduling,
the average cycle time of the push system is given by:

K
2(1−ρ)µ1

∑
i=1K �i. Thus, the overall minimum expected

access-time, (E[Thyb−acc], of our hybrid system is:

E[Thyb−acc] =
K

2(1 − ρ)µ1

K∑
i=1

�i + E[Wpull]

D∑
i=K+1

�i (14)

This gives a suitable measure of the performance of our
hybrid, heterogeneous system when the clients get impatient
and leave the system at certain intervals.

V. SIMULATION EXPERIMENTS

In this section we validate the performance of our hybrid
system through simulation experiments The primary objective
of the hybrid scheduling with client’s departure considers
reducing the service drop, apart from minimizing the expected
access time. Before presenting the details of simulation results,
we enumerate the salient assumptions and parameters used in
our simulation.

1) The simulation experiments are evaluated for a total
number of D = 1000 data items.

2) The overall arrival rate λ′ is varied between 1–4 arrivals
per unit time. The value of µ1 and µ2 is estimated as:
µ1 =

∑K
i=1(Pi×Li) and µ2 =

∑D
i=K+1(Pi×Li) where

Pi and Li are the access probability and length of data
item i, respectively.

3) The length of data items are varied from 1 to 4.
4) In order to keep the access probabilities of the items

from similar to very skewed, θ is dynamically varied
from 0.20 to 1.40.

5) To compare the performance of our hybrid scheduling
strategy with client’s impatience, we have chosen the
work in [10], as according to our knowledge, this is
the only existing broadcast scheme which considered
client’s impatience.

In the following, we discuss as series of simulation results
to demonstrate the efficiency of our two hybrid scheduling
strategies.
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Fig. 4. Expected Access Time with Cutoff Point

Figure 4 demonstrates the variation of expected access time
with cutoff-points (K) for different values of access skewness,
θ. For all values of θ, with increasing K the expected access
time initially decreases up to a certain point and then increases
again. The reason is that with lower values of K, the access
time for push items are pretty low while those for pull items
are very high. The scenario gets reversed when the value of K
is pretty high. The curve for the expected access time takes
a bell-shaped form, with the minimum value obtaining for
certain cutoff-point, termed as optimal cutoff.
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Fig. 5. Minimum Expected Access Time

The different arrival rates of data items have significant
impact on the minimum expected access time achieved by
the system. Figure 5 shows that for different access skewness
and with increasing arrival rates, the expected access time in-
creases. For an arrival rate of 1 and 4, the average access time
is in the range 100–400 and 400–750 time units respectively.
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Fig. 6. Variation of Cutoff Point

Next we analyze the variation of the cutoff point with access
skewness for different arrival rates. This is necessary to get
a clear picture of the system dynamics, as the cutoff point
plays the major role to minimize the expected access time.
Figure 6 shows that the value of cutoff point decreases with
increasing values of access skewness, θ. For example, K =
300–500 for lower skewness (θ ≤ 0.6) and K = 100–150 for
higher skewness (θ ≥ 1.00). The reason is that with increasing
skewness, the items get more skewed and number of popular
items decreases. Hence, fewer number of items are pushed,
thus decreasing the cutoff point.

One major objective of our proposed hybrid scheduling is to
reduce the dropped requests arising from client’s impatience.
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Fig. 7. Average Number of Requests Dropped

Figure 7 depicts the average number of requests dropped with
access skewness for different arrival rates. The performance is
compared with the existing strategy [10] for client’s impatience
in data broadcasting with an unit arrival rate. As expected,
the number of drop-requests increases with increasing arrival
rates. However, for all arrival rates the number of drop requests
is significantly lower than the number of drop-requests in
existing work. This is true even for higher arrival rates λ′ ≥ 2.
This points out the efficiency of our hybrid scheduling strategy
while considering client’s departure due to impatience.
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Fig. 8. Analytical Vs. Simulation Results

Figure 8 provides the comparative view between analytical
and simulation results for hybrid scheduling with client’s
departure. The simulation results closely match with the an-
alytical results. The minor ∼ 8% difference is primarily due
to the fact that analytical results only capture an approximate
average value.

VI. CONCLUSION

In this paper we have proposed a dynamic hybrid scheduling
which simultaneously considers items of variable lengths,
dynamic computation of access probabilities and clients’
impatience. To incorporate the item’s length (size) into the
scheduling discipline, we have used the concept of stretch
optimal or max request min service time first scheduling. The
scheduling strategy starts as a pure pull system providing
on-demand service for every client. When the number of
clients’ access request rate increases, the algorithm shifts to
the hybrid mode. With the dynamics of the system, the system

estimates the new access probabilities and adjusts the cutoff-
point between push and pull sets in a dynamic fashion, to
achieve the minimum waiting time. Another novelty of our
work is in modelling the client’s impatience. An impatient
client can either leave the system prior to get serviced. In this
case, the requests for the clients are dropped, which needs to
be considered (minimized). The algorithms reduce the client’s
drop-request and minimizes the waiting time.
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