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Abstract— The ever-increasing popularity of web ser-
vices, growing demand for wireless multimedia and in-
troduction of new, feature-enhanced, hand-held devices
has already given birth to a new set of data-centric
applications. Providing such applications with enhanced
data processing capability calls for an efficient scheduling
and transmission technique. The goal of most scheduling
strategy lies in reducing the average waiting time. However,
in most practical systems the variation of waiting time often
results in client’s impatience, thus provoking the clients to
send repeated requests for the particular data item(s). In
this paper we have developed a new hybrid scheduling
framework for heterogeneous, asymmetric environments,
by exploring the advantages of broadcasting very popular
(push) data and dissemination of less popular (pull) data.
The data access probabilities and the cut-off point used
to segregate push and pull sets are dynamically computed.
Packet Fair Scheduling (PFS) and stretch-optimal schedul-
ing principle is deployed to obtain the push and pull
schedule respectively. The framework explicitly takes care
of the repeated requests originating from the impatient
clients and minimizes the overall expected access time by
obtaining an optimal cut-off point. Extensive performance
analysis and simulation experiments are performed to show
the efficiency of the system in reducing the overall expected
access time (delay).

I. INTRODUCTION

The significant upsurge in the web-applications over
the past few years, has already resulted in the arrival of
new information-centric applications, which needs huge
data storage and processing. While today’s Internet still
provides best-effort data service, significant researches
are focussed on development of real-time web applica-
tions. The major objective of most real-time applications
lies in reduction of delay or client’s waiting time. A
close look into the data dissemination-based wireless
systems reveals that there exists significant asymmetry
in the system arising from difference in uplink and
downlink bandwidth, message-size and number of clients
and server. These data dissemination applications can
be broadly categorized into push-based and pull-based
systems. In push-based systems, the clients continuously

monitor a broadcast process from the server and obtain
the data items they require, without making any requests,
e.g., stock quotes on a web browser. In contrast, in a
pull-based system, the clients initiate the data transfer by
sending requests on demand, which the server schedules
to satisfy, e.g., stock quotes from a financial web-site.

Although, there exists some works on hybrid schedul-
ing schemes in the literature [1], [9], [6], however, but
none of those schemes considers the following factors
simultaneously:

• Heterogenous System: The above hybrid scheduling
schemes assume that data items have the same
length (size). However, in most practical systems,
the data items are of varying sizes. In this situation,
the most fair approach is to serve the data items
of lower length more quickly than those of higher
length. Thus, the decision to choose a particular
data item for service should be dependent on its
length.

• Dynamic computation of data access probabilities:
The dynamics of today’s Internet and web services
need an online hybrid scheduling scheme, which
can adapt to the changes of the system. However,
existing hybrid scheduling techniques [1], [9], [6]
make a priori assumption of data access probabili-
ties.

• Client Impatience and Anomalies: In practical sys-
tems, the clients often looses their patience, while
waiting for a particular data item. This often com-
pels the client to send multiple requests for the
required data item. This repeat-attempt behavior of
the clients need to be carefully studied and analyzed
to get a suitable and correct picture of the system.

The above discussions motivate us to design an effi-
cient, online/dynamic, hybrid scheduling strategy, which
will take clients’ impatience into consideration, while
minimizing the overall waiting time in heterogenous,
asynchronous communication environments. In particu-



lar, this paper proposes a dynamic, hybrid scheduling
that effectively combines broadcasting of more popular
data (push data) and dissemination upon-request for less
popular data (pull data), for asymmetric heterogeneous
environments. In this approach, the server continuously
broadcasts one push item and disseminates one pull
item. The clients send their requests to the server, which
queues them up for the pull items. At any instance of
time, the item to be broadcast is selected by applying
a flat scheduling, while the item to be pulled is chosen
from the pull-queue by applying stretch-optimal (max-
request min-service-time first) scheduling algorithm. In
order to develop a better and practical framework, our
approach also takes into account the repeated requests
by impatient clients due to to prolonged waiting. The
performance of the proposed hybrid scheduler is ana-
lyzed to derive the expected waiting time. The cut-off
point between push and pull items is chosen so that the
overall waiting time of the system is minimized.

Specific contributions and novelty of our work are
summarized below.

1) We design a new dynamic hybrid algorithm for
heterogeneous (variable length) data items. The
varying length of data items introduces variation
in service time. In such systems stretch is the most
fair measure to select the request for a particular
data item. The existing stretch-optimal scheduling,
proposed in [24] works for pure push systems
only. According to our knowledge we are the first
to consider stretch as selection criteria in hybrid
scheduling.

2) The cut-off point that separates the push and the
pull sets is computed dynamically to better analyze
the system behavior and more practical scenarios.
This has the power to achieve an optimal perfor-
mance.

3) In most practical systems, the clients often get
impatient while waiting for the designated data
item. The clients’ impatience resulting from their
prolonged waiting for any item, or a new re-
quests for the same data item by another client
often makes them to transmit repeated requests.
The server keeps these repeated requests in the
repeat-attempt (retrial) queue, thereby distinguish-
ing such requests from the new requests arriving
in the pull queue. The service of an item from
the pull queue needs to consider the service of the
instances of same items from the repeat-attempt
queue also. Using a multi-dimensional Markov
model the average performance of the overall
heterogenous, hybrid scheduling system is derived.

4) Simulation experiments are conducted starting
with a pure pull system, without prior knowledge
of the data access probabilities. Later, the probabil-
ities are re-computed dynamically to determine the
cut-off-point between the push and the pull sets.
Experimental results closely match the analytical
results.

The rest of the paper is organized as follows: The
related work in data broadcasting and scheduling is
reviewed in Section II. Section III introduces the new
heterogeneous, hybrid scheduling framework, which ex-
plicitly considers the repeated trials of the clients present
in the system, in addition to normal client-requests. An
appropriate performance analysis of the repeat-attempt
hybrid system is developed to estimate the average be-
havior of the system in Section IV. We perform simula-
tion results in Section V to demonstrate the efficiency of
our proposed repeat-attempt hybrid scheduling strategy.
Finally, Section VI concludes the paper.

II. RELATED WORK

As mentioned earlier, scheduling algorithms can be
broadly classified into push and pull based techniques.
In order to achieve optimal expected access time, the
broadcast scheduling has been related to the packet fair
queuing problem [9]. However, the optimal solution for
data broadcast problems with non-uniform transmission
time and multiple data items [12] are shown to be
NP-hard, thus leading to the development of various
approximation techniques. The existence of a simple
optimal schedule composed of repetitive patterns of files
with dependencies has been proved in [4]. A three-
player client-provider-server model [5], which logically
separates the servers from service providers, is proposed
for asymmetric communication environments. In order
to capture the time-varying dynamism of mobile client’s
data accesses, a broadcasting strategy needs to be adap-
tive. The solution proposed in [18] performs dynamic
adjustment of channel allocation trees to adapt with the
changes of clients’ data access frequencies. In another
adaptive data dissemination scheme [10] for asymmetric
wireless environment, the dynamics of broadcast infor-
mation is subsumed into groups and an online slot-
exchange policies between different groups is proposed
to alleviate the adverse effects of heavy dynamic traf-
fic. An algorithmic framework to provide near-optimal
jitter approximation tradeoff for periodic scheduling is
introduced in [7]. Asymptotically optimal algorithms for
obtaining data access-costs, which are not proportional
to their own waiting time, are provided in [6]. However,
we also need to consider the clients’ behavior that
often affects the performance of the dynamic system as
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follows. While waiting for a data item, a client might
get impatient and leave the system. The scheme in [11]
is the only work that considered this effect for push-
based broadcasting. Using an exponential distribution for
inter-arrival time, this work focussed on minimizing the
average delay, while maximizing the service ratio for
broadcasting.

On the other hand, many preemptive and non-
preemptive, pull-based algorithms like First Come First
Served (FCFS), Most Requests First (MRF) and R×W
algorithm [3] exist in the literature. While MRF provides
optimal waiting time for popular set of items, it suffers
from unfairness. Although FCFS is fair, it suffers from
sub-optimality and convoy effect. A combination of these
two as suggested in [3] often provides an acceptable
solution. While the performance of the on-demand pull
systems are often estimated by response time, recently
the average of access time cost, tuning time cost and
cost of handling failure [22] is proposed as a more
appropriate performance metric. The pull-based real-
time data dissimilation system, discussed in [8], pro-
poses Aggregated Critical Requests (ACR) scheduling
algorithm to meet the pre-determined timing constraints.
A suitable broadcast scheduling scheme is developed
in [21] to compare the performance of push and pull
based systems.

While push-based scheduling is suitable for asymmet-
ric environments, it often wastes resources by repeat-
edly broadcasting less popular items. This is solved by
on-demand pull-based scheduling. Unfortunately, pull-
based scheduling suffers from resource scarcity in uplink
channels. Naturally, a hybrid approach that combines the
flavors of both push-based and pull-based algorithms
in one system, appears to provide a better solution.
perhaps the first hybrid technique for scheduling and data
transmission in asymmetric environment was proposed
in [2]. In this work, the server pushes all the data
items according to some push-based scheduling, but
simultaneously the clients are provided with a limited
back channel capacity to make requests for the items.
An O(n) dynamic channel allocation strategy for broad-
cast push and on-demand pull systems are investigated
in [13]. The adaptive real-time data transmission strategy
in [14] combines broadcast push and on-demand pull
strategies to achieve a near-optimal system response
time even with inexact data access information. Instead
of transmitting the request for data items, in the lazy
data request approach [15], the clients first monitor the
channel condition for a specific time. If the required data
item is already being broadcasted, then the client does
not send any request to the server; otherwise the client

transmits the request and the data items are delivered on
demand. The user-retrial phenomenon and its effects on
wireless hybrid-broadcast services is discussed in [23].
Our previous work on hybrid scheduling [20] partitions a
set of heterogenous data items into two sets according to
their access probabilities. Subsequently, it minimizes the
overall waiting time by broadcasting (push) the higher
probable set of items and disseminating (pull) the lower
probable set.

III. NEW HYBRID SCHEDULING STRATEGY

Figure 1 highlights the overview of a repeat-attempt
system. In the conventional communication, any request
which finds the terminal busy is put on the waiting
queue. In a repeat-attempt model however, a request
which finds the server busy checks whether the item is in
the waiting queue. If not, the item is kept in the waiting
queue. If the item is already in the waiting queue, it is
stored in the repeat-attempt queue. This forms the basis
of our newly-proposed repeat-attempt hybrid scheduling
system. The database at the server consists of a total
number of D distinct, heterogeneous items, out of which
K items are pushed and the remaining (D−K) items are
pulled. The access probability Pi of an item i, i.e., the
popularity of the items amongst the clients, is governed
by the Zipf’s distribution and depends on the access
skew-coefficient (θ). From time to time the value of θ is
changed dynamically for our hybrid system, thus varying
Pi of all items and hence varying the size of the push
and the pull sets dynamically.

The server maintains the database of all variable-
length items. Periodically the server pushes the data
items using a broadcast schedule. We have used the
Packet Fair Scheduling (PFS) principle [9], which sched-
ules the data items in an order such that two consecutive
instances of the same data items are always equally
spaced. When a client needs an item i, it sends to the
server its request for item i and waits until it listens
for i on the channel. If the request is for a push item,
the server simply ignores the request as the item will
be pushed according to the PFS algorithm. However,
if the request is for a pull item, then the server first
checks whether it is a new item-request from a client
or it is a request for the same data item by another
client. If it is a request for a new item, it inserts the
request into the pull queue with the arrival time and
updates its stretch value. On the other-hand, if the request
is not a new one, i.e., some other client has already
requested the item, the server considers it as a repeat
attempt from an impatient client, inserts the item into
the repeat-attempt (retrial) queue and updates its stretch-
value. After every push, if the pull queue is not empty,
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Fig. 1. Overview of Repeat Attempt System

the server chooses one item based on optimal stretch
value, i.e, the item having max-request min-service-time
value from the pull-queue. It now pulls that item and
clears the pending requests for that item in the pull-
queue. Subsequently, the server now checks the repeat-
attempt queue and clear the requests associated with
the instances of the same item. Figure 2 provides the
pseudo-code of the repeat-attempt, heterogeneous hybrid
scheduling algorithm executing at the server-side, where
the procedure Access and pull() is depicted in Figure 3.

Procedure Hybrid Scheduling with
Retrials;

while (true) do
begin

Broadcast all pages of an item,
selected according to the PFS;
Access and pull();
if (pull-queue is not empty) then

extract an item, from pull
queue, that optimizes stretch;
if (tie)
extract the item with the
smallest index;

clear the number of pending
requests for this item in the
pull queue;
clear the pending requests for
the instance of the same item
in the repeat-attempt queue;
pull the particular item;

Access and pull();
end;

Fig. 2. Hybrid Scheduling Algorithm with Repeat-Attempts

Procedure Access and Pull();
while (true) do
begin

take a specific number of accesses
after broadcasting each page;
if(the request is for push-item)
ignore the request;

else-if(the request is for pull-item)
if(new request)
insert the request into the
pull queue with arrival time;

else
mark the request as a
repeat-attempt;
insert the request into the
repeat-attempt queue;

end;

Fig. 3. Access and Pull Scheduling

IV. PERFORMANCE ANALYSIS OF THE HYBRID

REPEAT ATTEMPT SYSTEM

In normal pull-based scheduling strategy, the clients
send explicit request to the server and the server queues
the requests. The item with maximum requests or max-
imum stretch (request/square of length) is selected for
service. However, in real systems often the clients are
impatient, i.e., they often send multiple requests for
a data item while it is not being serviced. Similarly,
if a data item is already requested by a client and is
waiting for service, and another client requests the same
data item, the item is also considered as repeat-attempt
item. In these scenarios, the data items having multiple
requests are assumed to be in a new state, termed repeat
attempt state.

We have assumed Poisson’s arrival and exponential
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Fig. 4. Repeat Attempt Markov Model of Hybrid Scheduling

service of the items to make the analysis mathematically
tractable. Figure 4 shows the schematic diagram of
such a multi-dimensional Markov model representing the
repeat-attempt hybrid system. Any state of the system is
represented by (x, y, z), where x represents number of
unique items in the pull queue (0 ≤ x ≤ D −K) and y
represents number of repeat-attempt items in the repeat-
attempt queue and z = 0 (or 1) represents push (or pull)
system is currently under operation. The average arrival
rate of the pull queue is assumed as λ. On the other hand,
the arrival in the repeat-attempt queue is assumed to be
directly proportional of the number of items present in
the pull queue. Thus, the arrival rate in the repeat-attempt
queue is taken as xξλ, where ξ is the scaling factor
based on per item’s average repeat attempt probability.
We denote the transitional probability associated with
transition from any state (x, y, z) to any another state
(x′, y′, z′) by P(x,y,z);(x′,y′,z′). A careful insight into the
system, shown in Figure 4 demonstrates the following
major transitions:

1) There is only single transition possible from initial
(idle) state (0, 0, 0). This happened with probabil-
ity P(0,0,0);(1,0,0) during the arrival of any item in
the pull system.

2) Arrival of any item in the pull queue results in
transition of state in both the push and pull system
from (x, y, 0) and (x, y, 1) to (x + 1, y, 0) and
(x+1, y, 1) with probabilities P(x,y,0);(x+1,y,0) and
P(x,y,1);(x+1,y,1) respectively.

3) Similarly, arrival of any item in the repeat-attempt
queue results in transition of states in the repeat-
attempt system from (x, y, 0) and (x, y, 1) to
(x, y + 1, 0) and (x, y + 1, 1) with probabili-
ties P(x,y,0);(x,y+1,0) and P(x,y,1);(x,y+1,1) respec-
tively.

4) Service of an item in the push system results in
transition of states from (x, y, 0) to (x, y, 1) with
probability P(x,y,0);(x,y,1). However, depending on
the number of repeated attempts, the service of
an item in the pull system can result in tran-
sition of states from (x, y, 1) to (x − 1, y, 0),
(x − 1, y − 1, 0), . . ., (x − 1, 0, 0) with prob-
abilities P(x,y,1);(x−1,y,0), P(x,y,1);(x−1,y,0), . . .,
P(x,y,1);(x−1,0,0) respectively. When the pull sys-
tem contains only a single element, the service
of an item results in transition from (1, y, 1) to
(0, 0, 0) with probability P(1,y,1);(0,0,0).

For example, referring to the states (2, 0, 0) (push
with 2 items) and (2, 0, 1) (pull with 2 items) in
Figure 4, the arrival of a new pull-item with arrival
rate λ in the system, leads to the transition into state
(3, 0, 0) and (3, 0, 1) with probability P(2,0,0);(3,0,0) and
P(2,0,0);(3,0,1) respectively. Similarly, arrival of a repeat-
attempt item at these two states with an arrival rate 2ξλ
results in transition into the state (2, 1, 0) and (2, 1, 1)
with probability P(2,0,0);(2,1,0) and P(2,0,1);(2,1,1) respec-
tively. We have assumed strictly reciprocal service of a
push and pull item. The average service rate of the push
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system is assumed to be µ′. Such a service of an item
from the push system, indicates that the next service will
be from the pull system. Referring to the same state,
i.e., (2, 0, 0) in Figure 4, the service of the item results
in transition from state (2, 0, 0) to state (2, 0, 1) with
probability P(2,0,0);(2,0,1) and service rate µ′. However,
the service of an item results in different possibilities,
because the item currently getting serviced might be
present or absent in the repeat-attempt queue. If it is
present in the repeat-attempt queue, then the number
of entries of that particular item in the repeat-attempt
queue also needs to be cleared. Hence, service from
state (2, 1, 1) results in transition to either of the states
(1, 0, 0) or (1, 1, 0) with probabilities P(2,1,1);(1,0,0) and
P(2,1,1);(1,1,0) with service rates µ1 and µ2 respectively.

In order to get the estimates of these probabilities
(P ), first we need to derive the probabilities of selecting
a particular item for service from the pull-queue and
repeat-attempt queue. Subsequently, we need to obtain
the relations between different service rates and measure
for transition probabilities of the Markov Chain. We first
proceed to find out the selection probabilities of different
data items in the pull and Repeat Attempt queue. Since,
there are x number of items currently present in the
pull system, the actual items could be any combination
of x elements chosen from total m data items in the
system. Obviously, there are κ =

(
m
x

)
number of

combinations possible. We denote the combination by
�C = {�C1, �C2, . . . , �Cκ}, where every �Cj is a x-element
vector. Every element of this vector is a data item. We
can select an element i from any of these vectors in

(
x
1

)
ways. Now, once we have chosen i from a particular
vector every other item of the remaining x−1 items can
be chosen from any element of the available vectors. It
should be noted that same items can not be repeated,
as repeated items reside in the repeat-attempt queue. In
other words, any item selected can not be re-selected
again. Hence, if pi represents the access probability of
item i, then probability Pr[i]Q of choosing any item i
from the pull queue (without repetition) is given by the
relation:

Pr[i]Q =
(

x

1

)
[pi

x∑
j1=1,j1 �=i

pj1 . . .

x∑
jκ=1,jκ �=i,jκ �=jz,∀z<κ

pjκ
]

(1)

However, it should be noted that since the pull queue
does not contain the repeated instances of the items, the

sum of total probability of the queue is less than 1. Hence
all such probabilities Pr[i]Q need to be normalized.
Hence the normalized probability is now given by:

Pr[i]norm =
Pr[i]Q∑κ

j=1 Pr[�Cj ]
(2)

where Pr[�Cj ] represents the probability of all the
items belonging to the vector �Cj .

We now investigate into the Repeat-Attempt queue,
where the elements can be repeated. They can be re-
peated once, twice or up to a maximum of m-times. We
are looking to obtain the probability of this repetition
of elements. Proceeding in the similar approach as in
Equation (1), we can obtain the probability of a particular
item i to be repeated any number of times in the
Repeat-Attempt queue. Let, (Pr[i]Repeat)y denotes the
probability that the item i is repeated y times in the
Repeat-Attempt queue. Now, for the first time, the item i
can still be selected in

(
x
1

)
= x different ways. However,

since i will be repeated once more, after choosing it for
once, it can still be selected in x ways for the second
time and there-after. The other terms for the remaining
items can be chosen from any element of the available
vectors. The restriction that the item can not be repeated
(as in the pull queue) no longer exists in this repeat-
attempt queue. Hence, proceeding in a similar way, the
probability (Pr[i]Repeat)y that there are y number of
repetition of the item i is given by the equation:

(Pr[i]Repeat)y = [
x∑

j1=1

. . .
x∑

jy=1,jy �=i

. . .
x∑

jκ=1,jκ �=i

pj1

...pjy
. . . pjκ

] × xypi,

(∀y, 1 ≤ y ≤ m) (3)

The normalized probabilities of repeat-attempt
states are now obtained by dividing the probability
(Pr[i]Repeat)y by the total probability of all the
elements in the repeat-attempt queue:

(Pr[i]Repeat)ynorm
=

(Pr[i]Repeat)y∑x
i=1

∑y
j=1 (Pr[i]Repeat)j

(4)

It should be noted that when a departure occurs from
a repeat-attempt state, the next state always depends
on the probabilities of the number of repeated attempts
occurred. Let, µ and µ′ be the overall service rate
associated with the pull and push system. Also, let µ0,
µ1, . . ., µy represents the fraction of overall pull service
rate (µ) associated with 0, 1, . . ., y number of repetitions.
Now each of this fractional service rate is responsible
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for servicing the particular item from the pull-queue and
the corresponding items repeated in the repeat-attempt
queue. Hence, the fractional service rate can be estimated
by multiplying the probability of item-selection from the
pull queue and from the repeat-attempt queue. Thus, we
have:

µy = Pr[i]norm (Pr[i]Repeat)ynorm
µ,

µ0 = (Pr[i]norm [1 − ζ]) µ, where

ζ = (Pr[i]Repeat)1norm
+ . . . + (Pr[i]Repeat)ynorm

(5)

We are now in a position to compute the transitional
probabilities in the Markov Chain. The transitional prob-
abilities between any two states are estimated as the ratio
of the transition rate between the initial and the final state
with the total transition rate from the initial state. Hence,
the expression for different transitional probabilities of
the Markov Chain is now given as:

P(x,y,0);(x+1,y,0) =
λ

λ + xξλ + µ′

P(x,y,0);(x,y+1,0) =
xξλ

λ + xξλ + µ′

P(x,y,0);(x,y,1) =
µ′

λ + xξλ + µ′

P(x,y,1);(x+1,y,1) =
λ

λ + xξλ +
∑y

i=0 µi

P(x,y,1);(x,y+1,1) =
xξλ

λ + xξλ +
∑y

i=0 µi

P(1,y,1);(0,0,0) =
µ0

λ + xξλ + µ0

P(x,y,1);(x−1,y,0) =
µ0

λ + xξλ + µ0

P(x,y,1);(x−1,y−1,0) =
µ1

λ + xkξλ + µ0

(∀x ≥ 1,∀y ≥ 0)
. . . . . . . . . . . . . . .

P(x,y,1);(x−1,0,0) =
µy

λ + xξλ + µ0
(6)

The transitional probabilities of the Markov Chain ob-
tained in this manner now forms the transitional matrix,
containing the necessary information of the hybrid sys-
tem. Any entry corresponding to (x, y, z), (x′, y′, z′) in
the transition matrix, actually contains the state transition
probability P(x,y,z);(x′,y′,z′) from (x, y, z) to (x′, y′, z′).
Representing all the steady states by the vector �π and the
transition matrix by P, an approximate measure of the
steady state probabilities can be obtained by solving the
following matrix equations associated with the Markov
Chain:

�π = �πP

�πe = 1, (7)

where e is a unit column vector. Solving the above
equations helps us in obtaining the state probabilities
π = {π(0, 0, 0), . . . , π(x, y, z)}. The average number of
items in the system and the average waiting time is now
estimated as:

E[Items] =
D−K∑
x=0

x∑
y=0

[π(x, y, 0) + π(x, y, 1)]

E[W ] = E[Items]/λ. (8)

This provides an average behavior of our newly proposed
hybrid scheduling system, which considers repeated-
attempts from the clients.

V. SIMULATION EXPERIMENTS

In this section we validate the performance of our
hybrid system through simulation experiments. The pri-
mary goal of hybrid scheduling is to reduce the expected
access time. Before presenting the details of simulation
results, we enumerate the salient assumptions and para-
meters used in our simulation.

1) The simulation experiments are evaluated for a
total number of D = 1000 data items.

2) The overall arrival rate λ is varied between 5–
20 arrivals per unit time. The value of µ and µ′

is estimated as: µ =
∑K

i=1(Pi × Li) and µ =∑D
i=K+1(Pi×Li) where Pi and Li are the access

probability and length of data item i, respectively.
3) The length of the data items are varied from 1 to

4.
4) In order to keep the access probabilities of the

items from similar to very skewed, θ is dynam-
ically varied from 0.20 to 1.40.

5) To compare the performance of our hybrid
scheduling strategy with client’s impatience, we
have chosen the work in [16], as according to
our knowledge, this is the only existing broadcast
scheme which considered client’s impatience.

In the following, we discuss as series of simulation
results to demonstrate the efficiency of our two hybrid
scheduling strategies.

Figure 5 demonstrate the variation of the expected
access-time with different values of K and θ, for λ = 10,
in our hybrid repeat-attempt scheduling system. With
increasing values of cutoff point K, the expected ac-
cess time initially decreases, attains a minimum value
and then starts increasing again. This minimum point
also provides the optimum cut-off point for which the
framework gets an exact balance between the push and

7



pull systems. Figure 6 shows the results of perfor-
mance comparison, in terms of expected access time
(in seconds), between our newly proposed repeat-attempt
hybrid framework with the existing hybrid scheme due
to Oh, et al. [16]. The effective combination of PFS
and Stretch-optimal scheduling strategies, together with
the repeat-attempt functionality results in the reduced
waiting time in our hybrid scheduling framework.
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Fig. 5. Performance of Hybrid Scheduling

Figure 7 depicts the comparative view of the analytical
results with the simulation results of our repeat-attempt
hybrid scheduling framework. For the analytical results,
we have numerically solved the Markov Chain in Fig-
ure 4 and the Equations 1– 8 to get an estimate of the av-
erage system performance. The analytical results closely
match with the simulation results for expected access
time with almost ∼ 95% accuracy, thereby pointing out
that the performance analysis is capable of capturing the
average system behavior with good accuracy.
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Figure 8 demonstrates that K lies in the range of
40–60 for three different arrival rates λ = [5, 10, 20].
Intuitively, this points out that the system has achieved
a fair balance between push and pull systems to achieve
the minimum expected access time.

VI. CONCLUSION

In this paper we proposed a new dynamic, hybrid
scheduling strategy for heterogeneous environments. To
incorporate the item’s length (size) into the scheduling
discipline, we have used the concept of stretch optimal
or max request min service time first scheduling. We
consider this as a more practical measure, since the
clients waiting for lengthy data items should wait longer
than those waiting for shorter data items. The scheduling
strategy starts as a pure pull system providing on-demand
service for every client. When the number of clients’
access request rate increases, the algorithm shifts to the
hybrid mode. With the dynamics of the system, the
system estimates the new access probabilities and adjusts
the cutoff-point between push and pull sets in a dynamic

8



fashion, to achieve the minimum waiting time. The major
novelty of our work is in modeling the client’s impa-
tience. An impatient client often sends multiple requests
for the same data item. Using an optimal combination
of push and pull scheduling strategies, our proposed
algorithm explicitly takes care of the repeated attempts
generated by the same client and offers a minimum aver-
age waiting time to the set of clients. Extensive analysis
and simulation experiments are performed to show the
efficiency of the system performance. Our future work
will investigate the problem with different classes of
clients (different priorities) with energy efficiency issues.
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