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Abstract— The vision of mobile computing lies in a seamless
connectivity with the mobile clients and transmission of data in
precise quality of service (QoS) guarantee. In order to endow such
mobile applications with advanced data processing capabilities,
efficient, dynamic scheduling algorithms are necessary. In this
paper we have introduced a new hybrid scheduling algorithm
that probabilistically combines the number of push and pull
operations depending on the number of items present in the
system and their popularity. The access probabilities of the data
items are computed dynamically, without any prior knowledge.
The basic elixir of our work lies in the efficiency of the algorithm
in obtaining an improved data access-time, even with high system
load and items having equivalent degree of access probabilities.
The expected waiting time spent by a client is evaluated and
compared analytically. Simulation results point out sufficient
improvement in average waiting time than pure push systems
and some existing hybrid systems.

I. INTRODUCTION

The essence of mobile and ubiquitous computing lies in
guaranteeing a pervasive connectivity while delivering a huge
set of data within a precise time. The ever-increasing growth of
these ubiquitous services require smart scheduling techniques
to efficiently transmit the overwhelming data sets to a large
number of mobile clients. The asymmetry in uplink and down-
link capacity make this scheduling problem more challenging.
Broadly all data transmission schemes are divided into two
categories: (1) Push – where the clients continuously monitor
a broadcast process from the server and retrieve their required
data items; (2) Pull – where the clients initiate the data transfer
by sending requests and the server makes an on-demand
schedule to satisfy the clients’ requests. But both of these push
and pull based scheduling possess their own advantages and
disadvantages. A fundamental, but very important result in [1]
demonstrates that neither push nor pull based scheduling alone
can achieve the optimal performance. Efficient combination of
both push and pull scheduling are necessary for achieving an
(near) optimal performance.

In this paper, we have performed a comparative study of var-
ious push and pull based scheduling schemes and subsequently
introduced a hybrid scheduling algorithm which achieves best
performance in terms of minimum access-time. A new hybrid
scheduling is proposed, which probabilistically combines the
best scheduling technique for broadcasting push data and on-
demand dissemination of pull data, depending on the data
items currently present in the system. At any instant of time,
the item to be broadcast is selected by applying a PFS-based

pure-push scheduling, while the item to be pulled is the one
selected from the pull-queue by applying MRF-based pull
scheduling. More specifically our contributions include:

1) We compare the performance of various push and pull
scheduling algorithms and select the scheme providing
the best performance.

2) A dynamic hybrid algorithm is proposed, which does not
combine the push and pull in a static, sequential order.
Instead, it combines the push and pull strategies prob-
abilistically depending on the number of items present
and their popularity. In practical systems, the number
of items in push and pull set can vary. For a system
with more items in the push-set (pull-set) than the pull-
set (push-set), it is more effective to perform multiple
push (pull) operations before one pull (push) operation.
We claim that our algorithm is the first work which
introduces this concept in a dynamic manner. This has
the power to change the push and pull lists on real time
and the minimize the overall delay.

3) The cut-off point used to separate the push and the
pull sets is changed dynamically to get the optimal
performance. This cut-off point is chosen so that the
overall waiting time of the system is also minimized.

4) Extensive performance evaluation is carried out to an-
alyze the average measures of different scheduling
schemes.

5) Simulation experiments are performed without any pre-
vious knowledge of the data access probabilities. Later
the access probabilities are re-computed dynamically,
thereby computing the cut-off-point to separate the push
and the pull sets dynamically. Simulation results closely
match the results of performance evaluation.

The rest of the paper is organized as follows: Section II
reviews the existing works on scheduling techniques. Our new
hybrid algorithm is presented in Section III. A suitable queuing
model is developed in Section IV to analyze the performance
of our hybrid system. Simulation results in Section V cor-
roborates the system behavior. Finally, Section VI concludes
the paper by summarizing our work and pointers to future
research.

II. OVERVIEW OF EXISTING WORKS

Given the wide variety of existing works in scheduling
and data transmission, we only highlight the major rele-
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vant strategies. In order to achieve optimal expected ac-
cess time, the push-based broadcast scheduling has been
related to the packet fair queuing problem [7]. A three-player
client-provider-server model [3], which logically separates the
servers from service providers, is proposed for asymmetric
communication environments. The solution proposed in [11]
performs dynamic adjustment of channel allocation trees to
adapt with the changes of clients’ data access frequencies. In
another adaptive data dissemination scheme [8] for asymmetric
wireless environment, the dynamics of broadcast information
is subsumed into groups and an online slot-exchange policies
between different groups is proposed. Asymptotically optimal
algorithms for obtaining data access-costs, which are not
proportional to their own waiting time, are provided in [4].
On the other hand, many preemptive and non-preemptive, pull-
based algorithms like First Come First Served (FCFS), Most
Requests First (MRF) and R × W algorithm [2] exists in
literature. A combination of these two as suggested in [2],
often provides an acceptable solution. While the performance
of the on-demand pull systems are often estimated by response
time, recently the average of access time cost, tuning time
cost and cost of handling failure [15] is proposed as a more
appropriate performance metric. The pull-based real-time data
dissemination system, discussed in [5], proposes Aggregated
Critical Requests (ACR) scheduling algorithm to meet the pre-
determined timing constraints.

A hybrid approach that combines the flavors of both push-
based and pull-based algorithms in one system, appears to
provide a better solution. Perhaps the first hybrid technique for
scheduling and data transmission in asymmetric environment
was proposed in [1]. In this work, the server pushes all
the data items according to some push-based scheduling, but
simultaneously the clients are provided with a limited back
channel capacity to make requests for the items. The adaptive
real-time data transmission strategy in [9] combines broad-
cast push and on-demand pull strategies to achieve a near-
optimal system response time even with inexact data access
information. Instead of transmitting the request for data items,
in the lazy data request approach [10], the clients first monitor
the channel condition for a specific time. If the required data
item is already being broadcasted, then the client does not
send any request to the server; otherwise the client transmits
the request and the data items are delivered on demand. Our
previous work on hybrid scheduling [12], [13] partitions a set
of heterogenous data items into two sets according to their
access probabilities. Subsequently, it minimizes the overall
waiting time by broadcasting (push) one item from the higher
probable set of items and disseminating (pull) one item from
the lower probable set in a reciprocal manner.

III. OUR PROPOSED HYBRID ALGORITHM

In this section, we first take a look at the relative advantages
and disadvantages of the different scheduling principles. Sub-
sequently, we choose the scheduling schemes providing the
best performance and introduce our new hybrid scheduling
technique.

A. Scheduling Techniques:

Before going into the proposal of our new hybrid scheduling
scheme, we look through the salient scheduling techniques for
push and pull-based systems.

Scheduling for Push-based Broadcasting: The scheduling
principle for push-based systems are generally based on either
flat scheduling or packet fair scheduling schemes. In flat
scheduling the items are broadcasted in a round robin fashion.
Every data item is assigned a fix time slot and the server trans-
mits the items in regular time slots. Such a scheduling scheme
is quite simple and suffers from performance degradation,
specially for system having items with skewed requests. On
the other hand, Packet Fair Scheduling [7] makes a schedule
based on the popularity of the items, i.e. transmitting popular
items more often than the less popular ones. The instances of
every items are equally spaced and the service time required
to serve the item i is dependent on the size of the item. The
larger the length of an item the higher is its service time.

Scheduling for Pull-based Dissemination: During data
dissemination, the client sends requests for particular data
item and the server queues these requests. Either First Come
First Serve (FCFS) or Most Request First (MRF) scheduling
principle is used by the server look into the queue and schedule
the delivery of the particular items. In FCFS scheduling
principle the item which arrived first in the pull-queue is
also serviced first. If the requests for some less popular item
precedes the request for a more popular item, the more popular
item has to wait until all the less popular items get serviced,
thus decreasing the system efficiency. In the MRF scheduling
principle, the server checks the pull queue and chooses the
item based on max-requested item from the pull-queue.

B. Dynamic Hybrid Scheduling Algorithm

Our simulation experiments (described in Section V) cor-
roborates the existing research works in the aspect that PFS
and MRF achieves best performance for push and pull schedul-
ing principles respectively. Hence, motivated by the efficacy of
hybrid scheduling disciplines, we have investigated to combine
the best scheduling principles for push and pull-based systems.
However, strict sequential combination of push and pull fails
to explore the system’s current condition. In practical systems,
it is a better idea to perform more than one push operations
followed by multiple pull operations, depending on the number
of items currently present in the system. The algorithm needs
to be smart and efficient enough to get a good estimate of these
number of continuous push and pull operations. Our proposed
hybrid scheduling scheme performs this strategy based on the
number of items present and their popularity.

We have assumed a single server, multiple clients and a
database consisting of D distinct items, of which K items
are pushed and the remaining (D − K) items are pulled.
The access probability Pi of an item i is governed by the
Zipf’s distribution and depends on the access skew-coefficient
θ. When θ is small (value close to 0), Pi is well balanced but as
θ increases (value close to 1), the popularity of the data items
becomes skewed. From time to time the value of θ is changed
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dynamically for our hybrid system, which in turn, results in
dynamic variation of Pi and the size of the push and pull sets.
PFS and MRF techniques are used for selecting the item to
be pushed and pulled respectively. After every push or pull
operation, the next push or pull operation is probabilistically
determined using the following equation:

γ1 = Pr[push|push] =
K

D

K∑

i=1

Pi

γ2 = Pr[pull|push] = 1 − γ1

γ3 = Pr[pull|pull] =
D − K

D

D∑

i=K+1

Pi

γ4 = Pr[push|pull] = 1 − γ3

(1)

Procedure HYBRID SCHEDULING;
while true do

begin
1. select an item using PFS and push it;
2. consider new arrival requests;
3. ignore the requests for push item;
4. append the requests for items in the
pull queue;
5. compute probabilities of γ1 and γ2

6. if (probability <= γ1) goto step 1
7. else goto step 8
8. if pull-queue is not empty then

9. use MRF to extract an item from pull
queue;
10. clear pending requests for that item;
11. Pull that particular item;
12. consider new arrival requests;
13. ignore the requests for push item;
14. append the requests for items in
pull queue;

end-if
15. compute probabilities of γ3 and γ4

16. if (probability <= γ3) goto step 8
else goto step 1;

end-while

Fig. 1. Hybrid Scheduling Algorithm at the Server

At the server end, the system starts as a pure pull-based
scheduler. If the request is for a push item, the server simply
ignores the request as the item will be pushed according to
the PFS algorithm sooner. However if the request is for a
pull item, the server inserts it into the pull queue with the
arrival time and updates its stretch value. Figure 1 provides
the pseudo-code of the hybrid scheduling algorithm executing
at the server-side.

IV. ANALYTICAL UNDERPINNINGS

In this section we investigate into the performance evalua-
tion of our hybrid scheduling system by developing suitable
analytical models. The arrival rate in the entire system is
assumed to obey the Poisson distribution with mean λ1.
The service times of both the push and pull systems are
exponentially distributed with mean µ1 and µ2, respectively.
The server pushes K items and clients pull the rest (D −K)

items. Thus, the total probability of items in push-set and
pull-set are respectively given by

∑K
i=1 Pi and

∑D
i=K+1 Pi =

(1 − ∑K
i=1 Pi), where Pi denotes the access probability of

item i. We have assumed that the access probabilities Pi follow
the Zipf’s distribution with access skew-coefficient θ, such
that, Pi = (1/i)θ∑n

j=1
(1/j)θ

. After every push the server performs

another push with probability γ1 and a pull with probability
γ2. Similarly, after every pull it performs another pull with
probability γ3 and a push with probability γ4.

0, 0 1, 0 2, 0 i, 0 c, 0

c, 1i, 12, 11, 1

λ λ λ λ λ λ

λ λ λ λ
λ

µ

µ µ µ
µ

µ

µ µ

µ
2

2

2

2 2

1 1 1 1

µ2

Fig. 2. Performance Modelling of Hybrid System

Figure 2 illustrates the underlying birth and death process of
our system, where the arrival rate in the pull-system is given
by λ = (1 − ∑K

i=1 Pi)λ1. Any state of the overall system is
represented by the tuple (i, j), where i represents the number
of items in the pull-system. On the other hand, j is a binary
variable, with j = 0 (or 1) respectively representing whether
the push-system (or pull-system) is currently being served by
the server.

The arrival of a data item in the pull-system, results in the
transition from state (i, j) to state (i + 1, j),∀i, such that 0 ≤
i < ∞ and ∀j ∈ [0, 1]. The service results in different actions.
The service of an item in the push-queue results in transition
of the system from state (i, j = 0) to state (i, j = 1), with
probability γ2, ∀i such that 0 ≤ i < ∞. With probability γ1

the push-service makes the system to remain in same state.
On the other hand, the service of an item in the pull results
in transition of the system from state (i, j = 1) to the state
(i − 1, j = 0), with probability γ4 and state (i − 1, j = 1)
with probability γ3, ∀i, such that 1 ≤ i < ∞. The state of
the system at (i = 0, j = 0) represents that the pull-queue
is empty and any subsequent service of the elements of push
system leaves the system in the same (0, 0) state. Obviously,
the state (i = 0, j = 1) is not valid because the service of an
empty pull-queue is not possible.

In the steady-state, using the flow-balance conditions of
Chapman-Kolmogrov’s equation [6], we have the following
three equations representing the system’s behavior:

p(i, 0) =
p(i − 1, 0)λ + p(i + 1, 1)γ4µ2

(λ + γ2µ1)
(2)

p(i, 1) =
p(i, 0)γ2µ1 + p(i − 1, 1)λ

(λ + γ3µ2 + γ4µ2)
(3)

p(0, 0) λ = p(1, 1) µ2, (4)

where p(i, j) represents the probability of state (i, j). While
the first two equations represents the overall behavior of the
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system for push (upper chain) and the pull system (lower
chain), the last equation actually represents the initial condition
of the system. The most efficient way to solve the above
Equations is using z-transforms [6]. Performing z-transforms
of Equation 2 and Equation 3 and using the initial condition,
we get a pair of transformed equations:

P2(z)γ4µ2 = z[P1(z) − p(0, 0)](λ + γ2µ1) − (5)

z2λP1(z) + p(1, 1)γ4µ2

P2(z) =
γ2µ1[P1(z) − p(0, 0)]

(λ + γ3µ2 + γ4µ2 − zλ)
(6)

Now, estimating the system behavior at the initial condi-
tion, we can state the following normalization criteria: The
occupancy of pull states is the total traffic of pull queue
and is given by: P2(1) =

∑C
i=1 p(i, 1) = ρ. The occu-

pancy of the push states (upper chain) is similarly given by:
P1(1) =

∑C
i=1 p(i, 0) = (1− ρ). Using these two relations in

Equation (5), we can obtain the initial probability, p(0, 0). The
initial probability of the system, i.e. probability of an empty
pull queue is given by the following equation:

p(0, 0) =
µ1(γ2 − γ2ρ − ργ4µ2)

λ + γ2µ1 − γ4λ
(7)

Generalized solutions of Equations (5) to obtain all values
of probabilities p(i, j) become very complicated. Thus, the
best possible way is to go for an expected measure of system
performance, such as the average number of elements in the
system and average waiting time. The most convenient way to
obtain this expected system performance is to differentiate the
z-transformed equation (Equation (5)), and capture the values
of the z-transformed variable at z = 1.

γ4µ2
dP2(z)

dz
|z=1 = γ2µ1

dP1(z)
dz

|z=1 + (1 − ρ)

(γ2µ1 − λ) − p(0, 0)(λ + γ2µ1)

E[Lq
pull] =

dP2(z)
dz

|z=1, (8)

where dP1(z)
dz |z=1 gives the number of elements in push system

in PFS. Once, we have the expected number of items in the
pull system from Equation (8), using Little’s formula [6], we
can easily obtain the estimates of average waiting time of the
system (E[Wpull]), and expected number of items (E[Lq

pull])
in the pull queue as:

E[W q
pull] = E[Wpull] − 1

µ2
=

E[Lpull]
λ

− 1
µ2

(9)

If K represents the number of items in the push system,
then the expected cycle-time of the push system is given by:∑K

i=1
SiPi

(1−ρ)µ1
. Hence, the expected access-time (E[Thyb−acc])

of our hybrid system is given by:

E[Thyb−acc] =
K∑

i=1

SiPi + E[W q
pull] ×

D∑

i=k+1

Pi, (10)

where according to the packet-fair-scheduling, Si =

TABLE I

PERFORMANCE COMAPRISON OF SCHEDULING PRINCIPLES

θ push pull
Flat PFS FCFS MRF

0.50 433.32 403.30 445.54 413.30
0.60 409.94 377.78 423.35 387.78
0.70 381.14 353.23 401.01 372.23
0.80 331.08 323.36 373.31 343.36
0.90 319.96 293.38 341.12 303.38
1.00 278.83 259.95 306.64 278.95
1.10 236.73 229.95 275.55 223.95
1.20 216.69 199.90 242.29 201.90
1.30 193.35 171.04 207.86 191.04

∑K

j=1

√
P̂j√

P̂i

and P̂i = Pi∑K

j=1
Pj

. The above expression provide

an estimate of the average behavior of our hybrid system.

V. SIMULATION EXPERIMENTS

In this section we first evaluate the comparative perfor-
mance of the different scheduling principles. Subsequently,
we perform the experiments to demonstrate the performance
efficiency of our hybrid system. In order to compare the per-
formance of our hybrid system, we have chosen our previous
hybrid scheduling algorithm [12] as performance bench-marks.
The prime goal of the entire scheme is to reduce the expected
access time. Before going into the details of the simulation
results, we enumerate the assumptions we have used in our
simulation.

1) The simulation experiments are evaluated for D =
1, 000 items. The system performs a push and pull
operation in a reciprocal manner, unless the pull queue
is empty.

2) In order to remain consistent with the analysis, the
arrival and service rates are assumed to obey Poisson
distribution. The average value of arrival rate (λ) is taken
to be 10 and 20. The average value of service rates (push
and pull), µ1 and µ2 are assumed to be 1.

3) In order to keep the access probabilities of the items
from similar to very skewed, θ is dynamically varied
from 0.50 to 1.50.

First we show the performance comparison major push and
pull scheduling algorithms. Subsequently, we show the per-
formance efficiency of our newly proposed hybrid scheduling.
Table I demonstrates the comparative performance of push and
pull scheduling algorithms for 1000 items. It is quite clear
that PFS outperforms Flat and MRF outperforms FCFS for
push and pull scheduling respectively. This is the prime reason
behind our motivation in choosing these two scheduling prin-
ciples for push and pull-based data transmission respectively.

Figure 3 demonstrate the variation of expected access-time
with different values of θ, for arrival-rates of 10 and 20
respectively, in our hybrid scheduling algorithm, for 1000
items. Note that, in both cases, the expected access-time
for our new hybrid scheduling is sufficiently lower than the
expected access time for existing hybrid scheduling. The prime
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reason behind this lies in the fact that the hybrid scheduling
captures the requirement of the system by probabilistically
combining push and pull-based scheduling principles. Figure 4
shows that the hybrid scheduling achieves a cut-off point
in the range 360–430 and 360–460 respectively for arrival
rates of 10 and 20 with 1000 data items. This explains the
reason that our hybrid scheduling makes a fair combination
of both push and pull systems, which is required to improve
the expected access-time. Figure 5 depicts the comparative
view of the analytical results with the simulation results, for
1000 data items. The analytical results closely match with
the simulation results for expected access time with almost
∼ 90% and ∼ 93% accuracy for λ = 10 and λ = 20
respectively. Thus, we can conclude that the performance
analysis is capable of capturing the average system behavior
with good accuracy. The little (∼ 7–10%) differences exist
because of the assumption of memory-less property associated
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Fig. 5. Comparison of Analytical and Simulation Results

with arrival rates and service times in the system.

VI. CONCLUSIONS

In this paper we have proposed a dynamic, hybrid schedul-
ing technique that probabilistically combines push and pull
scheduling to achieve an improved access-time. The algorithm
takes into consideration the number of items present in the
push and pull subsystem and their popularity to perform
push and pull operations dynamically in an efficient man-
ner. This push and pull mechanism are guided by PFS and
MRF scheduling principles. The cut-off point between push
and pull items is chosen in such a way that the expected
access time of the hybrid system is minimized. Performance
modelling and simulation results points out the improvement
in average access time even for highly skewed data items.
Our future interests lie in further improving the performance
by incorporating the classification of clients according to their
probabilities.
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