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Abstract

Broadcasting is an efficient and scalable way of transmitting data over wireless

channels to an unlimited number of clients. In this paper the problem of allocating

data to multiple channels is studied, assuming flat data scheduling per channel and the

presence of unrecoverable channel transmission errors. The objective is that of mini-

mizing the average expected delay experienced by the clients. Two different channel

error models are considered: the Bernoulli model and the simplified Gilbert-Elliot one.

In the former model, each packet transmission has the same probability to fail and

each transmission error is independent from the others. In the latter one, bursts of er-

roneous or error-free packet transmissions due to wireless fading channels are modeled.

For both channel error models and unit length data, an optimal solution can be found

in polynomial time either when all the channels have the same error probabilities or

when there are exactly two channels with different error probabilities. In the remaining

cases, including non-unit length data and error probabilities which differ from channel

to channel, sub-optimal solutions can be found for both error models. For these cases,

extensive simulations, performed on benchmarks whose item popularities follow Zipf

distributions, show that good sub-optimal solutions are found.

Keywords Wireless communication, Data broadcasting, Multiple channels, Flat scheduling,

Average expected delay, Channel transmission errors, Bernoulli model, Gilbert-Elliot model,

Heuristics.

1 Introduction

In wireless asymmetric communications, broadcasting is an efficient way of simultaneously

disseminating data to a large number of clients [17]. Consider data services on cellular
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networks, such as stock quotes, weather infos, traffic news, where data are continuously

broadcast to clients that may desire them at any instant of time. In this scenario, a server at

the base-station repeatedly transmits data items from a given set over wireless channels, while

clients passively listen to the shared channels waiting for their desired item. The server has

to pursue a data allocation strategy for assigning items to channels and a broadcast schedule

for deciding which item has to be transmitted on each channel at any time instant. Efficient

data allocation and broadcast scheduling have to minimize the client expected delay, that is,

the average amount of time spent by a client before receiving the item he needs. The client

expected delay increases with the size of the set of the data items to be transmitted by the

server. Indeed, the client has to wait for many unwanted data before receiving his own data.

Moreover, the client expected delay may be influenced by transmission errors because items

are not always received correctly by the client. Although data are usually encoded using

error correcting codes (ECC) allowing some recoverable errors to be corrected by the client

without affecting the average expected delay, there are several transmission errors which still

cannot be corrected using ECC. Such unrecoverable errors affect the client expected delay,

because the resulting corrupted items have to be discarded and the client must wait until

the same item is broadcast again by the server.

Several variants for the problem of data allocation and broadcast scheduling have been

proposed in the literature [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 15, 16, 19, 21, 22].

The database community usually partitions the data among the channels and then adopts

a flat broadcast schedule on each channel [5, 15, 22]. In such a way, the allocation of data

to channels becomes critical for reducing the average expected delay, while the flat schedule

on each channel merely consists in cyclically broadcasting in an arbitrary fixed order, that

is once at a time in a round-robin fashion, the items assigned to the same channel [1].

To reduce the average expected delay, skewed data allocations are used, where items are

partitioned according to their popularities so that the most requested items appear in a

channel with shorter period. Assuming that each item transmitted by the server is always

received correctly by the client, a solution that minimizes the average expected delay can be

found in polynomial time in the case of unit lengths [22], that is when the transmission time is

equal to one for all items, whereas the problem becomes computationally intractable for non-

unit lengths [5]. In this latter case, several heuristics have been developed in [4, 22], which

have been tested on some benchmarks where item popularities follow Zipf distributions. Such

distributions are used to characterize the popularity of one item among a set of similar data,

like a web page in a web site [8].

Thus far, the data allocation problem has not been investigated by the database com-

munity when the wireless channels are subject to transmission errors. In contrast, a wireless

environment subject to errors has been considered by the networking community, which
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however concentrates only on finding broadcast scheduling for a single channel to minimize

the average expected delay [6, 10, 11, 19]. Indeed, the networking community assumes

all items replicated over all channels, and therefore no data allocation to the channels is

needed. Although it is still unknown whether a broadcast schedule on a single channel with

minimum average delay can be found in polynomial time or not, almost all the proposed

solutions follow the square root rule (SRR), a heuristic which in practice finds near-optimal

schedules [3]. The aim of SRR is to produce a broadcast schedule where each data item

appears with equally spaced replicas, whose frequency is proportional to the square root of

its popularity and inversely proportional to the square root of its length. In particular, the

solution proposed by [19] adapts the SRR solution to the case of unrecoverable errors. In

such a case, since corrupted items must be discarded worsening the average expected delay,

the spacing among replicas has to be properly recomputed.

The present paper extends the data allocation problem first studied by the database

community under the assumptions of multiple channels and flat data schedule per channel [4,

5, 22], to cope with the presence of erroneous transmissions, under the same assumptions

of [19], namely unrecoverable errors. Two different error models will be considered to describe

the behavior of wireless channels [20]. First, as in [19], the Bernoulli channel error is assumed,

where each packet transmission has the same probability q to fail and 1 − q to succeed,

and each transmission error is independent from the others. Then, the so called simplified

Gilbert-Elliot channel error model will be considered, which was not previously studied

in [19]. Such a model is able to capture burstiness, that is sequences of erroneous or error-

free packet transmissions, and well approximates the error characteristics of certain wireless

fading channels [18, 23]. As in [19], the erroneous transmissions are taken into account in

the problem parameters and they are compensated by properly modifying the allocation of

data items to channels. Specifically, for both channel error models, it will be shown that

an optimum solution, namely one minimizing the average expected delay, can be found in

polynomial time for the data allocation problem when the data items have unit lengths

and all the channels have the same error probability. When such a probability differs from

channel to channel, sub-optimal solutions will be found for both unit and non-unit length

data and both Bernoulli and Gilbert-Elliot error models. However, when there are exactly

two channels, an optimal solution can be found in polynomial time for both error models,

unit length data, and different channel error probabilities, and in pseudo-polynomial time

for the Bernoulli model, non-unit length data, and channels with the same error probability.

Extensive simulations will show that good sub-optimal solutions are found on benchmarks

whose items probabilities are characterized by Zipf distributions.

The rest of this paper is so organized. Section 2 first gives notations, definitions as

well as the problem statement, and then recalls the basic dynamic programming algorithms
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known so far in the case of error-free channel transmissions. Sections 3 and 4 consider the

Bernoulli and the Gilbert-Elliot channel error models, respectively, and illustrate heuristics

for items of unit and non-unit lengths. Such heuristics are derived by properly redefining

the recurrences in the dynamic programming algorithms previously presented for error-free

channels. In particular, Sections 3 and 4 also present the optimal algorithms for the above

mentioned special cases. Experimental tests are reported at the end of both Sections 3 and 4.

Finally, conclusions are offered in Section 5.

2 Background on error-free channels

Consider a set of K identical error-free channels, and a set D = {d1, d2, . . . , dN} of N data

items. Each item di is characterized by a popularity pi and a length zi, with 1 ≤ i ≤ N .

The popularity pi represents the demand probability of item di, namely its probability to

be requested by the clients, and it does not vary along the time. Clearly,
∑N

i=1 pi = 1. The

length zi is an integer number, counting how many packets are required to transmit item di

on any channel and it includes the encoding of the item with an error correcting code. For

the sake of simplicity, it is assumed that a packet transmission requires one time unit. Each

di is assumed to be non preemptive, that is, its transmission cannot be interrupted. When

all data lengths are unitary, i.e., zi = 1 for 1 ≤ i ≤ N , the lengths are called unit lengths,

otherwise they are said to be non-unit lengths.

The expected delay ti is the expected number of packets a client must wait for receiving

item di. The average expected delay (AED) is the number of packets a client must wait

on the average for receiving any item, and is computed as the sum over all items of their

expected delay multiplied by their popularity, that is

AED =
N∑

i=1

tipi (1)

When the items are partitioned into K groups G1, . . . , GK , where group Gk collects the

data items assigned to channel k, and a flat schedule is adopted for each channel, that is, the

items in Gk are cyclically broadcast in an arbitrary fixed order, Equation 1 can be simplified.

Indeed, if item di is assigned to channel k, and assuming that clients can start to listen at

any instant of time with the same probability, then ti becomes Zk

2
, where Zk is the schedule

period on channel k, i.e., Zk =
∑

di∈Gk
zi. Then, Equation 1 can be rewritten as

AED =
N∑

i=1

tipi =
K∑

k=1

∑

di∈Gk

Zk

2
pi =

K∑

k=1

(

Zk

2

∑

di∈Gk

pi

)

=
1

2

K∑

k=1

ZkPk (2)

where Pk denotes the sum of the popularities of the items assigned to channel k, i.e., Pk =
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∑

di∈Gk
pi. Note that, in the unit length case, the period Zk coincides with the cardinality

of Gk, which will be denoted by Nk.

Summarizing, given K error-free channels, a set D of N items, where each data item di

comes along with its popularity pi and its integer length zi, the Data Allocation Problem

consists in partitioning D into K groups G1, . . . , GK , so as to minimize the AED objective

function given in Equation 2. Note that, in the special case of unit lengths, the corresponding

objective function is derived replacing Zk with Nk in Equation 2.

Almost all the algorithms proposed so far for the data allocation problem on error-free

channels are based on dynamic programming. Such algorithms restrict the search for the

solutions to the so called segmentations, that is, partitions obtained by considering the items

ordered by their indices, and by assigning items with consecutive indices to each channel.

Formally, a segmentation is a partition of the ordered sequence d1, . . . , dN into K adjacent

segments G1, . . . , GK , each of consecutive items, as follows:

d1, . . . , dB1
︸ ︷︷ ︸

G1

, dB1+1, . . . , dB2
︸ ︷︷ ︸

G2

, . . . , dBK−1+1, . . . , dN
︸ ︷︷ ︸

GK

A segmentation can be compactly denoted by the (K − 1)-tuple

(B1, B2, . . . , BK−1)

of its right borders, where border Bk is the index of the last item that belongs to group Gk.

Notice that it is not necessary to specify BK , the index of the last item of the last group,

because its value will be N for any solution.

Four main dynamic programming algorithms for the data allocation problem are now

briefly surveyed, called DP, Dichotomic, Dlinear, and Knapsack. All the algorithms, except

the last one, assume that the items d1, d2, . . . , dN are indexed by non-increasing pi

zi
ratios,

that is p1

z1
≥ p2

z2
≥ · · · ≥ pN

zN
. Observe that in the unit length case this means that the items

are sorted by non-increasing popularities. Let SOLk,n denote a segmentation for grouping

items d1, . . . dn into k groups and let solk,n be its corresponding cost, for any k ≤ K and

n ≤ N . Moreover, let Ci,j denote the cost of assigning to a single channel the consecutive

items di, . . . , dj:

Ci,j =

j
∑

h=i

thph =

j
∑

h=i

(

1

2

j
∑

h=i

zh

)

ph =
1

2

(
j
∑

h=i

zh

)(
j
∑

h=i

ph

)

(3)

For unit lengths, the above formula simplifies as Ci,j = 1
2
(j − i + 1)

∑j

h=i ph. Note that,

once the items are sorted, all the Ci,j’s can be found in O(N) time by means of prefix-sum

computations [21].

5



The DP algorithm is a dynamic programming implementation of the following recurrence,

where k varies from 1 to K and, for each fixed k, n varies from 1 to N :

solk,n =

{

C1,n if k = 1

min1≤`≤n−1{solk−1,` + C`+1,n} if k > 1
(4)

For any value of k and n, the DP algorithm selects the best solution obtained by considering

the n − 1 solutions already computed for the first k − 1 channels and for the first ` items,

and by combining each of them with the cost of assigning the last n − ` items to the single

k-th channel. The DP algorithm requires O(N2K) time. It finds an optimal solution in the

case of unit lengths and a sub-optimal one in the case of non-unit lengths [22].

To improve on the time complexity of the DP algorithm, the Dichotomic algorithm has

been devised. Let Bn
h denote the h-th border of SOLk,n, with k > h ≥ 1. Assume that

SOLk−1,n has been found for every 1 ≤ n ≤ N . If SOLk,l and SOLk,r have been found for

some 1 ≤ l ≤ r ≤ N , then one knows that Bc
k−1 is between Bl

k−1 and Br
k−1, for any l ≤ c ≤ r.

Thus, choosing c as the middle point between l and r, Recurrence 4 can be rewritten as:

solk,d l+r
2

e = min
Bl

k−1
≤`≤Br

k−1

{solk−1,` + C`+1,d l+r
2

e} (5)

where Bl
k−1 and Br

k−1 are, respectively, the final borders of SOLk,l and SOLk,r. The Di-

chotomic algorithm reduces the time complexity of the DP algorithm to O(NK log N). As

for the DP algorithm, the Dichotomic algorithm also finds optimal and sub-optimal solutions

for unit and non-unit lengths, respectively [5].

Moreover, fixed k and n, the Dlinear algorithm selects the feasible solutions that satisfy

the following Recurrence:

solk,n =

{

C1,n if k = 1

solk−1,m + Cm+1,n if k > 1
(6)

where

m = min
Bn−1

k
≤`≤n−1

{` : solk−1,` + C`+1,n < solk−1,`+1 + C`+2,n} .

In practice, Dlinear adapts Recurrence 4 by exploiting the property that, if SOLk,n−1 is

known, then one knows that Bn
k is no smaller than Bn−1

k , and by stopping the trials as soon

as the cost solk−1,` +C`+1,n of the solution starts to increase. The overall time complexity of

the Dlinear algorithm is O(N(K + log N)). Thus the Dlinear algorithm is even faster than

the Dichotomic one, but the solutions it provides are always sub-optimal, both in the case

of unit and non-unit lengths [4].

The Knapsack algorithm solves the problem when there are exactly 2 channels. In such

a case, the problem is to find a partition G1 and G2 such that 1
2
(Z1P1 + Z2P2) is minimized.
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Without loss of generality, Z1 ≤ Z2 can be assumed. Observe that Z1P1 + Z2P2 = Z1P1 +

Z2(1−P1) = P1(Z1−Z2)+Z2. When Z1 is fixed, also Z2 = Z−Z1 is fixed, where Z =
∑N

i=1 zi.

Noting that Z1−Z2 ≤ 0, minimizing Z1P1 +Z2P2 is equivalent to maximizing P1. Therefore,

the problem reduces to a particular Knapsack problem [14] of capacity Z1, where each item di

is characterized by a profit pi and a weight zi. Consider an (N+1)×(bZ/2c+1) matrix M . The

entry Mi,j , with 0 ≤ i ≤ N and 0 ≤ j ≤ bZ/2c, stores the value of the objective function for

a Knapsack problem with items {d1, . . . , di} and capacity j. Formally, Mi,j = max
∑

dk∈S pk

such that
∑

dk∈S zk = j, where S ⊆ {d1, . . . , di}. By definition, Mi,j = −∞ if the capacity

j cannot be completely filled by any S. The dynamic programming algorithm starts by

initializing the first row of M in such a way that M0,0 = 0, M0,j = −∞ for 1 ≤ j ≤ bZ/2c,

and by using the following relation:

Mi,j =

{

Mi−1,j if j < zi

max{Mi−1,j, Mi−1,j−zi
+ pi} if j ≥ zi

(7)

Consider the last row of M . Any entry MN,j 6= −∞ gives the optimal P1 for the 2-channel

data allocation problem with items {d1, . . . , dN} and Z1 = j. Therefore, the entry, say

MN,j , which minimizes 1
2

(
jMN,j + (Z − j)(1 − MN,j)

)
gives the optimal AED for the original

problem. Once MN,j has been found, it is easy to list out the items which have been picked

up in the optimal solution, by tracing back the solution path. The Knapsack algorithm

always finds an optimal solution for two channels and non-unit lengths and its overall time

complexity is O(NZ), which is pseudo-polynomial [5].

3 Bernoulli channel error model

In this section, unrecoverable channel transmission errors modeled by a geometric distri-

bution are taken into account. Under such an error model, each packet transmission over

channel k has the same probability qk to fail and 1 − qk to succeed, and each transmission

error is independent from the others, with 1 ≤ k ≤ K and 0 ≤ qk ≤ 1. Since the envi-

ronment is asymmetric, a client cannot ask the server to immediately retransmit an item di

which has been received on channel k with an unrecoverable error. Indeed, the client has to

discard the item and then has to wait for a whole period Zk, until the next transmission of di

scheduled by the server. Even the next item transmission could be corrupted, and in such a

case an additional delay of Zk has to be waited. Therefore, the expected delay ti has to take

into account the extra waiting time due to a possible sequence of independent unrecoverable

errors.
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3.1 Unit length items

Assume that the item lengths are unitary, i.e., zi = 1 for 1 ≤ i ≤ N . Recall that in such a

case the period of channel k is Nk. If a client wants to receive item di, which is transmitted

on channel k, and the first transmission he can hear of di is error-free, then the client waits

on the average Nk

2
time units with probability 1 − qk. Instead, if the first transmission of di

is erroneous, but the second one is error-free, then the client experiences an average delay of
Nk

2
+Nk time units with probability qk(1−qk). Generalizing, if there are h bad transmissions

of di followed by a good one, the client average delay for receiving item di becomes Nk

2
+hNk

time units with probability qh
k(1 − qk). Thus, summing up over all h, the expected delay ti

is equal to

∞∑

h=0

(
Nk

2
+ hNk)q

h
k(1 − qk) =

Nk

2
(1 − qk)

∞∑

h=0

qh
k + Nk(1 − qk)

∞∑

h=0

hqh
k =

Nk

2
+ Nk

qk

1 − qk

because
∑∞

h=0 qh
k = 1

1−qk
and

∑∞
h=0 hqh

k = qk

(1−qk)2
. Therefore, one can set the expected delay

as

ti =
Nk

2

1 + qk

1 − qk

(8)

By the above setting, the objective function given in Equation 1 can be rewritten as

AED =

N∑

i=1

tipi =
1

2

K∑

k=1

Nk

1 + qk

1 − qk

Pk (9)

Note that the AED to be minimized depends now not only on the items allocated to

each group but also on the channel assigned to each group. Hence, Equation 9 represents

the new objective function for the problem of allocating data to multiple channels assuming

unit length items, flat data scheduling per channel, and unrecoverable channel transmission

errors modeled by a geometric distribution.

The following result shows that there is an optimal solution where the items are sorted

by non-increasing popularities.

Lemma 1. Let Gh and Gj be two groups in an optimal solution. Let di and dk be items

with di ∈ Gh and dk ∈ Gj. If Nh
1+qh

1−qh
< Nj

1+qj

1−qj
, then pi ≥ pk. Similarly, if pi > pk, then

Nh
1+qh

1−qh
≤ Nj

1+qj

1−qj
.

Proof. By contradiction, let G1, G2, . . . , GK be an optimal solution for which there exist Gh

and Gj such that Nh
1+qh

1−qh
< Nj

1+qj

1−qj
and pi < pk. Consider now another solution obtained by

exchanging di with dk in the two groups Gh and Gj . The difference in the AED of the two

solutions is
(

Nh
1+qh

1−qh
− Nj

1+qj

1−qj

)

(pi − pk) > 0 because pi − pk < 0 and Nh
1+qh

1−qh
−Nj

1+qj

1−qj
< 0.

Hence, a better solution is achieved contradicting the optimality assumption. The last part

of the lemma is proved similarly.
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In practice, by the above lemma, an optimal solution which is a segmentation always

exists. However, no hints are given on which order the channels have to be taken. Nonethe-

less, the next result shows that an optimal solution exists where the channels are indexed

by non-decreasing channel error probabilities.

Lemma 2. Let Gh and Gj be two groups in an optimal solution. If NhPh > NjPj, then

qh ≤ qj. Similarly, if qh < qj, then NhPh ≥ NjPj.

Proof. By contradiction, let G1, G2, . . . , GK be an optimal solution for which there exist

Gh and Gj such that NhPh > NjPj and qh > qj . Consider now another solution obtained

by exchanging the items assigned to the groups Gh and Gj. The difference in the AED

of the two solutions is (NhPh − NjPj)(
1+qh

1−qh
−

1+qj

1−qj
) > 0. Indeed NhPh − NjPj > 0 and

1+qh

1−qh
−

1+qj

1−qj
> 0 because qh > qj . Hence, a better solution is achieved contradicting the

optimality assumption. The last part of the lemma is proved similarly.

Unfortunately, an optimal solution which is a segmentation and takes the channels by

non-decreasing error probabilities does not always exist, as shown by the following coun-

terexample. Let N = 7 and D = {d1, . . . , d7} with p1 = 5
6
, p2 = 1

12
, p3 = . . . = p7 = 1

60
.

Moreover let K = 3 where q1 = 0, q2 = 1
3

and q3 = 1
2
. An optimal solution which is a segmen-

tation assigns d1 to the channel with error probability q1, d2 to that with error probability

q3, and all the remaining items to the channel with probability q2. Such a solution satisfies

Lemma 1, but does not take the channels by non-decreasing error probabilities. However,

the above solution can be rearranged in such a way that Lemma 2 holds, obtaining a new

optimal solution which assigns d1 to the channel with error probability q1, {d3, d4, d5, d6, d7}

to that with error probability q2, and d2 to the channel with error probability q3. Clearly,

although this solution takes the channels in non-decreasing error probabilities, it does not

maintain items sorted by non-increasing popularities.

In the special case where there are only two channels, an optimal solution can be efficiently

found by exploiting the following result.

Corollary 1. Assume K = 2 and the items sorted by non-increasing popularities, and let

(B1) be an optimal segmentation. Then, B1 ≤ (N − B1)
1+qmax

1−qmax

1−qmin

1+qmin
, where qmax and qmin

are the largest and the smallest error probabilities, respectively. Moreover, if B1 ≥ dN
2
e then

the items d1, . . . , dB1
are assigned to the channel with error probability qmin.

Proof. By contradiction, let B1 > (N − B1)
1+qmax

1−qmax

1−qmin

1+qmin
. Then N1

1+qmin

1−qmin
> N2

1+qmax

1−qmax
. By

Lemma 1, the item popularities are non-decreasing contradicting the assumption. To show

the remaining property, observe that, since B1 ≥ dN
2
e and the items are sorted by non-

increasing popularities, then N1 ≥ N2, P1 ≥ P2, and hence N1P1 ≥ N2P2. By Lemma 2, the

channels must be taken by increasing error probabilities. Therefore, the first group of items

will be assigned to the channel with minimum error probability qmin.

9



Input: N items sorted by non-increasing popularities {p1, p2, . . . , pN};

K = 2 channels; channel error probabilities qmin and qmax;

Initialize: N1 := 1, N2 := N − N1, B1 := 1;

P1 := p1, P2 := 1 − P1;

if N1P1 > N2P2 then q1 := qmin, q2 := qmax

else q1 := qmax, q2 := qmin;

AED := N1P1
1+q1

1−q1

+ N2P2
1+q2

1−q2

;

Loop 1: while q1 > q2 do begin

N1 := N1 + 1, N2 := N2 − 1;

P1 := P1 + pN1
, P2 := P2 − pN1

;

if N1P1 > N2P2 then q1 := qmin, q2 := qmax;

if AED > N1P1
1+q1

1−q1

+ N2P2
1+q2

1−q2

then

AED := N1P1
1+q1

1−q1

+ N2P2
1+q2

1−q2

, B1 := N1;

end;

Loop 2: while N1 ≤ N2
1+q2

1−q2

1−q1

1+q1

do begin

N1 := N1 + 1, N2 := N2 − 1:

P1 := P1 + pN1
, P2 := P2 − pN1

;

if AED > N1P1
1+q1

1−q1

+ N2P2
1+q2

1−q2

then

AED := N1P1
1+q1

1−q1

+ N2P2
1+q2

1−q2

, B1 := N1;

end

return (AED, B1)

Figure 1: The data allocation algorithm for unit length items and two channels

with error probabilities qmin and qmax.

In Figure 1, an algorithm is shown which finds an optimal solution for the data allo-

cation problem in the presence of unrecoverable channel transmission errors. In order to

prove its correctness, note that the algorithm looks for a segmentation of minimum cost

among all the admissible segmentations. Precisely, observed that N1 coincides with the seg-

mentation border B1, the algorithm moves B1 from left to right, one position at a time.

In the initialization, the AED relative to the segmentation (B1 = 1) is computed and the

condition N1P1 > N2P2 is checked, according to Lemma 2, to decide in which order the

channels have to be taken. Then, Loop 1 computes the AEDs of consecutive segmentations

up to the leftmost segmentation (B1 = N1) such that N1P1 > N2P2. According to Corol-

lary 1, at most dN
2
e segmentations are examined in Loop 1, and for each of them but the

last one the channel with the largest error probability is used first. In contrast, in Loop 2

the channel with the minimum error probability is used first. Indeed, once the condition

N1P1 > N2P2 becomes true at the end of Loop 1, it will remain satisfied in Loop 2 as the

segmentation border moves right. According to Corollary 1, the last admissible segmentation

is (B1 = (N − B1)
1+qmax

1−qmax

1−qmin

1+qmin
). Finally, the solution with the minimum AED among all

the so scanned solutions is returned.

10



The algorithm in Figure 1 requires O(N) time, assuming that the items are already

sorted, and O(N log N) time otherwise. Note that such a time complexity is the same as

that achieved, when K = 2, by the Dichotomic algorithm, which is the fastest optimal

algorithm for error-free channels. However, in the presence of unrecoverable transmission

errors, Dichotomic does not always find an optimal solution because there is no guarantee

that an optimal solution exists which satisfies Lemma 2 of [5].

In the particular case that all the channels have the same probability to fail, that is,

q1 = · · · = qK = q, the data allocation problem can still be optimally solved in polynomial

time. This derives from Lemma 1 above and from Lemma 2 of [5], which together prove

optimality in the particular case of error-free channels, that is, when q = 0. Indeed, when

q > 0, similar proofs hold once the cost Ci,j of assigning consecutive items di, . . . , dj to the

same channel is defined as Ci,j = j−i+1
2

1+q

1−q

∑j

h=i ph because the objective function given in

Equation 9 becomes AED = 1
2

1+q

1−q

∑K

k=1 NkPk. In words, such lemmas show that, when-

ever the items d1, d2, . . . , dN are sorted by non-increasing popularities, there always exists

an optimal solution which is a segmentation and which can be found by the Dichotomic

algorithm.

Another particular case that can be optimally solved in polynomial time arises when all

the channels, but one, have the same probability to fail, namely, q1 = · · · = qK−1 = q and

qK = q′. Such a problem can be optimally solved by using dynamic programming as follows.

Let Ci,j = j−i+1
2

1+q

1−q

∑j

h=i ph and C ′
i,j = j−i+1

2
1+q′

1−q′

∑j

h=i ph be the cost of assigning consecutive

items di, . . . , dj to a channel with error probability q and q′, respectively. Moreover, let optk,n

be the cost of an optimal segmentation for the first n items using k channels all having the

same error probability q. Similarly, let opt′k,n be the cost of an optimal segmentation when

one of the k channels has error probability q′. Clearly, opt1,n = C1,n and opt′1,n = C ′
1,n. The

optimal solution opt′K,N can be derived applying the following recurrence, which exploits the

fact that there is exactly one channel with different error probability q′:

opt′k,n = min1≤`≤n−1{min{optk−1,` + C ′
`+1,n, opt

′
k−1,` + C`+1,n}} 1 < k ≤ K (10)

where

optk,n = min1≤`≤n−1{optk−1,` + C`+1,n} 1 < k ≤ K − 1 (11)

Recurrence 11 computes the optimal AED when no channel with error probability q′ is used,

while Recurrence 10 finds the optimal AED when exactly one channel with error probability

q′ is used. Precisely, this last recurrence considers that the channel with error probability q′

is either the k-th one or one out of the first k − 1 channels. Overall, the time complexity is

O(N2K).

In the general case that the error probabilities of the K channels are not the same,

the algorithm in Figure 1 could be generalized by considering the items sorted by non-

11



increasing popularities and by generating all the possible
(

N

K−1

)
segmentations. Hence, for

each segmentation, the groups are reindexed in such a way that their NjPj are non-increasing,

and the so reindexed groups are assigned to the channels taken by non-decreasing error

probabilities. Clearly, such an algorithm requires O(NK−1K log K + N log N) time, which

is polynomial only when K = O(1). In order to have a polynomial time, the solution

optimality can be compromised. Therefore, both the Dichotomic and Dlinear algorithms

can be modified to handle such a general case with no guarantee that the so found solutions

are optimal. Indeed, one can only show that the above mentioned lemmas hold true for a

fixed ordering of the channels. A reasonable greedy criterium can be that of assigning the

most popular items to the most reliable channels, that is, indexing the channels so that

q1 ≤ q2 ≤ · · · ≤ qK . It is easy to see from Lemma 2 that such a choice gives the optimum

when there are exactly K items. Hence, Recurrences 5 and 6 can be adapted to the objective

function given in Equation 9 by properly redefining the Ci,j costs so that they depend on

the channels too. Thus, letting the cost Ci,j;k of assigning consecutive items di, . . . , dj to

channel k be Ci,j;k = j−i+1
2

1+qk

1−qk

∑j

h=i ph, the new recurrences for the Dichotomic and Dlinear

algorithms are derived from the old ones by replacing Ci,j with Ci,j;k. All the Ci,j;k’s can

be calculated in O(NK) time via proper prefix-sum computations, assuming that the items

are already sorted, and thus the time complexities of the Dichotomic and Dlinear algorithms

remain the same.

3.2 Non-unit length items

Consider now items with non-unit length and recall that Zk is the period of channel k. In

order to receive an item di of length zi over channel k, a client has to listen for zi consecutive

error-free packet transmissions, which happens with probability (1 − qk)
zi. Hence, the error

probability for item di on channel k is Qzi,k = 1 − (1 − qk)
zi.

In the case that the first transmission of di heard by the client is error-free, the client

has to wait on the average Zk

2
time units with probability 1 − Qzi,k. Instead, the client

waits on the average for Zk

2
+ Zk time units with probability Qzi,k(1 − Qzi,k) in the case

that the first transmission of di is erroneous and the second one is error-free. In general, h

bad transmissions of di followed by a good one lead to a delay of Zk

2
+ hZk time units with

probability Qh
zi,k

(1 − Qzi,k). Therefore, the expected delay becomes

ti =
∞∑

h=0

(
Zk

2
+ hZk

)

Qh
zi,k

(1 − Qzi,k) =
Zk

2

1 + Qzi,k

1 − Qzi,k

(12)

and Equation 1 can be rewritten as

AED =

N∑

i=1

tipi =
1

2

K∑

k=1

(

Zk

∑

di∈Gk

1 + Qzi,k

1 − Qzi,k

pi

)

(13)
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Recalling that the items are indexed by non-increasing pi

zi
ratios, the new recurrences for

the Dichotomic and Dlinear algorithms are derived from Recurrences 5 and 6, respectively,

once the channels are indexed so that q1 ≤ q2 ≤ · · · ≤ qK and each Ci,j is replaced by Ci,j;k =
1
2

(
∑j

h=i zh

)(
∑j

h=i

1+Qzh,k

1−Qzh,k
ph

)

. All the Ci,j;k’s can be computed in O(KH) time via prefix-

sums, where H = min{N log z, z} and z = max1≤h≤Nzh. Therefore, the time complexities

of the Dichotomic and Dlinear algorithms become, respectively, O(K(H + N log N)) and

O(KH + KN + N log N). Note that in such a case optimality is not guaranteed since the

problem is computationally intractable already for error-free channels.

However, when there are only two channels having the same error probability q = q1 = q2,

an optimal solution can be found applying the Knapsack algorithm simply replacing each

popularity pi with p′i =
1+Qzi

1−Qzi

pi in Recurrence 7, and then finally selecting the entry MN,j

which minimizes 1
2

(
jMN,j + (Z − j)(P ′ − MN,j)

)
, where P ′ =

∑N

i=1 p′i and Qzi
= 1−(1−q)zi ,

for 1 ≤ i ≤ N . The overall time complexity remains O(NZ).

3.3 Simulation experiments

In this subsection, the behavior of the Dichotomic and Dlinear heuristics is tested in the case

of Bernoulli channel error model. The heuristics were written in C++ and the experiments

were run on an AMD Athlon X2 4800+ with 2 GB RAM. The above algorithms have been

experimentally tested on benchmarks where the item popularities follow a Zipf distribution.

Specifically, given the number N of items and a real number 0 ≤ θ ≤ 1, the item popularities

are defined as

pi =
(1/i)θ

∑N

h=1(1/h)θ
1 ≤ i ≤ N

Note that the item popularities are already sorted in non-increasing order. In the above

formula, θ is the skew parameter. In particular, θ = 0 stands for a uniform distribution with

pi = 1
N

, while a higher θ implies a higher skew, namely the difference among the pi values

becomes larger. In the experiments, θ is chosen to be 0.8, as suggested in [22], while either

N is set to 2500 and K varies in the range 10 ≤ K ≤ 500, or K is set to 50 and N varies

in the range 500 ≤ N ≤ 2500. The channel error probabilities can assume the values 0.001,

0.01 and 0.1.

Figure 2 exhibits the AED obtained in the case that the data lengths are unitary and

the error probabilities are not identical for all channels. In particular, the channels are

partitioned into three equally-sized groups with error probability q, 2q, and 3q, respectively.

In other words, q1 = · · · = qbK
3
c = q, qbK

3
c+1 = · · · = qb 2

3
Kc = 2q, and qb 2

3
Kc+1 = · · · = qK =

3q. One can observe that, when q = 0.001 and 0.01, the reported AEDs almost coincide

with those where the channels are error-free. In other words, such small error probability

values scarcely affect the average expected delay, which remains the optimal one found by
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Figure 2: Results for unit lengths when the channels are partitioned into three groups of the

same size with error probability q, 2q, and 3q, respectively.

the Dichotomic algorithm in the case of channels with no error. Whereas, the larger value

q = 0.1 worsens the AED when the number K of channels is small with respect to the number

N of items. Noting that all the channels have at least an error probability of q = 0.1, the

AED in presence of errors must be at least 1+q

1−q
= 1.22 times the AED without errors. This

is consistent with the AED reported in Figure 2, which is about 1.44 times the AED without

errors, as computed by both the Dlinear and Dichotomic algorithms.

Consider now data items whose lengths are non-unitary. In the experiments, the item

lengths zi are integers randomly generated according to a uniform distribution in the range

1 ≤ zi ≤ 10, for 1 ≤ i ≤ N . In addition, the reported results are averaged over 3 independent

experiments. Moreover, since the data allocation problem is computationally intractable

when data lengths are non-unitary, lower bounds for a non-unit length instance are derived

by transforming it into a unit length instance as follows. Each item di of popularity pi and

length zi is decomposed into zi items of popularity pi

zi
and length 1. Since more freedom has

been introduced, it is clear that the optimal AED for the so transformed problem is a lower

bound on the AED of the original problem. Since the transformed problem has unit lengths,

when all the channels are either error-free or have the same error probability, the optimal

AED can be obtained by running the polynomial time Dichotomic algorithm.

Figure 3 shows the experimental results for non-unit lengths in the case that the error

probability q is 0.01 for all channels. One can note that the two above mentioned lower

bounds almost coincide. Indeed, the AED of the transformed unit length instance in the

presence of errors is 1+q

1−q
= 1.02 times the AED of the same transformed instance without

errors. One can also note that, since the average data item length is 5, the AED of the

original instance in the presence of errors should be about 1+Q

1−Q
= 1.10 times the AED of the

same original instance in the absence of errors, where Q = 1 − (1 − 0.01)5 = 0.05. This can

be easily checked in the graphic, e.g., for K = 10, where the ratio between the two AEDs is

14
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Figure 3: Results for non-unit lengths when all the channels have the same error probability

q = 0.01.
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Figure 4: Results for non-unit lengths when the channels are partitioned into three groups of

the same size with error probability q, 2q, and 3q, respectively.

about 500
450

= 1.11.

When the error probabilities of the channels are not identical, it is not known how to

compute in polynomial time the optimal AED for the transformed unit length instance,

which gives a lower bound to the original instance. Therefore, such an optimal AED is

replaced in the experiments by the AED obtained running the Dichotomic algorithm on the

transformed instance, which nonetheless remains a lower bound of the AED produced by

the Dichotomic algorithm for the original non-unit instance.

Figures 4 and 5 plot the AEDs obtained for non-unit lengths and three equally-sized

channel groups with error probability q, 2q, and 3q. When q = 0.001, the AEDs in Figure 4

almost coincide with those where the channels are error-free, as happened in the case of unit

lengths. When q = 0.01, since the average data item length is 5 and the average channel

error probability is 0.02, the AED of the original instance in the presence of error should be

about 1+Q

1−Q
= 1.22 times the AED of the same original instance in the absence of error, where
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Q = 1− (1− 0.02)5 = 0.10. In Figure 4, the largest ratios between the two above mentioned

AEDs occur for small values of K, e.g., when K = 10 such a ratio is about 570
440

= 1.29. When

q = 0.1, a similar reasoning leads to Q = 1 − (1 − 0.2)5 = 0.68 and 1+Q

1−Q
= 5.25, while the

largest ratio, for K = 10, is about 3200
450

= 7.11, as one can see in Figure 5. Moreover, one

notes that the Dlinear algorithm, which searches in a smaller solution space than that of the

Dichotomic, behaves worse for large values of K.

4 Gilbert-Elliot channel error model

In this section, the channel error behavior is assumed to follow a simplified Gilbert-Elliot

model, which is a two-state time-homogeneous discrete time Markov chain [20]. At each

time instant, a channel can be in one of two states. The state 0 denotes the good state,

where the channel works properly and thus a packet is received with no errors. Instead, the

state 1 denotes the bad state, where the channel is subject to failure and hence a packet is

received with an unrecoverable error. Let X0, X1, X2, . . . be the states of the channel at times

0, 1, 2, . . .. The time between Xu and Xu+1 corresponds to the length of one packet. The

initial state X0 is selected randomly. As depicted in Figure 6, the probability of transition

from the good state to the bad one is denoted by b, while that from the bad state to the

good one is g. Hence, 1 − b and 1 − g are the probabilities of remaining in the same state,

namely, in the good and bad state, respectively. Formally, Prob[Xu+1 = 0|Xu = 0] = 1 − b,

Prob[Xu+1 = 0|Xu = 1] = g, Prob[Xu+1 = 1|Xu = 1] = 1 − g, and Prob[Xu+1 = 1|Xu =

0] = b.

It is well known that the steady-state probability of being in the good state is PG = g

b+g
,

while that of being in the bad state is PB = b
b+g

. This Markovian process has mean µ = PB,
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Figure 6: The Gilbert-Elliot channel error model.

variance σ2 = µ(1−µ) = bg

(b+g)2
, and autocorrelation function r(ν) = PB +(1−PB)(1−b−g)ν ,

where b + g < 1 is assumed. Since the system is memoryless, the state holding times are

geometrically distributed. The mean state holding times for the good state and the bad state

are, respectively, 1
b

and 1
g
. This means that the channel exhibits error bursts of consecutive

ones whose mean length is 1
g
, that are separated by gaps of consecutive zeros whose mean

length is 1
b
.

4.1 Unit length items

Assume that the item lengths are unitary, i.e., zi = 1 for 1 ≤ i ≤ N . Recall that in such a

case the period of channel k is Nk. If a client waits for item di on channel k, and no error

occurs in the first transmission of di, then the client waits on the average Nk

2
time units with

probability PG = 1 − PB. Instead, if an error occurs during the first transmission of di and

there is no error in the second transmission, then the average delay experienced by the client

is Nk

2
+Nk time units with probability PB(1−r(Nk)). In general, when there are h erroneous

transmissions of di followed by an error-free one, the client average delay is Nk

2
+ hNk time

units with probability PB(r(Nk))
h−1(1 − r(Nk)). Thus, the expected delay is equal to

Nk

2
PG + PB(1 − r(Nk))

∞∑

h=1

(
Nk

2
+ hNk)(r(Nk))

h−1 =
Nk

2
PG + PB

Nk

2
+ PB

Nk

1 − r(Nk)

because
∑∞

h=1(r(Nk))
h−1 = 1

1−r(Nk)
and

∑∞
h=1 h(r(Nk))

h−1 = 1
(1−r(Nk))2

. Hence, the expected

delay ti and the objective function become, respectively

ti =
Nk

2

(

1 +
2PB

1 − r(Nk)

)

(14)

AED =

N∑

i=1

tipi =
1

2

K∑

k=1

(

Nk

(

1 +
2PB

1 − r(Nk)

)
∑

di∈Gk

pi

)

(15)

The following result shows that there is an optimal solution where the items are sorted

by non-increasing popularities.
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Lemma 3. Let Gh and Gj be two groups in an optimal solution. Let di and dk be items with

di ∈ Gh and dk ∈ Gj. If Nh

(

1 + 2PB

1−r(Nh)

)

< Nj

(

1 + 2PB

1−r(Nj)

)

, then pi ≥ pk. Similarly, if

pi > pk, then Nh

(

1 + 2PB

1−r(Nh)

)

≤ Nj

(

1 + 2PB

1−r(Nj)

)

.

Proof. By contradiction, let G1, G2, . . . , GK be an optimal solution for which there exist Gh

and Gj such that Nh

(

1 + 2PB

1−r(Nh)

)

< Nj

(

1 + 2PB

1−r(Nj)

)

and pi < pk. Consider now another

solution obtained by exchanging di with dk in the two groups Gh and Gj . The difference

in the AED of the two solutions is
(

Nh

(

1 + 2PB

1−r(Nh)

)

− Nj

(

1 + 2PB

1−r(Nj)

))

(pi − pk) > 0,

because pi − pk < 0 and Nh

(

1 + 2PB

1−r(Nh)

)

< Nj

(

1 + 2PB

1−r(Nj)

)

. Hence, a better solution is

achieved contradicting the optimality assumption. The last part of the lemma is proved

similarly.

The above lemma implies that there is an optimal solution which is a segmentation.

Such a solution can be found in O(N2K) time by the DP algorithm, whose new recurrence

is derived from Recurrence 4 by setting Ci,j = j−i+1
2

(

1 + 2PB

1−r(j−i+1)

)
∑j

h=i ph.

In the general case where the steady-state probabilities of being in the bad state are not

identical for all channels, Equations 14 and 15 can be easily generalized. Then, both the

Dichotomic and Dlinear algorithms can still be applied to find sub-optimal solutions, after

indexing the channels by non decreasing PB’s, namely PB1
≤ · · · ≤ PBK

, and replacing Ci,j

with

Ci,j;k =
j − i + 1

2

(

1 +
2PBk

1 − rk(j − i + 1)

) j
∑

h=i

ph

where rk(ν) = PBk
+ (1 − PBk

)(1 − bk − gk)
ν . As usual, all the Ci,j;k’s can be computed in

O(NK) time via prefix-sums.

In the special case where there are only two channels, an optimal solution can be efficiently

found by exploiting the properties of the AED objective function. Indeed, the problem is

to find a partition G1 and G2 such that 1
2

(

N1

(

1 +
2PB1

1−r1(N1)

)

P1 + N2

(

1 +
2PB2

1−r2(N2)

)

P2

)

is

minimized. Since P2 = 1 − P1 and N2 = N − N1, the AED above can be rewritten as:
1
2

(

P1

(

N1

(

2 +
2PB1

1−r1(N1)
+

2PB2

1−r2(N−N1)

)

− N
(

1 +
2PB2

1−r2(N−N1)

))

+
(

1 +
2PB2

1−r2(N−N1)

)

(N − N1)
)

When N1 is fixed to a particular value, the AED is minimized by assigning to group

G1 the N1 items with either the smallest or largest popularities, depending on whether

α = N1

(

2 +
2PB1

1−r1(N1)
+

2PB2

1−r2(N−N1)

)

− N
(

1 +
2PB2

1−r2(N−N1)

)

is positive or not, respectively.

Such a property implies that there is an optimal solution which is a segmentation and which

can be found by scanning all the possible values of N1 once the items have been sorted

by non-increasing popularities. The resulting algorithm, shown in Figure 7, has an O(N)

running time, provided that the items are sorted. The algorithm starts computing in O(N)

time all the autocorrelation values, r1(i) and r2(i), as well as the popularity prefix sums,

Πi =
∑i

j=1 pi, for 1 ≤ i ≤ N . Then, for each i, with 1 ≤ i ≤ N − 1, it assigns to G1 either

18



Input: N items sorted by non-increasing popularities {p1, p2, . . . , pN};

K = 2 channels; steady-state probabilities PB1
and PB2

;

Initialize: Πi :=
∑i

j=1 pi, for 1 ≤ i ≤ N ;

rk(i) := PBk
+ (1 − PBk

)(1 − bk − gk)i, for k = 1, 2 and 1 ≤ i ≤ N ;

AED := +∞;

Loop 1: for i := 1 to N − 1 do begin

α := i
(

2 +
2PB1

1−r1(i)
+

2PB2

1−r2(N−i)

)

− N
(

1 +
2PB2

1−r2(N−i)

)

;

if α > 0 then P1 := ΠN − ΠN−i+1, β := N − i

else P1 := Πi, β := i;

if AED > 1
2

(

αP1 +
(

1 +
2PB2

1−r2(N−i)

)

(N − i)
)

then

AED := 1
2

(

αP1 +
(

1 +
2PB2

1−r2(N−i)

)

(N − i)
)

, B1 := β;

end

return (AED, B1)

Figure 7: The data allocation algorithm for unit length items and two channels

with steady-state probabilities PB1
and PB2

.

the last i items, if α > 0, or the first i items, if α ≤ 0. Finally, it returns the solution with

minimum AED among all the N − 1 scanned solutions.

4.2 Non-unit length items

Let us now deal with items having non-unit lengths. Recall that Zk is the period of channel

k and that a client has to listen for zi consecutive error-free packet transmissions in order to

receive the item di over channel k.

Consider now the first transmission of item di heard by a client. Let P̂B(s) denote the

probability that in such a transmission the s-th packet is the first erroneous packet, where

1 ≤ s ≤ zi. Formally,

P̂B(s) =

{

PB

(1 − PB)(1 − b)s−2b

if s = 1

if 2 ≤ s ≤ zi

Consider now two consecutive transmissions of item di heard by a client, the first of which

is erroneous. Let P̄B(s, σ) denote the probability that, in the second transmission, the first

erroneous packet is the s-th one given that in the previous transmission the first erroneous

packet was the σ-th one. Thus,

P̄B(s, σ) =

{

r(Zk + 1 − σ)

(1 − r(Zk + 1 − σ))(1 − b)s−2b

if s = 1

if 2 ≤ s ≤ zi
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Finally, let P̄G(σ) denote the probability that a whole transmission of di is error-free

given that in the previous transmission of di the first erroneous packet was the σ-th one:

P̄G(σ) = (1 − r(Zk + 1 − σ))(1 − b)zi−1

Note that all the P̂B(s) and P̄B(s, σ)’s can be computed in pseudo-polynomial time, that

is in a time polynomial in the parameters Z and z, where Z =
∑N

i=1 zi and z = max1≤i≤Nzi.

To evaluate the expected delay ti, observe that if the first transmission of di heard by

the client is error-free, the client has to wait on the average Zk

2
time units with probability

(1 − PB)(1 − b)zi−1. Instead, the client waits on the average for Zk

2
+ Zk time units with

probability
∑zi

s0=1 P̂B(s0)P̄G(s0) in the case that the first transmission of di is erroneous and

the second one is error-free. Moreover, two bad transmissions of di followed by a good one lead

to a delay of Zk

2
+ 2Zk time units with probability

∑zi

s0=1

[

P̂B(s0)
∑zi

s1=1 P̄B(s1, s0)P̄G(s1)
]

.

Thus, in general, the expected delay is ti = Zk

2
(1−PB)(1− b)zi−1 +

∑∞
h=1

[(
Zk

2
+ hZk

) ∑zi

s0=1[

P̂B(s0)
∑zi

s1=1

[

P̄B(s1, s0)
∑zi

s2=1

[

P̄B(s2, s1) · · ·
∑zi

sh−1=1

[
P̄B(sh−1, sh−2)P̄G(sh−1)

]
· · ·
]]]]

.

Since finding a closed formula for ti seems to be difficult, an approximation tmi of the

expected delay can be computed by truncating the above series at the m-th term, for a

given constant value m. Indeed, experimental tests show that the series converges already

for small values of m, as it will be checked in Subsection 4.3. Thus, the average expected

delay becomes AED =
∑N

i=1 tmi pi. Recalling that the items are indexed by non-increasing
pi

zi
ratios, the Dichotomic and Dlinear algorithms can be applied once each Ci,j is computed

as
∑j

h=i t
m
h ph. Fixed i and j, the time for computing Ci,j is derived as follows. Assuming a

proper prefix-sum has been done as a preprocessing, Zk =
∑j

h=i zh can be retrieved in O(1)

time, while the computation of tmh requires O(zm
h ) time. Therefore, in the worst case, the

computation of Ci,j takes O(Nzm) time, and that of all the Ci,j’s costs O(N3zm) time, which

is pseudo-polynomial. Hence, the time for computing the P̂B(s)’s, P̄B(s, σ)’s, and Ci,j’s leads

to a pseudo-polynomial time complexity for both the Dichotomic and Dlinear algorithms.

As in the unit length case, if the steady-state probabilities of being in the bad state are

not identical for all channels, then Dichotomic and Dlinear can be run after the channels

are indexed so that PB1
≤ · · · ≤ PBK

and each Ci,j is replaced with Ci,j;k =
∑j

h=i t
m
h (k)ph,

where tmh (k) is computed as tmh by substituting PBk
for PB. Clearly, the computation of all

the Ci,j;k’s takes O(N3Kzm) time.

4.3 Simulation experiments

This subsection presents the experimental tests for the Dichotomic and Dlinear heuristics

in the case of the Gilbert-Elliot channel error model. In the experiments for items of unit

length, the item popularities follow a Zipf distribution with θ = 0.8, while either N = 2500
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Figure 8: The AED behavior versus the mean error burst length.

and 10 ≤ K ≤ 500, or K = 50 and 500 ≤ N ≤ 2500, as in Subsection 3.3. Moreover, the

steady-state probability PB of being in the bad state can assume the values 0.001, 0.01 and

0.1, while the mean error burst length 1
g

is fixed to 10. Note that b is derived as g PB

1−PB
once

PB and 1
g

are fixed. However, the choice of 1
g

is not critical because the sensitivity of the

AED to 1
g

is low, as depicted in Figure 8, for 1 < 1
g
≤ 130. Note that the choice of such an

upper bound on 1
g

is not restrictive because the probability of having a burst with length n

is g(1 − g)n−1, which is negligible as n grows.

Figure 9 exhibits the AED obtained in the case where the data lengths are unitary and

the steady-state probabilities are not identical for all channels. As in the Bernoulli error

model, the channels are indexed in such a way that PB1
= · · · = PB

bK
3

c
= PB, PB

bK
3

c+1
=

· · · = PB
b 2
3

Kc
= 2PB, and PB

b 2
3

Kc+1
= · · · = PBK

= 3PB. One can observe that, when

PB = 0.001 and 0.01, the reported AEDs almost coincide with those where the channels are

error-free, whereas the AED worsens when PB = 0.1. Noting that in this latter case the

steady-state probability is 0.2 on the average, and thus 1 + 2PB

1−r(Nk)
' 1.40 in Equation 14,

one expects that the AED in the presence of errors should be about 40% larger than that

in the absence of errors. This is confirmed by the results reported in Figure 9, where the

experimental AED is about 44% larger than in the error-free case.

Consider now data items whose lengths are non-unitary. Since the algorithms take

pseudo-polynomial time, a restricted set of experiments is performed. In the experiments,

the number K of channels is set to 50, the number N of items varies between 500 and 2000,

the item popularities follow a Zipf distribution with θ = 0.8, and the item lengths zi are

integers randomly generated according to a uniform distribution in the range 1 ≤ zi ≤ 10,

for 1 ≤ i ≤ N . All the K channels have the same staedy-state probability PB, which as-

sumes the values 0.001, 0.01, and 0.1. The reported results are averaged over 3 independent
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Figure 9: Results for unit lengths when the channels are partitioned into three groups of the

same size with steady-state probability PB, 2PB, and 3PB, respectively.

m tmi

1 25.9150699

2 25.9382262

3 25.9388013

4 25.9388156

5 25.9388160

6 25.9388167

m tmi

1 25.1989377

2 25.2537833

3 25.2689036

4 25.2730723

5 25.2745215

6 25.2745384

(a) (b)

Table 1: Values of tmi when: (a) zi = 10, Zk = 50, 1
g

= 10, and PB = 0.01; and (b) zi = 5,

Zk = 50, 1
g

= 10, and PB = 0.16.

experiments. The expected delay of item di is evaluated by computing t5i , that is truncating

at the fifth term the series giving ti. Indeed, as shown in Table 1 for zi = 10, Zk = 50,
1
g

= 10, and PB = 0.01 and for zi = 5, Zk = 50, 1
g

= 10, and PB = 0.1, at the fifth term the

series giving ti is already stabilized up to the fourth decimal digit.

Since the data allocation problem is computationally intractable when data lengths are

non-unit, lower bounds for non-unit length instances are derived by transforming them into

unit length instances, as explained in Subsection 3.3. Moreover, since the steady-state prob-

ability PB is the same for all channels, the AEDs giving the lower bounds are obtained by

running the DP algorithm as explained in Subsection 4.1.

Figure 10 shows the experimental results for non-unit lengths, where PB assumes the

values 0.001, 0.01 and 0.1. In this figure, lower bounds are shown for both error-free and

error-prone channels. One notes that, for every value of PB, the behavior of both the

Dichotomic and Dlinear algorithms is identical. When PB = 0.001, both algorithms provide

optimal solutions because their AEDs almost coincide with the lower bound for channels
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Figure 10: Results for non-unit lengths when all the channels have the same steady-state

probability PB, which assumes the values 0.001, 0.01, and 0.1.

without errors. When PB = 0.01, the AEDs of both the Dichotomic and Dlinear algorithms

are 12% larger than the lower bound in the presence of errors. In the last case, namely

PB = 0.1, the AEDs found by the algorithms are as large as twice those of the lower bound

in presence of errors. However, such a value of PB represents an extremal case which should

not arise in practice (e.g. see [12]).

5 Conclusions

This paper studied the problem of allocating N data to K channels, assuming flat data

scheduling per channel and the presence of unrecoverable channel transmission errors. The

objective was that of minimizing the average expected delay experienced by clients. The

behavior of two polynomial time heuristics has been experimentally tested modelling the

channel error by means of the Bernoulli model as well as the Gilbert-Elliot one. Such

heuristics were derived by properly redefining the recurrences in the dynamic programming

algorithms previously presented for error-free channels. Extensive simulations showed that

such heuristics provide good sub-optimal solutions when tested on benchmarks whose item

popularities follow Zipf distributions. In particular, for small channel error probabilities, the

average expected delay is almost the same as the optimal one found in the case of channel

without errors. However, some subcases have been detected where an optimal solution can be

found in polynomial or pseudo-polynomial time. All the complexity results are summarized

in Table 2, where Z is the sum of the item lengths. The first row of the table shows the

results previously known in the literature in the case of error-free channels [5]. All the new

results proved in the present paper in the case of channels subject to transmission errors

are exhibited in the remaining rows. Observe in the table that, since the problem is already
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Unit lengths Non-unit lengths

K = 2 K > 2 K = 2 K > 2

Error-free O(N log N) O(NK log N) O(NZ) Strong NP-hard

Bernoulli q1 = · · · = qK O(N log N) O(NK log N) O(NZ) Strong NP-hard

q1 6= · · · 6= qK O(N log N) open NP-hard Strong NP-hard

Gilbert-Elliot PB1
= · · · = PBK

O(N log N) O(N2K) NP-hard Strong NP-hard

PB1
6= · · · 6= PBK

O(N log N) open NP-hard Strong NP-hard

Table 2: Complexity results for optimal data allocation on multiple channels.

computationally intractable for non-unit lengths and error-free channels, its computational

complexity in the presence of errors remains an open issue only for the cases involving items

with unit lengths and channels with different error probabilities. Nonetheless, experiments

showed that near optimal solutions are found by the heuristics also in these cases. Finally,

as regard to the non-unit length case, an interesting open question is that of determining

whether a closed formula for computing the item expected delays exists or not when the

Gilbert-Elliot model is adopted.
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