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0.1 Introduction

The tremendous growth of wireless networks requires an efficient use of the scarce radio

spectrum allocated to wireless communications. However, the main difficulty against an effi-

cient use of radio spectrum is given by interferences, caused by unconstrained simultaneous

transmissions, which result in damaged communications that need to be retransmitted lead-

ing to a higher cost of the service. Interferences can be eliminated (or at least reduced) by

means of suitable channel assignment techniques. Indeed, co-channel interferences caused

by frequency reuse is one of the most critical factors on the overall system capacity in the

wireless networks. The purpose of channel assignment algorithms is to make use of radio

propagation loss characteristics in order to increase the radio spectrum reuse efficiency and

thus to reduce the overall cost of the service.

The channel assignment algorithms partition the given radio spectrum into a set of disjoint

channels that can be used simultaneously by the stations while maintaining acceptable radio

signals. By taking advantage of physical characteristics of the radio environment, the same

channel can be reused by two stations at the same time without interferences (co-channel

stations), provided that the two stations are spaced sufficiently apart. The minimum distance

at which co-channels can be reused with no interferences is called co-channel reuse distance.

The interference phenomena may be so strong that even different channels used at near

stations may interfere if the channels are too close. Since perfect filters are not available,

interference between close frequencies is a serious problem, which can be handled either by

adding guard frequencies between adjacent channels or by imposing channel separation. In

this latter approach, followed in the present chapter, channels assigned to near stations must

be separated by a gap on the radio spectrum – counted in a certain number of channels –

which is inversely proportional to the distance between the two stations. In other words, the

channels f(u) and f(v) assigned to the stations u and v at distance i must verify |f(u) −

f(v)| ≥ δi when a minimum channel separation δi is required between stations at distance i.

The purpose of channel assignment algorithms is to assign channels to transmitters in such

a way that the co-channel reuse distance and channel separation constraints are verified and

the difference between the highest and lowest channels assigned is kept as small as possible.
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Formally, the channel assignment problem can be modeled as an appropriate coloring

problem on an undirected graph G = (V, E) representing the wireless network topology,

whose vertices in V correspond to stations, and edges in E correspond to pairs of stations

whose transmission areas intersect. Specifically, given a vector (δ1, δ2, . . . , δt) of non increas-

ing positive integers, and an undirected graph G = (V, E), an L(δ1, δ2, . . . , δt)-coloring of

G is a function f from the vertex set V to the set of nonnegative integers {0, . . . , λ} such

that |f(u) − f(v)| ≥ δi whenever d(u, v) = i, 1 ≤ i ≤ t, where d(u, v) is the distance (i.e.

the minimum number of edges) between the vertices u and v. An optimal L(δ1, δ2, . . . , δt)-

coloring for G is one minimizing λ over all such colorings. Note that the co-channel reuse

distance is actually t + 1 but one has not to explicitly state the co-channel reuse constraint

because it is implied by the channel separation constraints. Note also that, since the set of

colors includes 0, the overall number of colors involved by an optimal coloring f is in fact

λ+1 (although, due to the channel separation constraint, some colors in {1, . . . , λ−1} might

not be actually assigned to any vertex). Thus, the channel assignment problem consists of

finding an optimal L(δ1, δ2, . . . , δt)-coloring for G.

When the separation vector (δ1, δ2, . . . , δt) is equal to (1, 1, . . . , 1), the channel assignment

problem has been widely studied in the past [3, 5, 15, 22, 24]. In particular, the intractability

of optimal L(1, . . . , 1)-coloring, for any positive integer t, has been proved by McCormick [22].

Optimal L(1, . . . , 1)-colorings, for any positive integer t, have been proposed in [5, 8] for rings,

bidimensional grids, and honeycomb grids, and in [2] for trees and interval graphs. Moreover,

when the separation vector is equal to (δ1, 1, . . . , 1), optimal L(δ1, 1, . . . , 1)-colorings have

been proposed in [9, 25] for rings, bidimensional grids, and cellular grids. Optimal solutions

have been proposed for the L(δ1, δ2)-coloring problem on rings [17] and on bidimensional

and cellular grids [26]. This latter paper provided also an optimal L(2, 1, 1)-coloring for

bidimensional grids. The L(2, 1, 1)-coloring problem has been also optimally solved for cel-

lular grids, honeycomb grids, and rings in [9]. The L(2, 1)-coloring has been investigated in

[10, 14, 19, 23]. Bodlaender et al. [10] proved that the L(2, 1)-coloring problem is NP -hard

for planar, bipartite, and chordal graphs, and presented approximate solutions for outerpla-

nar, permutation and split graphs. Moreover, L(2, 1)-colorings for unit interval graphs and

trees have been found, respectively, by Sakai [23] and by Chang and Kuo [14]. A recent

annotated bibliography on the L(δ1, δ2)-coloring problem for several special classes of graphs
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can be found in [13].

As a related case, when (δ1, δ2) = (0, 1), the L(0, 1)-coloring problem models that of

avoiding only the so-called hidden interferences, due to stations which are outside the hearing

range of each other and transmit to the same receiving station. Optimal L(0, 1)-colorings

have been provided for bidimensional grids in [21], whereas the intractability of optimal

L(0, 1)-coloring has been proved in [4], where also optimal solutions for rings and complete

binary trees are given. As another related case, observe that the classical minimum vertex

coloring problem on undirected graphs arises when t = 1 and δ1 = 1. Thus, the minimum

vertex coloring problem consists in finding an optimal L(1)-coloring.

For arbitrary graphs and general separation vectors, the L(δ1, δ2, . . . , δt)-coloring problem

is usually addressed by means of heuristic approaches, like genetic algorithms, taboo search,

saturation degree, simulated annealing, and ants heuristics, just to name a few [1]. However,

approximation algorithms have been proposed in [6] for trees and interval graphs.

This chapter deals with the channel assignment problem for general separation vectors

on some relevant classes of graphs – rings, grids, trees, and interval graphs – which occur

in modeling realistic wireless network topologies. Indeed, rings are perhaps the most used

topologies for local area networks, grids represent tessellations of the plane with regular

polygons (like squares or triangles), trees model hierarchical topologies, and interval graphs

model wireless networks serving narrow surfaces, like highways or valleys confined by natural

barriers (e.g. mountains or lakes). It is still unknown whether finding optimal L(δ1, . . . , δt)-

colorings on such classes of graphs is polynomially time solvable or not. While the L(δ1, δ2)-

coloring problem can be solved in polynomial time for grids [26], some authors conjecture

that it is NP -hard for trees and unit interval graphs when δ2 > 1 [13].

In the rest of this chapter, several coloring algorithms, originally presented in [6, 7, 9, 19,

26], are reviewed. First, some preliminary results useful to derive upper and lower bounds on

the largest color needed are summarized in Section 0.2, where also the notions of t-simplicial

and strongly-simplicial vertices are recalled. Then, Section 0.3 presents optimal O(n) time

algorithms for solving the L(2, 1)-, L(2, 1, 1)-, and L(δ1, 1, . . . , 1)-coloring problems of rings

with n vertices. Section 0.4 revises optimal algorithms for the L(δ1, δ2)-coloring problem
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on both bidimensional and cellular grids, and for the L(δ1, 1, . . . , 1)-coloring problem on

bidimensional grids. All the algorithms are based on arithmetic progressions and take O(rc)

time to color the entire grid of r rows and c columns. Sections 0.5 and 0.6 present two

polynomial time algorithms to approximate the L(δ1, . . . , δt)-coloring problem on interval

graphs and trees, respectively. The algorithms give the same constant approximation, which

depends on t and δ1, . . . , δt, but they run in O(n(t + δ1)) and O(nt2δ1) time, respectively,

where n is the number of vertices. A better approximation for the L(δ1, δ2)-coloring of

unit interval graphs is also given in Subsection 0.5.2. Finally, conclusions are offered in

Section 0.7.

0.2 Preliminaries

Throughout this chapter, it is assumed that G is a connected undirected graph with at least

2 vertices and that the separations verify δ1 ≥ δ2 ≥ . . . ≥ δt. When δ1 = δ2 = . . . = δt = 1,

the L(1, . . . , 1)-coloring problem reduces to the classical vertex coloring problem on the t-th

power Gt of the graph G. The vertex set of Gt is the same as the vertex set of G, while

the edge uv belongs to the edge set of Gt if and only if the distance d(u, v) between the

vertices u and v in G is at most t. Now, colors must be assigned to the vertices of Gt so that

every pair of vertices connected by an edge are assigned different colors and the minimum

number of colors is used. Hence, the role of maximum cliques in Gt is apparent for deriving

lower bounds on the minimum number of channels for the L(1, . . . , 1)-coloring problem on

G. A clique K for Gt is a subset of vertices of Gt such that for each pair of vertices in K

there is an edge. Clearly, a clique of size k in the power graph Gt implies that at least k

different colors are needed to color Gt. In other words, the size of the largest clique in Gt is

a lower bound for the L(1, . . . , 1)-coloring problem on G. Of course, a lower bound for the

L(1, . . . , 1)-coloring problem is also a lower bound for the L(δ1, 1, . . . , 1)-coloring problem,

with δ1 ≥ 1.

A simple lower bound for the L(2, 1)-coloring problem, which can be applied to the vertex

with maximum degree of any graph, can be derived as follows. Consider the star graph Sρ

5



which consists of a center vertex v with degree ρ, and ρ ray vertices of degree 1.

Lemma 0.1. [19] Let the center v of Sρ be already colored. Then, the largest color λ required

for an L(2, 1)-coloring of Sρ is at least:

λ =







ρ + 1 if f(v) = 0 or f(v) = ρ + 1,

ρ + 2 if 0 < f(v) < ρ + 1.

For any value of t ≤ |V |, let λ∗
G,t denote the minimum value of λ over all the L(1, . . . , 1)-

colorings f : V → {0, . . . , λ} of G = (V, E). Note that: (i) λ∗
G,1 ≥ 1 since G is assumed to

be connected and to have at least 2 vertices; (ii) λ∗
G,t = λ∗

Gt,1; and (iii) λ∗
G,t + 1 is at least as

large as the size ωGt of the largest clique of the power graph Gt.

Lemma 0.2. [6] Any L(δ1, δ2, . . . , δt)-coloring requires at least max1≤j≤t{δjλ
∗
G,j} as the

largest color.

Proof. Since δ1 ≥ δ2 ≥ . . . ≥ δt, any L(δ1, δ2, . . . , δj)-coloring, for any value of j ≤ t, requires

at least as many colors as any L(δj , δj, . . . , δj)-coloring, which, in its turn, requires at least

δjλ
∗
G,j as the largest color.

Given G = (V, E), let S be a subset of V , and let G[S] denote the subgraph of G induced

by S, i.e. G[S] = (S, {uv ∈ E : u, v ∈ S}). A vertex x of G is called t-simplicial when,

for every pair of vertices u and v such that d(x, u) ≤ t and d(x, v) ≤ t, it holds also that

d(u, v) ≤ t. A vertex x is called strongly-simplicial when x is t-simplicial for any value of t.

Lemma 0.3. [7] Given G = (V, E) and an integer t, let v be a t-simplicial vertex of G.

Consider G′ = G[V − {v}] and let f ′ be an optimal L(1, . . . , 1)-coloring of G′ using λ∗
G′,t as

the largest color. Define an L(1, . . . , 1)-coloring f of V extending f ′ to v so that

f(x) =







min {i : i 6= f ′(u) for each u ∈ G′ with d(u, v) ≤ t} if x = v,

f ′(x) if x ∈ V − {v}.

Then f is an optimal L(1, . . . , 1)-coloring for G.
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Note that verifying whether a vertex is t-simplicial or not can be done in polynomial

time [2]. Therefore, Lemma 0.3 implies the existence of an algorithm that optimally solves

in polynomial time the L(1, . . . , 1)-coloring problem using exactly ωGt colors for any class of

graphs closed under taking induced subgraphs and with the property that every graph of that

class has a t-simplicial vertex. The next lemma shows that there is always an L(δ1, δ2, . . . , δt)-

coloring for such a class of graphs where the largest used color is bounded from above by a

function of the clique sizes ωGj and of the separations δj , with 1 ≤ j ≤ t.

Lemma 0.4. [6] Given G = (V, E) and t, let v be a t-simplicial vertex of G, and consider

G′ = G[V − {v}]. Then, there is an L(δ1, δ2, . . . , δt)-coloring such that f(v) = c, where

c ∈ {0, 1, . . . , λ∗
G,t + 2(δt − 1)λ∗

G,t +
∑t−1

j=1 2(δj − δj+1)λ
∗
G,j}.

Proof. Let Nj(v) = {u ∈ V : d(u, v) ≤ j}. Since v is t-simplicial, any two vertices in

Nj(v) are at distance at most j, for every 1 ≤ j ≤ t. Hence Nt(v) is a clique of Gt,

and thus |Nt(v)| ≤ ωGt . Therefore at most |Nt(v)| − 1 ≤ λ∗
G,t colors have been used for

Nt(v) − {v}. Each of them forbids 2(δt − 1) colors due to the δt-separation constraint, and

overall 2(δt − 1)λ∗
G,t colors are forbidden. Moreover, for any 1 ≤ j ≤ t − 1, v is j-simplicial,

and hence Nj(v) is a clique of Gj, and |Nj(v)| − 1 ≤ λ∗
G,j. Since each color assigned to a

vertex of Nj(v) − {v} forbids 2(δj − δj+1) colors, 2(δj − δj+1)λ
∗
G,j colors are forbidden due

to the δj-separation constraint. Before coloring v, the total number of used and forbidden

colors is λ∗
G,t + 2(δt − 1)λ∗

G,t +
∑t−1

j=1 2(δj − δj+1)λ
∗
G,j. Therefore, there is at least an available

color c in {0, 1, . . . , λ∗
G,t +2(δt−1)λ∗

G,t+
∑t−1

j=1 2(δj −δj+1)λ
∗
G,j} that can be assigned to v.

The results of Lemmas 0.1 and 0.2 will be used in Sections 0.3 and 0.4 to obtain lower

bounds on the number of colors needed by any L(2, 1)-coloring of rings and L(δ1, 1, . . . , 1)-

coloring of grids. Moreover, the properties stated in Lemmas 0.2, 0.3, and 0.4 will be

exploited in Sections 0.5 and 0.6 to derive lower and upper bounds for the L(δ1, δ2, . . . , δt)-

coloring problem on interval graphs and trees.
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0.3 Rings

A ring R of size n ≥ 3 is a sequence of n vertices, indexed consecutively from 0 to n − 1,

such that vertex i is connected to both vertices (i − 1) mod n and (i + 1) mod n.

In this section, three algorithms are presented to optimally solve the L(2, 1)-, L(2, 1, 1)-

and L(δ1, 1, . . . , 1)-coloring problems on rings. Each algorithm colors a single vertex in O(1)

time and thus colors the entire ring in O(n) time.

By Lemma 0.1, the largest color used by any L(2, 1)-coloring of a ring is at least 4, as

one can easily check by observing that in a ring ρ = 2 and there is a vertex v that must be

colored 0 < f(v) < 3. An optimal solution has been provided by Griggs and Yeh [19], who

color each vertex i as follows:

f(i) =















0 if i ≡ 0 mod 3

2 if i ≡ 1 mod 3

4 if i ≡ 2 mod 3

However the above coloring is redefined on the ring tail depending on whether n ≡ 1 mod 3

or n ≡ 2 mod 3. In the first case, f(n − 4), . . . , f(n − 1) become:

f(i) =



























0 if i = n − 4

3 if i = n − 3

1 if i = n − 2

4 if i = n − 1

In the second case, f(n − 2) and f(n − 1) are modified as:

f(i) =







1 if i = n − 2

3 if i = n − 1
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For the L(2, 1, 1)-coloring problem on rings, the same lower bound previously discussed

for the L(2, 1)-coloring holds and an optimal coloring can be derived as follows. Let n ≥ 12

and θ = 4
(

bn
4
c − (n mod 4)

)

. Then assign to each vertex i the color:

f(i) =







































0 if i ≡ 0 mod 4 and i < θ, or (i − θ) ≡ 0 mod 5 and i ≥ θ

1 if i ≡ 2 mod 4 and i < θ, or (i − θ) ≡ 3 mod 5 and i ≥ θ

2 if (i − θ) ≡ 1 mod 5 and i ≥ θ

3 if i ≡ 3 mod 4 and i < θ, or (i − θ) ≡ 4 mod 5 and i ≥ θ

4 if i ≡ 1 mod 4 and i < θ, or (i − θ) ≡ 2 mod 5 and i ≥ θ

The above algorithm colors the first θ vertices repeating bn
4
c − (n mod 4) times the color

sequence 0, 4, 1, 3 of length 4, while the remaining vertices are colored repeating n mod 4

times the sequence 0, 2, 4, 1, 3 of length 5. It is worth noting that, for n < 12, an optimal

coloring requires a larger number of colors as proved in [9].

0.3.1 Optimal L(δ1, 1, . . . , 1)-coloring of rings

In this subsection, an optimal L(δ1, 1, . . . , 1)-coloring of rings is discussed. Assuming a

sufficiently large ring, the following lower bound holds.

Lemma 0.5. [5] Given n ≥ t + 2, t ≥ 2, and δ1 ≥ 1, the largest color used by any

L(δ1, 1, . . . , 1)-coloring is at least t +

⌈

n mod (t+1)

b n
t+1c

⌉

.

Proof. Observe that any L(δ1, . . . , 1)-coloring needs at least as many colors as any L(1, . . . , 1)-

coloring. One notes that in an L(1, . . . , 1)-coloring each color may appear at most τ =
⌊

n
t+1

⌋

times, and thus at least
⌈

n
τ

⌉

colors are needed. Since n =
⌊

n
t+1

⌋

(t + 1) + (n mod (t + 1)), it

follows that at least
⌈

n
τ

⌉

= (t + 1) +

⌈

n mod (t+1)

b n
(t+1)c

⌉

colors are required. Therefore, the largest

color is at least t + dn mod (t+1)
b n

t+1
c

e.

The optimal L(δ1, 1, . . . , 1)-coloring algorithm for rings acts as follows. Let ζ = t +

dn mod (t+1)
b n

t+1
c

e. If n ≡ 0 mod (t + 1) then ζ = t results, and one assigns to each vertex i the
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color:

f(i) =







































ib ζ

2
c mod (t + 1) if ( t is even ) or ( t is odd and b ζ

2
c is odd )

ib ζ

2
c mod (t + 1) if t is odd and b ζ

2
c is even and

i ≡ h mod (t + 1), for 0 ≤ h ≤ b t
2
c

(ib ζ

2
c + 1) mod (t + 1) if t is odd and b ζ

2
c is even and

i ≡ h mod (t + 1), for d t
2
e ≤ h ≤ t

If n 6≡ 0 mod (t + 1), let θ =
⌊

n
λ

⌋

− n mod ζ . If i ≥ θζ , then:

f(i) =















































(i − θζ)b ζ

2
c mod (ζ + 1) if ( ζ is even ) or

( ζ is odd and b ζ

2
c is odd )

(i − θζ)b ζ

2
c mod (ζ + 1) if ζ is odd and b ζ

2
c is even and

i ≡ h mod (ζ + 1), for 0 ≤ h ≤ ζ+1
2

− 1
(

(i − θζ)b ζ

2
c + 1

)

mod (ζ + 1) if ζ is odd and b ζ

2
c is even and

i ≡ h mod (ζ + 1), for ζ+1
2

≤ h ≤ ζ

otherwise (that is, when i < θζ):

f(i) =



























































0 if i ≡ 0 mod ζ

(i + 1)b ζ

2
c mod (ζ + 1) if ( ζ is even ) or

( ζ is odd and b ζ

2
c is odd ) and i 6≡ 0 mod ζ

(i + 1)b ζ

2
c mod (ζ + 1) if ζ is odd and b ζ

2
c is even and

i ≡ h mod ζ, for 1 ≤ h ≤ ζ+1
2

− 1
(

(i + 1)b ζ

2
c + 1

)

mod (ζ + 1) if ζ is odd and b ζ

2
c is even and

i ≡ h mod ζ, for ζ+1
2

≤ h ≤ ζ

The above L(δ1, 1, . . . , 1)-coloring algorithm assumes t ≥ 2 and when n ≥ t + 2 works

for any value of δ1 ≤ b ζ

2
c. Note that when t = 2 or when t = 3 and n ≡ 0 mod 4, such

an algorithm solves the L(1, 1)- and L(1, 1, 1)-coloring problems, but not the L(2, 1)- and

L(2, 1, 1)-colorings because in such a case 2 ≤ ζ ≤ 3 and thus δ1 = 1. However, such cases

are optimally solved by the previous algorithms.
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The correctness and optimality of the algorithm is based on the following lemma.

Lemma 0.6. [9] Given n ≥ t + 2, and t ≥ 2, let ζ = σ − 1 + dn mod σ
bn

σ
c

e.

• If (ζ is even) or (ζ is odd and b ζ

2
c is odd), then ib ζ

2
c mod (ζ +1) assumes all the values

in the range [0, ζ ] while i varies within the range [0, ζ ].

• If (ζ is odd and b ζ

2
c is even), then ib ζ

2
c mod (ζ + 1) assumes all the even values in the

range [0, ζ − 1] while i varies within the range [0, ζ+1
2

− 1].

It is worth noting that the three algorithms seen in this section solve the L(2, 1, . . . , 1)-

coloring problem for any t ≥ 2. In general, as proved in [9], given any δ1 ≥ 1, the

L(δ1, 1, . . . , 1)-coloring problem can be optimally solved for every t ≥ 2δ1, independently

on the size n of the ring and using as few colors as the L(1, 1, . . . , 1)-coloring problem. Nev-

ertheless, the L(δ1, 1, . . . , 1)-coloring problem may be also solved for values of t smaller than

2δ1 for suitable values of n < (2δ1 + 1)2.

0.4 Grids

A bidimensional grid B of size r × c has r rows and c columns, indexed respectively from

0 to r − 1 (from top to bottom) and from 0 to c − 1 (from left to right), with r ≥ 2 and

c ≥ 2. A generic vertex u of B will be denoted by u = (i, j), where i is its row index and

j is its column index. All internal vertices, i.e. those not on the borders, have degree 4. In

particular, an internal vertex u = (i, j) is adjacent to the vertices (i−1, j), (i, j+1), (i+1, j),

and (i, j − 1).

A cellular grid C of size r × c, with r ≥ 2 and c ≥ 2, is obtained from a bidimensional

grid B of the same size augmenting the set of edges with left-to-right diagonal connections.

Specifically, each vertex u = (i, j) of C is also connected to the vertices v = (i−1, j−1) and

z = (i + 1, j + 1). Hence, each vertex has degree 6, except for the vertices on the borders.
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0.4.1 Optimal L(δ1, δ2)-coloring of grids

Optimal solutions for the L(δ1, δ2)-coloring problems on both bidimensional and cellular grids

have been provided by Van Den Heuvel et al. [26]. They have shown that optimal L(δ1, δ2)-

colorings can be obtained by arithmetic progression, namely, determining three non negative

integers a, b, and m such that the color assigned to any vertex u = (i, j) is calculated as

f(u) = f(i, j) = (ai + bj) mod m, where m − 1 is the largest used color.

Precisely, such parameters for bidimensional grids are a = δ1, b = δ1+δ2 and m = 2δ1+3δ2,

and thus

f(i, j) = (δ1i + (δ1 + δ2)j) mod (2δ1 + 3δ2).

In contrast, for cellular grids, an optimal L(δ1, δ2)-colorings can be obtained by a different

arithmetic progression:

f(i, j) =















((2δ1 + δ2)i − δ1j) mod (4δ1 + 3δ2) if δ1 ≤
3
2
δ2

(5δ2i − 2δ2j) mod 9δ2 if 3
2
δ2 ≤ δ1 ≤ 2δ2

((2δ1 + δ2)i − δ1j) mod (3δ1 + 3δ2) if δ1 ≥ 2δ2

Clearly, O(1) time is spent to color a single vertex, and thus the overall time complexity of

the algorithm is O(n), where n = rc.

0.4.2 Optimal L(δ1, 1, . . . , 1)-coloring of bidimensional grids

In this subsection, the L(δ1, 1, . . . , 1)-coloring problem is dealt with. Although this problem

can be optimally solved for both bidimensional grids [9] and cellular grids [25], only the

algorithm for bidimensional grids is shown here since it is considerably simpler to be described

than its counterpart for cellular grids.

A lower bound is given by the following lemma.

Lemma 0.7. [9] If δ1 ≤
⌈

(t+1)2

2

⌉

, any L(δ1, 1, . . . , 1)-coloring of a bidimensional grid B of

size r × c, with r ≥ t + 1 and c ≥ t + 1, requires at least
⌈

(t+1)2

2

⌉

− 1 as the largest color.

12



Indeed, consider a generic vertex x = (i, j) of B, and its opposite vertex at distance t on

the same column, i.e., y = (i − t, j). All the vertices of B at distance t or less from both x

and y are mutually at distance t or less. Therefore, in the power graph Bt, they form a clique

of size
⌈

(t+1)2

2

⌉

, and thus λ∗
Bt,1 ≥

⌈

(t+1)2

2

⌉

−1. By Lemma 0.2, any L(δ1, 1, . . . , 1)-coloring on

B requires at least max{δ1λ
∗
B,1, λ

∗
Bt,1} = max

{

δ1,
⌈

(t+1)2

2

⌉

− 1
}

=
⌈

(t+1)2

2

⌉

−1 as the largest

color.

The following optimal L(δ1, 1, . . . , 1)-coloring is based on arithmetic progression and works

for t ≥ 2 and δ1 ≤ b t
2
c.

If t is even, then assign to each vertex u = (i, j) the color:

f(i, j) =

((

t

2
+ 1

)

i +
t

2
j

)

mod

⌈

(t + 1)2

2

⌉

.

If t is odd, let i′ = i mod (t + 1) and j′ = j mod (t + 1).

If t is odd and b t
2
c is even, then:

f(i, j) =



























b t
2
c(d t

2
ei′ + j′) mod (t+1)2

2
if 0 ≤ i′ ≤ b t

2
c and 0 ≤ j′ ≤ b t

2
c,

or d t
2
e ≤ i′ ≤ t and d t

2
e ≤ j′ ≤ t,

(

b t
2
c(d t

2
ei′ + j′) + 1

)

mod (t+1)2

2
if 0 ≤ i′ ≤ b t

2
c and d t

2
e ≤ j′ ≤ t,

or d t
2
e ≤ i′ ≤ t and 0 ≤ j′ ≤ b t

2
c.

If both t and b t
2
c are odd, then:

f(i, j) =



























b t
2
c(d t

2
ei′ + j′) mod (t+1)2

2
if 0 ≤ i′ ≤ b t

2
c and 0 ≤ j′ ≤ b t

2
c,

or d t
2
e ≤ i′ ≤ t and d t

2
e ≤ j′ ≤ t,

b t
2
c
(

(t+1)2

4
− 1 + d t

2
ei′ + j′

)

mod (t+1)2

2
if 0 ≤ i′ ≤ b t

2
c and d t

2
e ≤ j′ ≤ t,

or d t
2
e ≤ i′ ≤ t and 0 ≤ j′ ≤ b t

2
c.

The correctness and optimality of the above coloring algorithm is proved in [9]. It is

worth noting that arithmetic progression is followed on the whole grid when σ is odd. In

13



contrast, when σ is even, the coloring covers the bidimensional grid B with a tessellation

of basic tiles T of size σ × σ, each consisting of 4 sub-tiles of size σ
2
× σ

2
and each following

arithmetic progression.

Given any δ1 ≥ 1, the above algorithm optimally solves the L(δ1, 1, . . . , 1)-coloring prob-

lem for every t ≥ 2δ1. As a consequence, given δ1 = 2, the algorithm solves the L(2, 1, . . . , 1)-

coloring problem for every t ≥ 4. Hence, when δ1 = 2, the only values of t not covered by

the algorithm are 2 and 3. However, in such cases, the L(2, 1)- and L(2, 1, 1)-coloring prob-

lems had been solved by Van Den Heuvel et al. [26]. Therefore, the L(2, 1, . . . , 1)-coloring

problem can be optimally solved for any value of t.

0.5 Interval graphs

A graph G = (V, E) is termed an interval graph if it has an interval representation, namely,

if each vertex of V can be represented by an interval of the real line such that there is an

edge uv ∈ E if and only if the intervals corresponding to u and v intersect. More formally,

let the graph G = (V, E) have n vertices. Two integers lv and rv, with lv < rv, (the interval

endpoints) are associated to every vertex v of G, and there is an edge uv ∈ E if and only

if lu < lv < ru or lu < rv < ru. Without loss of generality, one can assume that all the 2n

interval endpoints are distinct and are indexed from 1 to 2n.

Several alternative characterizations of interval graphs have been proposed so far in the

literature [12]. Polynomial time algorithms to recognize interval graphs and compute their

interval representations are known [11, 16]. Polynomial time algorithms are also known for

the classical vertex coloring problem on interval graphs [12]. Since it is known that a power

of an interval graph is also an interval graph, the L(1, . . . , 1)-coloring problem of an interval

graph G can be solved in polynomial time [2] by coloring the interval graph Gt.

The following lemma shows how to locate the strongly-simplicial vertex of an interval

graph, which will be used to find an approximate L(δ1, δ2, . . . , δt)-coloring.

Lemma 0.8. [7] In an interval graph, the vertex with maximum left endpoint is strongly-
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simplicial.

Lemma 0.8 suggests one scan the vertices of an interval graph by increasing left endpoints

since, in this way, the t-simplicial vertex v of the induced subgraph G[{1, . . . , v}] is processed

at each step, for 1 ≤ v ≤ n.

0.5.1 Approximate L(δ1, . . . , δt)-coloring of interval graphs

Consider the interval representation of G, and assume that the intervals (vertices) are indexed

by increasing left endpoints, namely l1 < l2 < . . . < ln. For each endpoint k, an interval v is

called open if lv ≤ k < rv and deepest if it is open and its right endpoint is maximum.

The algorithm to be presented maintains a family of t + 1 sets of colors, called palettes,

denoted by P0, P1, . . . , Pt. The palette P0 is initialized to the set of colors {0, 1, . . . , U},

where U = λ∗
G,t +2(δt−1)λ∗

G,t +
∑t−1

j=1 2(δj −δj+1)λ
∗
G,j. As shown by Lemma 0.4, such a color

set is sufficiently large to obtain a legal L(δ1, . . . , δt)-coloring for G. The palette P0 contains

the readily usable colors. A color can leave P0 because it is assigned to an interval. In such

a case, the color is inserted into Pt and it will go downward through all the previous palettes

before being reusable. Precisely, the palette Pt includes the colors used for the currently

open intervals, while the generic palette Pi, with 1 ≤ i ≤ t−1, contains the colors that could

be reused as soon as all the next i consecutive deepest intervals will be ended. A color can

leave P0 without being assigned to any interval just because another used color forbids it. A

counter is used to keep track of how many used colors currently forbid it.

Figure 1 illustrates the algorithm for L(δ1, . . . , δt)-coloring of interval graphs, called

Interval-Coloring. The algorithm scans the 2n interval endpoints from left to right. When-

ever a new interval v begins, that is a left endpoint lv is encountered, v is colored by a color

c extracted from the palette P0 and, if needed, the deepest interval is updated. The used

color c is put both in the palette Pt and in the set Lv of colors which depend on vertex v.

Moreover, all the colors γ with |γ − c| < δ1 are forbidden by c, and thus their counters are

incremented. Whenever an interval v ends, that is a right endpoint rv is encountered, every

color c belonging to Lv is deleted from its current palette, say Pj . Since the δt−j+1-separation
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constraint due to c does not hold anymore, all the colors γ with δt−j+2 ≤ |γ− c| < δt−j+1 are

no more forbidden by c, and their counters are decremented. A color γ becomes available

whenever its counter reaches 0, and in such a case it is reinserted in P0. Whenever j is larger

than 1, the color c, previously extracted from Pj , is moved to palette Pj−1 and inserted in

the set LDEEP of the colors which depend on the current deepest interval deep. If j is equal

to 1, the color c becomes reusable, and thus it is inserted into P0 provided that its counter

becomes 0.

Lemma 0.9. [6] Consider the Interval-Coloring algorithm at the beginning of iteration k with

k = lv for some interval v to be colored. Consider any color c ∈ Pj, and let w be the rightmost

interval colored by c. Then v is at distance t − j + 1 from w, that is d(w, v) = t − j + 1.

Lemma 0.10. [6] Consider the Interval-Coloring algorithm at the beginning of iteration k,

and let c be any color.

• If c ∈ P0, then c is readily usable, and it does not forbid any other color;

• If c ∈ Pj with j > 0, then c cannot be used and it forbids all the colors γ such that

c − δt−j+1 + 1 ≤ γ ≤ c + δt−j+1 − 1;

• If c 6∈ P0 ∪ . . . ∪ Pt, then it is forbidden, but it does not forbid any other color.

In practice, the above two lemmas guarantee that the Interval-Coloring algorithm finds

a legal L(δ1, . . . , δt)-coloring, that is one verifying all the separation constraints. Instead,

the next theorem provides a bound on the ratio U
L

between the largest used color U =

λ∗
G,t + 2(δt − 1)λ∗

G,t +
∑t−1

j=1 2(δj − δj+1)λ
∗
G,j, given by Lemma 0.4, and the lower bound

L = max1≤j≤t{δjλ
∗
G,j}, provided by Lemma 0.2.

Theorem 0.1. [6] Let δmλ∗
G,m = max1≤j≤t{δjλ

∗
G,j}, and recall that δt+1 = 0. The Interval-

Coloring algorithm gives an α-approximation with α = min {2t, 2δm+1−1
δt

+ 2(δ1−δm+1)
δm

}.

It is worth noting that the Interval-Coloring algorithm provides a 4-approximation for the

L(δ1, δ2)-coloring problem, as one can easily check by setting t = 2 in the formula of α given

by Theorem 0.1. However, a better 3-approximation is found in [7], even for arbitrary t,

when δ1 ≥ 1 and δ2 = . . . = δt = 1. As regard to the time complexity, one can prove that the
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Interval-Coloring algorithm runs in O(n(t+δ1)) time. Such a result is based on the fact that

U can be computed in O(nt) time [2] and that, between two consecutive assignments of the

same color c to two intervals, O(t) time is spent for at most t + 1 insertions and extractions

of c through the palettes and O(δ1) time is paid for updating the taboo counters. All the

details can be found in [6].

0.5.2 Approximate L(δ1, δ2)-coloring of unit interval graphs

Consider now the L(δ1, δ2)-coloring problem on the class of unit interval graphs. This is a

subclass of the interval graphs for which all the intervals have the same length, or equiv-

alently, for which no interval is properly contained within another. Recalling that vertices

are assumed to be indexed by increasing left endpoints, the main property of unit interval

graphs is that whenever v < u and vu ∈ E, then the vertex set {v, v + 1, . . . , u− 1, u} forms

a clique and u ≤ v + λ∗
G,1 (as a consequence, the maximum vertex w at distance 2 from v

verifies w ≤ v +2λ∗
G,1). Assume that the unit interval graph to be colored is not a path since

otherwise the optimal L(δ1, δ2)-coloring algorithm in [26] can be applied.

A linear time algorithm has been given in [6], which colors each vertex v in O(1) time as

follows. If δ1 > 2δ2, then assign to vertex v the color:

f(v) =







δ1(λ
∗
G,1 − p) if 0 ≤ p ≤ λ∗

G,1

δ1(λ
∗
G,1 − p) + δ2 if λ∗

G,1 + 1 ≤ p ≤ 2λ∗
G,1 + 1

where p = (v − 1) mod (2λ∗
G,1 + 2). Otherwise, namely when δ1 ≤ 2δ2, then color v as:

f(v) = (2δ2(v − 1)) mod (2δ2λ
∗
G,1 + 3δ2).

The algorithm colors the vertices in a cyclic way. When δ1 > 2δ2, the vertices are colored

by repeating the following sequence of length 2λ∗
G,1 + 2:

0, δ1, 2δ1, . . . , λ
∗
G,1δ1, δ2, δ1 + δ2, δ1 + 2δ2, . . . , λ

∗
G,1δ1 + δ2.

17



Instead, when δ1 ≤ 2δ2, the vertices are colored by repeating the sequence of length 2λ∗
G,1+3:

0, 2δ2, 4δ2, . . . , 2(λ∗
G,1 + 1)δ2, δ2, 3δ2, 5δ2, . . . , 2λ

∗
G,1δ2 + δ2.

The algorithm runs in O(n) time and provides a 3-approximation [7]. In particular, it uses

either at most δ2 additional colors with respect to the optimum, when δ1 > 2δ2, or at most

2δ2 additional colors when δ1 ≤ 2δ2. When δ1 = 2 and δ2 = 1, the algorithm uses at most 2

extra colors with respect to the optimum, as done in [23].

0.6 Trees

An undirected graph T = (V, E) is a free tree when it is connected and it has exactly |V |−1

edges. Given a vertex v of a free tree T , Adj(v) denotes the set of vertices adjacent to

v. Given also an integer t, Nt(v) denotes the set of vertices at distance at most t from v.

Clearly, Adj(v) = N1(v) − {v}. A rooted tree is a free tree in which a vertex r is identified

as a root and all the other vertices are ordered by levels, where the level `(v) of a vertex v

is equal to the distance d(r, v). Thus, all the vertices adjacent to v are partitioned into its

father, denoted by father(v), which is at level `(v) − 1, and into its children, which are at

level `(v) + 1. The height h of a tree T is the maximum level of its vertices. For each vertex

v of T , let anci(v) denote the ancestor of v at distance i from v (which clearly is at level

`(v) − i). Of course, anc1(v) = father(v) and anc0(v) = v. Moreover, lca(u, v) denotes the

lowest common ancestor of u and v, that is the vertex with maximum level among all the

common ancestors of both u and v. Finally, given a vertex v of T , Tv denotes the induced

subtree rooted at v consisting of all the vertices having v as an ancestor.

To derive an approximate L(δ1, . . . , δt)-coloring of a rooted tree, the following lemma is

useful since it shows how to locate a strongly simplicial vertex.

Lemma 0.11. [7] In a rooted tree of height h, any vertex at level h is strongly-simplicial.

Lemma 0.11 suggests visiting the tree in breadth-first-search order, namely scanning the

vertices by increasing levels. Hereafter, it is assumed that the vertices are numbered accord-
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ing to the breadth-first-search order, obtained by starting the visit from the root. Precisely,

the vertices are numbered level by level, and those at the same level from left to right. In this

way, when a vertex v is considered, v is a t-simplicial vertex of the subtree T [{1, 2, . . . , v}]

induced by the first v vertices of T , for 1 ≤ v ≤ n.

0.6.1 Approximate L(δ1, . . . , δt)-coloring of trees

Consider a double implementation of T , where T is viewed both as a free tree and as the

rooted tree T1. Specifically, Adj(v), father(v), and `(v) are maintained for each vertex v.

As before, the palette P0 of readily usable colors is maintained, which is initialized to the set

{0, 1, . . . , U}, where U is the upper bound given by Lemma 0.4. Again, a counter taboo[c]

keeps track of how many used colors forbid color c.

The Tree-Coloring algorithm, illustrated in Figure 2, uses three procedures: Ancestor,

Up-Neighborhood-BFS, and Clear-BFS, depicted in Figures 3, 4, and 5, respectively. Tree-

Coloring first performs a preprocessing in order to compute the upper bound U , which

depends on λT,j, for each i, 1 ≤ j ≤ t.

The algorithm scans the n vertices according to the BFS numbering. At each iteration, v

represents the vertex to be colored next, while u is the last colored vertex. Hence, u = v−1,

for 2 ≤ v ≤ n. In order to color v, one needs to determine the set of colors already used and

forbidden in the neighborhood N ′
t(v) = Nt(v) ∩ T [{1, . . . , v}]. Such a set of colors depends

only on the distance d(z, v) for each vertex z ∈ N ′
t(v), and it is computed incrementally with

respect to the neighborhood N ′
t(u) of the last colored vertex u.

The behaviour of the Tree-Coloring algorithm depends on whether N ′
t(v) and N ′

t(u) do

intersect or not, and on whether u and v are at the same level or not. When `(v) =

`(u) + 1 or when `(v) = `(u) and N ′
t(v) ∩ N ′

t(u) = ∅, the variable new is set true by the

Ancestor function, the counters of all the used and forbidden colors in the old neighborhood

N ′
t(u) are decremented by the Clear-BFS procedure, while the distances and the forbidden

colors in N ′
t(v) are computed from scratch by the Up-Neighborhood-BFS procedure. Indeed,

although the neighborhoods N ′
t(v) and N ′

t(u) may intersect when `(v) = `(u)+ 1, each node
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z belonging to the intersection has d(z, v) 6= d(z, u), and thus its distance and its forbidden

colors have to be recomputed. In particular, the empty intersection between N ′
t(v) and

N ′
t(u) is recognized by the Ancestor function when x = anct(v) is deeper than lca(u, v),

the least common ancestor between u and v. When `(v) = `(u) and N ′
t(v) ∩ N ′

t(u) 6= ∅,

x = lca(u, v) is deeper than anct(v), and x belongs to the shortest path sp(u, v) between

u and v. Consider the vertices y and y′ which are the children of x on the paths sp(u, x)

and sp(v, x), respectively. In this case, the Ancestor function sets new to false and returns

x = lca(u, v) along with the vertex y. Indeed, y and y′ are the roots of the subtrees Ty∩N ′
t(v)

and Ty′∩N ′
t(u) containing each vertex z ∈ N ′

t(v)∩N ′
t(u) such that d(z, u) 6= d(z, v). The Up-

Neighborhood-BFS procedure updates only the colors already used and forbidden by vertices

in Ty∩N ′
t(v) and in Ty′∩N ′

t(u), leaving unchanged those colors used and forbidden by vertices

in (N ′
t(v)∩N ′

t(u))−(Ty∪Ty′) because for each vertex z in such a subset d(z, v) = d(z, u) holds.

Moreover, the procedure introduces new forbidden colors due to the vertices in N ′
t(v)−N ′

t(u),

and finally frees the colors no longer used or forbidden by vertices in N ′
t(u) − N ′

t(v).

Precisely, the Up-Neighborhood-BFS procedure is invoked with the aim of computing the

distances from v of each vertex z in N ′
t(v), and accordingly changing the taboo counters.

This is done in Loop (1) during a Breadth-First-Search starting from vertex v in which the

label dist(z) is set to d(z, v), and each separation constraint is updated by first decrementing

in Loop (2) the counters of the colors γ with 0 < |f(z) − γ| < δd(z,u) and then incrementing

in Loop (3) those of the colors with 0 < |f(z)−γ| < δd(z,v). Summarizing, when new is true,

the procedure computes from scratch all the distances and forbidden colors for all vertices

in N ′
t(v). In contrast, when new is false, distances and forbidden colors are computed from

scratch only for vertices in N ′
t(v) − N ′

t(u), they are updated only for a subset of vertices in

N ′
t(v) ∩ N ′

t(u), and they are cleared in Loop (4) for those in N ′
t(u) − N ′

t(v).

Lemma 0.12. Let the Tree-Coloring algorithm be at iteration v just before coloring vertex

v, and consider any vertex z in T [{1, . . . , v}]. Then:

dist(z) =







d(z, v) if z ∈ N ′
t(v),

0 otherwise.

Lemma 0.13. Let the Tree-Coloring algorithm be at iteration v just before coloring vertex
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v, and consider any color c.

• If c is assigned to a vertex z ∈ N ′
t(v), then c 6∈ P0 and it forbids only the colors γ such

that c − δd(z,v) + 1 ≤ γ ≤ c + δd(z,v) − 1.

• If c is not assigned to any vertex in N ′
t(v) and c 6∈ P0, then c is forbidden by at least a

color assigned to a vertex in N ′
t(v), but c does not forbid any color.

• If c ∈ P0, then c is readily usable and it does not forbid any color.

In practice, the above lemma guarantees that a legal L(δ1, δ2, . . . , δt)-coloring is found,

namely, a color c is assigned to a vertex v only when it satisfies all the separation constraints

due to colors assigned to vertices at distance at most t from v. In particular, any vertex

already colored c is at distance greater than t from v. As regard to the approximation ratio,

the Tree-Coloring algorithm provides exactly the same α-approximation as the Interval-

Coloring algorithm (see Theorem 0.1). In particular, the same 4- and 3-approximations hold

for L(δ1, δ2)- and L(δ1, 1, . . . , 1)-colorings, respectively. In addition, when t = 2 and T is a

binary tree then a 10
3
-approximation is achieved for the L(δ1, δ2)-coloring problem [6].

The Tree-Coloring algorithm runs in O(nt2δ1) time. This result is based on the fact that

computing U takes O(nt2) time [2], while all the updates of dist(x) for a given vertex x require

O(t2δ1) time. Indeed, while coloring any vertex v at a given level `, dist(x) can assume O(t)

different values, one for each possible lca(x, v) = anck(x) with 0 ≤ k ≤ b t
2
c. Moreover, all

the vertices at level ` for which dist(x) has a given value are split into at most two sequences

of consecutive vertices and thus O(δ1) time is paid only at the beginning of each subsequence.

Since x can be involved in coloring vertices in at most levels `(x), `(x) + 1, . . . , `(x) + t and

there are n vertices, the overall time taken by the algorithm is O(nt2δ1).

0.7 Conclusion

This chapter has considered the channel assignment problem for various separation vectors

and several particular network topologies – rings, grids, trees, and interval graphs. Specifi-
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Networks L(δ1, δ2) L(δ1, 1, . . . , 1) L(δ1, δ2, . . . , δt)

rings optimum [17] optimum [9] open
if δ1 ≤

⌊

ζ

2

⌋

bidimensional optimum [26] optimum [9] open
grids if δ1 ≤ b t

2
c

cellular grids optimum [26] optimum [25] open

trees 4-approximation [6] 3-approximation [6] α-approximation [6]

interval graphs 4-approximation [6] 3-approximation [6] α-approximation [6]

Table 1: Main results on the channel assignment problem reviewed in the present chapter,
where ζ = t + 1 + n mod (t+1)

b n
t+1

c
and α = min{2t, 2δm+1−1

δt
+ 2(δ1−δm+1)

δm
}.

cally, O(n) time algorithms have been presented for optimally solving the L(2, 1)-, L(2, 1, 1)-,

and L(δ1, 1, . . . , 1)-coloring problems on rings. Moreover, optimal solutions for the L(δ1, δ2)-

coloring problem on both bidimensional and cellular grids, and for the L(δ1, 1, . . . , 1)-coloring

problem on bidimensional grids have been described, which are based on arithmetic progres-

sions and take O(rc) time to color the entire grid of r rows and c columns. Then, based

on the notion of strongly-simplicial vertices, O(ntδ1) and O(nt2δ1) time algorithms have

been proposed to find α-approximate L(δ1, . . . , δt)-colorings on trees and interval graphs,

respectively, where α is a constant depending on t and δ1, . . . , δt. In particular, when t = 2,

such algorithms provide 4-approximate L(δ1, δ2)-colorings, while they yield 3-approximate

L(δ1, 1, . . . , 1)-colorings when δ1 is the only separation greater than 1. For t = 2 and binary

trees, a 10
3
-approximation is achieved. Moreover, an O(n) time 3-approximate algorithm

giving an L(δ1, δ2)-coloring of unit interval graphs has also been presented.

The main results reviewed in this chapter are summarized in Table 1. Several questions

remain open. For instance, at the best of our knowledge, no results have been presented so

far on the L(δ1, . . . , δt)-coloring problem for rings and grids. In addition, it is still unknown

whether finding optimal L(δ1, δ2)-colorings of unit interval graphs or trees is NP-hard or not.

Finally, as a matter of further research, one could devise better approximate algorithms for

finding L(δ1, . . . , δt)-colorings of interval graphs and trees.
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Algorithm Interval-Coloring (G = (V, E), t, δ1, . . . , δt);

U := λ∗
G,t + 2(δt − 1)λ∗

G,t +
∑t−1

j=1 2(δj − δj+1)λ
∗
G,j;

Lv := ∅ for every vertex v = 1, . . . , n;
P0 := {0, 1, . . . , U} and Pj := ∅ for j = 1, . . . , t;
taboo[γ] := 0 for γ = 0, . . . , U ;
max := 0;
δt+1 := 0;
for k := 1 to 2n do

if k = lv for some v, then
extract a color c from P0;
f(v) := c;
for each color max{0, c − δ1 + 1} ≤ γ ≤ min{c + δ1 − 1, U} do

if γ ∈ P0 then extract γ from P0;
taboo[γ] := taboo[γ]+1;

insert color c into both Lv and Pt;
if rv > max then set max := rv and deep := v;

otherwise, if k = rv for some v, then
for each color c in Lv do

let j be such that c ∈ Pj;
extract c from Pj;
for each color max{0, c − δt−j+1 + 1} ≤ γ ≤ max{0, c − δt−j+2}

or min{c + δt−j+2, U} ≤ γ ≤ min{0, c + δt−j+1 − 1, U} do
if γ 6= c then taboo[γ] := taboo[γ]−1;
if taboo[γ] = 0 then insert γ into P0;

if j > 1 then
insert c into both Pj−1 and LDEEP

else
taboo[c] := taboo[c]−1;
if taboo[c]=0 then insert c into P0;

Figure 1: The approximate algorithm for L(δ1, . . . , δt)-coloring of interval graphs.
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Algorithm Tree-Coloring (T = (V, E), t, δ1, . . . , δt);

U := λ∗
G,t + 2(δt − 1)λ∗

G,t +
∑t−1

j=1 2(δj − δj+1)λ
∗
G,j;

P0 := {0, 1, . . . , U};
taboo[γ] := 0 for γ = 0, . . . , U ;
u := 1; δ0 := 0;
for v := 1 to n do

x := Ancestor(u, v);
if new then Clear-BFS(u);
Up-Neighborhood-BFS(v, x);
extract a color c from P0;
f(v) := c;
taboo[c] := taboo[c] + 1;
u := v;

Figure 2: The approximate Tree-Coloring algorithm for L(δ1, . . . , δt)-coloring of trees.

Function Ancestor (u, v);

w := u; y := u; up := min{t, `(u)};
if `(v) = `(u) + 1

then i := 1; x := father(v)
else i := 0; x := v;

while x 6= w and i < up do
y := w; w := father(y);
x := father(x); i := i + 1;

if x 6= w or `(v) = `(u) + 1
then new := true
else new := false;

return(x)

Figure 3: The Ancestor procedure to find the vertex x with maximum level between lca(u, v)
and anct(v). If x = lca(u, v) then y is the child of x on the path between u and x.
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Procedure Up-Neighborhood-BFS (v, x);

dist(v) := 0; M := ∅;
Enqueue(Q, v);
while Q 6= ∅ do

w := Dequeue(Q);
if w = x and not new then S := {y} else S := Adj(w);

(1) for each z ∈ S do
if `(x) ≤ `(z) ≤ `(v) and z < v and z is not marked then

if w = v or 0 < dist(w) < t then
(2) for each f(z) − δdist(z) + 1 ≤ γ ≤ f(z) + δdist(z) − 1 do

if γ 6= f(z) then
taboo[γ] := taboo[γ] − 1;
if taboo[γ] = 0 then insert γ into P0;

dist(z) := dist(w) + 1; mark z;
(3) for each f(z) − δdist(z) + 1 ≤ γ ≤ f(z) + δdist(z) − 1 do

if γ 6= f(z) then
if taboo[γ] = 0 then extract γ from P0;
taboo[γ] := taboo[γ] + 1;

if not new and w 6= v and (dist(w) = 0 or dist(w) = t) and dist(z) > 0 then
(4) for each f(z) − δdist(z) + 1 ≤ γ ≤ f(z) + δdist(z) − 1 do

taboo[γ] := taboo[γ] − 1;
if taboo[γ] = 0 then insert γ into P0;

dist(z) := 0; mark z;
Enqueue(Q, z);

insert w into M ;
for each z ∈ M do unmark z;

Figure 4: The modified BFS procedure to compute distances and forbid colors for vertices
in N ′

t(v) and clear distances and colors for vertices in N ′
t(u) − N ′

t(v).

Procedure Clear-BFS (u);

Enqueue(Q, u);
while Q 6= ∅ do

w := Dequeue(Q);
for each z ∈ Adj(w) do

if dist(z) > 0 then
for each f(z) − δdist(z) + 1 ≤ γ ≤ f(z) + δdist(z) − 1 do

taboo[γ] := taboo[γ] − 1;
if taboo[γ] = 0 then insert γ into P0;

dist(z) := 0;
Enqueue (Q, z);

Figure 5: The procedure to clear distances and colors for vertices in N ′
t(u) when `(v) =

`(u) + 1 or N ′
t(v) ∩ N ′

t(u) = ∅.
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