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Asynchronous Corona Training Protocols
in Wireless Sensor and Actor Networks

F. Barsi, A.A. Bertossi, F. Betti Sorbelli, R. Ciotti, S. Olariu, M.C. Pinotti

Abstract— Scalable energy-efficient training protocols are pro-
posed for wireless networks consisting of sensors and a single
actor, where the sensors are initially anonymous and unaware of
their location. The protocols are based on an intuitive coordinate
system imposed onto the deployment area which partitions the
sensors into clusters. The protocols are asynchronous, in the
sense that the sensors wake up for the first time at random,
then alternate between sleep and awake periods both of fixed
length, and no explicit synchronization is performed between
them and the actor. Theoretical properties are stated underwhich
the training of all the sensors is possible. Moreover, both aworst-
case and an average case analysis of the performance, as well
as an experimental evaluation, are presented showing that the
protocols are lightweight and flexible.

Index Terms— Wireless sensor networks, actors, corona train-
ing, localization, network protocols, design and analysisof
algorithms

I. I NTRODUCTION

Recent technological breakthroughs in ultra-high integration
and low-power electronics have enabled the development of
miniaturized battery-operated sensor nodes (sensors, for short)
that integrate signal processing and wireless communications ca-
pabilities [2], [25]. Together with innovative and focusednetwork
design techniques that will make possible massive deployment
[22] and sustained low power operation, the small size and cost
of individual sensors are a key enabling factor for aggregating
sensors intowireless sensor networks, which have a significant
impact on a wide array of applications [7].

Recently, it has been recognized that it would be benefi-
cial to augment massively deployed sensor networks by more
powerful entities, equipped with better processing capabilities,
higher transmission power, and longer battery life. This leads to
a heterogeneous deployment including, alongside with the tiny
sensors, some entities referred to asactors [1] or Aggregation
and Forwarding Nodes (AFN) [14]. While the sensors are tasked
mainly to sense their immediate neighbourhood, the actors behave
as bothactuatorsandcoordinators. Indeed, they collect, aggregate
and fuse the data harvested by the sensors, thus taking decisions
in order to rapidly respond on the environment in a meaningful
way. Moreover, actors may coordinate with each other and/or
communicate with the outside world through a central entity
calledsink (which could be a base station, a patrol, or a satellite).
The so augmented version of the sensor network results in a
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Fig. 1. An actor-centric subnetwork: (a) the sensors deployed in a circular
field of radiusρ, (b) an actor broadcast of rangeR, (c) an actor broadcast
of angleα, (d) the virtual coordinate system.

hierarchical network, commonly referred to as a wireless sensor
and actor network (WSAN [1], or SANET [9]).

The typical mode of operation of an actor is to task the sensors
in a circular field, centered at the actor itself, to produce data
relevant to the mission at hand [14]. For instance, Figure I(a)
illustrates the circular area of radiusρ monitored by an actor
(depicted with a triangle), which defines an actor-centric subnet-
work. In this scenario, the actor is equipped with a long-range
radio with both isotropic and directional antennae. Specifically, by
means of the isotropic antenna, the actor is able to send broadcasts
with variable-rangeR to reach all the sensors at distance at
most R ≤ ρ from the actor (see Fig. I(b)). Moreover, using
the directional antenna, the actor can send full-range broadcasts
(i.e., with R = ρ) to all the sensors lying in a circular sector of
arbitrary angleα with respect to the polar axis (see Fig. I(c)). In
general, a large sensor deployment area of any shape is organized
into several cooperating actor-centric subnetworks, one for each
deployed actor (where sensors lying in the intersection ranges of
many actors should refer to just one actor, choosing one of them).

The random deployment results in sensors initially unaware
of their spatial coordinates with respect to its referring actor.
However, localization is a key factor for many wireless sensor net-
work applications, like environmental monitoring, asset tracking,
surveillance and disaster relief [12], [18]. In each case, the data
gathered by the sensors are of scarce utility unless complemented
with the location of the node that collected them. For example,
knowing the sensory data position is critical for locating an
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intruder vehicle or for guiding a team of first-aid on an emergency
area. Moreover, understanding the sensory data may be location
dependent, for instance, temperature and moisture values have
different meanings depending on which area they refer to. The
immediate approach to provide the exact geographic position of
each sensor node is obviously based on the Global Positioning
System (GPS). Although the GPS receivers are now common
on cars, trucks, PDAs, and cell phones, they are unsuitable for
massive deployed sensor networks due to the design constraints on
the cost, dimension, and energy of each sensor node. Nonetheless,
in such dense networks, most applications need to locate thesmall
region where the event happens rather than the single positions of
all the sensors that report the event itself. Hence, a coarse-grain
location awareness [15], [21] is sufficient and the deployment area
can be divided in small regions so that all the sensors deployed
in one of such regions share the same virtual position and the
data collected there can be used interchangeably or aggregated.
Of course, there is a trade-off because the coarse-grain location
awareness is lightweighter than GPS localization but the resulting
positioning accuracy is only a rough approximation of the exact
geographic location.

The task of allowing each sensor to acquire a coarse-grain
location with respect to its referring actor is calledtraining [23].
Since the aim of this paper is to study such a training task,
it is assumed from now on that the whole network coincides
with a single actor-centric subnetwork. Under this assumption,
training consists in imposing a virtual coordinate system that
divides the area into equiangular sectors and concentric coronas
centered at the actor, as illustrated in Fig. I(d). After training, each
sensor has learnt the corona and the sector to which it belongs.
It is worth noting that, in this way, training provides for free a
clusteringof the sensors, where a cluster consists of all sensors
having the same coordinates. Hence, on the top of training, all
network protocols based on clustering can be used [2], [4], [8],
[19]. For example, after training, routing can be easily performed
as follows. Cluster-to-actor messages are trivially routed inward
within a single sector, while cluster-to-cluster messagescan be
routed following several paths, e.g., first along the sectorof the
sender to reach the corona of the receiver, and then within such
a corona (clockwise or counterclockwise, depending on which is
the shortest path) to reach also the sector of the receiver [15]. In
addition, to help the actor locating an event that happens inthe
network, each sensor can add its coordinates to the sensed data
before delivering the messages to the actor.

While previous papers have studied the task of training in an
actor-centric model where all the sensors are synchronizedto
the master clock running at the actor [5], [15], [21], the main
contribution of this paper is to study training protocols inan asyn-
chronous model, which only assumes very basic functionalities
of the network – no explicit synchronization between the sensors
and the actor is needed, and the sensors, which wake up for the
first time at random, alternate between sleep and awake periods
both of predefined lengths, established at the manufacturing time,
and thus independent of the protocol computation. In fact, this is
the behaviour of many actual sensors with harvesting capabilities
which collect energy during the sleep periods and perform their
duties during the awake periods [16], [24]. The present paper
extends in a substantial way the work of [23] presenting three new
flat protocols based on linear signal strength decrease. Moreover,
three additional new protocols are exhibited which rely on atwo-

levelapproach, where jumps are initially made in the flat protocols
and are filled later on. Theoretical properties on the parameters
of the training protocols are stated under which training ofall
the sensors in the network is possible. Moreover, a performance
evaluation of the protocols is presented showing that they are
lightweight in terms of both the number of wake/sleep transitions
and the overall sensor awake time for training.

The remainder of this paper is organized as follows. Section
II provides an overview of related works, Section III discusses
the wireless sensor and actor network model and introduces the
task of training, while Section IV offers a quick refresher of
modular arithmetic. Section V is the backbone of the entire
paper, presenting the theoretical underpinnings of a basictraining
protocol, called Flat–, along with its worst-case and average-case
performance analysis. Section VI shows two variants of the basic
protocol, called Flat and Flat+, as well as a two-level approach,
which improve the Flat– performance. In particular, it is shown
that the two-level protocols outperform the flat ones, lowering the
number of transitions from a linear down to, at most, a square-root
function. Section VII presents an experimental evaluationof the
performance, tested on randomly generated instances, confirming
the analytical results in both the worst and average cases, and
showing a much better behaviour in practice. Finally, Section VIII
offers concluding remarks.

II. RELATED WORK

In the literature, the task of determining an exact geographic lo-
cation, referred to aslocalization, is recognized as a fundamental
problem in designing sensor networks and has been extensively
studied (see e.g. [3], [12], [18]). Since localization hardware, such
as GPS [11], for each sensor is expensive in terms of cost and
energy consumption, prominent solutions assume the existence of
several anchor nodes which are aware of their location because
they are the only nodes provided with GPS and allow other nodes
to infer their locations by exchanging information with them.
Localization algorithms can then be divided into two categories:
range-basedandrange-free[10], [17]. In range-based algorithms,
nodes estimate their distance to anchors, using some specialized
hardware, and applying methods like triangulation or trilateration,
which are based on the fact that a node position is uniquely
determined when at least three anchor positions are available per
node [3]. Other range-based algorithms use received radio signal
strength, angle and/or time of arrival of signals, or difference
of time of arrivals to locate the sensors. Although range-based
algorithms result in a fine-grained localization scheme, all of them
need some special hardware for the measurements at the sensors.
On the other hand, range-free algorithms do not use any special
hardware but accept a less accurate localization. For example, in
the range-freecentroidalgorithm, the sensors receive the anchor
positions, and using this proximity information, a simple centroid
model is applied to estimate the position of the listening nodes
[6]. Other solutions use methods similar to distance vectorrouting
to allow the nodes to find the number of hops from the anchors.
Anchors flood their location throughout the network maintaining
a running hop-count at each node along the way. Nodes calculate
their position based on the received anchor locations, on the
hop-count from the corresponding anchor, and on the average-
distance per hop [13]. In [10], an iterative method is pursued to
narrow down the position accuracy until a tolerable error inthe
positioning is reached. In practice, each sensor repeatedly chooses
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a triple of anchors from all audible anchors and tests whether it is
inside the triangle formed by them, until all triples are exhausted
or the required accuracy is achieved. At this point, the center of
gravity of all of the triangles in which a node resides is assumed
to be the sensor estimated position.

The localization algorithms discussed so far assume that the
anchor nodes are special nodes mainly because they know their
spatial coordinates. Instead, several recent papers [1], [5], [15],
[21], [23] have considered the localization problem in a hetero-
geneous network whose anchor nodes, called actors, are provided
with special transmission capabilities and steady power supply,
while do not necessarily need GPS receivers. In such a context,
localization is intended as the task of making each sensor able
to acquire a coarse-grain location with respect to a given actor
node and is referred to as training. The main characteristicof
such training protocols relies on using a single actor node to
impose a discretized polar coordinate system. The process is
centralized and uses only asymmetric broadcasts (from the actor
to the sensors) without multihop communications among the
sensors. The sensors deduce their coarse-grain location exploiting
the information received by the actor without performing any
local communication. In particular, the two protocols presented
in [5] assume that all the sensors are synchronized to the master
clock running at the actor. Such two protocols can be thoughtas
visits of complete trees, whose leaves represent coronas/sectors,
whose node preorder/BFS numbers are related to the time slots,
and whose node inorder/BFS numbers are related to the ac-
tor transmission ranges/angles, respectively. Exploiting the fully
synchronized model and the capability of irregularly alternating
between sleep and awake periods, whose frequency and length
depend on the protocol computation, such protocols achievean
optimal time (in the number of coronas/sectors) for terminating
the training process.

III. T HE NETWORK MODEL

In this work, a wireless sensor and actor network is assumed
that consists of a single, fixed actor, centrally placed withrespect
to a set of sensors randomly deployed in a circular field within
the actor, as illustrated in Figure I(a).

It is assumed that the time is ruled into slots. The sensors
and the actor use equally long, in-phase slots, but they do not
necessarily start counting time from the same slot.

A sensor is a device that possesses three basic capabilities:
sensory, computation, and wireless communication, and operates
subject to the following fundamental constraints:

a. Each sensor alternates betweensleep periods andawake
periods – the sensor sleep-awake cycle has a total length of
L time slots, out of which the sensor is in sleep mode for
L − d slots and in awake mode ford slots;

b. Each sensor isasynchronous– it wakes up for the first
time according to its internal clock and is not engaging in
an explicit synchronization protocol with either the actoror
the other sensors;

c. Individual sensors workunattended– once deployed it
is either infeasible or impractical to devote attention to
individual sensors;

d. No sensor has global information about the network topol-
ogy, but can hear transmissions from the actor;

e. The sensors areanonymous– to assume the simplest sensor
model, sensors do not need individually unique IDs;

f. Each sensor has a modest non-renewable energy budget and
a limited transmission range.

As shown in Figure I(d), training imposes a virtual coordinate
system onto the sensor network by establishing:

1. Coronas: The deployment area is covered byk coronas
C0, C1, . . . , Ck−1 determined byk concentric circles, cen-
tered at the actor, whose radii are0 < r0 < r1 < · · · <

rk−1 = ρ;
2. Sectors: The deployment area is ruled intoh equiangular

sectorsS0, S1, . . . , Sh−1, centered at the actor, each having
a width of 2π

h radians.

For the sake of simplicity, in this paper, it is assumed that
all the coronas and all the sectors have the same width, although
this is not strictly required. In a practical setting, the corona width
might be equal to the sensor transmission range, sayr, and hence
the (outer) radiusri of coronaCi might be equal to(i + 1)r. In
such a case, then, the corona number plus one gives the number
of hops needed for a sensor-to-actor communication. Moreover,
a sectorSj might consist of the portion of the deployment area
between the two directional transmission anglesj 2π

h and (j +

1) 2π
h . At the end of the training period each sensor has acquired

two coordinates: the identity of the corona in which it lies,as well
as the identity of the sector to which it belongs. In particular, a
cluster is the locus of all nodes having the same coordinatesin
the above system.

IV. BASIC MODULAR ARITHMETIC

Since several derivations in this paper employ modular arith-
metic, it is appropriate to offer the reader a quick refresher of the
terminology and basic results used hereafter.

Given any two integersx andm, with m 6= 0, let |x|m denote
the modulo operation, that is the nonnegative remainder of the
division of x by m (see [20]). Two integersx andy arecongruent
modulom, denoted byx ≡ y mod m, if and only if |x|m = |y|m.

Let • indicate one of the three basic operations,addition,
subtraction, andmultiplication. The modulo operation distributes
over such operations and hence|x • y|m = ||x|m • y|m =

|x • |y|m|m = ||x|m • |y|m|m. Moreover, it is easy to prove that:

Property IV.1. For any integersa, x, and m, with a 6= 0 and
m 6= 0, |ax|am = a|x|m.

Let thegreatest common divisorof integersx andy be denoted
by (x, y). Therefore, lettingx = x′(x, m), andm = m′(x, m) and
applying Property IV.1, one derives|x|m = (x, m)|x′|m′ . It is
worth noting that the division ofx by y modulom is possible only
wheny andm arecoprime, i.e. when(m, y) = 1. Indeed only in
such a case there exists theinverse multiplicative ofy modulom,
which is denoted by

˛

˛

1
x

˛

˛

m
(as used in [20]) and is defined as that

integer satisfyingx
˛

˛

1
x

˛

˛

m
≡ 1 mod m. The following property is

widely used in the paper:

Property IV.2. Given any integersx, y, z, w, andm 6= 0, it holds:

1) If ax ≡ ay mod m and a 6= 0 is such that(a, m) = 1, then
x ≡ y mod m

2) If ax ≡ ay mod m and (a, m) = g, then x ≡ y mod m′,
wherem = m′g

The next property shows how the values generated by the
expression|ix|m vary wheni assumes any integer value.
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Procedure Actor (k, τ1);
for z := 0 to τ1 − 1 do

transmit the beacon|k − 1 − z|k up to coronaC|k−1−z|k
;

Fig. 2. The corona training protocol for the actor.

Property IV.3. Given two integersx and m 6= 0 such that
(x, m) = g, the congruenceix ≡ y mod m has solution for any
y = gy′ with y′ ∈ [0, . . . , m′ − 1], wherem′ = m

g . Moreover,
|ix|m generates only the values multiple ofg in [0, 1, . . . , m− 1],
one for each different value of|i|m′ .

In the particular case where(x, m) = 1, the property above
shows that, wheni assumes all them integer values in[0, . . . , m−
1], the expression|ix|m generates all them integer values in
[0, . . . , m − 1].

V. THE FLAT– PROTOCOL

The main goal of this section is to present the details of the
basic training protocol where each individual sensor has tolearn
the identity of the corona and of the sector to which it belongs,
regardless of the moment when it wakes up for the first time.

The protocol acts as follows. Consider first the corona training
task in which the actor broadcasts using the isotropic antenna.
Immediately after deployment the actor cyclically repeatsa
transmission cycle which involvesk broadcasts at successively
lower power levels. Each broadcast lasts for a slot and transmits
a beacon equal to the identity of the outmost corona reached.
Specifically, the actor starts out by transmitting the beacon k − 1

at the highest power, sufficient to reach the sensors up to the
outmost coronaCk−1; next, the actor transmits the beaconk − 2

at a power level that can be received up to coronaCk−2, but not
by the sensors in coronaCk−1. For the subsequentk − 2 slots,
the actor continues to transmit at decreasing power levels until it
concludes its transmission cycle with a broadcast of beacon0 that
can be received only by the sensors in coronaC0. In general, at
time slotz, with z ≥ 0, the actor transmits the beaconk−1−|z|k
at a power level sufficient to cover the distancerk−|z|k and hence
to reach all the sensors up to coronaCk−1−|z|k , but not those
beyondCk−1−|z|k . The actor transmission cycle is repeated for a
given timeτ1 which is sufficient to accomplish the entire corona
training protocol (the actor can derive the value ofτ1 from k, L,
andd, as it will be shown in the discussion after Theorem V.9).
The protocol for the actor is shown in Figure 2.

The sector training task is analogous to the corona training
task, except that now the actor broadcasts using the directional
antenna. Indeed, the actor cyclically repeats a transmission cycle
of h directional broadcasts with successively smaller angles.
Specifically, at time slotz, with z > 0, the actor transmits
the beaconh − 1 − |z|h which can reach all the sensors up
to sector Sh−1−|z|h , namely, using an angle of transmission
α = (h − |z|h) 2π

h
. Since sector training is the same as corona

training once the directional broadcasts replace the isotropic ones
andh replacesk, all the results that will be presented for coronas
hold also for sectors. Therefore, sector training will not be further
discussed and we shall concentrate only on corona training for
sensors.

In order to describe the basic corona protocol for sensors,
called Flat–, we assume that each sensor is aware of the actor
behaviour and of the total numberk of coronas. In particular,
k can be either stored in the sensor memory before deployment

Procedure Flat– (k, L, d);
1 heard:= trained := false; ν := 0;
2 while wakeupand ¬ traineddo
3 ν := ν + 1;
4 for i := 0 to d − 1 do
5 if received beaconc then
6 if ¬ heardthen
7 heard:= true, t := k − 1 − c;
8 Rc := 1;
9 if c = 0 or (Rc = 1 and Rc−1 = 0) then

10 mycorona:= c, trained:= true;
11 t := t + 1;
12 else
14 if heardthen
15 c := k − 1 − |t|k;
16 Rc := 0;
17 if Rc+1 = 1 then
18 mycorona:= c, trained:= true;
19 t := t + 1;
20 if heardthen
21 alarm-clock:= t := t + L − d;
22 else
23 alarm-clock:= alarm-clock+ L;
24 go to sleep until the alarm-clock rings;

Fig. 3. The Flat– protocol for a sensor.

or transmitted by the actor in the beacon along with the corona
identity. Immediately after deployment, each sensor wakesup at
random within the0-th and the(k − 1)-th time slot and starts
listening to the actor ford time slots (that is, its awake period).
Then, the sensor goes back to sleep forL−d time slots (that is, its
sleep period). Such a sleep/wake transition will be repeated until
the sensor learns the identity of the corona to which belongs, that
is, until the sensor will be trained. Each sensor, during thetraining
process, uses ak-bit registerR to keep track of the beacons,
i.e. corona identities, transmitted by the actor while the sensor is
awake. As soon as the sensor hears an actor transmission for the
first time, it starts to fill its registerR and it is able to learn the
actor global timet within the current actor transmission cycle,
that ist = |z|k . From now on, such a time will regularly increase
so that the sensor can derive fromt the beacon|k − 1 − t|k that
the actor is transmitting. Then, in each time slot when the sensor
is awake, one entry ofR can be always set either to0 or to 1.
In fact, if the sensor hears beaconc, then it setsRc = 1, while
if the sensor hears nothing, it setsR|k−1−t|k = 0. Note that an
awake sensor in coronaCc hears any broadcast which transmits
beaconb, with c ≤ b ≤ k − 1 (clearly, different beacons are
heard in different broadcasts). In contrast, an awake sensor in
coronaCc cannot hear the broadcasts transmitting beaconb, with
0 ≤ b ≤ c− 1, because it is out of the range covered by the actor
transmission. Hence, if a sensor setsRc = 0 (resp.,Rc = 1)
then it belongs to a corona whose identity is higher than (resp.,
smaller than or equal to)c. Note that only the sensors in corona
C0 can hear beacon0 and thus they are the only ones which can
set R0 = 1. From the above discussion, the followingtraining
conditionholds:

Lemma V.1. [23] A sensor which belongs to coronaCc, with
c > 0, is trained as soon as the entriesRc andRc−1 of its register
R are set to1 and 0, respectively. A sensor which is in corona
C0 is trained as soon asR0 is set to1.

In the resulting sensor protocol, called Flat–, each sensorcounts
in ν the number of its sleep/wake transitions needed to be trained
(line 1), initializing its local time when the sensor receives a
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beacon for the first time from the actor (that is, whenheard is set
to true in line 7), and it stores inalarm-clock the time when
the next sleep/wake transition is planned (line 21–23). After any
entry ofR is filled, the sensor checks the training condition stated
in Lemma V.1. Observe that lines 12–19 cannot be executed when
c = k − 1, because the beaconk − 1 reaches the outmost corona
Ck−1, all awake sensors hear, and thus they execute lines 6–
11. In the procedure, each sensor executesO(1) arithmetic/logic
operations per time slot.

A. Correctness and performance analysis

In the following, the conditions on thek, L, andd parameters
will be investigated which guarantee that all the sensors are
trained, independent of their first wakeup time and from the
coronac they belong to.

Lemma V.2. Given L, d, and k, there are exactlyk′ = k
(L,k)

different corona identities that can be transmitted by the actor
when the sensor starts any awake period. Assuming that the
sensor wakes up for the first time at slotx, 0 ≤ x ≤ k − 1,
then the beacon transmitted when the sensor starts itsi-th awake
period is |Kx − iL|k =

˛

˛Kx − i(L, k)|L′|k′

˛

˛

k
, whereKx is the

corona identity transmitted at timex, that is Kx = C|k−1−x|k .
Overall onlyk′ different coronas can be transmitted by the actor
when the sensor starts its awake periods, independent of how
long the training process will be. Suchk′ coronas identities can
be reindexed as|Kx − s(L, k)|k, for 0 ≤ s ≤ k′ − 1.

Proof: Consider a sensor that wakes up for the first time
at the global time slotz = x, while the actor is transmitting the
beaconKx = |k−1−z|k = |k−1−x|k. Thei-th sleep-awake cycle
of such a sensor starts at timex+iL while the actor is transmitting
the beacon|k−1−x−iL|k = |Kx − i|L|k |k, with i ≥ 0. Observe
thatL andk can be rewritten asL = gL′ andk = gk′, whereg =

(L, k). By Property IV.3,|iL|k generates only thek′ multiple of
g, one for each different value assumed byi mod k′, in [0, . . . , k].
Moreover,Kx − iL ≡ Kx − g(|i|k′ )|L′|k′ mod k. In other words,
in any two awake periods, say thei-th and thej-th ones, such
that i > j and i − j < k′, the coronasCx+iL and Cx+jL are
distinct and differ by a multiple ofg. Whereas, in any two awake
periods i and j such thati ≡ j mod k′ the same coronas are
transmitted. Clearly, thek′ different corona identities transmitted
at the beginning of the awake periods can be rearranged so that,
in the new order, two consecutive coronas differ exactly byg.
Indeed thes-th corona in the new order, that is|Kx − sg|k, with
0 ≤ s ≤ k′ − 1, corresponds to the first beacon transmitted in the
j-th awake period, withj =

˛

˛

˛s| 1
L′

|k′

˛

˛

˛

k′
. �

Therefore, after exactlyk′ sleep-awake cycles, that is afterk′L

time slots, which correspond tok
′L
k

= k′L
gk′ = L

g = L′ actor
transmission cycles, the behaviour of the sensor and the actor
will be cyclically repeated. In other words, at the beginning of
the k′-th awake period, the sensor and the actor are in the same
reciprocal state as they were at the beginning of the0-th one,
with the only difference that, if the sensor can be trained, it has
heard the actor at least once. Thus, we have the following natural
consequence.

Lemma V.3. Given L, d, and k, all the entries ofR that the
sensor can fill are set within the first2k

(L,k)
sleep-awake cycles.

Proof: During the firstk′ = k
(L,k)

awake periods of any

sensor, the actor transmits no more thank
(L,k)

d different corona
identities. These corona identities will be cyclically transmitted
during the training process of such a sensor. They correspond to
exactly all the positions ofR that the sensor can set and they
include all the beacons that the sensor can hear from the actor.
Hence, in the worst case, the sensor needsk′ = k

(L,k)
awake

periods to hear the actor for the first time and furtherk′ = k
(L,k)

awake periods to fillR. �

Clearly, if the training condition of Lemma V.1 cannot be
verified by a sensor within its first2k′ = 2k

(L,k)
sleep-awake

cycles, such a sensor will never be trained, regardless how long
the training process will continue. The following result shows
under which conditions fork, L and d all the sensors can be
trained and also gives an upper bound on the number of sleep-
awake cycles needed to accomplish the entire training process.

Theorem V.4. All the sensors are trained in at most2k′ = 2 k
(L,k)

sleep-awake cycles if and only ifd ≥ (L, k).

Proof: To simplify notation, writeg = (L, k). For the sake of
contradiction, suppose that all the sensors have been trained and
let d < g. By Lemmas V.2 and V.3, in at most2k

g sleep-awake
periods, each sensor has filled at mostk′d entries ofR. Since
d < g, each sensor has filled less thank entries ofR. Such filled
entries depend on the time slotx when the sensor woke up for
the first time. Consider now all the sensors that woke up at the
same timex. Note that they have filled, although with different
configurations, the same positions ofR independent of the corona
they belong. Letc be one unfilled entry ofR. By the hypothesis
of massive random deployment, there is at least one sensor that
woke up at timex in each corona, and hence at least one sensor
in coronac. Clearly, such a sensor will not be trained because
the training condition in Lemma V.1 will be never satisfied.

Conversely, ifd ≥ g, by Lemma V.2, ink′ consecutive sleep-
awake cycles, the beacons transmitted by the actor in the first slot
of suchk′ cycles are exactlyg apart. Since an awake period lasts
d ≥ g slots, at leastg new corona identities are transmitted by the
actor during an awake period of the sensor. Hence, after having
heard the actor within the firstk′ awake periods, the sensor fills at
leastg entries ofR in each awake period and completely fillsR

in at most otherk′ awake periods. Therefore, the sensor is trained
in at most2k′ consecutive awake periods. Note that this happens
for all the sensors, independent of their first wake-up timex and
of the coronac to which they belong. �

From Theorem V.4 and recalling that any sensor is trivially
trained whend ≥ k, one has that the Flat– protocol is correct
for any value ofd in the range(L, k) ≤ d ≤ k. Next, the
protocol performance is refined within such a range finding
stricter upper bounds on the maximum number of sleep-awake
periods required for training. The performance analysis starts
from two particular cases, namely,d = (L, k) andd = |L|k (note
that |L|k = (L, k)|L′|k′ ≥ (L, k)). More precisely, Lemmas V.5
and V.6 specify, ford = (L, k) and d = |L|k respectively, in
which period a sensor, that wakes up for the first time at slotx,
is awake while the actor transmits an arbitrary beaconc.

Lemma V.5. Let c be any corona identity and assumed = (L, k).
The actor transmits the beaconc during theic,x-th awake period
of a sensor that wakes up for the first time at slotx, whereic,x =
˛

˛

˛

j

|Kx−c|k
d

k

˛

˛

1
L′

˛

˛

k′

˛

˛

˛

k′
, L′ = L

d
, and k′ = k

d
.

Proof: When the sensor wakes up at timex the actor
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is transmitting the beaconKx. Moreover, the beacon values
decrease within the actor transmission cycle. Thus, beaconc

will be transmitted, starting fromKx, during the j-th group
of d consecutive corona identities such thatj =

j

|Kx−c|k
d

k

.
Such a j-th group of d consecutive corona identities will be
transmitted during theic,x-th sensor awake period in which
the actor transmits

˛

˛

˛Kx −
j

|Kx−c|k
d

k

d
˛

˛

˛

k
as the first beacon.

Hence, by Lemma V.2,ic,x is derived by solving the equa-
tion

˛

˛Kx − ic,x(L, k)|L′|k′

˛

˛

k
=
˛

˛

˛Kx −
j

|Kx−c|k
d

k

d
˛

˛

˛

k
. By Prop-

erty IV.2, it follows ic,x =
˛

˛

˛

j

|Kx−c|k
d

k ˛

˛

˛

1
L′

˛

˛

˛

k′

˛

˛

˛

k′
becaused =

(L, k). �

Lemma V.6. Let c be any corona identity and assumed = |L|k.
The actor transmits beaconc during the ic,x-th awake period
of a sensor which wakes up for the first time at slotx, where
ic,x =

j

|Kx−c|k
d

k

.

Proof: The proof is similar to that of Lemma V.5. Only
observe that now, sinced = |L|k = (L, k)|L′|k′ by Property IV.1,
ic,x is derived by solving the equation|Kx − ic,x(L, k)|L′|k′ |k =
˛

˛

˛Kx −
j

|Kx−c|k
d

k

d
˛

˛

˛

k
, and henceic,x =

j

|Kx−c|k
d

k

. �

The following two lemmas determine, ford = (L, k) andd =

|L|k respectively, in which awake period a sensor, belonging to
coronac and waking up for the first time at slotx, satisfies for
the first time the training condition. Indeed, a sensor belonging to
coronac is trained when it has filled bothRc andRc−1 and the
awake period when such entries are filled can be derived from
Lemmas V.5 and V.6 as follows:

Lemma V.7. Let d = (L, k). A sensor which wakes up for the
first time at slotx and belongs to coronac, with c > 0, is trained
during thei-th awake period wherei = ic−1,x, if ic,x ≤ ic−1,x,

or i ≤ ic,x +
˛

˛

˛

1
L′

˛

˛

˛

k′
, if ic,x > ic−1,x. If c = 0, theni = i0,x.

Proof: If ic,x ≤ ic−1,x, during theic,x awake period the
sensor hears the beaconc and hence it setsRc = 1. Moreover,
during theic−1,x awake period, the sensor setsRc−1 = 0 because
it does not hearc− 1 but, having already heardc, it knows what
the actor is transmitting. Ific,x > ic−1,x, in the worst case the
sensor hears for the first time during theic,x-th awake period and
setsRc = 1. Then, the beaconc−1 will be transmitted at thei-th
awake period such that|Kx − i(L, k)|L′|k′ |k = |Kx − (j +1)d|k,
wherej =

j

|Kx−c|k
d

k

. Solving the above equation, one hasi =
˛

˛

˛(j + 1)
˛

˛

˛

1
L′

˛

˛

˛

k′

˛

˛

˛

k′
, and hence

˛

˛

˛

1
L′

˛

˛

˛

k′
awake periods afteric,x. �

Lemma V.8. Let d = |L|k . A sensor which wakes up for the first
time at slotx and belongs to coronac, with c > 0, is trained
during thei-th awake period wherei = ic−1,x, if ic,x ≤ ic−1,x,
or i ≤ ic,x + 1, if ic,x > ic−1,x. If c = 0, theni = i0,x.

Proof: The proof is similar to that of Lemma V.7. For
d = |L|k , observe that, whenic,x > ic−1,x, sinced = |L|k =

(L, k)|L′|k′ , i is derived by solving the equation|i(L, k)|L′|k′ |k =

|(j + 1)d|k, and hencei = j + 1, wherej =
j

|Kx−c|k
d

k

. �

From Lemmas V.7 and V.8, one knows the number of sleep-
awake periods required by any sensor in the network to be trained.
Letting νmax be the maximum number of sleep-awake periods
required by the sensor that will be trained as the last one in the
network, the worst case performance for the Flat– protocol results
as follows:

Theorem V.9. Given L, d, and k, if d < (L, k) then there are
sensors that cannot be trained by the Flat– protocol; otherwise
all the sensors are trained, and:

1) If (L, k) ≤ d < |L|k , then νmax ≤ k
(L,k)

+
˛

˛

1
L′

˛

˛

k′ , where

k′ = k
(L,k) and L′ = L

(L,k) ;

2) If |L|k ≤ d < k, thenνmax ≤
j

k
|L|k

k

+ 1;
3) If d = k, thenνmax = 2.

Proof: When (L, k) ≤ d < |L|k , since by Lemma V.2 the
k′ coronas transmitted by the actor when the sensor wakes up
do not depend ond, the sensor cannot be trained later than in
the cased = (L, k) because the registerR is filled faster. Hence
by Lemma VI.3, observing that

j

|Kx−c|k
d

k

varies between0 and
k
d − 1, one hasνmax ≤ k

(L,k)
+
˛

˛

˛

1
L′

˛

˛

˛

k′
, wherek′ = k

(L,k)
and

L′ = L
(L,k)

. Similarly, when|L|k ≤ d < k, the sensor cannot be
trained later than in the cased = |L|k . Hence, by Lemma V.8,
νmax ≤

j

k
|L|k

k

+ 1. Note that, whenk is a multiple of |L|k ,

νmax =
j

k
|L|k

k

+ 1 only for those sensors that wake up for the
first time while the actor is transmitting coronac − 1 and they
belong to coronac. Finally, whend = k, two sleep-awake cycles
are needed only by those sensors which wake up for the first time
while the actor is transmitting coronac − 1 and which belong to
coronac. �

To summarize, given an arbitrary sensor, belonging to a generic
coronac and whose first wake up is any time slotx, Lemmas V.5
– V.8 determine the exact number of sleep-awake periods, or
number of transitions, that such a sensor requires to be trained
whend assumes the two particular values(L, k) and |L|k . Since
the sensor network is trained when all its sensors are trained,
the exact number of transitionsνmax to accomplish the training
protocol is given by the number of transitionsν required by the
sensor that is trained as last in the network. On the other hand,
when the values ofd are different from the two above, since it is
difficult to analytically derive the exact numberν of transitions
required by each sensor to be trained,νmax cannot be computed
and thus an upper bound for it, based on the values ofνmax

computed for the two particular casesd = (L, k) andd = |L|k , is
provided in Theorem V.9. However, the exact value ofνmax can
be experimentally computed, as it will be done in Section VII.

The maximum number of transitionsνmax impacts all the
performance parameters. Indeed, it is easy to see that the overall
sensor awake timeωmax is equal toνmaxd while the total time
for training all the sensors isνmaxL+ k, where the additive term
k comes from the fact that a sensor may wake up at any time
x < k. Finally, referring to the actor behaviour, it should be clear
that the actor repeats its transmission cycle forτ1 slots, where
τ1 = νmaxL + k is derived by choosing the suitable value of
νmax according to Theorem V.9.

We now turn to the analysis of the average case performance
of the Flat– protocol, where it is assumed that the sensor awake
time x is a discrete random variable uniformly distributed in
[0, k − 1]. Let N be the total number of sensors, letNc be the
number of sensors that belong to coronac and, among them,
let Nc,x be those that wake up for the first time at slotx, with
0 ≤ c, x ≤ k−1. Sincex is uniformly distributed,Nc,x = Nc

k and,
clearly,

Pk−1
c=0 Nc = N . Letting νavg andωavg denote the average

number of transitions and the average overall sensor awake time,
respectively, one has the following result.
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Theorem V.10. Given L, d, and k, if d < (L, k) then there are
sensors which cannot be trained by the Flat– protocol; otherwise
all the sensors are trained, and:

1) If (L, k) ≤ d < |L|k , then νavg ≤ k′+1
2 + 1

(L,k)

˛

˛

˛

1
L′

˛

˛

˛

k′
,

wherek′ = k
(L,k)

and L′ = L
(L,k)

;

2) If |L|k ≤ d < k, then νavg ≤
“j

k
|L|k

k

+ 1
”

“

1
2 +

|k||L|
k
+1

k

”

− 1
k

;

3) If d = k, thenνavg ≤ 1 + 1
k .

Proof: In the following, the notatioǹ ≤ x ≤ r will denote
either the values̀ , ` + 1, . . . , r − 1, r when ` ≤ r or the values
`, ` + 1, . . . , k − 1, 0, . . . , r − 1, r when ` > r. Consider first the
range(L, k) ≤ d < |L|k . Assumed ≥ 2. Fixed a coronac, the
sensors that are trained during the0-th sleep-awake period are
those that wake up at|k − 1 − (c + d − 2)|k ≤ x ≤ k − 1 − c.
Indeed, such sensors during thed slots of the first awake period
hear the beaconc and setR[c] = 1 andR[c− 1] = 0. In contrast,
the sensors that wake up atx = |k − 1 − (c + d − 1)|k can set
R[c] to 1, but cannot setR[c − 1] to 0 until the

˛

˛

˛

1
L′

˛

˛

˛

k′
-th sleep-

awake period. In general, the sensors that wake up at|k − 1 −
(c + d− 2 + i(L, k)|L′|k′ )|k ≤ x ≤ |k − 1− (c + i((L, k)|L′|k′ )|k
are trained during thei-th sleep-awake period because they set
both R[c] and R[c − 1]. In contrast, the sensors that wake up at
x = |k − 1 − (c + d − 1 + i(L, k)|L′|k′ )|k will set R[c − 1] at
the

“

i +
˛

˛

˛

1
L′

˛

˛

˛

k′

”

-th sleep-awake period. Whend = (L, k), the
average number of transitions required to be trained by a sensor
in coronac is bounded above by

νc ≤ 1

Nc

0

@

k′−1
X

i=0

|k−1−(c+i(L,k)|L′|
k′ )|k

X

x=|k−1−(c+d−1+i(L,k)|L′|
k′)|k

(i + 1)Nc,x+

k′−1
X

i=0

˛

˛

˛

˛

1

L′

˛

˛

˛

˛

k′

Nc,|k−1−(c+d−1+i(L,k)|L′|
k′)|k

1

A

=
1

Nc

0

@

k′
X

i=1

id
Nc

k
+ k

′
˛

˛

˛

˛

1

L′

˛

˛

˛

˛

k′

Nc

k

1

A

=
k′ + 1

2
+

1

(L, k)

˛

˛

˛

˛

1

L′

˛

˛

˛

˛

k′

If d = (L, k) = 1, no sensor in coronac can be trained in a
single awake period, regardless its first wake up timex, because
it can hear at most one beacon. Thus, each sensor has to wait
at least1 +

˛

˛

˛

1
L

˛

˛

˛

k
awake periods in order to set bothR[c] and

R[c − 1]. Therefore,

νc ≤ 1

Nc

 

k−1
X

i=0

˛

˛

˛

˛

1

L

˛

˛

˛

˛

k

Nc,|k−1−(c+i|L|k)|k+

k−1
X

i=0

(i + 1)Nc,|k−1−(c+i|L|k)|k

!

=
1

Nc

 

k−1
X

i=0

˛

˛

˛

˛

1

L

˛

˛

˛

˛

k

Nc

k
+

k−1
X

i=0

(i + 1)
Nc

k

!

=

˛

˛

˛

˛

1

L

˛

˛

˛

˛

k

+
k + 1

2

Sinceνc does not depend onc, summing up over the coronas,
νavg = 1

N

Pk−1
c=0 νcNc = νc.

Consider now1 ≤ |L|k ≤ d < k. Fixed a coronac, as before,
the sensors that wake up at|k− 1− (c+ d− 2)|k ≤ x ≤ k− 1− c

are trained during the0-th sleep-awake period. In contrast, the
sensors that wake up atx = |k − 1 − (c + d − 1)|k are trained
during the next sleep-awake period. In general, the sensorsthat
wake up at|k − 1 − (c + d − 2 + i|L|k)|k = |k − 1 − (c + (i +

1)d − 2)|k ≤ x ≤ |k − 1− (c + i|L|k)|k = |k − 1− (c + id)|k are
trained during thei-th sleep-awake period, while those waking up
at x = |k − 1 − (c + (i + 1)d − 1)|k are trained in the successive
sleep-awake period. Therefore, the average number of transitions
required to be trained by a sensor in coronac is

νc =
1

Nc

0

@

k−1−c
X

x=|k−c−d+1|k

Nc,x +

j

k

|L|
k

k

−1
X

i=1

|k−c−id|k
X

x=|k−c−(i+1)d+1|k

(i + 1)Nc,x +

k−c
X

x=|k−c−|k||L|
k
|k

„—

k

|L|k

�

+ 1

«

Nc,x

1

C

A

where the last sum is due to the sensors that are trained in the
b k
|L|k

c-th sleep-awake period. In such a sum, when|k||L|k = 0,
only the sensors that belong to coronac and wake up at time
slot k − c, while the actor is transmitting the beaconc − 1, have
to wait k

|L|k
+ 1 sleep-awake periods to be trained. With simple

algebraic manipulations, whend = |L|k , one gets:

νc ≤ 1

Nc

0

B

B

@

(d − 1)
Nc

k
+

j

k

|L|
k

k

X

i=2

id
Nc

k
+

„—

k

|L|k

�

+ 1

«

“

|k||L|k + 1
” Nc

k

«

=

„—

k

|L|k

�

+ 1

«„

1

2
+

|k||L|k + 1

k

«

− 1

k

As before, summing up over all coronas, one hasνavg = νc.
Whend = k, only the sensors that belong to coronac and wake

up at time slotx = k− c are not trained in a single awake period,
but they require one more period. Hence:

νavg = 1 +
1

N

k−1
X

c=0

Nc,c−1 = 1 +
1

N

k−1
X

c=0

Nc

k
= 1 +

1

k

As observed in the proof of Theorem IV.9, when either(L, k) <

d < |L|k or |L|k < d < k, more sensors can be trained in each
sleep-awake period, and henceνavg cannot be greater than that
for d = (L, k) andd = |L|k , respectively. �

It is worthy to point out that, as shown by Theorems V.9
and V.10, the performance of the Flat– protocol depends on the
values ofk, d, andL. Therefore, it is conceivable that in mission
critical systems these parameters could be tuned before the
sensor deployment in order to guarantee a predefined performance
quality.

VI. I MPROVEMENTS

The Flat– protocol presented in the previous section can be im-
proved in several ways so as to reduce the number of sleep/wake
transitions, and hence also the overall sensor awake time aswell
as the total time for training.
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6 if ¬ heardthen
7 heard:= true, t := k − 1 − c;
7.1 for j := i − 1 downto 0 do R|c+1+j|k

:= 0;
7.2 for j := ν − 1 downto 1 do
7.3 for h := d − 1 downto 0 do R|c+j|L|k+i−h|

k
:= 0;

Fig. 4. The extra instructions for the Flat protocol.

A. The Flat protocol

As a first improvement to Flat–, recall that, as soon as a sensor
hears the actor transmission for the first time, it learns from the
beacon the actor global time modulo the actor transmission cycle.
Therefore, it can immediately retrieve backwards the coronas
which it did not hear and which were transmitted by the actor
during its previous awake periods, setting to 0 the corresponding
entries of R. The resulting improved protocol, calledF lat, is
derived from the Flat– protocol by modifying, as shown in
Figure 4, theif instruction in lines 6-7 of Figure 3. As a
drawback, a sensor may now execute as many asO(νmaxd)

arithmetic/logic operations per time slot. The time required to
perform such arithmetic operations, however, should be negligible
with respect to the time slot length, which instead depends on the
characteristics of the radio broadcast equipment.

Observed that, when the sensor hears the actor for the first
time, it fills R as it would have heard the actor since the first
time it woke up, Lemma V.3 and Theorem V.4 can be restated as
follows:

Lemma VI.1. GivenL, d, and k, all the entries ofR the sensor
can fill are set within the firstk′ = k

(L,k)
sleep-awake cycles.

Theorem VI.2. All the sensors are trained in at mostk′ = k
(L,k)

sleep-awake cycles if and only ifd ≥ (L, k).

In other words, the Flat protocol completes the training process
in at mostk′ sleep/wake transitions. Such a bound is tight in the
particular case thatd = (L, k), while it can be lowered whend =

|L|k . Indeed, since Lemmas V.5 and V.6 still hold, Lemmas V.7
and V.8 can be restated for the Flat protocol as follows:

Lemma VI.3. Whend = (L, k) or d = |L|k , a sensor which
wakes up for the first time at slotx and belongs to coronac is
trained during thei-th awake period wherei = max{ic−1,x, ic,x},
if c > 0, or i = i0,x, if c = 0.

Proof: When ic,x ≤ ic−1,x, the proof is the same as that in
Lemmas V.7 and V.8 ford = (L, k) and d = |L|k , respectively.
When ic,x > ic−1,x, although in the worst case the sensor hears
for the first time during theic,x-th awake period, sinceR is set
backwards, bothRc = 1 andRc−1 = 0 are set during such awake
period. �

The worst case performance for the Flat protocol is summarized
below:

Theorem VI.4. Given L, d, and k, if d < (L, k) then there exit
sensors that cannot be trained by the Flat protocol; otherwise all
the sensors are trained, and:

1) If (L, k) ≤ d < |L|k, thenνmax ≤ k
(L,k)

;

2) If |L|k ≤ d < k, thenνmax ≤
l

k
|L|k

m

;
3) If d = k, thenνmax = 1.

Proof: Whend = (L, k), by Lemmas V.5 and VI.3, a sensor
is trained in at most k

(L,k)
sleep/wake transitions. Similarly, when

d = |L|k , the result derives from Lemmas V.6 and VI.3. Moreover,

when (L, k) < d < |L|k and |L|k < d < k, the sensor cannot be
trained later than in the cased = (L, k) andd = |L|k , respectively,
because by Lemma V.2 thek′ coronas transmitted by the actor
when the sensor wakes up are the same (such coronas depend only
onL andk) and clearly the registerR is filled faster. Finally, when
d = k at least one sleep/wake transition is needed. Note that, in
both casesd = k andk multiple of |L|k , the sensors that belong to
coronac and wake-up when the actor is transmitting coronac−1

will set Rc−1 the first time they hear the actor, without waiting
that the actor retransmits beaconc−1, saving one transition with
respect to Flat–. �

Note that, whend = (L, k) and d = |L|k , τ = kL
(L,k)

+ k and

τ =
l

k
|L|k

m

L + k, respectively, becauseνmax matches the upper
bound given in Theorem VI.4.

With respect to the average case performance of the Flat
protocol, one can prove the following result.

Theorem VI.5. Given L, d, and k, if d < (L, k) then there are
sensors which cannot be trained by the Flat protocol; otherwise
all the sensors are trained, and:

1) If (L, k) ≤ d < |L|k , then νavg ≤ k′+1
2 + 1

(L,k)

˛

˛

˛

1
L′

˛

˛

˛

k′
−

1
2k

˛

˛

˛

1
L′

˛

˛

˛

k′

“˛

˛

˛

1
L′

˛

˛

˛

k′
+ 1
”

, wherek′ = k
(L,k) and L′ = L

(L,k) ;

2) If |L|k ≤ d < k, then νavg ≤
“j

k
|L|k

k

+ 1
”

“

1
2 +

|k||L|
k
+1

k

”

− 1
k

;
3) If d = k, thenνavg = 1.

Proof: The proof is similar to that of Theorem V.10. Consider
first the range(L, k) ≤ d < |L|k with d ≥ 2. From Theorem V.4,
νmax ≤ k′ for the Flat protocol. Hence, the sensor behaviour is the
same as that for the Flat– protocol, except for those sensorswhich
were trained by Flat– using more thank′ transitions. Therefore,
the number of transitions remains the same except for the sensors
that wake up at slotx = |k−1− (c+d−1+ i(L,k)|L′|k′ )|k, with
k′ −

˛

˛

˛

1
L′

˛

˛

˛

k′
≤ i ≤ k′ − 1, which will now setR[c − 1] no later

than during the(k′−1)-th sleep-awake period. Thus, the formula
for νc becomes

νc ≤ 1

Nc

0

@

k−1−c
X

x=|k−1−(c+d−2)|k

Nc,x+

„

1 +

˛

˛

˛

˛

1

L′

˛

˛

˛

˛

k′

«

Nc,|k−1−(c+d−1)|k+

k′−1
X

i=1

|k−1−(c+i(L,k)|L′|
k′ )|k

X

x=|k−1−(c+d−2+i(L,k)|L′|
k′)|k

(i + 1)Nc,x +

k′−1−
˛

˛

˛

1

L′

˛

˛

˛

k′
X

i=1

„

i + 1 +

˛

˛

˛

˛

1

L′

˛

˛

˛

˛

k′

«

Nc,|k−1−(c+d−1+i(L,k)|L′|
k′ )|k+

k′−1
X

i=k′−
˛

˛

˛

1

L′

˛

˛

˛

k′

k
′
Nc,|k−1−(c+d−1+i(L,k)|L′|

k′ )|k

1

C

C

A

=
k′ + 1

2
+

1

(L, k)

˛

˛

˛

˛

1

L′

˛

˛

˛

˛

k′

− 1

2k

˛

˛

˛

˛

1

L′

˛

˛

˛

˛

k′

„˛

˛

˛

˛

1

L′

˛

˛

˛

˛

k′

+ 1

«

If d = (L, k) = 1, since no sensor in coronac can be trained
in a single awake period andνmax ≤ k′ = k by Theorem V.4,
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one can write:

νc ≤ 1

Nc

„„

1 +

˛

˛

˛

˛

1

L

˛

˛

˛

˛

k

«

Nc,|k−1−c|k+

k−1−
˛

˛

˛

1

L

˛

˛

˛

k
X

i=1

„

i + 1 +

˛

˛

˛

˛

1

L

˛

˛

˛

˛

k

«

Nc,|k−1−(c+i|L|k)|k+

k−1
X

i=k−
˛

˛

˛

1

L

˛

˛

˛

k

kNc,|k−1−(c+i|L|k)|k

1

C

C

A

=
1

Nc

0

B

@

k−1−| 1

L
|
k

X

i=0

„

i + 1 +

˛

˛

˛

˛

1

L

˛

˛

˛

˛

k

«

Nc

k
+

k−1
X

i=k−| 1

L
|
k

k
Nc

k

1

C

A

=
1

Nc

0

B

B

@

Nc

k

k
X

i=1+
˛

˛

˛

1

L

˛

˛

˛

k

i +

˛

˛

˛

˛

1

L

˛

˛

˛

˛

k

Nc

1

C

C

A

=
k + 1

2
+

˛

˛

˛

˛

1

L

˛

˛

˛

˛

k

− 1

2k

˛

˛

˛

˛

1

L

˛

˛

˛

˛

k

„˛

˛

˛

˛

1

L

˛

˛

˛

˛

k

+ 1

«

Summing over all the coronas, one hasνavg = 1
N

Pk−1
c=0 νcNc =

νc.
Consider now the case1 ≤ |L|k ≤ d < k. The Flat protocol has

the same behaviour as the Flat– one, except in the particularcase
thatd = |L|k dividesk. In such a case, the sensors that belong to
coronac and wake up for the first time when the actor transmits
the beaconc − 1 save one transition. Indeed, such sensors set
R[c − 1] the first time they hear any beacon, thus saving1

k on
the average number of transitions. However, in general, thesame
bound ofνavg stated in Theorem IV.10 still holds.

Finally, when d = k, each sensor is trained in a single
transition, and henceνavg = νmax = 1. �

B. The Flat+ protocol

A further improvement to the Flat protocol exploits the factthat
when a sensor hears a beaconc, it knows that it will also hear
all the beacons greater thanc, and thus it can immediately set to
1 the entries fromRc up to Rk−1. Similarly, when a sensor sets
an entryRc to 0, it knows that it cannot hear any beacon smaller
than c, and thus it can immediately set to0 the entries from
Rc−1 down toR0, too. In contrast to the previous protocols, the
sensor now fills entries ofR relative to beacons not yet transmitted
during its awake periods. Therefore, it can look ahead to decide
whether it is worthy or not to wake up in the next awake period.
If the d entries ofR that will be transmitted by the actor in the
next awake period have already been filled, then the sensor can
skip its next awake period, thus saving energy. The sensor repeats
the look-ahead process above until it finds a future awake period
whose correspondingd entries are not already filled. The resulting
protocol, called Flat+, is illustrated in Figure 5. Procedure Flat+

makes use of two variables, max0 and min1, which record the
largest (smallest, resp.) index ofR which has been filled to0
(1, resp.). When a beaconc is heard, the sensor sets to1 all the
entries fromRc to Rmin1 (line 12). When an entryRc has to
be set to0, then all the entries fromRmax0 to Rc are set to
0 (line 20). When the sensor hears the actor for the first time,
it stores in max0 the largest entry ofR which must be0 due
to its previous awake periods (line 8), and thus it sets to0 the
entries fromR0 to Rmax0 (lines 9–10). Finally, at the end of

Procedure Flat+ (k, L, d);
1 heard:= trained := false; ν := 0; max0 := 0; min1 := k − 1;
2 while wakeupand ¬ traineddo
3 ν := ν + 1;
4 for i := 0 to d − 1 do
5 if received beaconc then
6 if ¬ heardthen
7 heard:= true, t := k − 1 − c;
8 max0:= max{max0, |c + i|k};
9 for j := ν − 1 downto 0 do

10 max0:= max{max0, |c + j|L|k + i|k};
11 for h := 0 to max0do Rh := 0;
12 for h := c to min1 do Rh := 1;
13 min1 := c;
14 if c = 0 or (Rc = 1 and Rc−1 = 0) then
15 mycorona:= c, trained:= true;
16 t := t + 1;
17 else
18 if heardthen
19 c := k − 1 − |t|k;
20 for h := max0to c do Rh := 0;
21 max0:= c;
22 if Rc+1 = 1 then
23 mycorona:= c, trained:= true;
24 t := t + 1;
25 if heardthen
26 f :=true, alarm-clock:= t := t + L − d;
27 while f do
28 s := |k − 1 − t|k, z := 0;
29 while z ≤ d − 1 and R|s−z|k

has been filleddo
30 z := z + 1;
31 if Rz is unfilled then f := false
32 else alarm-clock:= t := t + L;

33 else
34 alarm-clock:= alarm-clock+ L;
35 go to sleep until the alarm-clock rings;

Fig. 5. The Flat+ protocol for a sensor.

the awake period, the sensor performs the above mentioned look-
ahead process, properly setting its alarm-clock (lines 25–32).

The worst case performance of the Flat+ protocol coincides
with that of the Flat one, as stated below.

Theorem VI.6. Given L, d, and k, if d < (L, k) then there are
sensors which cannot be trained by the Flat+ protocol; otherwise
all the sensors are trained, and:

1) If (L, k) ≤ d < |L|k , thenνmax ≤ k
(L,k) ;

2) If |L|k ≤ d < k, thenνmax ≤
l

k
|L|k

m

;
3) If d = k, thenνmax = 1.

Proof: Clearly, the number of sleep/wake transitions of Flat+

cannot be larger than that of Flat. In fact, whend = (L, k) or
d = |L|k, one can find bad instances, whereνmax is the same
for both Flat+ and Flat. Whend = (L, k), consider a sensor that
belongs to coronac = k−1 and wakes up for the first time atx =

|d|L′|k′ |k , where, as usual,k′ = k
(L,k) and L′ = L

(L,k) . Indeed,
the sensor can hear only the beaconk − 1 which is, according to
Lemma V.5, actually heard at the(k′ − 1)-th sleep-awake cycle.
Whend = |L|k, a sensor which belongs to coronac and wakes up
at time slotx = k − c, that is when the actor transmitsc− 1, has
to wait until the actor transmits beaconc, which happens at the
(d k

|L|k
e−1)-th sleep-awake cycle. Thus, in both cases, the sensor

cannot save transitions by means of its look-ahead process.�

Besides to the worst case performance, also the average case
performance of both the Flat and Flat+ protocols coincide when
(L, k) = 1, for d ranging in[|L|k , k], because during subsequent
awake periods of the sensors the actor transmits consecutive
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Procedure Actor (k1, k2, τ1, τ2);
for z := 0 to τ1 − 1 do

transmit the beacon|k1 − 1 − z|k1
up to

coronaCk2(|k1−1−z|k1
+1)−1;

for m := 0 to k1 − 1 do
for z := 0 to τ2 − 1 do

transmit the beacon|k2 − 1 − z|k2
up to

coronaCmk2+|k2−1−z|k2

;

Fig. 6. The two-level protocol for the actor.

decreasing beacons, and hence Flat+ cannot take advantage of
its look-ahead process. Similarly, when(L, k) 6= 1 and d is
sufficiently large, both Flat+ and Flat have the same behaviour.
Indeed, ford ≥ max{|L|k + 1, k − |L|k}, both protocols require
the same number of transitions, precisely one or two transitions,
for each sensor. In fact, for such values ofd, all thek beacons are
transmitted by the actor during at most two sensor awake periods.
So, since Flat+ cannot skip the first awake period, it cannot gain
from its look-ahead process.

Although the average case performance of both the Flat and
Flat+ protocols coincide for large values ofd, or when(L, k) = 1

andd ≥ |L|k , the practical behaviour of Flat+ is much better than
that of Flat for small values ofd, as it will be experimentally
checked in Section VII.

C. The two-level approach

The protocols discussed so far can be further improved by
following a nested approach in which thek coronas are viewed
as k1 macrocoronas ofk2 adjacent coronas each. Specifically,
each sensor first learns in which macrocorona it belongs and
then refines its training by determining the microcorona inside its
macrocorona. Once a sensor learns the index of its macrocorona,
saym with 0 ≤ m ≤ k1 − 1, as well as that of its microcorona,
sayµ with 0 ≤ µ ≤ k2 −1, it obtains its actual corona identity as
c = k2m + µ, where0 ≤ c ≤ k1k2 − 1. For determining both the
macrocorona and microcorona identities, any of the Flat protocol
variants can be used.

The protocol for the actor is shown in Figure 6. The actor
works in two levels. In the first level, the actor cyclically repeats
the macrocorona transmission cycle, that is a cycle of lengthk1

using decreasing powers so as to distinguish different consecutive
macrocoronas. In fact, at time slot0, the actor starts out by
transmitting the beaconk1 − 1 to a power sufficient to reach the
sensors up to the outmost macrocorona, that is up to coronaCk−1.
At time slot1, the actor transmits the beaconk1−2 at a power that
can be received up to the(k1 −2)-th macrocorona, that is corona
Ck−k2−1. For the subsequentk1 − 2 slots, the actor continues to
transmit at decreasing powers until it concludes its cycle at time
slot k1 − 1 with a broadcast that can be received only by the
sensors in the0-th macrocorona, that is, up to coronaCk2−1. In
general, at time slotz, with 0 ≤ z ≤ τ1−1, the actor transmits the
beacon|k1 − 1 − z|k1

up to coronaCk2(|k1−1−z|k1
+1)−1, where

the timeτ1 is properly chosen to allow all the sensors to be trained
with respect to their macrocorona.

In the second level, for each macrocorona, the actor cyclically
repeats amicrocorona transmission cycle, that is one of lengthk2

using decreasing powers so as to distinguish different consecutive
coronas. Such a microcorona transmission cycle is repeatedτ2

k2

times, choosingτ2 so as to allow all the sensors in each macro-
coronam to be also trained with respect to their microcorona. In

general, for each macrocoronam = 0, 1, . . . , k1 − 1 and for each
z = 0, 1, . . . , τ2−1, the actor transmits the beacon|k2 − 1 − z|k2

up to coronaCmk2+|k2−1−z|k2

. Overall the second level of the
protocol lastsk1τ2 time slots.

As regard to the protocol for the sensors, it is assumed that
each sensor is aware of the two-level actor behaviour and thus
of the numbersk1 and k2 of macrocoronas and microcoronas,
respectively. Each sensor wakes up at timex, with 0 ≤ x ≤
min{k1, k2}, and repeats its sleep-awake cycle of lengthL such
that L ≥ d ≥ max{(L, k1), (L, k2)}. Each sensor uses ak1-bit
registerP and ak2-bit registerQ to keep track of the macrocorona
and microcorona identities, respectively. As soon as the sensor
wakes up at timex, it performs one of the protocol variants, i.e.
Flat–, Flat, and Flat+, using its registerP to learn its macrocorona
identity m. When it has been trained on its macrocorona, it sets
its alarm clock toτ1 + (k1 − 1 − m)τ2 + x to be ready for the
training on its microcorona, and goes to sleep. Reawakened,the
sensor performs again the same protocol variant, but now filling
its registerQ to learn its microcorona identityµ. Clearly, as soon
as it knows bothm and µ, it derives its corona identityc =

k2m + µ, and thus it is trained.
Depending on which protocol, Flat–, Flat, and Flat+, is used

to train the sensors on each macrocorona and microcorona level,
three two-level protocols are achieved, denoted by TwoLevel−,
TwoLevel, and TwoLevel+. The values ofτ1 andτ2 are properly
set according to the chosen variant, as stated in Theorems V.9,
VI.4, and VI.6, respectively. As regard to the performance of the
two-level protocols, one has:

Theorem VI.7. Given L, d, k, k1, and k2, with k = k1k2 and
L ≥ d ≥ max{(L, k1), (L, k2)}, letting ν1 andν2 be, respectively,
the numbers of sensor sleep/wake transitions required to train a
sensor onk1 macrocoronas andk2 microcoronas, the two-level
protocols requireν = ν1 + ν2 sleep/wake transitions andω =

(ν1 + ν2)d overall sensor awake time. Moreover, the total time
for training is τ = τ1 + τ2k1, whereτ1 and τ2 must be the upper
bounds on the total time required by the training protocol adopted
on each level. �

Note that, by Theorems V.9 and VI.4, tight bounds on the
values of τ1 and τ2 can be derived only whend = (L, k),
d = |L|k , and d = k. In all other cases, the total time of each
level is derived fromτ = νmaxL + k, setting νmax equal to
the upper bound given in Theorems V.9 and VI.4. For example,
consider the TwoLevel– protocol and assumed = |L|k1

, and
(L, k2) ≤ d < |L|k2

. Then,τ1 =
“j

k1

|L|k1

k

+ 1
”

L + k1and τ2 =
“

k2

(L,k2)
+
˛

˛

˛

1
L′

˛

˛

˛

k′

”

L + k2, wherek′ = k2

(L,k2)
andL′ = L

(L,k2)
.

Next, the worst case performance of the Flat protocol is
compared with that of the corresponding TwoLevel protocol when
the same value ofL and d are used, k1

(L,k1)
6= 1, k2

(L,k2)
6=

1, and (L, k2) 6= 1. Note that to satisfy the constraints of
both the Flat and TwoLevel protocols,d must vary between
(L, k) = (L, k1)(L, k2) and min{k1, k2}. When d = (L, k), by
Lemma VI.1 and Theorem VI.4, the number of transitions is
at most k1

(L,k1)
+ k2

(L,k2)
for TwoLevel and is at least k

(L,k) for

Flat. Since(L, k) = (L, k1)(L, k2), one has k1

(L,k1)
+ k2

(L,k2)
<

k1

(L,k1)
k2

(L,k2)
= k

(L,k1)(L,k2)
= k

d
. Similarly, TwoLevel beats Flat

when d = min{k1, k2}. Indeed lettingd = k1 = min{k1, k2},
TwoLevel requires at most1+ k2

(L,k2)
< k2 sleep/wake transitions,

while Flat needs at leastk
d

= k2 transitions. Since in both
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protocols the number of transitions decreases whend increases,
TwoLevel beats Flat when(L, k) ≤ d ≤ min{k1, k2}. Finally it is
easy to see that both the overall sensor awake time and the total
time for training of Flat are larger than those of TwoLevel.

VII. E XPERIMENTAL TESTS

The worst and average performance of the corona training
protocols were experimentally tested. The algorithms werewritten
in C++ and the experiments were run on an AMD Athlon X2
4800+ with 2 GB RAM. In the simulation, each corona has a
unit width. There areN = 10000 sensors uniformly distributed
within a circle of radiusρ = k, centered at the actor and inscribed
in a square. Precisely, the Cartesian coordinates of each sensor
are uniformly generated choosing at random two real numbersin
the range[−k, k]. The generation proceeds untilN sensors are
placed inside the circle, thus discarding those laying outside.

In the experiments, fixedk, L, andN , and varyingd between
(L, k) and k, both the worst and average number of transitions,
denoted byνmax and νavg, both the worst and average overall
sensor awake time,ωmax = νmaxd and ωavg = νavgd, and the
total time τ , which measures the time required to terminate the
whole training process, are evaluated. Theνmax value is obtained
by taking the maximumν among all sensors in the network,
while νavg is computed by summing up theν values of all
sensors in the network and then dividing byN . The results are
averaged over3 independent experiments, which only differ in
the deployment distribution of the sensors and in the sensorfirst
wakeup times. It is worth noting that, if the network is dense
enough to guarantee that there is at least one sensor in each
corona for each first wakeup time, thenνmax is always the same in
different experiments, whileνavg may slightly change depending
on the sensor first wakeup time distribution.

Consider first the experiments for the Flat–, Flat, and Flat+

protocols. In the simulations, the numberk of coronas is fixed
to 64. The lengthL of the sensor sleep-awake cycle assumes the
values104 and 168. Although L can assume any value, larger
values are preferred in order to increase the longevity of the
wireless sensor network. In fact, fixedd, a largerL results in
a longer life as the life of a sensor is measured in terms of the
overall number of sleep-awake cycles until its energy is exhausted.
Thus, in all our experiments,L ≥ k has been chosen. Finally, the
sensor awake periodd is an integer that varies, with a step of4,
between the greatest common divisor(L, k) = 8 andk = 64, thus
including |L|k = 40. The results are reported only when all the
sensors can be trained, that is ford ≥ 8.

Figure 7 shows the numberνmax andνavg of transitions for the
different values ofd. According to Theorems V.9 and VI.4, when
d = 8, Flat– hasνmax = k

(L,k) +
˛

˛

˛

1
L′

˛

˛

˛

k′
= 8 + 5 = 13, while

both Flat and Flat+ have νmax = k
(L,k)

= 8. Similarly, when
d = 40, all protocols takeνmax = 2 transitions. Except for the
extreme valuesd = 8 andd = 64, the greatest percentage of gain
for νmax is achieved whend = 24, where both Flat+ and Flat
employ forty percent less transitions than Flat–. As regardto the
average performance, one notes thatνavg is considerable better
thanνmax for all three protocols. Flat and Flat– have almost the
same average performances, while Flat+ always behaves better
than them. In particular, its greatest percentage of gain for νavg

is obtained in the range8 ≤ d ≤ 20, where Flat+ improves about
twenty/thirty percent upon Flat–. Ford ≥ max{|L|k +1, k−|L|k},
both the worst and average results of Flat and Flat+ coincide.
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Fig. 8. Overall sensor awake time whenk = 64, L = 104, and8 ≤ d ≤ 64.

Figure 8 shows the awake timesωmax = νmaxd and ωavg =

νavgd, which measure the overall energy spent by each sensor
to be trained. Although the number of transitions decreasesasd

increases, Figure 8 suggests to choose a small value ofd from the
sensor awake time perspective. The minimumωmax is achieved by
Flat and Flat+ for d = 8 andd = 64, as expected by Theorems V.9
and VI.4. However, whend = 8, ωavg lowers to about two thirds
of ωmax for Flat– and Flat, and to about one third for Flat+. Note
that Flat+ has the maximum gain whend is small. Indeed, it can
fill the same entries ofR just listening to the actor for a single
slot or ford slots. Hence, small values ofd save the same number
of transitions as larger values, but allow sensors to reducetheir
energy consumption because they stay awake for smaller periods.

Figure 9 illustrates the total timeτ required to accomplish
the entire training task, for bothL = 104 and L = 168. Since
|168|64 = |104|64 = 40, by Lemma V.2, each protocol maintains
the same behaviour with respect to the number of transitions.
Thus, the plots forL = 168 of νmax and νavg, and hence of
ωmax andωavg, are exactly the same as those shown in Figures 7
and 8. Recalling thatτ = νmaxL + k, the total time forL = 168

scales by a constant∼ 168
104 , as depicted in Figure 9. In general,

all values ofL such that|L|k is the same present the properties
above, namely,ν andω are identical, whileτ scales. Therefore,
the minimum total timeτ is achieved for the smallest value ofL.
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Consider now the experiments relative to the two-level ap-
proach. Recall that TwoLevel–, TwoLevel, and TwoLevel+ de-
note, respectively, the protocol when Flat–, Flat, and Flat+ are
employed on each single level. In the simulations, the number k

of coronas is fixed to575 while k1 and k2 are fixed to25 and
23, respectively. The lengthL of the sensor sleep-awake cycle is
fixed to 27 and the sensor awake periodd varies, with a step of
2, between max{(L, k1), (L, k2)} = 1 and min{k1, k2} = 23.

Figures 10, 11, and 12 plot both the average and worst case
performance ofν, ω, andτ . As explained in the previous section,
one can easily derive the worst case performance of the two-level
protocols in Figure 10 from the worst case performance of the
one-level protocols. For example, whend = (L, k1) = (L, k2) =

1, TwoLevel– requiresν = 67 sleep/wake transitions because the
Flat– protocol requiresν1 = k1

(L,k1)
+
˛

˛

˛

1
L

˛

˛

˛

k1

= 25 + 13 = 38

transitions whenk1 = 25 andν2 = k2

(L,k) +
˛

˛

˛

1
L

˛

˛

˛

k2

= 23 + 6 = 29

transitions whenk2 = 23.
Figure 11 shows the awake timesωmax = νmaxd and ωavg =

νavgd. The curves in Figure 11 smoothly change, without the
abrupt peaks of Figure 8, because now the number of transitions
monotonically decreases, as shown in Figure 10. Moreover, note
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that whend = (L, k) = 1 the overall awake time is minimum,
although the number of transitions is maximum, and TwoLevel+

reaches the maximum gain with respect to the other algorithms,
in both the worst and average cases.

Figures 13, 14, and 15 are devoted to compare the behaviour
of the Flat and TwoLevel protocols. As before,k = 575, k1 = 25,
andk2 = 23. The lengthL of the sensor sleep-awake cycle is fixed
to 27 and 577 for TwoLevel and Flat, respectively. The sensor
awake periodd varies, with a step of5, between(L, k) = 1 and
76.

As expected for1 = (L, k) ≤ d ≤ min{k1, k2} = 23, the
TwoLevel protocol always significantly beats the Flat protocol.
Note that, in contrast to Flat, TwoLevel cannot be employed when
d ≥ 23. Observe thatν = O(1) can be achieved by both the
Flat and TwoLevel protocols in correspondence ofd = Θ(k) and
d = Θ(

√
k), respectively, leading therefore to a big difference in

the values ofω and τ .

VIII. C ONCLUDING REMARKS

In this work new protocols have been proposed which employ
the asynchronous model originally presented in [23] and are
lightweight in terms of the number of sleep/wake transitions
and overall sensor awake time for training. Among the various
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protocol variants and improvements, Flat– is the simplest one
from the computational viewpoint because each sensor performs
O(1) operations per time slot. In contrast, TwoLevel+ has the
best performance, but all the two-level protocols, as well as Flat+,
cannot be used if the sensor is not allowed to skip one or more
awake periods.

The results presented in this paper show that the protocols are
flexible, in the sense that their parameters can be properly tuned.
For instance, fixed the numberk of coronas, one can decide
the optimal values ofd and L so as to minimize the number
of sleep/wake transitions and/or the overall awake time per
sensor. Conversely, one can fix the desired number of sleep/wake
transitions, and then select suitable values ofd andL.

As possible issues for further research, one could either gen-
eralize the two-level approach to a larger number of levels,
finding whether there are numbers of levels for which optimal
performances are attained, or search for significant lower bounds
on such optimal performances. However, one should remind that
some of the performance measures, such as the total trainingdelay
and the energy consumption per sensor, are orthogonal. Therefore,
one should look for a good trade-off, especially considering the
values that the parameters can assume in a realistic scenario.

In this paper, a single fixed actor was assumed for training the
sensors in an ideal environment where the radio antennae transmit
in a regular way. In practice, there is a variance in the received
signal strength, which might exhibit some continuous changes in
range and angle. Thus, one could investigate the accuracy ofthe
acquired coarse-grained location, for example, by modeling the
radio irregularity as done in [26]. Moreover, one could extend the
protocols considering the case where there are several fixedactors,
knowing about each other, and thus determine whether they can
collaboratively train sensors better than using only a single actor.
Finally, one could study how the protocols presented in thispaper
can be adapted to the case of one or more mobile actors.
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