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Abstract— Scalable energy-efficient training protocols are pro-
posed for wireless networks consisting of sensors and a sieg
actor, where the sensors are initially anonymous and unawar of
their location. The protocols are based on an intuitive coatinate
system imposed onto the deployment area which partitions #
sensors into clusters. The protocols are asynchronous, irhé
sense that the sensors wake up for the first time at random,
then alternate between sleep and awake periods both of fixed
length, and no explicit synchronization is performed betwen
them and the actor. Theoretical properties are stated undewhich
the training of all the sensors is possible. Moreover, both avorst-
case and an average case analysis of the performance, as well
as an experimental evaluation, are presented showing thate
protocols are lightweight and flexible.

Index Terms— Wireless sensor networks, actors, corona train-
ing, localization, network protocols, design and analysisof
algorithms

I. INTRODUCTION

. . i Lo Fig. 1. An actor-centric subnetwork: (a) the sensors deployed ifraular
Recent technological breakthroughs in ultra-high integna field of radiusp, (b) an actor broadcast of rang®, (c) an actor broadcast

and low-power electronics have enabled the development ®fangleq, (d) the virtual coordinate system.

miniaturized battery-operated sensor nodssngors for short)

that integrate signal processing and wireless communitatca-

pabilities [2], [25]. Together with innovative and focuseetwork

design techniques that will make possible massive deplayméierarchical network, commonly referred to as a wirelessse

[22] and sustained low power operation, the small size ars cand actor network (WSAN [1], or SANET [9]).

of individual sensors are a key enabling factor for aggiegat The typical mode of operation of an actor is to task the sensor

sensors intavireless sensor networksvhich have a significant in a circular field, centered at the actor itself, to produatad

impact on a wide array of applications [7]. relevant to the mission at hand [14]. For instance, Figuad I(
Recently, it has been recognized that it would be benefilustrates the circular area of radiys monitored by an actor

cial to augment massively deployed sensor networks by mqeepicted with a triangle), which defines an actor-centribret-

powerful entities, equipped with better processing cdjtisi, work. In this scenario, the actor is equipped with a longgean

higher transmission power, and longer battery life. Thedieto radio with both isotropic and directional antennae. Speatifj, by

a heterogeneous deployment including, alongside with ithe t means of the isotropic antenna, the actor is able to sendtasts

sensors, some entities referred toadors [1] or Aggregation with variable-rangeR to reach all the sensors at distance at

and Forwarding Nodes (AFN) [14]. While the sensors are thskenost R < p from the actor (see Fig. I(b)). Moreover, using

mainly to sense their immediate neighbourhood, the actha\® the directional antenna, the actor can send full-rangedoasts

as bothactuatorsandcoordinators Indeed, they collect, aggregatei.e., with R = p) to all the sensors lying in a circular sector of

and fuse the data harvested by the sensors, thus takingGﬂBCiSarbitrary anglen with respect to the polar axis (see Fig. I(c)). In

in order to rapidly respond on the environment in a meaningfgeneraL a large sensor deployment area of any shape iszgdan

way. Moreover, actors may coordinate with each other and/igito several cooperating actor-centric subnetworks, amesfich

communicate with the outside world through a central entifdepbyed actor (where sensors lying in the intersectiogearof

calledsink (which could be a base station, a patrol, or a Sate"ita}qany actors should refer to just one actor, choosing oneewfith

The so augmented version of the sensor network results in arpe random deployment results in sensors initially unaware

. . . . o of their spatial coordinates with respect to its referrirgoa
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intruder vehicle or for guiding a team of first-aid on an ere@iry levelapproach, where jumps are initially made in the flat protecol
area. Moreover, understanding the sensory data may bedocagnd are filled later on. Theoretical properties on the patarae
dependent, for instance, temperature and moisture valaes hof the training protocols are stated under which trainingathf
different meanings depending on which area they refer t@ Tkhe sensors in the network is possible. Moreover, a perfocma
immediate approach to provide the exact geographic pasifo evaluation of the protocols is presented showing that they a
each sensor node is obviously based on the Global Posigoniightweight in terms of both the number of wake/sleep trtmss
System (GPS). Although the GPS receivers are now command the overall sensor awake time for training.

on cars, trucks, PDAs, and cell phones, they are unsuitable f The remainder of this paper is organized as follows. Section
massive deployed sensor networks due to the design coristea 1l provides an overview of related works, Section Il disses
the cost, dimension, and energy of each sensor node. Néemthe the wireless sensor and actor network model and introduees t
in such dense networks, most applications need to locatentdl task of training, while Section IV offers a quick refresher o
region where the event happens rather than the single@usif modular arithmetic. Section V is the backbone of the entire
all the sensors that report the event itself. Hence, a cagee paper, presenting the theoretical underpinnings of a liesitng
location awareness [15], [21] is sufficient and the deplaynagea protocol, called Flat—, along with its worst-case and ayerease
can be divided in small regions so that all the sensors degloyperformance analysis. Section VI shows two variants of #ed
in one of such regions share the same virtual position and thetocol, called Flat and Flat as well as a two-level approach,
data collected there can be used interchangeably or aggdegawhich improve the Flat— performance. In particular, it iDwh
Of course, there is a trade-off because the coarse-graatidoc that the two-level protocols outperform the flat ones, langthe
awareness is lightweighter than GPS localization but teeltieg number of transitions from a linear down to, at most, a squaoé
positioning accuracy is only a rough approximation of thaatx function. Section VII presents an experimental evaluatbthe
geographic location. performance, tested on randomly generated instancesrroordgi

The task of allowing each sensor to acquire a coarse-grafif analytical results in both the worst and average cases, a
location with respect to its referring actor is callgdining [23].  Showing a much better behaviour in practice. Finally, $ectlll
Since the aim of this paper is to study such a training taskffers concluding remarks.
it is assumed from now on that the whole network coincides
with a single actor-centric subnetwork. Under this assionpt Il. RELATED WORK

training consists in imposing a virtual coordinate systdmatt |nthe literature, the task of determining an exact geogealph
divides the area into equiangular sectors and concentrines cation, referred to a®calization is recognized as a fundamental
centered at the actor, as illustrated in Fig. I(d). Afteinireg, each problem in designing sensor networks and has been extgnsive
sensor has learnt the corona and the sector to which it belongudied (see e.g. [3], [12], [18]). Since localization haage, such
It is worth noting that, in this way, training provides foreér a a5 GPS [11], for each sensor is expensive in terms of cost and
clusteringof the sensors, where a cluster consists of all Sens@ergy consumption, prominent solutions assume the existef
having the same coordinates. Hence, on the top of trainilhg, Several anchor nodes which are aware of their location Isecau
network protocols based on clustering can be used [2], 8], [ they are the only nodes provided with GPS and allow other siode
[19]. For example, after training, routing can be easilyf@ened to infer their locations by exchanging information with tie
as follows. Cluster-to-actor messages are trivially rdutevard | pcalization algorithms can then be divided into two catézmo
within a Single sector, while cluster-to-cluster messacs be range_basedindrange_free[lo], [17] In range_based a|gorithmsl
routed following several paths, e.g., first along the seofdthe nodes estimate their distance to anchors, using some kpedia
sender to reach the corona of the receiver, and then withih sihardware, and applying methods like triangulation or tigilation,
a corona (clockwise or counterclockwise, depending on WFC \which are based on the fact that a node position is uniquely
the shortest path) to reach also the sector of the recei®r Il determined when at least three anchor positions are aleipe
addition, to help the actor locating an event that happerten npode [3]. Other range-based algorithms use received ragials
network, each sensor can add its coordinates to the sens@d dtength, angle and/or time of arrival of signals, or difeze
before delivering the messages to the actor. of time of arrivals to locate the sensors. Although rangsebla
While previous papers have studied the task of training in abgorithms result in a fine-grained localization schemiegfathem
actor-centric model where all the sensors are synchroniaedneed some special hardware for the measurements at thesenso
the master clock running at the actor [5], [15], [21], the maiOn the other hand, range-free algorithms do not use anyapeci
contribution of this paper is to study training protocolsamasyn- hardware but accept a less accurate localization. For deanmp
chronous model, which only assumes very basic functidealit the range-freeentroid algorithm, the sensors receive the anchor
of the network — no explicit synchronization between thessen positions, and using this proximity information, a simpéntroid
and the actor is needed, and the sensors, which wake up for thedel is applied to estimate the position of the listeningles
first time at random, alternate between sleep and awakedserif6]. Other solutions use methods similar to distance verctoting
both of predefined lengths, established at the manufagttirime, to allow the nodes to find the number of hops from the anchors.
and thus independent of the protocol computation. In f&ds,is  Anchors flood their location throughout the network maimitag
the behaviour of many actual sensors with harvesting cifedi a running hop-count at each node along the way. Nodes ctdcula
which collect energy during the sleep periods and perforeir th their position based on the received anchor locations, @n th
duties during the awake periods [16], [24]. The present papeop-count from the corresponding anchor, and on the average
extends in a substantial way the work of [23] presentingemew distance per hop [13]. In [10], an iterative method is pudste
flat protocols based on linear signal strength decrease. Mereownarrow down the position accuracy until a tolerable errothe
three additional new protocols are exhibited which rely dwa- positioning is reached. In practice, each sensor repgatbdbses



a triple of anchors from all audible anchors and tests whetlig f. Each sensor has a modest non-renewable energy budget and
inside the triangle formed by them, until all triples are axsted a limited transmission range.

or the required accuracy is achieved. At this point, the@eat  As shown in Figure I(d), training imposes a virtual coordéna
gravity of all of the triangles in which a node resides is assd system onto the sensor network by estab”shing:

to be the sensor estlmat.ed p05|.t|on_ 1. Coronas The deployment area is covered Iycoronas
The localization algorithms discussed so far assume theat th

. ) . Cpy,C1,...,C,_1 determined byk concentric circles, cen-
anchor nodes are special nodes mainly because they know thei tered at the actor, whose radii abe< ro < 1 < --- <
spatial coordinates. Instead, several recent papers gIL]1[15], e = pi ' 0
[21], [23] have considered the localization problem in aehet 2. Sectors .I’.he deployment area is ruled into equiangular
geneous network whose anchor nodes, called actors, arel@dov sectorsS, S S,_,, centered at the actor, each having

Wlt!'] special transmlss]on capabilities anq steady poweplgu a width of 2T radians,
while do not necessarily need GPS receivers. In such a dpntex

localization is intended as the task of making each sensler ab For the sake of simplicity, in this paper, it is as.sumed that
to acquire a coarse-grain location with respect to a givetorac 2!l the coronas and all the sectors have the same width,ugitho

node and is referred to as training. The main characteraitic this is not strictly required. In a practical setting, theam width

such training protocols relies on using a single actor nagle TNt be equal to the sensor transmission rangey sagd hence

impose a discretized polar coordinate system. The procmsstrie (outer) radius;; of coronaC; might be equal i + 1)r. In

centralized and uses only asymmetric broadcasts (from dtoe a Such a case, then, the corona number plus one giYeS the number
to the sensors) without multihop communications among tl’i’é hops needgd for a.sensor-to-actc.)r communication. Mergov
sensors. The sensors deduce their coarse-grain locafpuiténg a sectorS; might cqn3|§t of the port|.on.of the deployment area
the information received by the actor without performingy anbe;\:rveen the two directional transmission angjég and (j + ,
local communication. In particular, the two protocols reted 1) 7 - At the end of the training period each sensor has acquired
in [5] assume that all the sensors are synchronized to theema§W° coo_rdlne_ltes: the identity of the _corc_ma in which it Ilas,_well
clock running at the actor. Such two protocols can be thoaght as the |_dent|ty of the sector to Wh'ch it belongs. In parbfcyta
visits of complete trees, whose leaves represent coramists cluster is the locus of all nodes having the same coordinates
whose node preorder/BFS numbers are related to the timg, sii€ above system.

and whose node inorder/BFS numbers are related to the ac-

tor transmission ranges/angles, respectively. Explpitime fully V. BASIC MODULAR ARITHMETIC

synchronized model and the capability of irregularly al&ng  since several derivations in this paper employ modulaharit

between sleep and awake periods, whose frequency and lengllyic it is appropriate to offer the reader a quick refresiiehe
depend on the protocol computation, such protocols achieve terminology and basic results used hereafter.

optimal time (in the number of coronas/sectors) for terringa

1 Given any two integers andm, with m # 0, let |z|,, denote
the training process.

the modulo operation, that is the nonnegative remainder of the
division of z by m (see [20]). Two integers andy arecongruent
I1l. THE NETWORK MODEL modulom, denoted byr = y mod m, if and only if |z]m = |y|m.

In this work, a wireless sensor and actor network is assumed-t ® indicate one of the three basic operatiomsidition
that consists of a single, fixed actor, centrally placed wepect subtraction andmultiplication The modulo operation distributes

to a set of sensors randomly deployed in a circular field with®Ver Such operations and hen¢e e ylm = ||zlm ® ylm =
the actor, as illustrated in Figure I(a). |z ® |y|m|m = ||x|m ® |y|m|m. Moreover, it is easy to prove that:

It is assumed that the time is ruled into slots. The sensgrgoperty IV.1. For any integersa, z, and m, with a # 0 and
and the actor use equally long, in-phase slots, but they do ng -£ 0, |az|wm = ala|m.
necessarily start counting time from the same slot. o )

A sensor is a device that possesses three basic capabilitied-€t thegreatest common d'V'S/@f integerse andylbe denoted
sensory, computation, and wireless communication, andatgse Y (#;y). Therefore, letting: = (x,m), andm = m (/“37 m) and
subject to the following fundamental constraints: applying Property IV.1, one derive|m = (z,m)z’|,n . Itis

a. Each sensor alternates betwesbeep periods andawake worth noting that the division aof by y modulom is possible only

periods — the sensor sleep-awake cycle has a total IengthV\g}eny andm are Coprimé 1.€. when(m, y) - L. Indeed only in
L time slots, out of which the sensor is in sleep mode fosruch a case there exists tingerse multiplicative ofy modulom,

I — d slots and in awake mode far slots: which is denoted by | = (as used in [20]) and is defined as that

. . 1 _ . .
b. Each sensor imsynchronous- it wakes up for the first INtéger saﬂsf_ymgr |%,, = 1 mod m. The following property is
time according to its internal clock and is not engaging iWidely used in the paper:

an explicit synchronization protocol with either the aaor property [V.2. Given any integers, y, z, w, andm # 0, it holds:

the other sensors; o . B
c. Individual sensors workunattended— once deployed it 1) ez = al(/imOd m anda # 0 is such that(a,m) = 1, then
x =y mod m

is either infeasible or impractical to devote attention to
individual sensors;

d. No sensor has global information about the network topol-
ogy, but can hear transmissions from the actor; The next property shows how the values generated by the

e. The sensors agnonymous- to_ assume the s!mplest SensoExpressiom’x|m vary wheni assumes any integer value.
model, sensors do not need individually unigue IDs;

2) If ax = ay mod m and (a,m) = g, thenz = y mod m/,
wherem = m/yg



Pr ocedur e Actor (k, 11); Pr ocedur e Flat— (, L, d);
for z:=0tom —1do 1 heard:= trained:= f al se; v :=0;
transmit the beacofk — 1 — 2|, up to coronaCly_1_|,; 2 whi | e wakeupand — traineddo
3 = 1;
Fig. 2. The corona training protocol for the actor. 4 fol; i :i i)rt od—1do
5 i f received beacom t hen
6 i f — heardt hen
Property IV.3. Given two integers: and m # 0 such that | 7 o jead=true, t=kol o
_ s : c = 1,
(z,m) =9 the/congruence?: = y mod m hzi\s solution for any | 4 if c=0or (Re=1and Re_1 = 0) t hen
y = gy with ¢’ € [0,...,m" — 1], wherem’ = *. Moreover, | 10 mycorona= c, trained:= t r ue;
liz|m generates only the values multipleofn [0,1,...,m —1], 11 | ti=t+1;
; 12 el se
one for each different value ¢fl,,.. 14 it heardt hen
In the particular case wherer,m) = 1, the property above 12 CR::f(; 1= [t
shows that, Whgnassumes all the: integer va!ues ino, . ... sm= | 17 i f Reys—1then
1], the expressiorjiz|,, generates all then integer values in | 18 mycorona= ¢, trained:= t r ue;
[0,...,m—1]. 19 ti=t+ 1
20 i f heardt hen
21 alarm-clock:=t:=t+ L — d;
V. THE FLAT—PROTOCOL 22 el se
. . . . . 23 alarm-clock:= alarm-clock+ L;
The main goal of this section is to present the details of the,, go to sleep until the alarm-clock rings;

basic training protocol where each individual sensor hdsdm
the identity of the corona and of the sector to which it befng
regardless of the moment when it wakes up for the first time.
The protocol acts as follows. Consider first the corona itngin
task in which the actor broadcasts using the isotropic aaten OF transmitted by the actor in the beacon along with the coron
Immediately after deployment the actor cyclically repeats identity. Immediately after deployment, each sensor wakesit
transmission cycle which involves broadcasts at successivelyandom within theo-th and the(k — 1)-th time slot and starts
lower power levels. Each broadcast lasts for a slot and miss listening to the actor forl time slots (that is, its awake period).
a beacon equal to the identity of the outmost corona reachddl€n. the sensor goes back to sleepfferd time slots (that is, its
Specifically, the actor starts out by transmitting the beace 1 Sleep period). Such a sleep/wake transition will be repkareil
at the highest power, sufficient to reach the sensors up to {f€ Sensor learns the identity of the corona to which belotings
outmost corona’;,_;; hext, the actor transmits the beacer-2 IS, until the sensor will be trained. Each sensor, duringrtiieing
at a power level that can be received up to cor6ha., but not Process, uses &-bit register i to keep track of the beacons,
by the sensors in corondj,_;. For the subsequert — 2 slots, 1-€- corona identities, transmitted by the actor while tblesrt.;)r is
the actor continues to transmit at decreasing power levelsit awake. As soon as the sensor hears an actor transmissidmefor t
concludes its transmission cycle with a broadcast of beadbat first time, it starts to fill its registeR and it is able to learn the
can be received only by the sensors in cordha In general, at act0|_r global timet within the current _actor _transmissio_n cycle,
time slotz, with z > 0, the actor transmits the beachr 1 — |z|; that ist = |z|,. From now on, such a time will regularly increase
at a power level sufficient to cover the distange ||, and hence SO that the sensor can derive franthe beacorjk — 1 — ¢, that
to reach all the sensors up to coro@_;_|.|,, but not those .the actor is transmitting. Then, in each time sllot when thesge
beyondCj,_;_|,|,. The actor transmission cycle is repeated for & awake, one entry oft can be always set either toor to 1.
given timer, which is sufficient to accomplish the entire corond? fact, if the sensor hears beaconthen it setsk. = 1, while
training protocol (the actor can derive the valuerpfirom k, £, Iif the sensor hears nothing, it sels,_;_;, = 0. Note that an
andd, as it will be shown in the discussion after Theorem V.9pWake sensor in coron@. hears any broadcast which transmits
The protocol for the actor is shown in Figure 2. beaconb, with ¢ < b < k — 1 (clearly, different beacons are
The sector training task is analogous to the corona trainifigard in different broadcasts). In contrast, an awake senso
task, except that now the actor broadcasts using the diredti coronaCec cannot hear the broadcasts transmitting beacovith
antenna. Indeed, the actor cyclically repeats a transomsgicle 0 <0 < ¢—1, because it is out of the range covered by the actor
of h directional broadcasts with successively smaller angldsansmission. Hence, if a sensor séts = 0 (resp., Rc = 1)
Specifically, at time slotz, with z > 0, the actor transmits then it belongs to a corona whose identity is higher thanp(res
the beaconh — 1 — |z|,, which can reach all the sensors upsmaller than or equal ta). Note that only the sensors in corona
to sector S ;_.|,, namely, using an angle of transmissiorf’o can hear beacos and thus they are the only ones WhIF:h can
a=(h— |Z|h)277r- Since sector training is the same as cororsft Ro = 1. From the above discussion, the followitigining

training once the directional broadcasts replace thedpitrones  condition holds:

andh replacesk, all the results that will be presented for coronag o ima v 1. [23] A sensor which belongs to coror@, with
hold also for sectors. Therefore, sector training will netfrther | > 0, is trained as soon as the entriés and R,y of its régister
) Cc—

discussed and we shall concentrate only on corona trairing f; 5. set to1 and 0, respectively. A sensor which is in corona

Sensors. _ _ Cy is trained as soon ag, is set tol.
In order to describe the basic corona protocol for sensors,

called Flat—, we assume that each sensor is aware of the actorn the resulting sensor protocol, called Flat—, each sermants
behaviour and of the total numbér of coronas. In particular, in v the number of its sleep/wake transitions needed to be ttaine
k can be either stored in the sensor memory before deployméitie 1), initializing its local time when the sensor re@sva

Fig. 3. The Flat— protocol for a sensor.



beacon for the first time from the actor (that is, wherardis set sensor, the actor transmits no more t iz d different corona

to true in line 7), and it stores iralarm-clockthe time when identities. These corona identities will be cyclically nsaitted

the next sleep/wake transition is planned (line 21-23)eAfiny during the training process of such a sensor. They correspmn
entry of R is filled, the sensor checks the training condition statezkactly all the positions of? that the sensor can set and they
in Lemma V.1. Observe that lines 12—19 cannot be executed whaclude all the beacons that the sensor can hear from the. acto
¢ =k — 1, because the beacdn- 1 reaches the outmost coronaHence, in the worst case, the sensor nekds- (L—kk) awake
Ck—1, all awake sensors hear, and thus they execute lines §eriods to hear the actor for the first time and furthbe £ -

11. In the procedure, each sensor exec@¢s) arithmetic/logic awake periods to fillR. (L’E)

operations per time slot. Clearly, if the training condition of Lemma V.1 cannot be
verified by a sensor within its firsek’ = f—kk) sleep-awake

A. Correctness and performance analysis cycles, such a sensor will never be trained, regardless boy |

the training process will continue. The following resultosls
aL#nder which conditions fok, L and d all the sensors can be
htéained and also gives an upper bound on the number of sleep-
awake cycles needed to accomplish the entire training psoce

In the following, the conditions on thk, L, andd parameters
will be investigated which guarantee that all the sensoes
trained, independent of their first wakeup time and from t
coronac they belong to.

Lemma V.2. Given L,d, and k, there are exactlyt’ — —& Theorem V.4. All the sensors are trained in at mast’ = 2—(ka)
. L ' (LR sleep-awake cycles if and onlydf> (L, k).

different corona identities that can be transmitted by tltoa

when the sensor starts any awake period. Assuming that the Proof: To simplify notation, writeg = (L, k). For the sake of
sensor wakes up for the first time at slot0 < = < k — 1, contradiction, suppose that all the sensors have beerettand
then the beacon transmitted when the sensor startstiisawake let d < g. By Lemmas V.2 and V.3, in at moggi sleep-awake
period is |Kz —iL|;, = |Ko —i(L,k)|L' ||, where K, is the periods, each sensor has filled at mé&t entries of R. Since
corona identity transmitted at time, that is Kz = Cj,_;_,|,- d < g, each sensor has filled less thaentries ofR. Such filled
Overall only%’ different coronas can be transmitted by the actoentries depend on the time slotwhen the sensor woke up for
when the sensor starts its awake periods, independent of hth first time. Consider now all the sensors that woke up at the
long the training process will be. Sud coronas identities can same timez. Note that they have filled, although with different
be reindexed a$k, — s(L, k)|, for 0 <s < k' —1. configurations, the same positions®findependent of the corona

Proof: Consider a sensor that wakes up for the first timttg]ey belong. Let: be one uniilled entry oR. By the hypothesis

. . - -~ of massive random deployment, there is at least one senabr th
at the global time slot = z, while the actor is transmitting the woke up at times in each corona. and hence at least one sensor
beaconk, = |k—1—z|; = |k—1—z|.. Thei-th sleep-awake cycle P '

of such a sensor starts at time-: . while the actor is transmitting Itzec?rgziia gij{:?gnsﬁ]cte?nffgs\?; vv\\I/IiIIII Egt nt;i;:ezgﬁgﬁzzcause
the beaconk —1—x—iL|, = |Kz — i|L||;, with ¢ > 0. Observe 9 . ’

. > 4 / -
that L andk can be rewritten a§ = gL’ andk = gk’, whereg = Conversely, ifd > g, by Lemma \./2’ Ink consecut.|ve slegp
. / . awake cycles, the beacons transmitted by the actor in theslits
(L, k). By Property IV.3,|iL|; generates only thé" multiple of ) : -
. . ' s of suchk’ cycles are exactly apart. Since an awake period lasts
g, one for each different value assumed:hyiod %', in [0,. .., k]. . " .
S . / d > g slots, at leasy new corona identities are transmitted by the
Moreover, K, —iL = Kz — g(|i|x/ )| L |z mod k. In other words, ; . .
. ; . . actor during an awake period of the sensor. Hence, aftengavi
in any two awake periods, say thigh and thej-th ones, such . ! . )
) : S / heard the actor within the firé{ awake periods, the sensor fills at
that: > j andi - j < k', the coronast, .y, and Gy e oo o niies of R in each awake period and completely fifis
distinct and differ by a multiple of. Whereas, in any two awake . g P pietely

; ) ; .
periodsi and j such thati = j mod &' the same coronas arell at most othek’ awake periods. Therefore, the sensor is trained

) . . .
transmitted. Clearly, thé’ different corona identities transmitted" " at most2k” consecutive awake periods. Note that this happens

at the beginning of the awake periods can be rearranged o trf]or all the sensors, independent of their first wake-up timend

. . . of the coronac to which they belong. O
in the new order, two consecutive coronas differ exactlygby From Theorem V.4 and recalling that any sensor is triviall
Indeed thes-th corona in the new order, that &, — sg|j, with ' 9 y y

0 < s <k’ —1, corresponds to the first beacon transmitted in tﬁgained whend = k, one has that the Flat- protocol is correct
o . L 1 or any value ofd in the range(L,k) < d < k. Next, the
j-th awake period, witly = ‘5|7|’€/‘k/' protocol performance is refined within such a range finding
Therefore, after exactly’ sleep-awake cycles, that is aftéi.  stricter upper bounds on the maximum number of sleep-awake
time slots, which correspond t&& = EL — L — 1" actor periods required for training. The performance analysistst
transmission cycles, the behaviour of the sensor and th® agtom two particular cases, namely= (L, k) andd = |L|;, (note
will be cyclically repeated. In other words, at the begimniof that ||, = (L,k)|L'|;y > (L, k)). More precisely, Lemmas V.5
the k’-th awake period, the sensor and the actor are in the sagigy v.6 specify, ford = (L,k) andd = |L|;, respectively, in
reciprocal state as they were at the beginning of Gfth one, which period a sensor, that wakes up for the first time at sot
with the only difference that, if the sensor can be traineéthas s awake while the actor transmits an arbitrary beacon
heard the actor at least once. Thus, we have the followingralat

conseqguence.

Lemma V.5. Letc be any corona identity and assunie= (L, k).
_ _ The actor transmits the beacerduring thei. .-th awake period
Lemma V.3. Given L,d, and k, all the entries of? that the of a sensor that wakes up for the first time at slptvherei. , =

sensor can fill are set within the fir§tf’“—k) sleep-awake cycles. HIdefclkJ =L andk =&
, W , :

|27 5
k

Proof: During the firstk’ = 7.5y awake periods of any Proof: When the sensor wakes up at time the actor



is transmitting the beacork,;. Moreover, the beacon valuesTheorem V.9. Given L, d, and k, if d < (L, k) then there are
decrease within the actor transmission cycle. Thus, beacorsensors that cannot be trained by the Flat— protocol; othsew
will be transmitted, starting fromi,, during the j-th group all the sensors are trained, and:
of d consecutive corona identities such that= {@J 1) If (L,k) < d < |L|g, thenvmax < ﬁ + | 17|, where
Such aj-th group of d consecutive corona identities will be K =-F_ andl/ = -L_: 7
: : , o . (L,k) (LR’
transmitted during thei. .-th sensor awake period in which &
; T Ka—cli A 2) If |L|p <d <k, thenvmax < { J +1;
the actor transmitg K, — {“”T d| as the first beacon.
) . : . 3) If d =k, thenvmax = 2.
Hence, by Lemma V.2j. . is derived’ by solving the equa-
tion | Ky — ey (L, K)|L |, = ‘K:v _ {@J d‘ . By Prop- Proof: When (L, k) < d < |L|;, since by Lemma V.2 the
. , Ko—cle | | 1 k k' coronas transmitted by the actor when the sensor wakes up
erty IV.2, it follows ic.. = H d ‘= do not depend onl, the sensor cannot be trained later than in
(L, k). U the casel = (L, k) because the registet is filled faster. Hence

. Ky—c .
Lemma V.6. Let ¢ be any corona identity and assunde= |L|,. Py Lemma V1.3, observing tha{tl‘—d%J varies between and
The actor transmits beacoa during the i. -th awake period % — 1, one hasvmax < , wherek’ = % and
of a sensor which wakes up for the first time at siotwhere

becaused =
kl

i ‘L

(L,k) L7 g T (L)k)

; Ko —cly L = ﬁ Similarly, when|L|; < d < k, the sensor cannot be

tow = { J trained later than in the case= |L|,. Hence, by Lemma V.8,
Proof: The proof is similar to that of Lemma V.5. Only /max < {ﬁJ + 1. Note that, whenk is a multiple of |L|,

observe that now, sinaé= |L|;, = (L, k)|L’|;» by Property V.1, Vmax = LLJ + 1 only for those sensors that wake up for the

le,z 18 de}r(lvgq by solving the equatigix; _ij?l(L’ RIL k'l = first time while the actor is transmitting corora- 1 and they
Ko — | Herde g .+ and hencec,, = Hegele |, L' belong to corona:. Finally, whend = k, two sleep-awake cycles

The following two lemmas determine, far= (L,k) andd = are needed only by those sensors which wake up for the first tim
|L|; respectively, in which awake period a sensor, belonging ighile the actor is transmitting corona— 1 and which belong to
coronac and waking up for the first time at slaf, satisfies for coronac. O
the first time the training condition. Indeed, a sensor tgilun to To summarize, given an arbitrary sensor, belonging to argene
coronac is trained when it has filled botR. and R._1 and the coronac and whose first wake up is any time slgtLemmas V.5
awake period when such entries are filled can be derived fremv.8 determine the exact number of sleep-awake periods, or
Lemmas V.5 and V.6 as follows: number of transitions, that such a sensor requires to beetfai
Lemma V.7. Letd = (L, k). A sensor which wakes up for theWhend assumes the .tWO particular valu@, k) and L. Since.
first time at slotz and belongs to corona, with ¢ > 0, is trained the sensor network is tral_n_ed when all its Sensors are g‘ame
during thei-th awake period where — . i <i the exac? nu_mber of transitiong,ax to acggmphsh _the training

g p c—1,x» c,x > le—1,z

oY 1 o ) ' o ’ protocol is given by the number of transitionsrequired by the

Ori < dea + ‘T o Wiew > ie-1,0. If ¢ =0, theni =g ;. sensor that is trained as last in the network. On the othed,han
Proof: If ic,e < ic—1,4, during thei.. awake period the when the values of are different from the two above, since it is

sensor hears the beacerand hence it set®. — 1. Moreover, difficult to analytically derive the exact number of transitions
during thei._; , awake period, the sensor séts_; = 0 because required by each sensor to be t_raineg,llﬁx cannot be computed
it does not hear — 1 but, having already heard it knows what and thus an upper bound for it, based on the values:ok
the actor is transmitting. Ifc» > i.—1 ., in the worst case the computed for the two particular caseés= (L, k) andd = |L|, is
sensor hears for the first time during the.-th awake period and Provided in Theorem V.9. However, the exact valueghx can
setsR. = 1. Then, the beacoa— 1 will be transmitted at the-th P€ experimentally computed, as it will be done in Section VII
awake period such thak, —i(L, k)| L' | [x = |Kz — (G + 1)d|y, The maximum number of transitionsm,.x impacts all the

where j = \Kz;c|k . Solving the above equation, one has performance pa_rameterg. Indeed, it is easy Fo see that Eh_albv
' . | . sensor awake timemax i equal tovmaxd while the total time
‘(J +|%], " and henC#f ., awake periods aftef... 1 for training all the sensors ignax L + k, where the additive term

Lemma V.8. Letd — |L|,.. A sensor which wakes up for the firstk comes from the fact that a sensor may wake up at any time

time at slotz and belongs to corona, with ¢ > 0, is trained z < k. Finally, referring to the actor behaviour, it should beacle
during thei-th awake period where ’Z, if i ' < that the actor repeats its transmission cycle #prslots, where
- = lc—1,xz» c,xt > le—1,xs

S o ) . 71 = vmaxL + k is derived by choosing the suitable value of
< 1 = =0 .

Or i Sie + 1, if e > ieo1o- If €= 0, theni =g vmax according to Theorem V.9.

Proof: The proof is similar to that of Lemma V.7. For We now turn to the analysis of the average case performance

d = |L|j, observe that, whel. . > i._1 4, Sinced = |L|, = of the Flat— protocol, where it is assumed that the sensokawa
(L,k)|L' |, i is derived by solving the equatidi(L, k)|L'|,/|, = time z is a discrete random variable uniformly distributed in
|(j + 1)d|x, and hence = j + 1, wherej = | Kercle | 0 [0,k —1]. Let N be the total number of sensors, I8t be the

From Lemmas V.7 and V.8, one knows the number of sleepUmber of sensors that belong to coronand, among them,
awake periods required by any sensor in the network to besai '€t Ne,z be those that wake up for the first time at siotwith
Letting vmax be the maximum number of sleep-awake period< ¢,z < k—1. Sincez is uniformly distributed N, = &= and,
required by the sensor that will be trained as the last onéaan tclearly,>>5~J Ne = N. Letting vavg andway, denote the average

network, the worst case performance for the Flat— proteesiiits  humber of transitions and the average overall sensor aviies t
as follows: respectively, one has the following result.



Theorem V.10. Given L, d, and k, if d < (L, k) then there are  Consider nowl < |L|; < d < k. Fixed a corona, as before,

sensors which cannot be trained by the Flat— protocol; ottise the sensors that wake upjat—1— (c+d—2)|y <z <k—-1-c¢c

all the sensors are trained, and: are trained during th®-th sleep-awake period. In contrast, the
1) If (L,k) < d < |L|, thenvayy < KL 4 (Ll,k ‘ sensors that wake up at= |k — 1 — (¢ + d — 1)|; are trained

I-

wherek’ — —*  and I/ — L - V1L during the next sleep-awake period. In general, the seribats
(L,k) (LK) wake up atk —1— (c+d—2+i|Lg)lg =k —1—(c+ (i +
2) If Ll < d < k, then vayy < (hL’ij +1) Dd—2)|) <z <|k—1—(c+i|Llp)|p = |k —1— (c+id)|, are
1, \khmﬁl) 1. trained during the-th sleep-awake period, while those waking up
2 i R atz =|k—1—(c+ (i + 1)d — 1)|; are trained in the successive

_ 1
3) Ifd=k, thenvavg <1+ g. sleep-awake period. Therefore, the average number ofiticarss

Proof: In the following, the notatiorf < z < r will denote required to be trained by a sensor in corenia

either the valueg,?+1,...,r — 1, when?¢ < r or the values hel—c
£L+1,...,k—1,0,...,r — 1, when/ > r. Consider first the Te = 1 Z Neo +
range(L, k) < d < |L|;. Assumed > 2. Fixed a corona, the N o=k d41]x

sensors that are trained during theh sleep-awake period are X

those that wake up gk — 1 — (c+d—2)y <z < k—1—c. R I

Indeed, such sensors during tleslots of the first awake period Z Z (i+1)Nez +
hear the beacon and setR[c] = 1 and R[c — 1] = 0. In contrast, =1 a=lk—c—(i+1)d+1],

the sensors that wake up at= |k — 1 — (¢ +d — 1)|, can set k—c L

R]c] to 1, but cannot seR[c — 1] to 0 until the ‘%‘ -th sleep- Z QWJ + 1) Ne,x
awake period. In general, the sensors that wake up at1 — z=|k—c—I|klL), |k k

. / . !
(c+d—=2+i(L F)|L]p)|k <@ < |k —1—(c+i((LK)IL[k)lk \where the last sum is due to the sensors that are trained in the

are trained during the-th sleep-awake period because they s tLJ-th sleep-awake period. In such a sum, whefy,, = 0
. L k - 1

both R[¢] and Rfc — 1]. In contrast, /the Sensors that wake up |nLI)|/k the sensors that belong to coronand wake up at time
T= k - 11_ (c+d—1+i(L k)L |’j~”)|k will set Rlc — 1] at - gy ¢, while the actor is transmitting the beacer- 1, have
the (i + ‘7‘ ’,)-th sleep-awake period. When = (L. k), the 1o wait £ 1 1 sleep-awake periods to be trained. With simple
average number of transitions required to be trained by 808€N|gebraic Fnanipu|ations, wheh= |L|,, one gets:

in coronac is bounded above by [ . J
TLTE

K -1 [k=1—(c+i(L, k)L )]k _ 1 Ne . N¢
1 ) < = —1)=< Ne
vcg F Z Z (Z+1)N(:7z+ Ve S Nc (d ) k + ZZ_; ’Ld k +
€\ i=0 a=|k—1—(c+d—1+i(L,k)|L'|,)|x B
/ k Ne
L ([ ] +1) (oo +1) )
> 7 Ne,lk—1—(c+d—14i(L,k)| L' |4)]|x k
i=0 k! - o) (Ls Bl £1Y 1
N — ULl 2 k k
- L Zid& 4k 1| Ne As before, summing up over all coronas, one bag = 7.
Ne \i= K Ly k Whend = k, only the sensors that belong to coranand wake
Kol 1 1 up at time slotz = k — ¢ are not trained in a single awake period,
= — + TR T but they require one more period. Hence:
) k'’
k-1 k—1
. If d=(L,k) = 1, no sensor iq corona can be t.rained in a Vavg = 1 + L Z Nee1=1+ L Ne _ + 1
single awake period, regardless its first wake up timéecause N =0 N =0 k k

it can hear at most one beacon. Thus, each sensor has to waj . :
1 § i Ks observed in the proof of Theorem IV.9, when eitherk) <
at leastl + - awake periods in order to set botR|c]

and ;. |L|g or |L|x < d < k, more sensors can be trained in each
R[c —1]. Therefore, sleep-awake period, and henzg,, cannot be greater than that
= for d = (L, k) andd = |L|, respectively. O
Ve < — <Z It is worthy to point out that, as shown by Theorems V.9
Ne i=0 and V.10, the performance of the Flat— protocol depends en th
k—1 > values ofk, d, and L. Therefore, it is conceivable that in mission

==

‘k Nelk—1—(cti|lLIp)|e T

Z(z’+1)NC_",€,1,(C+Z—|L|,¥.)‘,€ critical systems these parameters could be tuned before the

i=0 sensor deployment in order to guarantee a predefined penfaen
k—1 k—1 i
1 1| N. ) N, quality.
= — = I 1 e
NC<Z AR +D G+ )k>
=0 =0 VI. IMPROVEMENTS
= '% + % The Flat— protocol presented in the previous section cambe i
k

proved in several ways so as to reduce the number of sleep/wak
Sincev. does not depend os summing up over the coronas,transitions, and hence also the overall sensor awake timeks
Vavg = 2 SN0 TeNe = Te. as the total time for training.



6 i f — heardt hen

7 heard:— true, t =k — 1 — ¢ wh_en(L, k) <d < |L|; and|L|; < d < k, the sensor can_not be

7.1 for j:=i—1downto 0do Rj.i14 |, =0; trained later than in the cage= (L, k) andd = |L|, respectively,

7.2 for j:=v—1downto 1do because by Lemma V.2 the coronas transmitted by the actor

73 for h:=d—1downto0do Ry jip|,+i-nl, =0 when the sensor wakes up are the same (such coronas depgnd onl
Fig. 4. The extra instructions for the Flat protocol. on L andk) and clearly the registeR is filled faster. Finally, when

d = k at least one sleep/wake transition is needed. Note that, in
both cased = k andk multiple of |L|,, the sensors that belong to
A. The Flat protocol coronac and wake-up when the actor is transmitting coronal
As a first improvement to Flat—, recall that, as soon as a sengdll set R._; the first time they hear the actor, without waiting
hears the actor transmission for the first time, it learnsnftbe that the actor retransmits beacos 1, saving one transition with

beacon the actor global time modulo the actor transmissiolec respect to Flat—. O
Therefore, it can immediately retrieve backwards the cason Note that, whend = (L,k) andd = |L|;, 7 = % + k and
which it did not hear and which were transmitted by the actqr_ LL\J L + k, respectively, becausgnax matches the upper

durlpg its previous awal§e pgrlods, setting to O the corredpg bouné given in Theorem VI.4.
entries of R. The resulting improved protocol, callefliat, is .

. e . With respect to the average case performance of the Flat
derived from the Flat— protocol by modifying, as shown 'rbrotocol one can prove the following result
Figure 4, theif instruction in lines 6-7 of Figure 3. As a ' '
drawback, a sensor may now execute as manyO&snaxd) Theorem VI.5. GivenL, d, andk, if d < (L, k) then there are
arithmetic/logic operations per time slot. The time regdito sensors which cannot be trained by the Flat protocol; othsew
perform such arithmetic operations, however, should béigiele  all the sensors are trained, and:
with resp(.ect. to the time s!ot length, which |.nstead depemdthe 1) If (L,k) < d < |L|j, then vays < k’;rl + 25 1
characteristics of the radio broadcast equipment. L1 L , . " L

Observed that, when the sensor hears the actor for the first 2z ‘? Y ( I 1): wherek’ = 75 and
t?me,.it fills R as it would have heard the actor since the first 2) it ||, < d < k then vay < (
time it woke up, Lemma V.3 and Theorem V.4 can be restated as

|

1, |kl +1 1.
2t ) ®

d =k, thenvayg = 1.

follows:
3)
Lemma VI.1. GivenL,d, andk, all the entries ofR the sensor
can fill are set within the first’ = (Lk_k) sleep-awake cycles. Proof: The proof is similar to that of Theorem V.10. Consider
o . . first the rangg(L, k) < d < |L|; with d > 2. From Theorem V.4,
Theorem VI.2. All the sensors are trained in at most= 7% 1.« < ¥’ for the Flat protocol. Hence, the sensor behaviour is the

sleep-awake cycles if and onlydf> (L, k). same as that for the Flat— protocol, except for those semguich

In other words, the Flat protocol completes the trainingcpes were trained by FIa.tT using more thah transitions. Therefore,
in at mostk’ sleep/wake transitions. Such a bound is tight in thg'® Number of transitions remains the same except for thepsen
particular case that = (L, k), while it can be lowered whei = ”)at wz;\ke up at Slof = [k =1=(ct+d=14i(L,K)|L']) k. with
|L|),. Indeed, since Lemmas V.5 and V.6 still hold, Lemmas V.F — T‘k, < i < k" — 1, which will now setR[c — 1] no later
and V.8 can be restated for the Flat protocol as follows: than during thgk’ — 1)-th sleep-awake period. Thus, the formula

., form.
Lemma VI.3. Whend = (L,k) or d = |L|, a sensor which or 7 becomes

wakes up for the first time at slat and belongs to corona is 1 k—1—c
trained during thei-th awake period where= maxic—1 4, ic,z }, Ve < — Ne,o+
if ¢>0,0ri=1dgg, if c=0.

Proof: Whenic . < i.—1,4, the proof is the same as that in (1 + ; ) N k—1—(c+d—1)|p T

Lemmas V.7 and V.8 fod = (L, k) andd = |L|;, respectively. Ly 7
Whenic , > i._1 ., although in the worst case the sensor hears K1 (k=1 (eti(Lk) L )]k
for the first time during the. ,-th awake period, sinc& is set Z Z (i+1)Neow +
backwards, bottk. = 1 andR._1 = 0 are set during such awake i=1 z=|k—1—(c+d—24i(L,k)[ L] /) |k
period. O

The worst case performance for the Flat protocol is summedriz *'—1-| 3|, )
below: Z (z +1+ ‘f'k') Ne k=1~ (ct+d—14i(L,E)|L' | )| T

Theorem VI1.4. Given L, d, and k, if d < (L, k) then there exit =1

sensors that cannot be trained by the Flat protocol; otheenall

the sensors are trained, and: k-1
1) If (L,k) < d < |L|, thenvmax < LL@ 4 Zl KN, k=1 (et d=14i( L)L/ ) e
2) If |L|p < d <k, thenvmax < [ILICIJ; l:k'/_ 27 |
3) If d =k, thenvmax = 1. _K+1r 1 '; RN ('; +1)
2 (L,k) | L |y 2k | L |3 \| L' |g

Proof: Whend = (L, k), by Lemmas V.5 and V1.3, a sensor

is trained in at mos{LLk) sleep/wake transitions. Similarly, when If d = (L, k) = 1, since no sensor in coronacan be trained

d = |L|g, the result derives from Lemmas V.6 and VI.3. Moreovein a single awake period angh.x < k' = k by Theorem V.4,



T Procedur e Flat+ (k, L, d);
one can write: 1 heard:= trained:= f al se; v :=0; max0:=0; minl:=k — 1;
_ 1 1 2 whil e wakeupand — traineddo
e (3] o .
¢ k 4 for i:=0tod—1do
k717|%‘ ‘ 5 i f received beacor t hen
e 1 6 i f — heardt hen
i+1+ T Ne,lk=1=(c+i| LIy T 7 heard:=true,t:=k—1—¢;
i=1 k 8 max0:= maxmax0, |c + 3|1 };
9 for j:=v—1downto Odo
k-1 10 max0:= max{max0, |c + j|L|x + 4|, };
Z ch.\kflf(c+i|L|k)|k 11 for h:=0to max0do Ry :=0;
o |2 ' 12 for h:=ctominldo Ry :=1;
= 7‘f|k 13 minl:= c;
k—1—| L] 14 if c=0o0r (Re=1and R._1 =0) then
1 s 1 Ne k-1 N, 15 mycorona= c, trained:=t r ue;
= — i+ 1+ = T-‘r Z k? 16 t:=t+1;
¢ i=0 Lk imk—| 1 17 el se
Ll 18 i f heardt hen
& 19 ci=k—1—t|g;
1 Ne . 1 20 for h:=max0to cdo Ry :=0;
= v | % Z i+ ‘f Ne 21 max0:= ¢;
N i=14|1] k 22 if Req1=1then
Llk 23 mycorona:= ¢, trained:= true;
k+1 1 1|1 1 24 t:=t+1;
=5 +‘f —ﬁ‘f (‘f +1> 25  if heardthen
k k k 26 f =true, alarm-clock:=t := ¢ + L — d;
: 1 k-1 _ 27 whil e f do
?ummlng over all the coronas, one hasg = y >-c—g VelNe = | 55 sim k1t 2 = 0
Ve- ) 29 while z <d-1and Rj,_|, has been filledlo
Consider now the case< |L|, < d < k. The Flat protocol has | 30 2i=241;
the same behaviour as the Flat— one, except in the particat@ | 31 if R isunfilledthen f:=false
thatd = |L|;, dividesk. In such a case, the sensors that belong togg ol se el se alarm-clock:=t :=t + L;
coronac and wake up for the first time when the actor transmitsz, alarm-clock:= alarm-clock+ L:
the beaconc — 1 save one transition. Indeed, such sensors $e35 go to sleep until the alarm-clock rings;

R[c — 1] the first time they hear any beacon, thus savfpg)n
the average number of transitions. However, in generalsémee
bound ofvayg Stated in Theorem V.10 still holds.

Finally, whend = k, each sensor is trained in a singlgne awake period, the sensor performs the above mentionée lo
transition, and henceavg = vmax = 1. U ahead process, properly setting its alarm-clock (lines325—

The worst case performance of the Rlaprotocol coincides
B. The Flat protocol with that of the Flat one, as stated below.

A further improvement to the Flat protocol exploits the fewt
when a sensor hears a beacgrit knows that it will also hear
all the beacons greater thanand thus it can immediately set to
1 the entries fromR. up to R;_;. Similarly, when a sensor sets
an entryR. to 0, it knows that it cannot hear any beacon smaller 1) If (L, k) < d < |L[;, thenvmax < LL,C)

Fig. 5. The Flat+ protocol for a sensor.

Theorem VI.6. GivenL, d, and k, if d < (L, k) then there are
sensors which cannot be trained by the Rigtrotocol; otherwise
all the sensors are trained, and:

than ¢, and thus it can immediately set tthe entries from ) |f Lk <d < E, thenvmax < [ﬁ
R._1 down to Ry, too. In contrast to the previous protocols, the 3) If d = k, thenvmax = 1. F

sensor now fills entries at relative to beacons not yet transmitted

during its awake periods. Therefore, it can look ahead tdddec Proof: Clearly, the number of sleep/wake transitions of flat
whether it is worthy or not to wake up in the next awake periogannot be larger than that of Flat. In fact, wheén= (L, k) or

If the d entries of R that will be transmitted by the actor in thed = |L|;, one can find bad instances, whergax is the same

next awake period have already been filled, then the sensor &@r both Flat- and Flat. Whenl = (L, k), consider a sensor that
skip its next awake period, thus saving energy. The sengeate belongs to corona = k—1 and wakes up for the first time at=

the look-ahead process above until it finds a future awakieger [d|L’|i |, where, as usuak’ = LLk and L' = (L—Lk) Indeed,
whose corresponding entries are not already filled. The resultinghe sensor can hear only the beadon 1 which is, according to
protocol, called Flat, is illustrated in Figure 5. Procedure Flat Lemma V.5, actually heard at th&' — 1)-th sleep-awake cycle.
makes use of two variables, max0 and minl, which record théhend = |L|;, a sensor which belongs to coronand wakes up
largest (smallest, resp.) index & which has been filled t® at time slotz = k — ¢, that is when the actor transmits- 1, has

(1, resp.). When a beacanis heard, the sensor sets tall the to wait until the actor transmits beacenwhich happens at the
entries fromR. to Rt (line 12). When an entryR. has to (“L’Cﬁ] —1)-th sleep-awake cycle. Thus, in both cases, the sensor
be set to0, then all the entries fromRmaxo t0 R are set to cannot save transitions by means of its look-ahead process.

0 (line 20). When the sensor hears the actor for the first time,Besides to the worst case performance, also the average case
it stores in max0 the largest entry & which must be0 due performance of both the Flat and Flaprotocols coincide when

to its previous awake periods (line 8), and thus it set® the (L,k) =1, for d ranging in[|L|., k], because during subsequent
entries fromRy t0 Ryaxo (lines 9-10). Finally, at the end of awake periods of the sensors the actor transmits consecutiv
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Procedur e Actor (k1, k2, 71, T2);

for zi=0tor —1do general, for each macrocoroma= 0,1,...,k; — 1 and for each

transmit the beacofk; — 1 — 2|, up to z=0,1,...,7—1, the actor transmits the beacn — 1 — z|,
coronaC, iy —1—2|4, +1)—1; up to coronaC,,y, 4|k, ~1-z,,- Overall the second level of the
for m:=0tok; —1do protocol lastsk; 7 time slots.

for z:=0to ™ —1do
transmit the beacofks — 1 — 2|, up to
coronakaszZ_l_z‘kz;

As regard to the protocol for the sensors, it is assumed that
each sensor is aware of the two-level actor behaviour ansl thu
of the numbersk; and k2 of macrocoronas and microcoronas,
respectively. Each sensor wakes up at timewith 0 < z <
min{k1, k2 }, and repeats its sleep-awake cycle of lengtsuch
. that L > d > max{(L, k1), (L, k2)}. Each sensor uses /g -bit
decreasing beacons, and hence Flannot take advantage OfregisterP and aks-bit registerQ to keep track of the macrocorona

its look-ahead process. Similarly, wheil,k) # 1 and d is . : o ;

sufficiently large. both Flat and Flat have the same behaviourand microcorona identities, respectively. As soon as tmsme
y large, .~ “'Wwakes up at timer, it performs one of the protocol variants, i.e.

Indeed, ford > max{|L|, + 1,k — |L|}, both protocols require

. . ~ 1. 7 Flat—, Flat, and Flat, using its registeP to learn its macrocorona
the same number of transitions, precisely one or two tramsit . ] . : ) .
identity m. When it has been trained on its macrocorona, it sets
for each sensor. In fact, for such valuesipfill the &k beacons are

. ; _ its alarm clock to ki —1-— to be ready for the
transmitted by the actor during at most two sensor awakegeri . . . ock tory + (k1 m)m2 + y

. - . L .training on its microcorona, and goes to sleep. Reawakehed,

So, since Flat cannot skip the first awake period, it cannot gain . . L

from its look-ahead brocess sensor performs again the same protocol variant, but nowfill

P ’ its registerQ to learn its microcorona identity. Clearly, as soon

Although the average case performance of both the Flat aggl it knows bothm and i, it derives its corona identity —
Flat+- protocols coincide for large values @for when(L, k) =1 kiym + 1, and thus it is trained

andd > |L|;, the practical behaviour of Flatis much better than Depending on which protocol, Flat—, Flat, and Flais used

tcr;wi[c(lzg dFIiz;t Sf(;rctisgr]]a\llnvalues od, as it will be experimentally to train the sensors on each macrocorona and microcoropf lev
' three two-level protocols are achieved, denoted by Twol-eve
TwolLevel, and TwoLevet. The values ofr; and are properly

C. The two-level approach set according to the chosen variant, as stated in Theorefys V.

The protocols discussed so far can be further improved Bj-4 and V1.6, respectively. As regard to the performanténe

following a nested approach in which thecoronas are viewed MWO-level protocols, one has:
as k; macrocoronas ok, adjacent coronas each. SpecificallyTheorem VI.7. Given L, d, k, ki, and ko, with k¥ = k1ks and
each sensor first learns in which macrocorona it belongs apd> 4 > max{ (L, k1), (L, k2)}, letting v, and v be, respectively,
then refines its training by determining the microcoronadests the numbers of sensor sleep/wake transitions requiredaio &
macrocorona. Once a sensor learns the index of its macm&orasensor onk; macrocoronas andss microcoronas, the two-level
saym with 0 <m < k; — 1, as well as that of its microcorona, protocols requirer = v; + v» sleep/wake transitions and =
sayu with 0 < p < ko — 1, it obtains its actual corona identity as(»; + v,)d overall sensor awake time. Moreover, the total time
¢ = kam + p, where0 < ¢ < k1kz — 1. For determining both the for training is 7 = 71 + k1, wherer; and 7, must be the upper
macrocorona and microcorona identities, any of the Flaiopm®  bounds on the total time required by the training protocobpigd
variants can be used. on each level. O
The protocol for the actor is shown in Figure 6. The actor
works in two levels. In the first level, the actor cyclicallgpeats
the macrocorona transmission cycléhat is a cycle of lengtlt
using decreasing powers so as to distinguish differentemrive
macrocoronas. In fact, at time slot the actor starts out by
transmitting the beacoh; — 1 to a power sufficient to reach the
sensors up to the outmost macrocorona, that is up to cargna.
Attime slot1, the actor transmits the beacbn—2 at a power that (I;k2) < d < [L|x,. Then, 7 = (Mﬁli + 1) L+kandr; =
can be received up to th&; — 2)-th macrocorona, that is corona( ko ‘L ) L+ ko, wherek’ = %2 and/ = L

c For the sub 2 slots, the act ti 1o V@R T = Tk2) Tk
k—k,—1. FOI the subsequent — 2 slots, the actor continues to " ‘Next, the worst case performance of the Flat protocol is

transmit at decreasing powers until it concludes its cytlénze compared with that of the corresponding TwoLevel protocoéw
slot k1 — 1 with a broadcast that can be received only by thge same value of, and d are used kllc 41 ki 4

. . 1 L 1 L
sensors in the-th macrocorona, that is, up to coroma, 1. 1N 1 ang (1, ky) £ 1. Note that to Sa(tiéf)ll) the constZlits of
general, at time slot, with 0 < 2 < 7 —1, the actor transmits the y \1 the Flat and TwolLevel protocols, must vary between
beaconky — 1 — 2|, UP 0 COMONA g, (jty 12|y, +1) -1 WNET® (1 k) — (1 ky)(L, ky) and mir{k1, k>}. Whend = (L), by
the timer, is properly chosen to allow all the sensors to be traind,yma Vi1 and Theorem VI.4. the number of transitions is

with respect to their macrocorona. k k ; k
~at most —~ + 2 for TwoLevel and is at Ieasf— for
In the second level, for each macrocorona, the actor cyiglica (Lok1) " (Lok2) LK)

repeats anicrocorona transmission cygléhat is one of lengtlt, Flat. S'ZCG(L’ k) = (L, k1)(L, k2)’_ o_ne has(%;ﬁ) + Lk—ka) <
using decreasing powers so as to distinguish differentemnive  7.4) Z.42) — (L,kl)k(L,kQ) =15 Similarly, TwoLevel beats Flat
coronas. Such a microcorona transmission cycle is repegited Whend = min{ky, k>}. Indeedk lettingd = ki = min{ki, ka},
times, choosing so as to allow all the sensors in each macrofwoLevel requires at most+ - < ko sleep/wake transitions,

coronam to be also trained with respect to their microcorona. lwhile Flat needs at Ieasg = ko transitions. Since in both

Fig. 6. The two-level protocol for the actor.

Note that, by Theorems V.9 and VI.4, tight bounds on the
values of ; and 7 can be derived only whed = (L,k),
d = |L|x, andd = k. In all other cases, the total time of each
level is derived fromr = wvmaxL + k, settingvmax equal to
the upper bound given in Theorems V.9 and VI.4. For example,
consider the TwolLevel- protocol and assude= |L|;,, and
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protocols the number of transitions decreases whémcreases, . N=10000 k=64 L=104

TwoLevel beats Flat whefL, k) < d < min{ky, k2}. Finally itis . el

easy to see that both the overall sensor awake time and tie tot , E:Zifvm:; |

time for training of Flat are larger than those of TwolLevel. 1 E:z::g o

10 Flat+\?:3 5
VIl. EXPERIMENTAL TESTS 2 4
The worst and average performance of the corona trainir‘fg 8l

protocols were experimentally tested. The algorithms weiten £ 7

in C++ and the experiments were run on an AMD Athlon xz.g &

4800+ with 2 GB RAM. In the simulation, each corona has & °

unit width. There areV = 10000 sensors uniformly distributed 4

within a circle of radius = k, centered at the actor and inscribed 8

in a square. Precisely, the Cartesian coordinates of eatoise j """ e e d

are uniformly generated choosing at random two real numibers

the range[—k, k]. The generation proceeds unfil sensors are 4 8 12 16 20 24 28 32 ff 40 44 48 52 56 60 64 68
placed inside the circle, thus discarding those layingidets Fig. 7. Number of transitions wheh = 64, L = 104, and8 < d < 64.
In the experiments, fixed, L, and N, and varyingd between

(L, k) and k, both the worst and average number of transitions,
denoted byvmax and vaveg, both the worst and average overall .
sensor awake timeymax = Vmaxd and wavg = Vaved, and the 30
total time 7, which measures the time required to terminate the 1%
whole training process, are evaluated. Thex value is obtained 110
by taking the maximumv among all sensors in the network,
while vayve is computed by summing up the values of all
sensors in the network and then dividing by The results are
averaged oves independent experiments, which only differ in

N=10000 k=64 L=104

Il sensor awake time
©
o

the deployment distribution of the sensors and in the sefisor 2 s i =

wakeup times. It is worth noting that, if the network is dense zg P S -

enough to guarantee that there is at least one sensor in eachss e Flat G [

corona for each first wakeup time, thep.x is always the same in 2 - E::ﬁo‘;’m o

different experiments, while.vg may slightly change depending 13 Flat g =[]

on the sensor first wakeup time distribution. 3 A TR,
Consider first the experiments for the Flat—, Flat, and Flat 408 121620 2428 32 3 A0 4448 5256 60 64 68

protocols. In the simulations, the numbkerof coronas is fixed Fig. 8. Overall sensor awake time whén= 64, L = 104, and8 < d < 64.
to 64. The lengthL of the sensor sleep-awake cycle assumes the
values104 and 168. Although L can assume any value, larger
values are preferred in order to increase the longevity ef th Figyre 8 shows the awake timesnax = vmaxd and wavg =
wireless sensor network. In fact, fixet] a larger L results in vaved, Which measure the overall energy spent by each sensor
a longer life as the life of a sensor is measured in terms of th¢ e trained. Although the number of transitions decreases
overall number of sleep-awake cycles until its energy isested. jncreases, Figure 8 suggests to choose a small validrofn the
Thus, in all our experimentd, > k has been chosen. Finally, thesensor awake time perspective. The minimugy is achieved by
sensor awake period is an integer that varies, with a step@f Fiat and Flat for d = 8 andd = 64, as expected by Theorems V.9
between the greatest common divigdr k) = 8 andk = 64, thus  and v1.4. However, whed = 8, wavg lowers to about two thirds
including ||, = 40. The results are reported only when all they ,,  for Flat— and Flat, and to about one third for RlaiNote
sensors can be trained, that is fop 8. . that Flat- has the maximum gain whehis small. Indeed, it can
Figure 7 shows the numbef,ax andvavg of transitions for the j| the same entries oR just listening to the actor for a single
different values ofi. According to Theorems V.9 and V1.4, wheng|ot or for 4 slots. Hence, small values dfsave the same number
d = 8, Flat- hasvmax = % + ‘%‘k, =845 = 13, while  of transitions as larger values, but allow sensors to redne&
both Flat and Flat have vmax = (L—kk) = 8. Similarly, when energy consumption because they stay awake for smalleydgeri
d = 40, all protocols takevmax = 2 transitions. Except for the  Figure 9 illustrates the total time required to accomplish
extreme valueg = 8 andd = 64, the greatest percentage of gairthe entire training task, for botlh = 104 and L = 168. Since
for vmax is achieved whenl = 24, where both Flat and Flat |168|¢4 = |104|g4 = 40, by Lemma V.2, each protocol maintains
employ forty percent less transitions than Flat—. As redgarthe the same behaviour with respect to the number of transitions
average performance, one notes that; is considerable better Thus, the plots forL = 168 of vmax and vaveg, and hence of
thanvmax for all three protocols. Flat and Flat— have almost themax andwayvg, are exactly the same as those shown in Figures 7
same average performances, while flatlways behaves betterand 8. Recalling that = vmax L + k, the total time forL = 168
than them. In particular, its greatest percentage of gainvfp. scales by a constant %, as depicted in Figure 9. In general,
is obtained in the rangé < d < 20, where Flat improves about all values of L such that|L|, is the same present the properties
twenty/thirty percent upon Flat—. Fdr> max{|L|,+1,k—|L|.}, above, namelyy andw are identical, whiler scales. Therefore,
both the worst and average results of Flat and-Fledincide. the minimum total timer is achieved for the smallest value bf
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Fig. 9. Total time for training wherk = 64, L = 104 or L = 168, and Fig. 11. Overall sensor awake time wheén= 575, k1 = 25, ko = 23,
8 < d <64 L=27,and1 <d < 23.
N=10000 k=575 k,=25 k,=23 L=27 N=10000 k=575 k=25 k,=23 L=27
68 . . . 21000 T T T
64 TwoLevel- v, o+ ] 20000 Twolevel- T +
TwolLevel v, x4 19000 TwolLevel T -
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Fig. 12. Total time for training wherk = 575, k1 = 25, ko = 23, L = 27,

Fig. 10. Number of transitions wheh = 575, k1 = 25, ko = 23, L = 27, andl < d <23

and1 < d < 23.

that whend = (L,k) = 1 the overall awake time is minimum,
F§\_Ithough the number of transitions is maximum, and TwoLevel

Consider now the experiments relative to the two-level a X - i
reaches the maximum gain with respect to the other algosithm

proach. Recall that TwoLevel-, TwoLevel, and TwolLevelle-

note, respectively, the protocol when Flat—, Flat, and-Flate " Poth the v:;/orst anddaverage dcases.d he behayi
employed on each single level. In the simulations, the numbe Figures 13, 14, and 15 are devoted to compare the behaviour

of coronas is fixed t@&75 while k&1 and ky are fixed to25 and of the Flat an(:]T\;voLeveI r;r(;]tocols. As E)efove,: 5k75, k1 |:'25f"
23, respectively. The lengtth of the sensor sleep-awake cycle j@ndky = 23. The lengthl of the sensor s eep-awake cycle1s Ixed
fixed to 27 and the sensor awake periddvaries, with a step of to 27 and ?77 for _TwoLe_veI and Flat, respectively. The sensor
2, between mak(L, k1), (L, k2)} — 1 and min{kr, ka} = 23. awake period! varies, with a step of, between(L, k) =1 and

Figures 10, 11, and 12 plot both the average and worst ca7

performance of/, w, andr. As explained in the previous section
one can easily derive the worst case performance of thedwel-|

protocols in Figure 10 from the worst case performance of t
one-level protocols. For example, wheén= (L, k1) = (L, ko) =

1, TwolLevel- requiress = 67 sleep/wake transitions because th

?As expected forl = (L,k) < d < min{k1,ka2} = 23, the
"TwoLevel protocol always significantly beats the Flat pooio
I%\éote that, in contrast to Flat, TwoLevel cannot be employbaénv
d > 23. Observe thatr = O(1) can be achieved by both the
glat and TwoLevel protocols in correspondenceicf ©(k) and
d = ©(Vk), respectively, leading therefore to a big difference in

— i = L P — =
Flat— protocol requires; Ty T+ ‘L ‘kl 25 + 13 = 38 the values of, and .
transitions wherk; = 25 andvy = (L’“_?k) +|2| =23+6=29
transitions wherks — 23. ' k2 VIIl. CONCLUDING REMARKS
Figure 11 shows the awake timeg.ax = Vmaxd andwavg = In this work new protocols have been proposed which employ

vavgd. The curves in Figure 11 smoothly change, without thihe asynchronous model originally presented in [23] and are
abrupt peaks of Figure 8, because now the number of transitidightweight in terms of the number of sleep/wake transgion
monotonically decreases, as shown in Figure 10. Moreowte nand overall sensor awake time for training. Among the variou
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protocol variants and improvements, Flat— is the simples o
from the computational viewpoint because each sensor npesfo
O(1) operations per time slot. In contrast, TwolLevehas the
best performance, but all the two-level protocols, as wekiatt,
cannot be used if the sensor is not allowed to skip one or more
awake periods.

The results presented in this paper show that the protocels a
flexible, in the sense that their parameters can be propemkydt
For instance, fixed the numbér of coronas, one can decide
the optimal values ofi and L so as to minimize the number
of sleep/wake transitions and/or the overall awake time per
sensor. Conversely, one can fix the desired number of sle&p/w
transitions, and then select suitable valuegl @ind L.

As possible issues for further research, one could either ge
eralize the two-level approach to a larger number of levels,
finding whether there are numbers of levels for which optimal
performances are attained, or search for significant lowents
on such optimal performances. However, one should remiad th
some of the performance measures, such as the total tralelag
and the energy consumption per sensor, are orthogonalefbhney
one should look for a good trade-off, especially considgtime
values that the parameters can assume in a realistic scenari

In this paper, a single fixed actor was assumed for trainieg th

sensors in an ideal environment where the radio antennasntia,

in a regular way. In practice, there is a variance in the vecki
signal strength, which might exhibit some continuous cleang
range and angle. Thus, one could investigate the accuratheof
acquired coarse-grained location, for example, by modetire
radio irregularity as done in [26]. Moreover, one could ext¢he
protocols considering the case where there are severaldoteds,
knowing about each other, and thus determine whether they ca
collaboratively train sensors better than using only alsimgtor.
Finally, one could study how the protocols presented inphiser
can be adapted to the case of one or more mobile actors.
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