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Abstract—Broadcast is an efficient and scalable way of transmitting data to an unlimited number of clients that are listening to a

channel. Cyclically broadcasting data over the channel is a basic scheduling technique, which is known as flat scheduling. When

multiple channels are available, a data allocation technique is needed to assign data to channels. Partitioning data among channels in

an unbalanced way, depending on data popularities, is an allocation technique known as skewed allocation. In this paper, the problem

of data broadcasting over multiple channels is considered, assuming skewed data allocation to channels and flat data scheduling per

channel, with the objective of minimizing the average waiting time of the clients. First, several algorithms, based on dynamic

programming, are presented which provide optimal solutions for N data items andK channels. Specifically, for data items with uniform

lengths, an OðNK logNÞ time algorithm is proposed, which improves over the previously known OðN2KÞ time algorithm. WhenK � 4,

a simpler OðN logNÞ time algorithm is exhibited which requires only OðNÞ time if the data items are sorted. Moreover, for data items

with nonuniform lengths, it is shown that the problem is NP-hard when K ¼ 2 and strong NP-hard for arbitrary K. In the former case, a

pseudopolynomial algorithm is discussed whose time is OðNZÞ, where Z is the sum of the data lengths. In the latter case, an algorithm

is devised with time exponential in the maximum data length, which can optimally solve, in reasonable time, only small instances. For

larger instances, a new heuristic is devised which is experimentally tested on some benchmarks whose popularities are characterized

by Zipf distributions. Such experimental tests reveal that the new heuristic proposed here always outperforms the best previously

known heuristic in terms of solution quality.

Index Terms—Wireless communication, data broadcast, multiple channels, skewed allocation, flat scheduling, average waiting time,

dynamic programming.
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1 INTRODUCTION

INwireless asymmetric communication, broadcasting is an
efficient way of simultaneously disseminating data to a

large number of clients. Consider data services on cellular
networks, such as stock quotes, weather info, traffic news,
where data are continuously broadcast to clients that may
desire them at any instant of time. In this scenario, a server
at the base-station repeatedly transmits data items from a
given set over a wireless channel, while clients passively
listen to the shared channel waiting for their desired item.
The server follows a broadcast schedule for deciding which
item of the set has to be transmitted at any time instant. An
efficient broadcast schedule minimizes the client expected
delay, that is, the average amount of time spent by a client

before receiving the item he needs. The client expected
delay increases with the size of the set of the data items to
be transmitted by the server. Indeed, the client has to wait
for many unwanted data before receiving his own data. The
efficiency can be improved by augmenting the server
bandwidth, for example, allowing the server to transmit
over multiple disjoint physical channels and therefore
defining a shorter schedule for each single channel. In a
multichannel environment, in addition to a broadcast
schedule for each single channel, an allocation strategy
has to be pursued so as to assign data items to channels.
Moreover, each client can access either only a single channel
or any available channel at a time. In the former case, if the
client can access only one prefixed channel and can
potentially retrieve any available data, then all data items
must be replicated over all channels. Otherwise, data can be
partitioned among the channels, thus assigning each item to
only one channel. In this latter case, the efficiency can be
improved by adding an index that informs the client at
which time and on which channel the desired item will be
transmitted. In this way, the mobile client can save battery
energy and reduce the tuning time because, after reading
the index info, it can sleep and wake up on the proper
channel just before the transmission of the desired item.

Several variants for the problem of data allocation and
broadcast scheduling have been proposed in the literature
which depend on the perspectives faced by the research
communities [2], [3], [4], [7], [8], [9], [12], [13], [15], [17], [18].

Specifically, the networking community faces a version
of the problem, known as the Broadcast Problem, whose goal
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is to find an infinite schedule on a single channel [15], [4],
[8], [9]. Such a problem was first introduced in teletext
systems by [2], [3]. Although it is widely studied (e.g., it can
be modeled as a special case of the Maintenance Scheduling
Problem and the Multi-Item Replenishment Problem [4],
[8]), its tractability is still under consideration. Therefore,
the emphasis is on finding near optimal schedules for a
single channel. Almost all the proposed solutions follow the
square root rule (SRR) [3]. The aim of such a rule is to
produce a broadcast schedule where each data item appears
with equally spaced replicas whose frequency is propor-
tional to the square root of its popularity and inversely
proportional to the square root of its length. The multi-
channel schedule is obtained by distributing, in a round-
robin fashion, the schedule for a single channel [15]. Since
each item appears in multiple replicas which, in practice,
are not equally spaced, these solutions make indexing
techniques not effective. Briefly, the main results known in
the literature for the Broadcast Problem can be summarized
as follows: For uniform lengths, namely, all items of the
same length, it is still unknown whether the problem can be
solved in polynomial time or not. For a constant number of
channels, the best algorithm proposed so far is the
Polynomial Time Approximation Scheme (PTAS) devised
in [9]. In contrast, for nonuniform lengths, the problem has
been shown to be strong NP-hard even for a single channel,
a 3-approximation algorithm was devised for one channel
and a heuristic has been proposed for multiple channels [8].

On the other hand, the database community seeks a
periodic broadcast scheduling which should be easily
indexed [7]. For the single channel, the obvious schedule
that admits index is the flat one. It consists of selecting an
order among the data items and then transmitting them one
at a time, in a round-robin fashion [1], producing an infinite
periodic schedule. In a flat schedule, indexing is trivial since
each item will appear once, and exactly at the same relative
time, within each period. Although indexing allows the
client to sleep and save battery energy, the client expected
delay is half of the schedule period and can become
infeasible for a large period. To decrease the client expected
delay, still preserving indexing, flat schedules on multiple
channels can be adopted [12], [13], [18]. However, in such a
case, the allocation of data to channels becomes critical. For
example, allocating items in a balanced way simply scales
the expected delay by a factor equal to the number of
channels. To overcome this drawback, skewed allocations
have been proposed where items are partitioned according
to their popularities so that the most requested items appear
in a channel with shorter period [12], [18]. Hence, the
resulting problem is slightly different from the Broadcast
Problem since, in order to minimize the client expected
delay, it assumes skewed allocation and flat scheduling.
This variant of the problem is easier than the Broadcast
Problem. Indeed, as proven in [18], the optimal solution for
uniform lengths can be found in polynomial time. Indeed,
in that paper, two algorithms have been proposed, which
assume that an OðN logNÞ sorting preprocessing step has
been done on the N data items. Precisely, an OðN2KÞ
dynamic programming algorithm, called DP, was pro-
posed, where K is the number of channels. A faster

OðN logNÞ heuristic, called Greedy, was also proposed in

the same paper, which experimentally provides good

suboptimal solutions on some benchmarks whose popula-

rities are characterized by Zipf distributions. Such distribu-

tions have been shown to characterize the popularity of one

element among a set of similar data, like a Web page in a

Web site [5]. For nonuniform lengths, the problem tract-

ability was unknown, but the Greedy heuristic was easily

adapted, as shown in [17], [18].
The present paper expands the work started in [18],

under the same assumptions, namely, skewed data alloca-

tion to channels and flat data scheduling per channel. Both

the uniform and nonuniform length problems are faced and

solved to the optimum, proposing faster algorithms for the

uniform case and establishing the intractability (NP-hard-

ness) of the nonuniform case. A new heuristic is also given

which outperforms Greedy in terms of the solution quality,

in both the uniform and nonuniform cases, at the cost of a

slightly larger running time.
Specifically, for uniform lengths, a new OðNK logNÞ

time algorithm is designed, called here Dichotomic, which is

based on dynamic programming and finds optimal solu-

tions. When K � 4, a simpler OðN logNÞ time algorithm,

named Le4, is exhibited which requires only OðNÞ time

when the data items are already sorted. Moreover, for

nonuniform lengths, it is shown that the problem is

NP-hard when K ¼ 2, and strong NP-hard for arbitrary K.

When K ¼ 2, a pseudopolynomial time algorithm is

discussed which incrementally solves several Knapsack

instances. Its overall time is OðNZÞ, where Z is the sum of

the data lengths. For arbitrary K, an algorithm, called

Optimal, is devised with time exponential in the maximum

data length z. The Optimal algorithm requires OðKN2zÞ
time and reduces to the DP algorithm when z ¼ 1. When

z > 1, algorithm Optimal can solve only small instances in a

reasonable time. Therefore, for larger instances, a new

heuristic, called Move1, is proposed whose time complexity

is OðNðK þ logNÞÞ. Experimental tests reveal that Move1

always outperforms Greedy in terms of solution quality at

the cost of a slightly larger running time. Moreover, in the

uniform case, Move1 always finds optimal solutions on the

same benchmarks on which Greedy has been tested.
The rest of this paper is organized as follows: Section 2

gives notations, definitions, and the problem statement.

Section 3 efficiently solves the problem assuming uniform

lengths. In particular, Section 3.1 illustrates the Dichotomic

algorithm for an arbitrary number of channels, while

Section 3.2 presents the simpler Le4 algorithm when there

are at most four channels. In contrast, Section 4 studies the

nonuniform length case. It first shows the strong

NP-hardness for an arbitrary number of channels and then

presents the Optimal algorithm, which requires exponential

time. Section 4.1 discusses the nonuniform problem with

only two channels, providing the NP-hardness proof and

the reduction to the Knapsack problem, whereas Section 4.2

gives the Move1 heuristic. Section 5 reports the experi-

mental tests on some benchmarks. Finally, conclusions and

open questions are offered in Section 6.
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2 PRELIMINARIES

Consider a set of K identical channels and a set D ¼
fd1; d2; . . . ; dNg of N data items. Each item di is character-
ized by a probability pi and a length zi, with 1 � i � N . The
probability pi represents the demand probability of item di
being requested by the clients and it does not vary along the
time. Clearly,

PN
i¼1 pi ¼ 1. The length zi is an integer

number, counting how many time units (or ticks) are
required to transmit item di on any channel. When all data
lengths are the same, i.e., zi ¼ z for 1 � i � N , the lengths

are called uniform and are assumed to be unit, i.e., z ¼ 1.
When the data lengths are not the same, the lengths are said
to be nonuniform.

The items have to be partitioned into K groups
G1; . . . ; GK . Group Gj collects the data items assigned to

channel j, with 1 � j � K. The cardinality of Gj is denoted
by Nj, while the sum of its item lengths is denoted by Zj,
i.e., Zj ¼

P
di2Gj

zi. Note that, since the items in Gj are
cyclically broadcast according to a flat schedule, Zj is the
schedule period on channel j. Clearly, in the uniform case,

Zj ¼ Nj, for 1 � j � K. If item di is assigned to channel j
and, assuming that clients can start to listen at any instant of
time with the same probability, the client expected delay for
receiving item di is half of the period, namely,

Zj

2 . Assuming,
as in [18], that indexing allows clients to know in advance
the content of the channels, the average expected delay (AED)

over all channels is

AED ¼ 1

2

XK
j¼1

Zj

X
di2Gj

pi

0
@

1
A: ð1Þ

Given K channels, a set D of N items, where each data
item di comes along with its probability pi and its integer
length zi, the K-Non-Uniform Allocation Problem consists of

partitioning D into K groups G1; . . . ; GK so as to minimize
the objective function AED given in (1). In the special case
of equal lengths, the above problem is called the K-Uniform

Allocation Problem and the corresponding objective function
is derived replacing Zj with Nj in (1).

As an example, consider a set of N ¼ 6 items with
uniform lengths and K ¼ 3 channels. Let the demand
probabilities be p1 ¼ 0:37, p2 ¼ 0:25, p3 ¼ 0:18, p4 ¼ 0:11,
p5 ¼ 0:05, and p6 ¼ 0:04. The optimal solution assigns item
d1 to the first channel, items d2 and d3 to the second channel,

and the remaining items to the third channel. The
corresponding AED is

1

2
ð0:37þ 2ð0:25þ 0:18Þ þ 3ð0:11þ 0:05þ 0:04ÞÞ ¼ 0:915:

For ease of reference, all of the symbols that will be
defined in the rest of this paper are summarized in Table 1.
The rest of this section is devoted to briefly recalling the

dynamic programming solution proposed in [18] for the
K-Uniform Allocation Problem.

Lemma 1 [18]. Let Gh and Gj be two groups in an optimal

solution. Let di and dk be items with di 2 Gh and dk 2 Gj. If

Nh < Nj, then pi � pk. Similarly, if pi > pk, then Nh � Nj.

In other words, the most popular items are allocated to

less loaded channels so that they appear more frequently.

The following corollary shows how to exploit Lemma 1 in

cleaning the structure of the K-Uniform Allocation Problem.

Corollary 1 [18]. Let d1; d2; . . . ; dN be N items with pi � pk
whenever i < k. Then, there exists an optimal solution for

partitioning them into K groups G1; . . . ; GK , where each

group is made of consecutive elements.

Hereafter, thus, it is assumed that the items are sorted by

nonincreasing probabilities and the optimal solutions will

be sought within the class of the segmentations. A segmenta-

tion is a partition G1; . . . ; GK such that if di 2 Gj and

dk 2 Gj, then dh 2 Gj whenever i � h � k. A segmentation

d1; . . . ; dB1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
G1

; dB1þ1; . . . ; dB2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
G2

; . . . ; dBK�1þ1; . . . ; dN|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
GK

will be more compactly denoted by the ðK � 1Þ-tuple

ðB1; B2; . . . ; BK�1Þ

of its right borders, where border Bj is the index of the last

item that belongs to group Gj. Notice that it is not necessary

to specify BK , the index of the last item of the last group,

because its value will be N for any solution. From now on,

BK�1 will be referred to as the final border of the solution.

The cardinality of Gj, i.e., the number Nj of items in the

group, is Nj ¼ Bj �Bj�1, where B0 ¼ 0 and BK ¼ N are

assumed.
For any two integers n � N and k � K, let OPTn;k denote

an optimal solution for grouping items d1; . . . dn into

k groups and let optn;k be its corresponding cost. Let Ci;h

be the cost of assigning consecutive items di; . . . ; dh to one

group, i.e., Ci;h ¼ 1
2 ðh� iþ 1Þ

Ph
q¼i pq. Hence, optn;1 ¼ C1;n

for every n. For k > 1, the following recurrence holds:

optn;k ¼ min
‘2f1;2;...;n�1g

fopt‘;k�1 þ C‘þ1;ng: ð2Þ

The DP algorithm proposed in [18] is a straightforward

dynamic programming implementation of the recurrence in

(2). Indeed, in order to find OPTn;k, consider the K �N

matrixM withMk;n ¼ optn;k. The entries ofM are computed

row by row applying the recurrence in (2). Clearly, MK;N

contains the cost of an optimal solution for the K-Uniform

Allocation Problem. In order to actually construct an

optimal partition, a second matrix F is employed to keep

track of the final borders of segmentations corresponding to

entries of M. In the recurrence of (2), the value of ‘ which

minimizes the right-hand-side is the final border for the

solution OPTn;k and is stored in Fk;n. Hence, the optimal

segmentation is given by OPTN;K ¼ ðB1; B2; . . . ; BK�1Þ,
where, starting from BK ¼ N , the value of Bk is equal to

Fkþ1;Bkþ1
, for k ¼ 1; . . . ; K � 1.

To evaluate the time complexity of the DP algorithm,

observe that OðNÞ comparisons are required to fill every

entry of the matrix M, which implies that OðN2Þ compar-

isons are required to fill a row. Since there are K rows, the

complexity of the DP algorithm is OðN2KÞ.
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3 UNIFORM LENGTHS

To improve on the time complexity of the DP algorithm for
the K-Uniform Allocation Problem, the properties of
optimal solutions have to be further exploited.

Definition 1. Let d1; d2; . . . ; dN be items sorted by non-
increasing probabilities. An optimal solution OPTN;K ¼
ðB1; B2; . . . ; BK�1Þ is called left-most optimal and
denoted by LMON;K if, for any other optimal solution
ðB0

1; B
0
2; . . . ; B

0
K�1Þ, it holds BK�1 � B0

K�1.

Clearly, since the problem always admits an optimal
solution, there is always a left-most optimal solution.
Although the left-most optimal solutions do not need to
be unique, it is easy to check that there exists a unique
ðB1; B2; . . . ; BK�1Þ such that ðB1; B2; . . . ; BiÞ is a left-most
optimal solution for partitioning into iþ 1 groups the items
d1; d2; . . . ; dBiþ1

, for every i < K.

Definition 2. A left-most optimal solution ðB1; B2; . . . ; BK�1Þ is
called strict left-most optimal solution and denoted by
SLMON;K if ðB1; B2; . . . ; BiÞ is a LMOBiþ1;iþ1, for every
i < K.

The algorithms to be presented will compute a left-most
optimal solution for every i < K and, thus, they will find
the unique strict left-most optimal solution.

Lemma 2. Let the items d1; d2; . . . ; dN be sorted by nonincreasing
probabilities. Let LMON�1;K ¼ ðB1; B2; . . . ; BK�1Þ and
OPTN;K ¼ ðB0

1; B
0
2; . . . ; B

0
K�1Þ. Then, B0

K�1 � BK�1.

Proof. Let the costs of LMON�1;K and OPTN;K be,
respectively, optN�1;K ¼ optBK�1;K�1 þ CBK�1þ1;N�1 and
optN;K ¼ optB0

K�1
;K�1 þ CB0

K�1
þ1;N .

Consider the feasible solution for partitioning N items
into K channels obtained from ðB1; B2; . . . ; BK�1Þ just
adding dN to the Kth channel. Then:

optB0
K�1

;K�1 þ CB0
K�1

þ1;N ¼ optN;K � optBK�1;K�1 þ CBK�1þ1;N :

ð3Þ

By definition,

CB0
K�1

þ1;N � CB0
K�1

þ1;N�1 ¼
1

2
pNðN �B0

K�1Þ þ
XN�1

i¼B0
K�1

þ1

pi

0
@

1
A

and
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CBK�1þ1;N � CBK�1þ1;N�1 ¼
1

2
pNðN �BK�1Þ þ

XN�1

i¼BK�1þ1

pi

 !
:

Thus, assuming, by contradiction, B0
K�1 < BK�1, one

obtains:

CB0
K�1

þ1;N � CB0
K�1

þ1;N�1 � CBK�1þ1;N � CBK�1þ1;N�1: ð4Þ

Subtracting (4) from (3) yields:

optB0
K�1

;K�1 þ CB0
K�1

þ1;N�1 � optBK�1;K�1 þ CBK�1þ1;N�1

¼ optN�1;K;

which contradicts the fact that ðB1; B2; . . . ; BK�1Þ is

LMON�1;K . tu
In words, Lemma 2 implies that, given the items sorted

by nonincreasing probabilities, if one builds an optimal

solution for N items from an optimal solution for N � 1

items, then the final border BK�1 can only move to the right.

Such a property can be easily generalized as follows to

problems of increasing sizes. From now on, let Bi
j denote

the jth border of LMOi;k, with k > j � 1.

Corollary 2. Let the items d1; d2; . . . ; dN be sorted by

nonincreasing probabilities and let l < c < r � N . Then,

Bl
K�1 � Bc

K�1 � Br
K�1.

Proof. Follows directly from Lemma 2. tu

3.1 The Dichotomic Algorithm

Corollary 2 plays a fundamental role in speeding up the

DP algorithm. Indeed, assume that LMOn;k�1 has been

found for every n 2 ½1; . . . ; N �. If the LMOl;k and LMOr;k

solutions are also known for some 1 � l � r � N , then one

knows that Bc
k�1 is between Bl

k�1 and Br
k�1, for any l � c � r.

Thus, the recurrence in (2) can be rewritten as:

optc;k ¼ min
‘2fBl

k�1
;...;Br

k�1
g
fopt‘;k�1 þ C‘þ1;cg: ð5Þ

As the name suggests, the OðKN logNÞ time Dichotomic

algorithm is derived by choosing c ¼ dlþr
2 e in the recurrence

of (5), thus obtaining:

optdlþr
2 e;k ¼ min

‘2fBl
k�1

;...;Br
k�1

g
fopt‘;k�1 þ C‘þ1;dlþr

2 eg; ð6Þ

where Bl
k�1 and Br

k�1 are, respectively, the final borders of

LMOl;k and LMOr;k.

In detail, the Dichotomic algorithm is shown in Fig. 1. It
uses the two matrices M and F , whose entries are again
filled up row by row (Loop 1). A generic row k is filled in
stages (Loop 2). Each stage corresponds to a particular
value of the variable t (Loop 3). The variable j corresponds
to the index of the entry which is currently being filled in
stage t. The variables l (left) and r (right) correspond to the
indices of the entries nearest to j which have been already
filled, with l < j < r.

If no entry before j has been already filled, then l ¼ 1 and,
therefore, the final border Fk;1 is initialized to 1. If no entry
after j has been filled, then r ¼ N and, thus, the final border
Fk;Nþ1 is initialized toN . To compute the entry j, thevariable ‘
takes all values between Fk;l and Fk;r. The index ‘ which
minimizes the recurrence in Loop 4 is assigned to Fk;j, while
the corresponding minimum value is assigned toMk;j.

To show the correctness, consider how a generic row k is
filled up. In the first stage (i.e., t ¼ 1), the entry Mk;dNþ1

2 e is
filled and ‘ ranges over all values 1; . . . ; N . By Corollary 2,
observe that, to fill an entry Mk;l where l < dNþ1

2 e, one needs
to consider only the entries Mk�1;‘, where ‘ � Fk;dNþ1

2 e.
Similarly, to fill an entry Mk;l, where l > dNþ1

2 e, one needs
to consider only the entries Mk�1;‘, where ‘ � Fk;dNþ1

2 e. In
general, one can show that, in stage t, to compute the entries
Mk;j with j ¼ d2i�1

2t ðN þ 1Þe and 1 � i � 2t�1, only the
entries Mk�1;‘ must be considered, where Fk;l � ‘ � Fk;r

and l and r are di�1
2t�1 ðN þ 1Þe and d i

2t�1 ðN þ 1Þe, respectively.
Notice that these entries have been computed in earlier
stages. The above process repeats for every row of the
matrix. The algorithm proceeds till the last entry MK;N , the
required optimal cost, is computed. The strict left-most
optimal solution SLMON;K ¼ ðB1; B2; . . . ; BK�1Þ is ob-
tained, where Bk�1 ¼ Fk;Bk

for 1 < k � K and BK ¼ N .
As an example, consider Fig. 2, which illustrates the

execution of Loop 2 with N ¼ 15 and t ¼ 3, where the
entries corresponding to i ¼ 1; 2; 3; 4 of row k of matrix M
are being computed. The fourth, eighth, and 12th entries
have already been computed in stages 1 and 2. Let Fk;4, Fk;8,
and Fk;12 be the final borders corresponding to the entries
above. To compute the entry corresponding to i ¼ 1, one
only needs to consider entries from Mk�1;1 to Mk�1;Fk;4

.
Similarly, for i ¼ 2, only the entries from Mk�1;Fk;4

to
Mk�1;Fk;8

are to be examined. For i ¼ 3, one examines the
entries from Mk�1;Fk;8

up to Mk�1;Fk;12
and, finally, for i ¼ 4,

the entries beyond Mk�1;Fk;12
are visited.

Lemma 3. The total number of comparisons involved in a stage of
the Dichotomic algorithm is OðNÞ.
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Fig. 1. The Dichotomic algorithm for the K-Uniform Allocation Problem.



Proof. The whole execution of Loop 3 of Fig. 1 corresponds

to the execution of a stage for a particular value of t. The

total number of comparisons involved is equal to the

sum of the number of values the variable ‘ takes in

Loop 3. This is equal to:

X2t�1

i¼1

ðFk;r � Fk;l þ 1Þ;

where l ¼ i� 1

2t�1
ðN þ 1Þ

� �
and r ¼ i

2t�1
ðN þ 1Þ

� �
:

ð7Þ

Therefore:

X2t�1

i¼1

ðF
k; i

2t�1ðNþ1Þ
� � � F

k; i�1
2t�1ðNþ1Þ
� � þ 1Þ

¼ ðF
k; Nþ1

2t�1

� � � Fk;0 þ 1Þþ

ðF
k; 2

2t�1ðNþ1Þ
� � � F

k; Nþ1

2t�1

� � þ 1Þþ

..

.

ðF
k; 2t�1

2t�1ðNþ1Þ
� � � F

k; 2t�1�1
2t�1 ðNþ1Þ

� � þ 1Þ

¼ Fk;Nþ1 � Fk;0 þ 2t�1

¼ N � 1þ 2t�1

¼ OðNÞ:
ut

Theorem 1. The K-Uniform Allocation Problem can be solved in

OðKN logNÞ time by the Dichotomic algorithm.

Proof. From Lemma 3, one stage of Fig. 1, corresponding to

the execution of Loop 2 for a particular value of t,

involves OðNÞ comparisons. Since Loop 2 runs dlogNe
times and Loop 1 is repeated K times, the overall time

complexity is OðNK logNÞ. tu

It is worth noting that, in the Dichotomic algorithm, the

index values l, j, and r depend only on the stage t, precisely,

on every value 1 � i � 2t�1. In other words, the values of l, j,

and r are the same for every k. Therefore, to save time, they

can be computed only once during a preprocessing phase, for

1 � t � dlogNe and 1 � i � 2t�1, properly saving them on

three arrays, say l½t; i�, j½t; i�, and r½t; i�, respectively. Such

values can be directly read from the arrays when needed,

without wasting time recomputing themK � 1 times.

3.2 The Le4 Algorithm

In this subsection, the Le4 algorithm is proposed for the
K-Uniform Allocation Problem when the number of
channels K is at most four. When the data items are
already sorted, the Le4 algorithm requires OðNÞ time. It is
based on an efficient incremental technique when there are
two channels. Specifically, when K ¼ 2, adding a new item
with lowest (or, highest) probability to an optimal partial
solution can be done in Oð1Þ (respectively, OðlogNÞ) time.

When K ¼ 2, Lemma 2 can be further simplified. Indeed,
in such a case, the final border can move at most one
position to the right.

Lemma 4. Let the items d1; d2; . . . ; dN be sorted by nonincreasing
probabilities. Let LMON�1;2 ¼ ðB1Þ and LMON;2 ¼ ðB0

1Þ.
Then, B1 � B0

1 � B1 þ 1.

Proof. Let p
ðjÞ
i be the probability of the ith item d

ðjÞ
i in Gj,

with j ¼ 1; 2. Since the items are sorted by nonincreasing

order, then p
ðjÞ
1 � p

ðjÞ
2 � . . . � p

ðjÞ
Nj
. Let P1 ¼

PN1

i¼1 p
ð1Þ
i and

P2 ¼
PN2

i¼1 p
ð2Þ
i be, respectively, the sum of the probabil-

ities of the items in the two groups of LMON�1;2. Assume

by contradiction that, after adding dN , LMON;2 ¼ ðB0
1Þ ¼

ðB1 þ tÞ with t > 1, that is, the final border of the optimal

solution moves t positions to the right. Since the items

d
ð2Þ
1 ; d

ð2Þ
2 ; . . . ; d

ð2Þ
t migrate from G2 into G1, then:

optN;2 ¼
1

2
ðN1 þ tÞðP1 þ

Xt
i¼1

p
ð2Þ
i Þ

 

þðN2 � tþ 1ÞðP2 �
Xt
i¼1

p
ð2Þ
i þ pNÞ

!
:

ð8Þ

Similarly, if, after adding dN , the final border of the
optimal solution moves only one position to the right, the
above equation becomes:

costN;2 ¼
1

2
ðN1 þ 1ÞðP1 þ p

ð2Þ
1 Þ þN2ðP2 � p

ð2Þ
1 þ pNÞ

� �
: ð9Þ

Since, by hypothesis, the solution that moves t positions
is the optimal one, optN;2 � costN;2. Formally:

optN;2 � costN;2 ¼
1

2

�
ðP1 � P2Þðt� 1Þ þ ðN1 �N2 þ 2t� 1Þ

Xt
i¼2

p
ð2Þ
i þ ðt� 1Þð2pð2Þ1 � pNÞ

	
� 0:

ð10Þ

Consider now the solution obtained from LMON�1;2 by
moving the final border t� 1 positions on the right. Its
cost differs from optN�1;2 by

� ¼ 1

2
ðP1 � P2Þðt� 1Þ þ ðN1 �N2 þ 2t� 2Þ

Xt�1

i¼1

p
ð2Þ
i

 !
;

ð11Þ

which is greater than or equal to 0 from the optimality of
LMON�1;2.
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Substituting � in (10), one gets:

optN;2 � costN;2 ¼ �þ 1

2

Xt�1

i¼2

p
ð2Þ
i þ ðN1 �N2Þðpð2Þt � p

ð2Þ
1 Þ

 

þð2t� 1Þpð2Þt � ðt� 1ÞpN
�
:

ð12Þ

Observe that ðN1 �N2Þðpð2Þt � p
ð2Þ
1 Þ � 0 since N1 � N2

and p
ð2Þ
t � p

ð2Þ
1 and that ð2t� 1Þpð2Þt � ðt� 1ÞpN � 0 be-

cause 2t� 1 > t� 1 and p
ð2Þ
t � pN . Recalling that � � 0

and
Pt�1

i¼2 p
ð2Þ
i � 0, then optN;2 � costN;2 � 0 results, thus

contradicting the optimality of the solution with N items,

where the last border moves t positions on the right. tu
As a consequence of the above lemma, computing

LMOn;2 given LMOn�1;2 ¼ ðBn�1
1 Þ can be done in constant

time just applying the following recurrence:

optn;2 ¼ min
‘2fBn�1

1
;Bn�1

1
þ1g

fC1;‘ þ C‘þ1;ng: ð13Þ

Therefore, the following theorem holds:

Theorem 2. Let the items d1; d2; . . . ; dN be sorted by nonincreas-

ing probabilities. All the solutions LMOn;2, with 1 � n � N ,

of the 2-Uniform Allocation Problem can be computed in

OðNÞ time.

The above result leads to an efficient algorithm for

finding the optimal solution LMON;3 of the 3-Uniform

Allocation Problem. Indeed, it is easy to see that the

solution for K ¼ 3 can be obtained by combining the

solutions for K ¼ 2 and K ¼ 1 as follows:

optN;3 ¼ min
‘2f1;...;Ng

fopt‘;2 þ C‘þ1;Ng: ð14Þ

Corollary 3. Let the items d1; d2; . . . ; dN be sorted by

nonincreasing probabilities. The optimal solution LMON;3 of

the 3-Uniform Allocation Problem can be computed in OðNÞ
time.

Following a similar reasoning, the 4-Uniform Allocation

Problem can be solved by combining the solutions of two

problems with K ¼ 2 for, respectively, the first n items and

the remaining N � n items. Theorem 2 showed how to

solve, in OðNÞ time, all the problems for the first n items,

with 1 � n � N . In order to apply the same technique to

solve, in OðNÞ time, all the problems for the remaining N �
n items, a result similar to Lemma 4 is needed when the

new item to be added is that with the greatest probability.
In the rest of this subsection, the notation is slightly

modified in order to consider both the above problems.

Specifically, consider the 2-Uniform Allocation Problem. Let

opti;j;2 denote the cost of the leftmost optimal solution

LMOi;j;2 for allocating the items di; . . . ; dj to two channels.

Lemma 5. Let the items d1; d2; . . . ; dN be sorted by nonincreasing

probabilities. Let LMO2;N;2 ¼ ðB1Þ and LMO1;N;2 ¼ ðB0
1Þ.

Then, B0
1 � B1.

Proof. Similar to Lemma 2. tu

For the aim of determining the exact index of the final
border B0

1 of LMO1;N;2, consider the feasible solutions
obtained by inserting d1 into G1 and moving left the border
B1 of LMO2;N;2 one position at a time. Continue to move left
B1 while the cost of the resulting feasible solution decreases,
but stop moving and fix B0

1 ¼ B1 as soon as its cost starts
increasing. The following lemma guarantees that the thus
found B0

1 is optimal.

Lemma 6. Let the items d1; d2; . . . ; dN be sorted by nonincreas-
ing probabilities. Let Sn;N;2 ¼ ðBÞ and S0

n;N;2 ¼ ðB� 1Þ be
feasible solutions such that their costs are increasing, that is,
sn;N;2 < s0n;N;2. Then, for S00

n;N;2 ¼ ðB� 2Þ, i t s cost
s00n;N;2 > s0n;N;2.

Proof. As in the proof of Lemma 4, let p
ðjÞ
i be the probability

of the ith item d
ðjÞ
i in Gj, with j ¼ 1; 2, and let P1 ¼PN1

i¼1 p
ð1Þ
i and P2 ¼

PN2

i¼1 p
ð2Þ
i of Sn;N;2. By definition,

sn;N;2 ¼ 1
2 N1P1 þN2P2ð Þ and

s0n;N;2 ¼
1

2
ðN1 � 1ÞðP1 � p

ð1Þ
N1
Þ þ ðN2 þ 1ÞðP2 þ p

ð1Þ
N1
Þ

� �
:

Thus, s0n;N;2 > sn;N;2 if and only if

p
ð1Þ
N1

>
P1 � P2

N2 �N1 þ 2
: ð15Þ

Note that (15) holds true since, by hypothesis,
s0n;N;2 > sn;N;2. Moreover, rewriting the above equation
for s00n;N;2 and s0n;N;2 implies that s00n;N;2 > s0n;N;2 if and only if

p
ð1Þ
N1�1 >

P1 � P2 � 2p
ð1Þ
N1

N2 �N1 þ 4
: ð16Þ

To complete the proof, note that (16) also holds true
because

p
ð1Þ
N1�1 > p

ð1Þ
N1

>
P1 � P2

N2 �N1 þ 2
>

P1 � P2 � 2p
ð1Þ
N1

N2 �N1 þ 4
:

ut

As a consequence of the above lemma, given
LMOn;N;2 ¼ ðBn

1 Þ, LMOn�1;N;2 can be computed just apply-
ing the following recurrence:

optn�1;N;2 ¼ min
‘2fn�1;...;Bn

1
g
fC1;‘ þ C‘þ1;ng: ð17Þ

Note that, in (17), a single optn�1;N;2 can be found in
OðlogðBn

1 � nÞÞ time by applying a binary search in the
range ½n� 1; . . . ; Bn

1 �. However, optn;N;2 for all 1 � n � N
can be found in linear time.

Theorem 3. Let the items d1; d2; . . . ; dN be sorted by nonincreas-
ing probabilities. All the solutions LMOn;N;2, with
1 � n � N , of the 2-Uniform Allocation Problem can be
computed in OðNÞ time.

Proof. Consider the sequence of solutions LMON�1;N;2 ¼
ðBN�1

1 Þ; LMON�2;N;2 ¼ ðBN�2
1 Þ; . . . ; LMO1;N;2 ¼ ðB1

1Þ. By
Lemma 6, the overall number of comparisons is
Oð
PN�1

n¼1 ðBnþ1
1 �Bn

1 ÞÞ ¼ OðNÞ. tu

Theorems 2 and 3 yield an efficient way of finding the
optimal solution LMON;4 of the 4-Uniform Allocation
Problem by combining two solutions for K ¼ 2:
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opt1;N;4 ¼ min
‘2f1;...;Ng

fopt1;‘;2 þ opt‘þ1;N;2g: ð18Þ

Corollary 4. Let the items d1; d2; . . . ; dN be sorted by

nonincreasing probabilities. The optimal solution LMON;4 of

the 4-Uniform Allocation Problem can be found in OðNÞ time.

The Le4 algorithm solves the Uniform Allocation

Problem with at most four channels by cases. Specifically,

it applies the recurrences in (13), (14), or (18), for K ¼ 2; 3,

and 4, respectively. If the items are already sorted, its time

complexity is OðNÞ; otherwise, it takes OðN logNÞ time.

4 NONUNIFORM LENGTHS

Consider now the K-Non-Uniform Allocation Problem for

an arbitrary number K of channels. In contrast to the

uniform case, introducing items with different lengths

makes the problem computationally intractable.

Theorem 4. The K-Non-Uniform Allocation Problem is strong

NP-hard.

Proof. See the Appendix. tu

As a consequence of the above result, there is no

pseudopolynomial time optimal algorithm or Fully Poly-

nomial Time Approximation Scheme (FPTAS) for solving

the K-Non-Uniform Allocation Problem (unless P = NP).

However, when the maximum item length z is bounded by

a constant, a polynomial time optimal algorithm can be

derived where z appears in the exponent. When z ¼ 1, this

algorithm reduces to the DP algorithm.
Recall that the sum of the item lengths in group Gj is

denoted by Zj. The following result generalizes Lemma 1.

Lemma 7. Let Gh and Gj be two groups in an optimal solution.

Let di and dk be items with zi ¼ zk and di 2 Gh, dk 2 Gj. If

Zh < Zj, then pi � pk. Similarly, if pi > pk, then Zh � Zj.

Proof. Assume by contradiction that Zh < Zj and pi < pk
and swap di and dk between the two groups. Since both

items have the same length, Zh and Zj do not change.

Instead, the overall change in cost is:

� ¼ 1

2
Zhðpk � piÞ þ Zjðpi � pkÞ

 �

¼ 1

2
ðZh � ZjÞðpk � piÞ

 �

< 0;

which is a contradiction. tu
Based on the above lemma, some additional notations

are introduced. The set D of items can be viewed as a union

of disjoint subsets Di ¼ fdi1; di2; . . . ; diLi
g, 1 � i � z, where Di

is the set of items with length i, Li is the cardinality of Di,

and z is the maximum item length. Let pij represent the

probability of item dij, for 1 � j � Li.
The following corollary generalizes Corollary 1.

Corollary 5. Let di1; d
i
2; . . . ; d

i
Li

be the Li items of length i with

pim � pin whenever m < n, for i ¼ 1; . . . ; z. There is an

optimal solution for partitioning the items of D into K groups

G1; . . . ; GK such that, if a < b < c and dia; d
i
c 2 Gj, then

dib 2 Gj.

Proof. Follows from Lemma 7. tu

In the following, the items in each Di are assumed to be

sorted by nonincreasing probabilities and optimal solutions

will be sought of the form:

d11; . . . ; d
1

B
ð1Þ
1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

G1

; d1
B

ð1Þ
1
þ1
; . . . ; d1

B
ð1Þ
2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

G2

; . . . ; d1
B

ð1Þ
K�1

þ1
; . . . ; d1N1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
GK

d21; . . . ; d
2

B
ð2Þ
1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

G1

; d2
B

ð2Þ
1
þ1
; . . . ; d2

B
ð2Þ
2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

G2

; . . . ; d2
B

ð2Þ
K�1

þ1
; . . . ; d2N2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
GK

..

.

dz1; . . . ; d
z

B
ðzÞ
1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

G1

; dz
B

ðzÞ
1
þ1
; . . . ; dz

B
ðzÞ
2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

G2

; . . . ; dz
B

ðzÞ
K�1

þ1
; . . . ; dzNz|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
GK

;

where B
ðiÞ
j is the highest index among all items of

length i in group Gj. The solution will be represented

as ð �BB1; �BB2; . . . ; �BBK�1Þ, where each �BBj is the z-tuple

ðBð1Þ
j ; B

ð2Þ
j ; . . . ; B

ðzÞ
j Þ for 1 � j � K � 1. From now on,

B
ðiÞ
K�1 will be referred to as the final border for length i

and �BBK�1 as the final border vector.

Let OPTn1;...;nz;k denote the optimal solution for grouping

the
Pz

i¼1 ni items di1; d
i
2; . . . ; d

i
ni
, 1 � i � z, into k groups and

let optn1;...;nz;k be its corresponding cost. Let Cl1;n1;...;lz;nz
be the

cost of putting items li through ni, for all i ¼ 1; 2; . . . ; z, into

one group, i.e.,

Cl1;n1;...;lz;nz
¼ 1

2

Xz
i¼1

iðni � li þ 1Þ
 ! Xz

i¼1

Xni

j¼li

pij

 !
:

Now, consider the recurrence:

optn1;...;nz;k ¼ min
~‘‘¼ð‘1 ;...;‘zÞ

0�‘i�ni ;1�i�z

n
opt‘1;...;‘z;k�1 þ C‘1þ1;n1;...;‘zþ1;nz

o
: ð19Þ

To solve this recurrence by using dynamic programming,

consider a ðzþ 1Þ-dimensional matrix M, made of K rows

in the first dimension and Li columns in dimension iþ 1

for i ¼ 1; . . . ; z. Each entry is represented by a ðzþ
1Þ-tuple Mk;n1;...;nz

, where k corresponds to the row index

and ni corresponds to the index of the column in

dimension iþ 1. The entry Mk;n1;...;nz
represents the

optimal cost for partitioning items di1 through dini
, for

i ¼ 1; 2; . . . z, into k groups. There is also a similar matrix

F where the entry Fk;n1;...;nz
corresponds to the final

border vector of the solution whose cost is Mk;n1;...;nz
. The

matrix entries are filled row by row. The optimal solution

is given by OPTL1;...;Lz;K ¼ ð �BB1; �BB2; . . . ; �BBK�1Þ where, start-

ing from �BBK ¼ ðL1; L2; . . . ; LzÞ, the value of �BBk is obtained

from the value of �BBkþ1 and by F as �BBk ¼ Fkþ1; �BBkþ1
, for

k ¼ 1; . . . ; K � 1. A dynamic programming algorithm,

called Optimal, derives directly from the recurrence in (19).

Theorem 5. The K-Non-Uniform Allocation Problem can be

solved in OðKN2zÞ time.
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Proof. Since the computation of every entry Mk;n1;...;nz
and

Fk;n1;...;nz
requires

Qz
i¼1ðni þ 1Þ �

Qz
i¼1ðLi þ 1Þ compari-

sons and every row has
Qz

i¼1 Li entries, the overall time

complexity is OðK
Qz

i¼1ðLi þ 1Þ2Þ ¼ OðKN2zÞ. tu

4.1 Two Channels

Now, consider a special case of the K-Non-Uniform Alloca-

tion Problem where the number of channels is equal to 2.

Theorem 6. The 2-Non-Uniform Allocation Problem is NP-hard.

Proof. See the Appendix. tu

Although the 2-Non-Uniform Allocation Problem is

NP-hard, it is not NP-hard in the strong sense. Therefore,

it is possible to devise a pseudopolynomial time algorithm,

that is an algorithm whose time is polynomial in the item

lengths.
The problem is to find a solution G1 and G2 such that

1
2 Z1P1 þ Z2P2ð Þ is minimized, where P1 and P2 denote the

sum of the demand probabilities of items in G1 and G2,

respectively. From now on, let P1 þ P2 ¼ 1 and Z1 þ Z2 ¼ Z

and assume, without loss of generality, that Z1 � Z2.

Observe that there are only bZ=2c possible values for Z1.
Consider the 2-Non-Uniform Allocation Problem for a

fixed value of Z1. Observe that

Z1P1 þ Z2P2 ¼ Z1P1 þ Z2ð1� P1Þ ¼ P1ðZ1 � Z2Þ þ Z2:

Since Z1 is fixed and, hence, Z2 is also fixed and, observing

that Z1 � Z2 � 0, minimizing Z1P1 þ Z2P2 is equivalent to

maximizing P1. Therefore, the problem reduces to finding a

subset G1 of fd1; d2; . . . ; dNg, which maximizes P1. The basic

idea of the algorithm to be proposed is that, once the value

of Z1 is fixed, the 2-Non-Uniform Allocation Problem with

N items fd1; d2; . . . ; dNg reduces to a particular Knapsack

problem [11] of capacity Z1 with the same N items, where

each item di is characterized by a profit pi and a weight zi.

Specifically, the Knapsack problem consists of finding a

subset S of fd1; d2; . . . ; dNg subject to the constraintP
dk2S zk ¼ Z1 so as to maximize the objective functionP
dk2S pk.
To apply dynamic programming, consider two ðN þ 1Þ �

ðbZ=2c þ 1ÞmatricesM andX. The entryMi;j, with 0 � i � N

and 0 � j � bZ=2c, stores the value of the objective function
for the above Knapsack problem with items fd1; . . . ; dig and

capacity j. Formally, Mi;j ¼ max
P

dk2S pk such thatP
dk2S zk ¼ j, where S � fd1; . . . ; dig. By definition, letMi;j ¼

�1 if the capacity j cannot be completely filled by anyS. The

Boolean entry Xi;j records whether the item di has been

selected or not in the solution of the Knapsack problem with

items fd1; . . . ; dig and capacity j, with 0 � i � N and

0 � j � bZ=2c.
Thedynamicprogrammingalgorithmstarts by initializing

the first row of the matrices in such a way that M0;0 ¼ 0,

M0;j ¼ �1 f o r 1 � j � bZ=2c, a n d X0;j ¼ false f o r

0 � j � bZ=2c. Then, the matrices M and X are filled row

by row as follows: For i ¼ 1; 2; . . . ; N and j ¼ 0; 1; . . . ; bZ=2c,
Mi;j and Xi;j are filled by using the following relations:

Mi;j ¼
Mi�1;j if j < zi

maxfMi�1;j; Mi�1;j�zi þ pig if j � zi

�

Xi;j ¼
true if Mi;j ¼ Mi�1;j�zi þ pi 6¼ �1
false otherwise:

�
Note that it is possible that, for certain values of j with
0 � j � bZ=2c, there is no solution for items fd1; . . . ; dig
such that the total sum of weights is exactly j. In such cases,
according to the definition, the recurrence above gives
Mi;j ¼ �1. In contrast, if there is a solution for items
fd1; . . . ; dig such that the total sum of weights is exactly j,
then Mi;j 6¼ �1 and Mi;j gives the optimal value of the
objective function.

Consider the last row of M. Any entry MN;j 6¼ �1 gives
the optimal P1 for the 2-Non-Uniform Allocation Problem
with items fd1; . . . ; dNg and Z1 ¼ j. Therefore, the entry, say
MN;j, which minimizes 1

2 ðMN; jjð1�MN;jÞðZ � jÞÞ gives the
optimal AED for the original 2-Non-Uniform Allocation
Problem. Once MN;j has been found, it is easy to list out the
items which have been picked up in the optimal solution by
tracing back the solution path. Specifically, if XN;j ¼ true,
then item dN is selected and the entryXN�1;j�zN

is examined
next; if XN;j ¼ false, then item dN is not selected and the
entry XN�1;j is examined next. Such a procedure is repeated
backward until the row 0 ofX is reached. The selected items
are assigned to channel 1, while the remaining items to
channel 2.

Theorem 7. The 2-Non-Uniform Allocation Problem can be
solved in OðNZÞ time.

Proof. The matrices M and X have ðN þ 1Þ � ðbZ=2c þ 1Þ
entries. Each entry can be computed in constant time.
Moreover, the minimum on the last row of M costs
OðZÞ time, while tracing back the solution path takes
OðNÞ time. Hence, the time complexity of the dynamic
programming algorithm is OðNZÞ. tu

The algorithm shown in Fig. 3 is effective when the items
havesmall length. For instance, if each item length isbounded
by a constant, then Z ¼ OðNÞ and the overall time becomes
OðN2Þ. Such an algorithm is as effective as the standard
pseudopolynomial time algorithm for theKnapsack problem
and allows Fully Polynomial Time Approximation Schemes
(FPTAS) to be obtained by standard techniques [11].

4.2 The Move1 Heuristic

Since the K-Non-Uniform Allocation Problem is strong
NP-hard, it results to be computationally intractable (unless
P = NP). In practice, this implies that one is forced to
abandon the search for efficient algorithms which find
optimal solutions. Therefore, one can devise fast and simple
heuristics that provide solutions which are not necessarily
optimal, but usually fairly close. This strategy is followed in
this subsection, where a new heuristic, called Move1, is
presented for the K-Non-Uniform Allocation Problem.
Move1 is similar to a local search since it iteratively
considers a solution and examines a set of neighbor
solutions which can be obtained from the previous one by
means of a transformation. Unlike local search, however,
Move1 always replaces the previous solution with the best
solution in the neighborhood, even if the new selected

566 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005



solution is not better than the previous one. The output is
the best solution among the solutions considered in all the
above iterations.

As for the previously knownGreedy heuristic,Move1 also
assumes that the items are sorted by nonincreasing pi

zi
ratios.

Initially, Move1 assigns all the N items to theK channels in
such a way that each of the first K � 1 channels holds just
one item, while the last channel holds all the remaining
N �K þ 1 items. In other words, according to the segmen-
tation notation introduced in Section 2, the starting solution
SOL is represented by ðB1 ¼ 1; B2 ¼ 2; . . . ; BK�1 ¼ K � 1Þ.

Consider a generic iteration with

SOL ¼ ðB1; B2; . . . ; BK�1Þ:

Move1 tries to shift right, by one position, the rightmost
borders. Precisely, it considers the K � 1 solutions
S1; S2; . . . ; SK�1, where Si is derived from SOL by moving
the rightmost i borders. Namely,

Si ¼ ðB1; B2; . . . ; BK�i�1; BK�i þ 1; . . . ; BK�1 þ 1Þ;

for 1 � i � K � 1. Move1 computes the AED for each Si and
then replaces SOL with that Si having the lowest AED.
Note that, in the new SOL, the group size NK of items
assigned to channel K decreases by one.

The above iteration is repeated N �K þ 1 times until the
group size NK becomes 1. The solution SOL� ¼
ðB�

1; B
�
2; . . . ; B

�
K�1Þ output by the Move1 algorithm is that

with the lowest AED among the N �K þ 1 different values
of SOL found during the above iterations.

The algorithm is detailed in Fig. 3. The outer loop is
iterated OðN �KÞ times, while each of the two inner loops
is repeated OðKÞ times. In the first (second) inner loop, the
borders are shifted right (left, respectively) by one position.
In doing this, both the group length

PBi

h¼Bi�1þ1 zh and group
probability

PBi

h¼Bi�1þ1 ph can be easily updated in Oð1Þ time
(where it is assumed that B0 ¼ 0 and BK ¼ N). Indeed, it is
sufficient to maintain two prefix sums sequences and
update them only when a border shifts (see, e.g., [17] for
details about this technique). In this way, evaluating
AEDðB1; . . . ; BK�1Þ requires Oð1Þ time as well. Since
OðN logNÞ time is needed for sorting, the overall time
complexity is OðNðK þ logNÞÞ. If the items are already
sorted, such a time complexity becomes OðKðN �KÞÞ,
which in turn is OðNÞ when K is a constant.

The Move1 heuristic follows a completely different
approach with respect to the Greedy heuristic, which
instead starts with a single segmentation where all the N
items are assigned to a single group. Then, for K � 1 times,
one of the groups is split into two groups that will be
assigned to two different channels. To find which group to
split along with its actual split point, Greedy considers as
split point candidates all the possible points of all groups,
and selects the one that decreases AED the most. An
efficient implementation takes advantage from the fact that,
between two subsequent splits, it is sufficient to recompute
the costs for the split point candidates of the last group that
has been actually split. All the details can be found in [17].

5 EXPERIMENTAL TESTS

In this section, experimental results, performed on imple-
mentations of both the Greedy and Move1 heuristics, are
discussed for the K-Non-Uniform Allocation Problem. In
particular, the implementation of Greedy as detailed in [17]
is used. The algorithms are written in C and the experi-
ments are run on a Pentium III, 550 Mhz, with 2 GB RAM.

The heuristics are tested on some nonuniform length
instances generated as follows: Given the number N of
items and a real number 0 � � � 1, the item probabilities are
generated according to a Zipf distribution whose skew is �,
namely:

pi ¼
ð1=iÞ�PN
i¼1ð1=iÞ

�
1 � i � N:

In the above formula, � ¼ 0 stands for a uniform
distribution with pi ¼ 1

N , while � ¼ 1 implies a high skew,
namely, the range of pi values becomes larger. The item
lengths zi are integers generated according to a uniform
distribution in the range 1 � zi � z, as in [15]. The items
are sorted by nonincreasing pi

zi
ratios, as suggested in [15].

The parameters N , K, z, and � vary, respectively, in the
ranges: 50 � N � 2; 000, 3 � K � 1; 000, 3 � z � 10, and
0:3 � � � 0:9.

Since the Optimal algorithm can find optimal solutions
in a reasonable time only for small values of N and z, a
lower bound on AED is used for large values of N and z.
The lower bound for a nonuniform instance is obtained by
transforming it into a uniform instance as follows: Each
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item di of probability pi and length zi is decomposed in zi
items of probability pi

zi
and length 1. Since more freedom has

been introduced, it is clear that the optimal AED for the
thus transformed problem is a lower bound on the AED of
the original problem. Since the transformed problem has
uniform lengths, its optimal AED is obtained by running
the Dichotomic algorithm. It is worth noting that such a
lower bound is not necessarily achievable. Its goodness
decreases as the number K of channels increases with
respect to N since, in such a case, more freedom is
introduced.

The simulation results are exhibited in Tables 2, 3, and 4.
The tables report the time (measured in microseconds), the
AED, and the percentage of error, which is computed as

AEDheuristic �AEDoptimal

AEDoptimal

� 	
100:

When AEDoptimal is not known, it is replaced by its lower
bound. By observing the tables, one notes that Move1
always outperforms Greedy in terms of the solution quality.
In particular, Table 2 shows the AED, error, and time when
K ¼ 50 and z ¼ 3, with � assuming the values 0:3, 0:6, and
0:9. Since N and z are small, the optimal solutions,

computed by the Optimal algorithm, are reported. With
regard to the running time, both Move1 and Greedy always
take less than one millisecond, while Optimal is much
slower. By observing Table 2, one notes that Move1 gives
solutions closer to the optimal ones when � is small. In the
best instance (K ¼ 5 and � ¼ 0:3), the error is 0.2 percent
only, while, in the worst instance (K ¼ 5 and � ¼ 0:9), the
error is about 10 percent. In addition, Table 3 shows the
AED, error, and time when K ¼ 500, � ¼ 0:8, z ¼ 10, and
10 � K � 300. The running time of Move1 is less than
1/10th of a second, while that of Greedy is less than
10 milliseconds. Since N and z are not small, the lower
bounds are reported. Although Move1 always finds better
solutions than Greedy, the resulting error is larger than in
the previous table. However, it is worth noting that the
lower bound degrades as the number of channels increases.
Therefore, the error of both algorithms is actually smaller
than that reported in Table 3, especially whenK approaches
N . The same observation holds for the AED and error
reported in Table 4, where K ¼ 2; 000, � ¼ 0:8, z ¼ 3, and
4 � K � 1; 000. Indeed, one notes a smaller error when
K ¼ 4. For large K, the running time of Move1 becomes
almost one second, while that of Greedy is always less than
1/10th of a second.

For the sake of completeness, experimental tests are also
performed on some uniform length benchmarks. In addi-
tion to Move1 and Greedy, the Dichotomic and Le4
algorithms are also run in order to check their time
improvements over the DP algorithm not only analytically,
but also experimentally. In particular, the DP algorithm is
also implemented as described by its authors. The uniform
length benchmarks are built as described in [17], [18], where
the probabilities are generated according to a Zipf distribu-
tion with � ¼ 0:8, while the parameters N and K are chosen
so as to vary, respectively, in the ranges 4 � K � 2; 500 and
10 � N � 5; 000. The fixed values of K and N are,
respectively, 4 and 2; 500.

The results of the simulations are reported in Tables 5
and 6, where the running times do not include the time for
sorting. Observing such tables, one notes that Move1
always finds the optimal solutions, while Greedy gives
suboptimal solutions which are less than 3 percent far from
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TABLE 2
Experimental Results for the Greedy and Move1 Heuristics

when N ¼ 50 and z ¼ 3

TABLE 3
Experimental Results for the Greedy and Move1 Heuristics

when N ¼ 500, � ¼ 0:8, and z ¼ 10

TABLE 4
Experimental Results for the Greedy and Move1 Heuristics

when N ¼ 2; 000, � ¼ 0:8, and z ¼ 3



the optimum. Note that, when N ¼ K ¼ 2; 500, Move1 is
extremely fast because its initial solution, which has one
item assigned to each channel, is the optimal solution and
no extra work is needed. Moreover, observing Table 5, one
notes that the Le4 algorithm is very fast. For instance, it
requires about 1 millisecond for solving the problem on
N ¼ 5; 000 and K ¼ 4. Also observing Table 6, one checks
that the Dichotomic algorithm is between one and two
orders of magnitude faster than the DP algorithm. For
instance, when N ¼ 2; 500 and K ¼ 1; 500, the DP algorithm
requires about six minutes, while the Dichotomic algorithm
just takes about seven seconds.

In conclusion, Move1 always achieves a better quality of
the solution with respect to Greedy, both in the uniform and
nonuniform cases, at the expense of a slightly larger
running time. Therefore, the choice between such two
heuristics depends on the goal to be pursued. If one is
interested in finding the lowest suboptimal solution, then
Move1 should be adopted. However, if adaptability to
parameter changes is the priority, then Greedy should be
applied. For instance, Greedy scales well with the number
of channels (adding/removing a channel requires doing/
undoing a single split), while Move1 is designed for a fixed
number of channels.

6 CONCLUSIONS

In this paper, the problem of data broadcasting over
multiple channels, with the objective of minimizing the
average expected delay (AED) of the clients, was consid-
ered under the assumptions of skewed allocation to

multiple channels and flat scheduling per channel. Both
the uniform and nonuniform length problems were solved
to the optimum, proposing new algorithms based on
dynamic programming. All the results presented in this
paper are summarized in Table 7. In particular, for
nonuniform lengths, it has been shown that the problem
is computationally intractable. Therefore, a new heuristic
has been proposed, which experimentally outperforms the
previously known heuristic in terms of the solution quality.

As a direction for further research, one can derive lower
bounds on the time complexity for the uniform case.
Moreover, one could try to design OðNÞ time algorithms
in the uniform case when the number K of channels is a
constant greater than 4 and the items are already sorted.
Finally, for the nonuniform case, one could search for
higher lower bounds on the AED and for faster heuristics
which can provide better suboptimal solutions and can
easily adapt to dynamic changes in the item popularities.

In this paper, the client delay has been defined as the
overall time elapsed from the moment the client desires a
data item to the moment the item download starts. Such a
definition assumes that indexing is already available to the
client. Hence, the client delay does not include the tuning
time spent by the client for actively retrieving the index
information and the data item. Thus, after reading the
index, the client can be turned into a power saving mode
until the data item appears on the proper channel. There-
fore, our solution minimizes the AED and keeps the tuning
time as low as possible provided that an efficient index
strategy is adopted on one or more separate channels. In
our solution, the index can be readily derived from the
ðK � 1Þ-tuple ðB1; B2; . . . ; BK�1Þ, which compactly repre-
sents the data allocation. However, this tuple is enough for
indexing only if all the clients know, as global information,
the relative position of each data item within the set of all
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TABLE 5
Experimental Results for the DP, Dichotomic, Le4, Move1, and

Greedy Algorithms when K ¼ 4, � ¼ 0:8, and z ¼ 1

TABLE 6
Experimental Results for the DP, Dichotomic, Move1, and
Greedy Algorithms when N ¼ 2; 500, � ¼ 0:8, and z ¼ 1



data items sorted by probabilities. This is an assumption
that precludes the solution from being dynamically adapted
to changes in the item parameters, like probabilities, sizes,
etc. To overcome this drawback, new solutions can be
sought that, without using global information on data
items, either mix index and data items within the same
channels [10] or optimize the index broadcasting on
dedicated channels [14].

APPENDIX A

A.1 Proof of Theorem 4

In order to prove that the K-Non-Uniform Allocation
Problem is strong NP-hard, consider its corresponding
decision problem:

K-NON-UNIFORM ALLOCATION
INSTANCE: A set D ¼ fd1; d2; . . . ; dNg of items, a positive
integer K, a length zi 2 ZZþ, and a demand probability pi 2
IRþ for each di, with 1 � i � N , and a bound C 2 IRþ.
QUESTION: Can D be partitioned into K groups
G1; . . . ; GK such that

PK
j¼1ðð

P
di2Gj

ziÞð
P

di2Gj
piÞÞ � C?

In the following, it is proven that K-NON-UNIFORM
ALLOCATION is strong NP-hard by exhibiting a poly-
nomial time reduction from 3-PARTITION [6].

3-PARTITION
INSTANCE: A set A of 3m elements, a bound B 2 ZZþ, and a
size sðaÞ 2 ZZþ for each a 2 A such that sðaÞ satisfies B

4 <
sðaÞ < B

2 and such that
P

a2A sðaÞ ¼ mB.
QUESTION: Can A be partitioned into m disjoint sets
S1; S2; . . . ; Sm such that, for all 1 � i � m,

P
a2Si

sðaÞ ¼ B?
(Every set Si must contain exactly three elements from A.)

Given an instance of 3-PARTITION, the corresponding
instance of K-NON-UNIFORM ALLOCATION is built by
setting D ¼ A, K ¼ m, C ¼ 4B, zi ¼ Bþ sðaiÞ and pi ¼ zi

4mB ,
for i ¼ 1; . . . ; 3m.

Consider a “yes” instance of 3-PARTITION, i.e., an
instance for which there exist m disjoint subsets of A, each
of three elements whose sum is B. Consider the solution of
K-NON-UNIFORM ALLOCATION where the m triplets
correspond to the K ¼ m groups. For each group, the sum
of the item lengths is 4B, while the sum of the item
probabilities is 1

m. Hence, the total cost of this partitioning is
4B ¼ C. Therefore, the resulting instance of K-NON-UNI-
FORM ALLOCATION is a “yes” instance.

Conversely, consider a solution for K-NON-UNIFORM
ALLOCATION whose cost is exactly 4B. Note that 4B is the
minimum cost. Indeed, recalling that Zj ¼

P
di2Gj

zi, the
overall cost can be written as

1

4mB

Xm
j¼1

Z2
j � 1

4m2B

Xm
j¼1

Zj

 !2

¼ 1

4m2B

X3m
i¼1

Bþ sðaiÞ
 !2

¼ 4B;

where
Pm

j¼1 Z
2
j � 1

m ð
Pm

j¼1 ZjÞ2 follows from the Cauchy-

Schwartz inequality in ZZm [16].
Now, it is shown that each group has exactly three items.

Indeed, assume by contradiction that there is a group Gp

with jGpj � 2, which implies that there is also a group Gq

with jGqj � 4. Let Zp and Zq be the sum of item lengths in

Gp and Gq, respectively. Since B
4 < sðaiÞ < B

2 and zi ¼
Bþ sðaiÞ for every i, it follows that Zq > 5B and Zp < 3B.

Consider an item dh 2 Gq and move it to Gp. The resulting

change in cost is

ðZp þ zhÞ2 þ ðZq � zhÞ2 � Z2
p � Z2

q ¼ 2ðZp � ZqÞzh þ 2z2h < 0:

Therefore, a solution with a cost smaller than 4B has been

found, which is a contradiction.
Let Sj denote

P
di2Gj

sðaiÞ. It remains to be proven that

Sj ¼ B, for 1 � j � m. The overall cost can be written as

1

4mB

Xm
j¼1

X
di2Gj

zi

0
@

1
A2

¼ 1

4mB

Xm
j¼1

3Bþ
X
di2Gj

sðaiÞ

0
@

1
A2

� 4B

because there are exactly three items in each group. Since

the above inequality implies that
Pm

j¼1 S
2
j � mB2 and since,

by hypothesis,
P3m

i¼1 sðaiÞ ¼
Pm

j¼1 Sj ¼ mB, it follows that:

Xm
j¼1

Sj

 !2

¼ mðmB2Þ � m
Xm
j¼1

S2
j : ð20Þ

On the other hand, again using the Cauchy-Schwartz

inequality, one gets

Xm
j¼1

Sj

 !2

� m
Xm
j¼1

S2
j : ð21Þ

Combining (20) and (21), the Cauchy-Schwartz inequality

becomes

Xm
i¼1

Si

 !2

¼ ð1 � SÞ2 ¼ k1k2 � kSk2 ¼ m
Xm
i¼1

Si
2;

where S ¼ ðS1; . . . ; SmÞ and 1 ¼ ð1; . . . ; 1Þ are vectors in ZZm.
Thus, 1 � S ¼ k1k � kSk, that is, the vectors 1 and S are

collinear. Hence, Sk ¼ Sj for all 1 � k; j � m. Since
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TABLE 7
New Results for Broadcasting N Data Items on K Channels with Skewed Allocation and Flat Scheduling

Z is the sum of the data lengths and z is the maximum data length. When the items are already sorted, the time of Le4 reduces to OðNÞ, while that of
Move1 becomes OðKðN �KÞÞ, which in turn is OðNÞ if K is a constant.



Pm
j¼1 Sj ¼ mB, then

P
di2Gj

sðaiÞ ¼ Sj ¼ B for j ¼ 1; . . . ;m.
Therefore, the resulting instance of 3-PARTITION is a “yes”
instance. tu

A.2 Proof of Theorem 6

Consider the decision problem K-NON-UNIFORM ALLO-
CATION, stated in the proof of Theorem 4 and letK ¼ 2. To
show that 2-NON-UNIFORM ALLOCATION is NP-hard, a
polynomial time reduction fromPARTITION [6] is provided:

PARTITION
INSTANCE: A finite set A and a size sðaÞ 2 ZZþ for each
a 2 A.
QUESTION: Is there a subset A0 � A such thatP

a2A0 sðaÞ ¼
P

a2A�A0 sðaÞ?
Let A ¼ fa1; a2; . . . ; ang and sða1Þ; sða2Þ; . . . ; sðanÞ consti-

tute an arbitrary instance of PARTITION. The correspond-
ing instance of 2-NON-UNIFORM ALLOCATION is given
by D ¼ A, C ¼ S

2 , where S ¼
P

a2AsðaÞ, zi ¼ sðaiÞ, and
pi ¼ zi

S , for i ¼ 1; . . . ; n.
Consider a “yes” instance of PARTITION, i.e., an

instance for which there exists an A0 � A such that the
sums of the sizes of the elements in A0 and A�A0 are equal.
Consider the solution of 2-NON-UNIFORM ALLOCA-
TION, where G1 ¼ A0 and G2 ¼ A�A0 are the two groups.
Since the sum of the lengths in each group is S

2, the total cost
is 1

2 ðS2 þ S
2Þ ¼ C. Hence, a “yes” instance of 2-NON-UNI-

FORM ALLOCATION results.
Conversely, consider a “yes” instance of 2-NON-UNI-

FORMALLOCATIONwhose cost is at mostC. LetZ1 andZ2

be the sum of the item lengths in the two groups G1 and G2.
Observing that S ¼ Z1 þ Z2 and applying the Cauchy-

Schwartz inequality, one gets:

S2

2
¼ ðZ1 þ Z2Þ2

2
� Z2

1 þ Z2
2 : ð22Þ

On the other hand, the cost of the solution is:

1

S
ðZ2

1 þ Z2
2Þ � C ¼ S

2
: ð23Þ

Combining (22) and (23) yields:

ðZ1 þ Z2Þ2

2
¼ Z2

1 þ Z2
2 ;

which implies that Z1 ¼ Z2. Therefore, A0 ¼ G1 and A�
A0 ¼ G2 is a solution of PARTITION. tu
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