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Abstract. The large development of wireless services and the scastitiye us-
able frequencies require an efficient use of the radio spectwhich guarantees
interference avoidance. The Channel Assignment (CA) proldchieves this goal
by partitioning the radio spectrum into disjoint channalsg assigning channels to
the network base stations so as to avoid interference. Ohr@di@n without geo-
graphical barriers and with uniform traffic load, the netiwbase stations are often
placed according to a regular plane tessellation, whiletfaanels are permanently
assigned to the base stations. This paper surveys the CAeprain grid network
topologies, where the plane is tessellated by regular polyginterference between
two base stations at a given distance is avoided by forciagktannels assigned
to such stations to be separated by a gap which is propoktiorie distance be-
tween the stations. Under these assumptions, the CA pratderbe modeled as a
suitable coloring problem. Formally, given an undirectedph G = (V, E) and a
vector (61,02, ...,d-—1) of positive integers, ai.(d1, d2, ..., d,—1)-coloring

of G is a functionf from the vertex sel/ to a set of nonnegative integers such
that|f(u) — f(v)| > &;, if d(u,v) =4, 1 <1i < o — 1, whered(u,v) is the
distance (i.e. the minimum number of edges) between thizestt andv. An opti-
mal L(41, 92, . .., d-—1)-coloring forG is one minimizing the largest used integer
over all such colorings. This paper surveys efficient atars for finding optimal
L(2,1)-andL(2, 1, 1)-colorings of honeycomb, square, and cellular grids.

Keywords. Wireless Networks, Channel Assignment, Interferenceseyicomb
Grids, Square Grids, Cellular Grids(2, 1)-coloring, L(2, 1, 1)-coloring

Introduction

In a wireless network, the main difficulty against an effitiese of the radio spectrum
is given by interferences, caused by unconstrained simeditas transmissions, which
result in damaged communications. The Channel Assignn@y problem is the task
of efficiently assigning the radio spectrum to the set of lsatons of the network. Such
a problem, that first appeared in TV broadcasting and myjlic@mmunications in late
1960s, keeps renewing its interest due to the large develnpof wireless telephone
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networks (e.g. FDMA, TDMA, GSM networks) and satellite coomication [1]. Al-
though there are many different models, all scenarios aaeackerized by a set of trans-
mitters (usually, antennae), a set of disjoint channekxy(fencies) obtained partition-
ing the radio spectrum, and a strategy for assigning chana¢tansmitters so that data
communications are possible.

The channel assignment can be done following several gieat§0]. In the Fixed
Channel Assignment (FCA), channels are statically assigméne transmitters for their
exclusive and permanent use, and remain stable over tiggl, Opposite to FCA,
Dynamic Channel Assignment (DCA) maintains all channela gentral pool, and dy-
namically assigns them to the transmitters for temporagey{i$,15,16]. Finally, Hybrid
Channel Assignment (HCA) combines the two above strat¢g@sFCA performs well
when the traffic load is uniform in time and in space, becagelds maximum channel
reusability. In contrast, DCA is more suited in the case @fsterm temporal and spa-
tial traffic variations, because it privileges the flexityilof the channel allocation with
respect to the channel reusability. Under mixed traffic dbons, either HCA or FCA
with borrowing are used. HCA, which has channels partitibimo fixed and dynamic
sets, performs well when on the top of a constant traffic Ibade is a fraction of highly
variable communications. In the FCA with borrowing, a traitter which has used all its
statically assigned channels can occasionally borrowdneanels from its neighbouring
transmitters.

This paper concentrates on FCA. Using this technique, CAbeamodeled as vari-
ants of vertex graph coloring [1,19,24]. Formally, an uadied graplt = (V, E') mod-
els the wireless network, where the vertice¥inepresent the transmitters and the edges
in E represent pairs of transmitters that may potentially feter The separation re-
quired to avoid interference between the frequencies asgitp the edge end-points is
represented by a label of the edge. Colors (i.e. frequeni@a to be assigned to the
vertices so that the separation constraints are verifiedaanobjective function is op-
timized. Typical objective functions range from minimigithe difference between the
largest and the lowest used colors, while avoiding interfees (called, Minimum-Span),
up to minimizing interferences using a given number of coloalled, Fixed-Spectrum).

For arbitrary network topologies and general separatiorsitaints, the resulting
vertex coloring problems are computationally intractgke, NP-hard). Therefore, the
FCA problem is usually addressed by means of heuristic @ubes, like genetic algo-
rithms, taboo search, saturation degree, simulated angeahd ants heuristics, just to
name a few [1]. The performance of such heuristics is conthbarewidely accepted
benchmarks, like CELAR data, COST 259 data, and Philadelipistances. In partic-
ular, the Philadelphia instances, that have been hewlistisolved to optimal for the
Minimum-Span objective function, suggest the relevandepblogies based on regular
tessellations of the plane. In such a case, the interfeqg@meeomena depend on the dis-
tance among the antennae. Thus, the separation consaentsodeled by a separation
vector(d, d2, . . ., 0,—1) Of positive integers such that channels assigned to batensta
at distance be at leasd; apart[1,19,20], which implies that the same color can bsedu
only at stations whose distance is at leasTypical values of theo-channel reuse dis-
tance o studied so far are upper bounded Hywhile typical values of the separations
ared; = 30r2,95, = 2orl,andds = §, = 1 [1]. However, in the next generation of
wireless access systems, due to the decreasing cost cftimfrtures and to the need of
wider bandwidth, a large number of small cells, each withigicant power, is expected
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Figure1l. Possible grids of 16 vertices: (a) honeycomb grid, (b) sggaid, and (c) cellular grid.

to cover a wider communication region [31]. Therefore, thper bound of is expected
to become larger thah

In this paper networks modeled by regular plane tessetiatéaze considered. It is
well-known that there are only three different tesselladiof the plane which use regu-
lar polygons, namely hexagons, squares, and triangles. t8asellations can be used to
place at the polygon vertices the base stations of the wse&lemmunication networks,
leading to three well-known topologigd®neycomb, square, andcellular grids, depicted
in Fig. 1 for 16 vertices. Each of these grids has its own prascns. The cellular net-
works are currently the most important to the radio engibeeause the transmission ar-
eas of their stations cover the whole plane using the snaltesible transmitter density.
However, since the required transmitter power increasesatly with the bandwidth,
high speed radio access can be guaranteed in dense ubgjait@structures, like cellu-
lar networks, only at tremendous costs. As a possible a@temto dense infrastructures,
sparse infrastructures of information-kiosks, calledgtétions, close to which high data
rate communication is possible, have been introduced. lemof such infrastructures
distributed in a Manhattan fashion, modeled by square gaidsalready available inside
big cities [31]. Moreover, the performance of a topology barevaluated with respect to
several parameters, suchdegree, diameter, andcost, which is defined as the product of
the degree and diameter. Comparing the above three grigsmstof such parameters,
measured with respect to the same number of vertices, oes tiait a honeycomb grid
has the smallest degree and cost, a cellular grid has théestrdibmeter, while a square
grid is always worse than at least one of the other two griél§ [2

Summarizing, this paper reviews the Minimum-Span FCA pobbn grid network
topologies, under the assumption that a single channebhlasassigned to each station,
and surveys several algorithms which find optimal solutiongolynomial time [9,26,
27]. It is worth noting that such solutions can be used toveesub-optimal solutions in
the more general uniform multi-coloring case, where theesaombern of channels has
to be assigned to each vertex. Indeed, this can be accomglishoptimally assigning
one color per vertex, e.g. usingcolors in total, and then coloring each vertex iy
colors repeatedly shiftedchannels up. Precisely, if a vertex gets the single colttren
it receives also coloré+ s, + 2s,...,i+ (m —1)s.

In this paper, the FCA problem is modeled as follows. Get (V, E) be an undi-
rected graph representing the network topology anddgetdo, . .., d0,—1) be the sepa-
ration vector, withd; > d2 > -+ > §,-1. A k-L(d1,02,...,0,—1)-coloring of G is
a function f from the vertex se¥’ to the set of nonnegative integef8, ..., k} such
that|f(u) — f(v)| > &, if d(u,v) =i, 1 < i < o — 1, whered(u,v) is the dis-
tance (i.e. the minimum number of edges) between the verticend v. An optimal



L(61,92,...,0,—1)-coloring for G is one minimizingk over all such colorings. The
largest color used by an optima(d, da, . . ., d-—1)-coloring is denoted by (G). Note
that, since the set of colors includésthe overall number of colors involved by an op-
timal coloring f is in fact A\(G) + 1 (although, due to the channel separation constraint,
some colorsif1, ..., A\(G)—1} might not be actually assigned to any vertex). Thus, the
channel assignment problem consists of finding an optin@, Js, . . ., d,—1)-coloring
for G. Note that anL(1)-coloring is just a classical vertex coloring and in thisecas
AMG) + 1 = x(G), the chromatic number aF.

The channel assignment problem has been widely studied wieseparation
vector (01, d2,...,0,—1) is equal to(1,1,...,1) [3,5,14,22,26]. In particular, the in-
tractability of optimallL(1, 1, . . ., 1)-coloring, for any positive integer, has been proved
by McCormick [22]. In contrast, optimal(1,1,...,1)-colorings have been proposed
in [5,7] for rings, square grids, and honeycomb grids, anfR]rfor trees and interval
graphs. Moreover, when the separation vectdbis1,...,1), optimal L(d1,1,...,1)-
colorings have been proposed in [9,27] for rings, squamsgeand cellular grids. Opti-
mal solutions have been proposed for @, §2)-coloring problem on rings [17] and
on square and cellular grids [30]. This latter paper prodidiso an optimaL(2, 1, 1)-
coloring for square grids. Th&(2, 1, 1)-coloring problem has been also optimally solved
for cellular grids, honeycomb grids, and rings in [8,9]. The, 1)-coloring has been
investigated in [8,10,13,18,25]. Bodlaender et al. [1@ved that thel.(2, 1)-coloring
problem isN P-hard for planar, bipartite, and chordal graphs, and pteseapproxi-
mate solutions for outerplanar, permutation and splitlgsaMoreover[.(2, 1)-colorings
for unit interval graphs and trees have been found, resmdygtiby Sakai [25] and by
Chang and Kuo [13]. A recent annotated bibliography on k& , d2)-coloring prob-
lem for several special classes of graphs can be found in f2h related case, when
(01,02) = (0,1), the L(0,1)-coloring problem models that of avoiding only the so-
calledhidden interferences, due to stations which are outside the hearing range of each
other and transmit to the same receiving station. Optif{8l 1)-colorings have been
provided for square grids in [21], whereas the intractabdf optimal L(0, 1)-coloring
has been proved in [4], where also optimal solutions forgiagd complete binary trees
are given. For arbitrary graphs and general separatioorgdhel (1, 62, ..., 05—1)-
coloring problem is faced by heuristics [1]. However, apjmation algorithms have
been discussed in [6] for trees and interval graphs.

This paper surveys efficient algorithms which find optimalisons for theL (2, 1)-
and L(2, 1, 1)-coloring problems on honeycomb, square, and cellularsgiithe graph
theoretical approach outlined in [14,18,21,22,26] isdatd and the results proposed
in [7,8,9,30] are surveyed. The rest of the present papdrustared as follows. Sec-
tion 1 briefly recalls some preliminary graph theoreticalules (e.g., augmented graph,
clique) that will be used in the following sections. Moregwesimple distributed scheme
is sketched to allow the vertices to compute their own nedgpiositions in the grid, in
case these info are not already available. Such positidhthen be used by the vertices
to self-assign their proper channel in constant time. 8astP, 3, and 4 provide simple
algorithms based on periodic and arithmetic rules to oghnsolve the L(2,1)- and
L(2,1,1)-coloring problems on honeycomb, square, and cellulasgriespectively. Fi-
nally, conclusions are offered in Section 5, where it is @igimted out when the channel
assignment solutions proposed in this paper are bettetthioae obtained by employing
guard frequencies between adjacent channels.



1. Preliminaries

The channel assignment problem on a netw@rlwith no channel separation constraint
and co-channel reuse distancenamely thel.(1, 1, .. ., 1)-coloring problem, can be re-
duced to a classical coloring problem onaugmented graphG v -, which is the(c — 1)-

th power ofG and is obtained as follows. The vertex sethf ,, is the same as the vertex
set of N, while an edgér, s| belongs to the edge set 6fy ., if and only if the distance
d(r, s) between the verticesands in N satisfiesd(r, s) < ¢ — 1. Now, colors must be
assigned to the vertices 6fy , so that every pair of vertices connected by an edge is as-
signed a couple of different colors and the minimum numbenpddrs is used. Hence, the
role of maximumcliquesin Gy is apparent for deriving lower bounds on the minimum
number of channels for the(1, 1,. .., 1)-coloring problem onV. A clique for Gy is

a subset of vertices df x , such that there is an edge for each pair of vertices in the
subset. A clique of size in the augmented grapiy , implies that at least different
colors are needed to col6fy . In other words, the size of the largest cliqueir , is

a lower bound for the number of channels required to solvetth@anel assignment prob-
lem without channel separation constraint. Clearly, inghesence of both channel sepa-
ration and co-channel reuse distance constraints, adeasany channels are required as
in the presence of the channel separation constraint oogn&lly, a lower bound for the
L(1,1,...,1)-coloring problem is also a lower bound for tfigd,,1, ..., 1)-coloring
problem, withé; > 1. In particular, lower bounds fak (1, 1)- and L(1, 1, 1)-colorings
hold also forL(2, 1)- andL(2, 1, 1)-colorings, respectively.

Let thecomplement graph G = (V, E) of a graphG = (V, E) be the graph having
the same vertex s&f asG and having the edge sét obtained by swapping edges with
non-edges irt’. Recall that ddamilton path is a path that traverses each vertex of a graph
exactly once. The following two lemmas are due to Griggs ael [18].

Lemma 1. Consider the L(2,1,...,1)-coloring problemon a graph G = (V, E) such
that d(u,v) < o for every pair of verticesu and v in V. Then, A(G) = |V| — 1 if and
only if G has a Hamilton path.

Proof. To satisfy the channel separation constraint, two veriid&s may get two con-
secutive colors if and only if they are not adjacent, thaif snd only if they are adjacent

inG. If \(G) = |V| — 1 thenthere is an ordering, v, . .., vy/|—; Of the vertices such
that f(v;) = 4, fori = 0,1,...,|V| — 1. Thereforew, v1, ..., vv|—1 is a Hamilton
path forG. Conversely, ifG has a Hamilton pathy, v1, . .. ,vv|-1, then the optimal
L(61,1,...,1)-coloringisf(v;) =4,fori =0,1,...,|V| - 1. O

Consider thestar graphSa which consists of @enter vertexc with degreeA, and
A ray vertices of degreé.

Lemma 2. Let the center ¢ of Sa be already colored. Then, the largest color required
for a k-L(2,1)-coloring of Sx isat least:

b A+1 iff(e)=00r f(e)=A+1
ClA+2 ifO< fle)<A+1



Proof. By Lemma 1,k > A + 1 becauseSa has no Hamilton path. If (c) = 0 or

f(c) = A + 1, either colorl or A violates the channel separation constraint and cannot
be used at the ray vertices. Similarlyik f(c) < A, both colorsf(c) —1andf(c)+1
cannot be used at the ray vertices. Therefore, one or twa ewtors are required with
respect to the star size, depending on the center ¢gior O

The channel assignment algorithms to be presented allowengx to self-assign
its proper channel in constant time, provided that it knowgélative position within
the network. If this is not the case, such relative positicaus be computed for all the
vertices using simple distributed algorithms requiringm@l time and optimal number
of messages. Assume that each vertex of the network only &itswown geographic
position (e.g. by means of its I.D. or a local geographic tmsisystem (GPS)) and the
names of its neighbours (which can be easily obtained by shialtopology-exchange
distributed algorithm [29]). The vertices are assumed tasygchronous and can com-
municate by exchanging control messages (e.g. via dedisggtem signals such as SS7
or MAC protocols such as ALOHA). There is only one kind of acohtnessage, which is
sent by a vertex to tell its geographic position and its nedgposition to its neighbours.
The computation is started by a single vertex, which is tHg @artex which initially
knows its relative position. When a vertex receives a conmiessage from a neighbour,
it is capable of recognizing whether the sender is a Nortlifgd=ast, or West neigh-
bour, by comparing its geographic position and that of threlee (the agreement about
the actual cardinality points can be established and besdy the vertex starting the
computation, after knowing the GPS positions of its neighpdVhen a vertex receives
a control message from a neighbour, if it has not yet compitsegosition and some
conditions are met, then it computes its own relative pmsitind in turn sends a control
message, otherwise it neglects the message.

2. Honeycomb Grids

A honeycomb grid H of sizer x ¢ hasr rows and: columns, indexed respectively from
0tor — 1 (from top to bottom) and from to ¢ — 1 (from left to right), withr > 3 and

¢ > 2. Ageneric vertex; of H will be denoted by, = (i, j), wherei is its row index and

j is its column index. Each vertex has degseexcept for some vertices on the borders.
In particular, each verte§, j), which does not belong to the grid borders, is adjacent to
the following 3 vertices:

(i,7 +1)if (iis evenand is even or (i is odd andj is odd

1. < or
(i,7 — 1) if (iisevenand is odd or (i is odd andj is ever
3. (i+1,5)

The optimal solutions for thé& (2, 1)- and L(2, 1, 1)-coloring problems on honey-
comb grids surveyed in this section have been provided 8].[7,

Lemma3. Forr > 3andc > 3 thereisa k-L(2, 1)-coloring of a honeycomb grid H of
sizer x conlyif k > 5.



Figure2. Optimal coloring obtained by the HoneycomhE52, 1)-coloring algorithm.

Proof. It follows immediately from Lemma 2 because there is at least vertex of
degree3 that cannot be colored eith@or 4. Hence A\(H) > 5. O

Below, an optimab-L(2, 1)-coloring is given to color all the vertices of any honey-
comb gridH of sizer x ¢, with» > 3 andc > 3.

Algorithm Honeycomb-5-L(2, 1)-coloring (H, r, ¢);

e If r > 3 andc > 3, then assign to each vertex= (i, j) the color

f(u) = (2i + 37) mod 6

An optimal coloring for a honeycomb grid of siBex 5 is illustrated in Figure 2.

Theorem 1. The Honeycomb-5-1(2, 1)-coloring algorithm is optimal for any honey-
comb grid H of sizer x ¢, withr > 3 and ¢ > 3.

Proof. To prove the theorem, it must be shown that the algorithnsféedi the channel
separation and co-channel reuse constraints, and thagstthe minimum number of
colors.

Consider a generic vertex = (i,j) of H. The channel separation constraint is
easily verified for any vertex adjacent tau. Indeed, the coloyf (v) can be rewritten in
terms off (u) as follows:

(f(u)+3)mod 6 if [v=(i,j+1), iiseven,and is even
or [v=(i,j+1),70dd, andj is odd

(f(u) —3)mod 6 if [v=(i,j—1), iiseven,and is odd
or [v=(i,j — 1), iis odd, andj is even

(flu)—2)mod 6 fv=_(>i—1,7)

(flu) +2)mod 6 fv=_(i+1,7)

flv) =

The above coloring assigns the three different calg(s) — 2) mod 6, (f(u) + 2)
mod 6, and(f(u) + 3) mod 6 to the three vertices adjacento Thus, since any two
vertices at distanc2are both adjacent to a common vertexertices at distancverify
the co-channel reuse constraint. The coloring optimatitipfvs from Lemma 3. O

Lemmad. Forr > 4andc¢ > 3,0r r > 5andc = 2, thereisa k-L(2, 1, 1)-coloring of
a honeycomb grid H only if & > 6.



(0,0) (0,2) (0,0 (0,2)

(L0)g ) ¢ D) (L) D)

20%® 2.1 2,0) @.1)

Hs Hs
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Proof. Consider the augmented graph; 4« = (V, E’) and the subset of vertices =
{(0,0),(0,1), (1,0),(1,1),(2,0),(2,1)} Since all the6 vertices inS are mutually at
distance at most in H, they form a clique irGy 4. Therefore \(H) > 5.

In the case where > 4 andc > 3, consider the subgraptis induced byS and also
the vertex(3, 0). To satisfy the co-channel reuse constraint using exéatblors, vertex
(3,0) must get the same color as veri@x1). Moreover, due to the channel separation
constraint, the colors assigned to verti¢2s0) and (3,0) must have a gap of at least
41 = 2. Hence, also the colors @2,0) and(0,1) must have a gap of at least = 2.
This is equivalent to add iffs a dummy edge between verticdg,0) and (0,1). The
same reasoning can be repeated for the pairs of vefticé$ and(1,0), and(2, 1) and
(0,0), as illustrated in Figure 3. Now, consider the complemént of Hs, depicted
also in Figure 3. There is no Hamilton pathifs because it consists of two connected
components. It follows from Lemma 1 thatH) > 6.

By a similar argument, the same lower bound can be proveddoneycomb grids
whenr > 5 andc¢ = 2. Indeed, when- > 5 andc = 2, vertices(2,0) and (2,1)
belong to two distinct cliques i’z 4. Then, to keep\(H) = 5, the same colors used for
vertices(0, 0), (0,1), (1,0), (1,1) must be reused for verticés, 0), (3,1), (4,0), (4, 1).

In particular, as explained before, vertiggs0) and(3, 1) must get the same colors as
(0,1) and(0,0). Thus, verticeg4, 1) and(4,0) must get the same colors &k 0) and
(1,1). As said, this is equivalent to add fiis the threedummy edges between the pairs
of vertices(2,0) and(0, 1), (2,1) and(0,0), and(1,0) and(1, 1). As before, there is no
Hamilton path inH s. O

Below, an optimab-L(2, 1, 1)-coloring is given to color all the vertices of a honey-
comb gridH of sizer x ¢, withr > 4andc > 3 orr > 5 andc = 2.

Algorithm Honeycomb-6-L(2, 1, 1)-coloring (H, r, c);

e If r > 4andc > 3 orr > 5 andc = 2, assign to each vertex= (i, j) the

color
if (¢ =0mod6 andj is even or (¢ = 3 mod6 andj is odd
if (¢ =0mod6 andj is odd or (i = 3 mod6 andj is ever)
Flu) = if (¢ =1mod6 andj is ever) or (i = 4 mod6 andj is odd

1 mod6 andj is odd or (¢ = 4 mod6 andj is evern
2 mod6 andj is even or (i = 5 mod6 andj is odd
2 mod6 andj is odd or (: = 5 mod6 andj is ever)

if
if

L= N O = O

(
(
(
if (i
(
(




Figure4. Optimal coloring obtained by the HoneycombE§2, 1, 1)-coloring algorithm.

The optimalL(2, 1, 1)-coloring for the honeycomb grid depicted in Figure 2 issthated
in Figure 4.

Theorem 2. The Honeycomb-6-L(2, 1, 1)-coloring algorithmis optimal for honeycomb
gridsof sizer x ¢, withr > 4and ¢ > 3 or withr > 5and ¢ = 2.

Proof. Consider a generic vertex= (i, ) of H. By construction, the channel separation
constraint is immediately verified. Indeed, for any vertexdjacent tou such thaty =
(i,j £ 1), f(v) = f(u) £ 4 holds. Moreover, as shown in Figure 4, any paiv of
adjacent vertices on the same column can be colored onlyllasvéof(u) = 0 and
f(v) =6, f(u) =6andf(v) =1, f(u) = 1landf(v) =4, f(u) = 4and f(v) = 2,
f(u) =2andf(v) =5, f(u) = 5andf(v) = 0. Therefore, the gap between the colors
assigned to each pair of adjacent vertices is at [2ast

Now, in order to prove that the co-channel reuse constraiuerified, let us show
that two vertices colored the same are at distance greatasttFirst of all, note that
each row ofH is colored with two colors, and aryconsecutive rows off use different
colors. The-th and(: + 3)-th rows of H, for anyi, are colored with the same two colors,
except that the order of such two colors along the row is sedpphat is, vertice§, j)
and(i, 7 + 1) are colored, respectively, as vertidést 3,5 + 1) and(: + 3, 7). Hence,
two vertices in rows and(i + 3) get the same color only if their distance is at lefst
Moreover, the-th and(i + 6)-th rows of H, for anysi, are colored the same. Hence, the
same color can be reused on the same column only in two vedtadistancé. Finally,
all the even (resp., odd) columns are colored the same. édtin¢the verticesi, j) and
(1,7 + 2) get the same color, their distancedibecause there are no two consecutive
horizontal edges. Summarizing, a given color is reused{oaccording to the pattern
shown in Figure 5. The coloring optimality follows from Lerar. O

2.1. Special Cases

Note that the honeycomb grid was defined with- 3 because for = 1 it reduces to a
set of isolated edges plus a possible isolated vertex, Mdrile = 2 or ¢ = 1 it consists

of a bus, namely a simple path, for which both fh@, 1)- andL(2, 1, 1)-colorings can

be easily solved having(H) = 4 as the largest used color [8,13]. Therefore, the only
special cases left out are the following:
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Figure5. The vertices closest to vertex= (i, j) where the colorf (u) is reused.

Lemmab5. Anoptimal L(2,1)-coloring of a honeycomb grid H has

4 if3<r<4andc=2
A(H)—{5 ifr >5andc =2

Proof. When3 < r < 4 andc = 2, H contains a ringk of sizen = 6, which has a
lower bound om\(R) of 4 [18]. A 4-L(2, 1)-coloring for H of size4 x 2 is: f(0,0) =
F2,1)=0,£(1,0)= f(1,1) = 2, f(2,0) = f(0,1) =4, f(3,0) = 1, f(3,1) = 3.
Whenr = 5 andec = 2, H consists of two rings of size = 6, which share an edge

e. Assuming\(H) = 4, by [18], each ring should be colored using only the colbra
and4. By Lemma 2, there is a-L(2, 1)-coloring for H only if the endpoints ot get
the colors) and4, which forces the othet vertices adjacent to the endpointseab be
colored only by2. This violates the co-channel reuse constraint, because s6 these
4 vertices are at distance Therefore \(H) > 5. In this case, &-L(2, 1)-coloring is
obtained by Algorithm Small-Honeycomb(2, 1)-coloring. O

Algorithm Small-Honeycomb-L(2, 1)-coloring (H, r, c);

e If » > 5 andc = 2, assign to each vertex= (3, j) the color

f(u) = (20 + 3j) mod 6

Lemma6. When3 < r <4andc=2o0rr =3andc > 3,anoptimal L(2,1,1)-
coloring of a honeycomb grid H has A\(H) = 5.

Proof. Consider a honeycomb grid of size3 x 2. Since the augmented graphy 4 is
a clique,A\(H) > 5. An optimal5-L(2, 1, 1)-coloring for H of size4 x 2 is: f(0,0) =
£(3,1) = 0,£(0,1) = f(3,0) = 4, f(1,0) = 3, f(1,1) = 2, f(2,0) = 1, f(2,1) = 5.
An optimal5-L(2, 1, 1)-coloring for H whenr = 3 andc > 3 is obtained by Algorithm
Small-Honeycombk (2, 1, 1)-coloring. O



Algorithm Small-Honeycomb-L(2, 1, 1)-coloring (H, r, c);

e If =3 andc > 3, assign to each vertex= (3, j) the color

if r =0andc =0 mod 2
if r=0andc =1 mod 2
if r=1andc =0 mod 2
if r=1andc=1mod 2
if r =2andc=0mod 2
if r =2andc =1 mod 2
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2.2. Distributed Computation of Relative Positions

The channel assignment algorithms presented above allpweatex to self-assign its
proper channel in constant time provided that it knows itatiee position within the
honeycomb grid. If this is not the case, such relative pmsitican be computed for all the
vertices using a simple distributed algorithm requiringjrmal time and optimal number
of messages, as detailed below.

The computation is started by the upper-left corner vemethé honeycomb grid,
which is the only vertex knowing its positiof®, 0). A control message is structured
asCM (v, g,1,7), whereg, and (i, j) are the geographic and relative positionsvpf
respectively. When a vertex receivesC' M (v, g,,, i, ) from a North neighbour and
i > 1, thenu computes its relative positiofi + 1, j) and send€'M (u, g.,,i + 1, j) so
as to propagate the computation downwards along the colefrithe honeycomb grid.
In the first two rows, however, different conditions have éodealt with. Specifically, if
v is a West neighbour af andi = 0, thenu computes its positiof0, j + 1) and sends
CM (u, gu,0,j + 1), while if v is a South neighbour af andi = 1, thenu computes
(0,7) and send€’ M (u, g, 0, 7). As for the vertices in the second row,ifis a North
neighbour and = 0, thenu computeg1, j) and send€'M (u, g., 1, j), while if v is a
West neighbour antl= 1, thenu computeg1, j + 1) and send€' M (u, gy, 1,5 + 1).

Itis easy to see that the overall number of messages redsifec) while the total
time isO(r + ¢), assuming that a message reaches its destinati@{lh time. Since
there are-c vertices in the grid and the grid diametefi$r + ¢), the channel assignment
for all the vertices can be performed in a distributed faslsio as to require an optimal
time and an optimal number of messages.

3. Square Grids

A square grid B of sizer x ¢, with bothr > 2 ande¢ > 2, can be obtained from a
honeycomb gridd of the same size connecting all the pairs of consecutive lyitey
on the same row. Thus, a generic veriex= (i, ;) of B, which does not belong on
the borders, has degrde In particular, vertexs = (i,7) is adjacent to the vertices
(t—1,79),0G,7+1),(i+1,7)and(i,j — 1).

The optimal solutions for th&(2,1)- and L(2, 1, 1)-coloring problems on square
grids surveyed in this section have been proposed in [8,30].



Figure 6. Optimal coloring obtained by the Grid-B¢2, 1)-coloring algorithm.

Lemma 7. Thereisa k-L(2,1)-coloring of a square grid B of size r x ¢, withr > 3
andc > 3,onlyif k > 6.

Proof. The lower bound fok follows immediately because there is at least a vertax of
with degreel that cannot be colored eitheéor 5. Hence, fromLemma 2(B) = 6. O

In the following, an algorithm for optimally.(2, 1)-coloring a square gri® of size
at leas x 3 is given.

Algorithm Grid-6-L(2, 1)-coloring (B, , ¢);

e If r > 3 andc > 3, assign to each vertex= (i, j) the color

f(u) = (2i+4j) mod 7

Theorem 3. The Grid-6-L(2, 1)-coloring algorithmis optimal.

Proof. Whenr > 3 andc > 3, consider a generic vertex= (i, j) of B. The channel
separation constraint is easily verified for any verieadjacent ta: = (i, j) because

(f(u)£2)mod 7 ifv=(i,j£1)
flv) = {(f(u)ig) mod 7 ifvz(iil,j)

Moreover, the co-channel reuse constraint is verified bez#we4 vertices closest
touandcoloredasare(i+1,j—2),(i—1,7+2),(i—2,7—3),(:+2,7+3),as can be
easily checked observing Figure 6. Finally, the optimdtitjows from Lemma 7. O

Lemma8. Thereisak-L(2,1,1)-coloring of a squaregrid B, withr > 5and¢ > 4 or
r>4andc > 5,onlyifk > 8.

Proof. For a square grid3 = (V, E) of sizer x ¢, with » > 5 andc > 4, consider the
augmented grap& 4+ = (V, E’). For any pair of vertices on the same columa: (i, j)
andv = (i+3,j),with0 <i <r—4andl < j < c¢-2,letS,,, be the subset of vertices
{(iaj)a (i+1vj)7 (i+25j)a (i+37j)7 (i+1aj_1)a (i+27j_1)7 (i+1vj+1)a (i+2aj+1)}

at pairwise distance no more thanSimilarly, for any pair of vertices on the same row
u= (i,j) andw = (i,7 4+ 3),with1 < ¢ <r—-2and0 < j < ¢c—4,lets] , be
the subset of vertice§(i, j), (i,5 + 1), (i,7 + 2), (5,5 +3), (i + 1,5 + 1), (i + 1,5 +
2),(i—1,j+1),(i—1,7+2)} at pairwise distance no more tharSince boths,, ,, and



Figure7. The subsets of vertices,, ., (all) andSy,. (white).

S, induce a clique irG g 4, at leasB colors are needed to satisfy the co-channel reuse
constraint. However, as proved in the followirggcolors are not enough to color the set
L, of vertices depicted in Figure 7, which consistsSyf, along with all the vertices

of B at horizontal distance exactlyfrom the vertices on the border 6f, ..

Indeed, to color vertices = (i,5 + 1) andb = (i + 1, j + 2), consider the vertex
p = (i+1, j—1), the subsets of vertices, ,, andSZ’)_’b, and the square subgrid induced
by S.... OncesS,, , has been assigned to all different colors, the two verticasda of
Sz’Lb must be assigned to the two colors used for the two verticeqi + 2,j — 1) and
v = (i + 3,7) of S, if only 8 colors are to be used. Due to the channel separation
constraint, the colors assigned to vertieemndb must be at least apart from the color
assigned to the vertex= (: + 1,5 + 1). This is equivalent to add td/ two dummy
edges: one between verticeandz, and the other between verticeandv, as shown in
Figure 8. Now repeating the same argument for the three glaiesticesc = (i+2, j+2)
andd = (i+3,j+1),e=(i+3,7—1)andf = (i+2,j—2),andg = (:+1,7—2) and
h = (i,j — 1), other dummy edges must be added (see Figure 9), namelytibtveen
p andy, v andy, v andz, s andz, p andy, andp anduv.

By the previous discussion, either vertewr g is colored as vertex. Analogously,
either vertexf or e is colored as vertex. Examining the set of verticdw, e, f, g, h, u},
it is easy to be convinced that whatever is the color assighradopted for such
vertices, the colorg(u) and f(v) must be assigned to two adjacent vertices among
{v,e, f, g, h,u}. Namely,f(u) and f (v) must appear in one of the following pair of ver-
tices:u andh, orv ande, or f andg. Thus, one further dummy edge between vertices
andv must be added td7, as shown in Figure 9.

Finally, let us build M, the complement of\/. Since M consists of two con-
nected components (see also Figureld)does not contain a Hamilton path. Hence, by
Lemma 1, there is n@-L(2, 1, 1)-coloring for square grids of sizex ¢, with» > 5 and
¢ > 4. Thus,\(B) > 8. The proof when: > 4 ande > 5 is analogous. O

The algorithm for optimallyZ(2, 1, 1)-coloring a grid, withr > 5 andc > 4 or
r > 4 andc > 5, is given below.
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Figure 8. The subsets of verticeS,,,, and S;) , along with the square subgrit/ with two dummy edges
(dashed).

M M

Figure9. SubgridM with dummy edges (dashed), and its complenTeht

Algorithm Grid-8-L(2,1, 1)-coloring (G, r, ¢);

e If » > 5andec > 4o0orr > 4 andc > 5, then assign to each vertex
u = (i, j) the color

0 if (i+j) =0 mod 4,iis even, and is even
1 if (i4+7) =0 mod 4,iis odd, andj is odd
2 if (i +7) =2mod 4,iis even, and is even
)3 if (i+j) =2mod 4,iis odd, and; is odd
Ju) = 5 if (i +4) = 3 mod 4,1 is odd, andj is even
6 if ({ +j) =3 mod4,iiseven,and is odd
7 if (i +j) =1 mod 4,iis even, and is odd
8 if (i 4+ j) =1 mod 4,iis odd, ang is even

An example of optimal coloring for a square grid of size 5 is illustrated in Figure 10.

Theorem 4. The Grid-8-L(2, 1, 1)-coloring algorithmis optimal for a square grid B of
sizer x e,withr >5andc>4orr>4andc > 5.

Proof. In order to prove that the channel separation constrairgrigied, one notes that



Figure 10. Optimal coloring obtained by the Grid-B2, 1, 1)-coloring algorithm.

two consecutive colors cannot be assigned to two adjacetite® For example, con-
sider the pair of color8 and3. A vertexu = (i, j) gets color if and only if both: and;
are even, and+ j = 2 mod 4, while a vertex» = (h, k) gets color if and only if both
h andk are odd, and + k£ = 2 mod 4. Therefore, the distance between the vertices
andv is at leas2. An analogous argument can be repeated for any pair of cotigec
colorscande + 1, with0 < ¢ < 8.

To show that the co-channel reuse constraint holds, ona tiwde two vertices, =
(i,7) andv = (h, k) are colored the same if and only if their distanke, v) = 4, and
both|i — k| and|j — k| are even. The optimality follows from Lemma 8. O

3.1. Special Cases

Note that the square grid was defined witkr 2 andc > 2 because for = 1orc =11t
reduces to a bus. For the sake of simplicity, in the followtigassumed that > ¢ > 2.
Note that such an assumption is not restrictive becauseaaeqgud of size: x r can be
obtained by transposition from one of size c.

Lemma9. Thereisa k-L(2, 1)-coloring of a squaregrid B of sizer x c only if

4 ifr=2andc=2
k2{5 ifr>3andc=2

Proof. By Lemma 1, there is n8-L(2, 1)-coloring for a square grid of siz2x 2. The
lower bound fork whenr > 3 andc = 2 follows immediately because there is at least
a vertex of B with degree3 that cannot be colored eithermr 4. Hence, from Lemma 2,
A(B) > 5. O

An optimal 4-L(2, 1)-coloring of a square grid! of size2 x 2 assigns colors to
vertices as followsy(0,0) = 0, f(0,1) = 4, f(1,0) = 3, f(1,1) = 1. Moreover, an
algorithm for optimally 5£.(2, 1)-coloring a square gri® whose size is x 2 with r > 3
is the following.

Algorithm Small-Grid-L(2,1)-coloring (B, r, ¢);

e If r > 3 andc = 2, assign to each vertex= (3, j) the color

f(u) = (2 + 37) mod 6




Theorem 5. The Small-Grid-L(2, 1)-coloring algorithmis optimal.

Proof. Whenc = 2, the channel separation constraint is easily satisfiedusecthe
colors assigned to two adjacent vertices are at I2agiart. Moreover, the co-channel
reuse constraint holds because two vertices get the samefabley belong to the same
column and they are at distang@eOptimality follows from Lemma 9. O

Lemma 10. Thereisa k-L(2, 1, 1)-coloring of asquaregrid B of sizer x c only if

ifr=2andc=2
ifr=3andc=2
ifr>4andc=2
if3<r<6andc=3
ifr=4andc=4
ifr>7andc=3
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Proof. Since any optimal(2, 1, 1)-coloring uses at least as many colors as an optimal
L(2,1)-coloring, it follows from Lemma 9 that(B) > 4 andX(B) > 5 for square grids
of size2 x 2 and3 x 2, respectively.

Given a square gridB of size 4 x 2, the two pairs of verticeg3,0)-(0,1)
and (3,1)-(0,0) must be colored the same to satisfy the co-channel reuse dis-
tance constraint using as few colors as possible. This idvalgant to add two
dummy edges, between the two pairs above, in the subBgdinduced byS =
{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}. Therefore \(B) > 6 follows from Lemma 1.

For a square grid of size3 x 3, the verticesS = {(0,0), (0, 1), (0, 2)(1,0), (1,1),
(1,2),(2,1)} form a clique in to the augmented grapts 4. Moreover, the colors as-
signed to the verticed, 0) and(0, 2) (resp.,(1,2) and(0,0)) must be at least two apart
because vertice, 0) and (0, 2) (resp.,(2,2) and (0, 0)) must be colored the same to
satisfy the channel separation constraint. Hence, in thgréli Bs induced bysS four
dummy edges must be added between the verfitgy and(0,2), (2,1) and(0, 2),
(1,2) and(0,0), (2,1) and(0, 0). Therefore, from Lemma I\(B) > 7.

To prove that\(B) > 8 when the size is x 3, with » > 7, the following properties
are useful:

1. For any pair of vertices = (i,1) andv = (i 4+ 3,1), with 0 < ¢ < r — 5,
the subset of verticeS,, , = {u,t,w,v,p, 2, s,y} forms a clique inGp 4 (See
Figure 11).

2. Given the vertices andk and the associated sets of verticgs, and S; i, let
Uupw = {p,u,s} C Sy andD, , = {e, k,d} C S . The vertices ir/,, , and
D, j, get the same colors.

Property 1 follows from the fact théf, , is a clique in the augmented graphs 4,
while Property 2 is a consequence of the fact thiat andsS; ;, require8 colors and that
theb verticest, v, w, z, y belong to botts,, ,, andsS; ;. Therefore, the remainirgycolors
must be used to color both, , and D, .

Consider now the subgrapBs, , induced byS; .. By Property 2, in the subsets
Su,» andS; i, the pairs of vertices-e, t-k, andt-d must get colors which are at least 2
apart. Therefore, three dummy edges between such pairstafegemust be added into
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Figure12. A case study for &-L(2, 1, 1)-coloring for a square grid of siZe x 3.

Bg, ,,. Similarly, by Property 2, three dummy edges between thes mdiverticesk-z,
k-t, andk-y must be added int8s, , . The subgraplBs, , with these five dummy edges
is depicted in Figure 11.

Now, letBg, , be the complement dBs, , with the dummy edges. There is a Hamil-
ton path ofFSm only if the verticesz andd or y ande get two consecutive colors. In-
deed, suppose by contradiction that there is a Hamilton qn‘aﬁgm in which the pairs
of verticesz andd or y ande are not adjacent. If there is such a Hamilton path, then there
exists also a Hamilton path of the subgraﬁbt’k including the two new dummy edges
z-d, andy-e. But this is a contradiction because this latter subgrapisists of two con-
nected components. Therefore, from Lemma 1, &y(2, 1, 1)-coloring of Bs, , uses
two consecutive colors for either verticeandd or y ande.



Figure13. The optimalL(2, 1, 1)-colorings for the square grids of sizex 2,3 x 2,4 x 4, and6 x 3.

Consider a7-L(2,1,1) coloring for Bg, ,, and assume without loss of generality
that f(d) = f(z) + 1. In order to color the grid of siz& x 3, depicted in Figure 12,
U,., and D, ;, must get the same colors by Property 1. Then, eiffie) = f(d) or
f(p) = f(k) must hold to satisfy the co-channel reuse distance contttdowever,
to satisfy the channel separation constrafith) = f(k) because andz are adjacent.
Hence,f(s) = f(e) and f(u) = f(d) must result. Moreover, from Property D,, ;
must be colored the same &% ;. Now, vertexc may be colored with eithef(¢) or
f(2). Again, to satisfy the channel separation constrafiit) = f(¢) follows. Thus,
f(b) = f(y) andf(j) = f(z) must result. Finally, also the set of verticBs ,,, must be
colored ad/,, . However, the colof (d) = f(z) + 1 cannot be reused P, ,,, because
all the vertices inD,, ,,, are adjacent to a vertex color¢gdz). Hence A\(B) > 8 when
r > 7andc = 3. O

The optimalL(2, 1, 1)-colorings for square grids of sizex 2, 3 x 2, 4 x 4, and
6 x 3 are depicted in Figure 13. Instead, the algorithm for optfinealoring small grids,
with » > 4 andc = 2, orr > 7 andc = 3 is given below.

Algorithm Small-Grid-L(2, 1, 1)-coloring (G, r, ¢);

e If r > 4 andc = 2, assign to each vertex= (i, j) the color

if i=0mod 6andj =0, ori =3 mod 6andj =1
if i=2mod 6andj =0, ori =5mod 6andj =1
if i=4mod6andj =0, ori =1mod 6andj =1
if i =3 mod 6andj =0, ori =0mod 6andj =1
if i=1mod 6andj =0, ori =4 mod 6andj =1
if i=5mod6andj =0, ori =2mod 6andj =1
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e If r > 7andc = 3, apply Algorithm Grid8-L(2, 1, 1)-coloring.

Theorem 6. The Small-Grid-L(2, 1, 1)-coloring algorithmis optimal for a square grid
Bofszer xc,whenr >4andc=2orr > 7andc = 3.

Proof. Whenc = 2, both the co-channel reuse and channel separation corsteae
verified because the vertices of the first column are repbaésdigned to the sequence



Figure14. A cellular grid C of size5 x 5 colored by the Cellular-8(2, 1)-coloring algorithm.

of colors0, 5,1,4, 2,6, while each vertexXi, 1) of the second column copies the color
used at the vertef — 3,0) of the first column. Wher = 3, the correctness follows
from Theorem 4, and the optimality from Lemma 10. O

In the case that the vertices of the square grid do not knoiv tblative positions,
such positions can be computed as seen in Subsection 2tizfboheycomb grids, with
the exception that iy is a West neighbour af and: = 0, thenu computes its position
(0,7 + 1) and send€ M (u, g, 0,7 + 1).

4. Célular Grids

A cellular grid C of sizer x ¢, with » > 2 andc¢ > 2, is obtained from a square grid
B of the same size augmenting the set of edges with left-tat-digigonal connections.
Specifically, each vertex = (i, j) of C is also connected to the vertices= (i—1,j—1)
andz = (i + 1,7 + 1). Hence, each vertex has degfeexcept for the vertices on the
borders.

This section reviews the optimal solutions for thé2, 1)- and L(2, 1, 1)-coloring
problems on cellular grids published in [8,9,30].

Lemma1ll. Thereisak-L(2,1)-coloringfor acellular grid C of sizer x ¢, withr > 5
andc>3,orr>3andc>5,0rr >4andc >4, onlyif k > 8.

Proof. Since there are at least three vertices with degresaich must all get different
colors,\(C) > 8 follows from Lemma 2. O

Algorithm Cellular-8-L(2, 1)-coloring (C);

e If r > 4andc > 4,orr =3 andc > 5, orr > 5 andc = 3, assign tg
each vertexx = (4, j) the color

f(u) = (3i+2j) mod 9

Figure 14 illustrates the optimal coloring obtained by neeahthe Cellular-8E(2,1)-
coloring algorithm described above.

Theorem 7. The Cellular-8-L(2, 1)-coloring algorithm s optimal for cellular grids of
sizer x ¢,withr >4andc¢>4,orr=3andc> 5,0rr > 5andc = 3.



Figure15. The subgraptD of C' whose vertices form a clique ¢, 4, and an optimal 1-L(2, 1, 1)-coloring
for it.

Proof. By construction, the Cellular-8{(2, 1)-coloring algorithm verifies the channel
separation constraint. In order to prove that the co-chlaense distance i3, consider,
without loss of generality, a vertex = (i,) and all the vertices, on the right af,
lying on the rows, ..., i+ 3 of C. Among them, the vertices which are closest tand
coloredasv are(i,j+9), (i + 1,5+ 3), (¢ + 2,5+ 7), (i + 3,5). Thus, all of them are

at distance at leastfrom u. Finally, since the algorithm uses as few colors as required
by Lemma 11, the coloring is optimal. O

Lemmal2. Thereisak-L(2,1,1)-coloringof acellular grid C of sizer x ¢, withr > 4
andc > 4, onlyif k£ > 11.

Proof. Given the cellular gridC’ = (V, E), consider the augmented grapft 4 =
(V, E’) and the subgrapp of C illustrated in Figure 15. All thé2 vertices ofD are mu-
tually at distance or less, and they form a clique #¢ 4. Hence, they must be assigned
to all different colors, and(C) > 11. O

Figure 15 shows how to color the subgraphin such a way that the channel sepa-
ration constraint is verified for every two adjacent vesidgloreover, Figure 16 shows
a complete coloring of a cellular grid obtained by replicating the coloring for the sub-
graphD. Note that the channel separation constraint is verifiednbyt for the vertices
belonging to each copy d, but also for the vertices belonging to the borders of two
contiguous copies ob. Formally, the coloring of a cellular grid can be described a
follows.



Figure 16. Optimal11-L(2, 1, 1)-coloring for a cellular grid”'.

Algorithm Cellular-11-L(2, 1, 1)-coloring (C);

e If r > 4 andc > 4, assign to each vertex= (i, j) the color

if (i + )
if (i + )

if ( ) =4 mod 6, is evenandj is even
if ( ) =1 mod 6,1 is odd andj is even
if ( ) =3 mod 6,1 is odd andj is even
if ( ) =5 mod 6,1 is odd andj is even
if (i 4+ j) =5 mod 6,1 is evenandj is odd
if (i + )
it (i + J)
it (i + J)
it (i + J)
if (i + )
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Theorem 8. The Cellular-11-L(2, 1, 1)-coloring algorithmis optimal for cellular grids
ofsizer x c¢,withr >4 andc > 4.

Proof. In order to prove that the channel separation constraineiffied, it is useful
to introduce theManhattan distance m(u, v) between any two vertices andv, where
m(u,v) is the length of a shortest path betwaeandwv including only horizontal and
vertical edges, thus excluding diagonal edges. Now, anyctwsecutive colors are con-



sidered and it will be proved that such colors cannot be assitp two adjacent vertices.
For example, consider the pair of col@snd3. A vertexu = (i, j) gets the colo® if
and only if bothi andj are even, and + j = 4 mod 6, while a vertexv = (h, k) is
coloreds if and only if 4 is odd, % is even, anth + k£ = 1 mod 6. The vertices; and
v might belong to the same column, but to different rows. IS ttase, their distance is
at least3. In the case that they do not belong to the same column, theyManhattan
distancem(u,v) = 3. Hence, the vertex which is closest ta: and assigned to coldr
isv = (i+ 1,5+ 2), as illustrated in Figure 16. Keeping track of the diagoriges,
the actual distancé(u,v) is 2, and therefore the channel separation constraint is still
verified. An analogous argument can be repeated for any pedmsecutive colorg and
c+1,with0 < ¢ < 10.

To show that the co-channel reuse constraint holds, one tiodie two vertices: =
(i,7) andv = (h, k) get the same color if and only if their Manhattan distande, v) =
6, and both|i — k| and|j — k| are even. Due to the diagonal edges, the actual distance
d(u,v) is at least 4. Indeed, the actual distar¢e, v) could be3 whenm(u,v) = 6,
but in this caséi — h| and|j — k| cannot be both even. The optimality follows from the
lower bound shown in Lemma 12. O

4.1. Special Cases

As for square grids, in the following it is assumed that ¢ > 2, because a cellular grid
of sizec x r can also be obtained by transposition from one of sizec. Note that for
¢ = 1 the cellular grid reduces to a bus.

Lemma 13. Thereisan optimal L(2,1)- and L(2,1, 1)-coloring for a cellular grid C
of sizer x cifandonly if

5 if2<r<3andc=2
AMC)=<6 ifr>4andc=2
7 ifr=3andc=3

Proof. By Lemma 1, for a cellular grid of siz& x 2, A(C) > 5. An optimal5-coloring
for C of size3 x 2 is as follows: f(0,0) = 3, f(0,1) = 1, f(1,0) = 0, f(1,1) =
5,£(2,0) =4, f(2,1) = 2.

In a cellular gridC' of sizer x 2, with r > 4, there are at leastvertices of degreg.
Therefore, by Lemma 2,(C) > 6. An optimal6-coloring for C' is given by Algorithm
Small-Cellular-coloring.

Whenr = ¢ = 3, there is a vertex of degreein C. Therefore, by Lemma 2,
A(C) > 7. An optimal 7-coloring is f(0,0) = 7, f(0,1) = 2, f(0,2) = 1, f(1,0) =
4,f(1,1) =0, f(1,2) =5, £(2,0) =1, f(2,1) = 6, f(2,2) = 3. O

Algorithm Small-Cellular-coloring (C, r, c);

e If r > 4 andc = 2, assign to each vertex= (i, j) the color

f(u) = (3i+2j) mod 7




Lemma 14. Thereisan optimal L(2,1)-coloring for a cellular grid C of size 4 x 3 if
andonly if A(C) = 8.

Proof. To derive the lower bound oi(C') observe that” contains two stars of degree
6, whose centers are = (1,1) andv = (2,1), respectively. Since each vertex of the
two stars must get a different color, verticgs0), (3,1) and (3,2) must be colored
as vertices(0,0), (0,1) and(1,2). That is, the color assigned to must be at least
2 apart from the colors assigned {®,0), (3,1) and(3,2), and therefore there are 3
dummy edges betweemn and these vertices. Thus, considering the star centered in
A(C) > 8 follows from Lemma 1.C can be colored applying Algorithm Cellul&r-
L(2,1)-coloring. O

Lemma 15. Thereisan optimal L(2, 1, 1)-coloring for a cellular grid C of sizer x 3,
with r > 4, if and only if A(C) = 9.

Proof. The lower bound on\(C) derives from the existence of a clique of siz&in
the augmented grapf¢ 4. An optimal9-L(2, 1, 1)-coloring is provided by Algorithm
Small-CellularL(2, 1, 1)-coloring. O

Algorithm Small-Cellular-L(2,1, 1)-coloring (C, r, ¢);

e If r > 4 andc = 3, assign to vertex. = (i, j) the color

0 if i=2mod 10andj =0, ori =9 mod 10 andj = 1,
ori =6 mod 10 andj = 2

1 ifi=0mod 10andj =0, ori =7 mod 10 andj =1,
ori =4 mod 10 andj = 2

2 if i =8 mod 10andj =0, ori = 5 mod 10 andj = 1,
ori=2mod 10 andj = 2

3 if i=6 mod 10andj = 0, ori =3 mod 10 andj = 1,
ori =0 mod 10 andj = 2

4 if i=1mod 10andj =0, ori =8 mod 10 andj = 1,
Flu) = ori =5 mod 10 andj = 2

5 if i=3mod 10andj =0, ori =0 mod 10 andj = 1,
ori=7mod 10 andj = 2

6 if i=5mod 10andj =0, ori =2 mod 10 andj = 1,
ori =9 mod 10 andj = 2

7 if i =7mod 10andj =0, ori =4 mod 10 andj = 1,
ori=1mod 10 andj = 2

8 if i=9mod 10andj =0, ori =6 mod 10 andj = 1,
ori =3 mod 10 andj = 2

9 if i=4mod 10andj =0, ori =1 mod 10 andj = 1,
ori =8 mod 10 andj = 2

Finally, note that, when the vertices do not initially knolaeir relative position
within the cellular grid, a distributed algorithm can agh&executed which requires op-
timal time and number of messages. The computation is gitailthat of square grids:
it still starts from vertex0, 0), but it propagates along the “diagonals” of the grid.



Table1. Minimum numberA(G) + 1 of channels used for a sufficiently large netwérk

Network G L(1) | L(0,1) | L(1,1) L(2,1) L(1,1,1) | L(2,1,1)
Honeycomb grid 2 3 4 6 6 7
Square grid 2 4 5 7 8 9
Cellular grid 3 6 7 9 12 12
References folklore [4,21] [3,5] [8,13,18,30] [5] [8,30]

5. Conclusions

This paper has considered a graph theoretical approachdovinimum-Span Fixed
Channel Assignment (FCA) problem on a flat region withoutggaphical barriers,
where the wireless network stations, placed according tlaepessellation made by
regular polygons, receive a single channel per statiortigtly, after recalling some pre-
liminary graph theoretical results, simple algorithmssdzhon periodic and arithmetic
rules, were surveyed which optimally solve thé2, 1)- and L(2, 1, 1)-coloring prob-
lems for the honeycomb, square, and cellular grids, whictespond to the regular plane
tessellations based on hexagons, squares, and triaregpectively.

The results surveyed in this paper are summarized in TabMhith indicates the
minimum number of channels used for honeycomb, square, elhdar grids, not only
fortheL(2,1)-andL(2, 1, 1)-coloring problems but also for thig(1)-, L(0, 1)-, L(1, 1)-
andL(1,1,1)-coloring problems. The channel assigned to any vertex eacomputed
locally provided that the relative position of the vertexliwe network is known. Such a
computation can be performed in constant time for all thevaeks.

For the sake of completeness, it is worth mentioning that k&, J>)- and
L(41,1,...,1)-coloring problems have been optimally solved, for bothasguand cel-
lular grids, in [30] and in [9,27], respectively. In contrasoth problems remain open for
honeycomb grids, for which only the(1, 1, . . ., 1)-coloring problem has been optimally
solved [7].

The solutions in Table 1 assume that a single channel isressitp each station.
However, by standard techniques, the proposed solutiondeaeadily generalized to
derive sub-optimal solutions for uniform multi-channedigement and Hybrid Channel
Assignment. Indeed, when the same numbeof channels has to be assigned to each
vertex, the above solutions can be extended as follows.mMaghat\ + 1 colors are
used in total and that a vertex gets the calothen such a vertex receives also colors
i+A+1,i+2(A+1),...,i4+ (m—1)(A+1). Moreover, such a uniform multi-channel
solution can be used to determine the channels in the fixagssetby a HCA strategy.
Instead, additional work is needed to extend the solutiotise¢ FCA with borrowing as
well as to the DCA strategies. For instance, in DCA, the cleémare often partitioned
into groups, while the base stations are partitioned intstefs. Base stations can try in
a distributed way to get a free channel group that is not helshie of its neighbors [11].
Usually groups have no structure other than to be a set afidigjhannels. Our approach
can provide groups with guaranteed separations among émmels in the group in order
to help base stations to dynamically select the channels tsbd within the clusters.

It is worthy to note that the optimal solutions illustratad this paper for the
L(2,1,1)-coloring problem on cellular grids use as few colors asfitie 1, 1)-coloring
problem on the same networks. Similarly, @, 1, . . ., 1)-coloring problem on square



grids has been optimally solved using as few colors adthel, ..., 1)-coloring prob-
lem on the same networks [9] whén < |21 ]. In other words, whenever no extra
channels are needed to satisfy the separation constnagitg, channel separation is al-
ways better than adding guard frequencies between adjabantels. Indeed, suppose
that the bandwidth of a single channefdsnd that the bandwidth of a guard frequency
is v. Consider a channel assignment problem with co-channskrdistancer. If the
L(1,1,...,1)-coloring problem is optimally solved, say usingt 1 colors, and then a
guard frequency is added between adjacent channels toehtirelhdjacent frequency
interference problem, then the overall bandwidth used is

Wguard = ()\ + 1)5 + )\’y.

In contrast, if channel separation is introduced as redudyetheL (6, 1. .., 1)-coloring
problem, say using’ + 1 colors, then the total bandwidth used is

Wseparation = ()\I + 1)6

Clearly, if \ = X, thenWcparation < Weuara, Which implies that using channel sep-
aration is better than using guard frequency. As mentiohede, this happens for the
L(41,1,...,1)-coloring problem on square grids, as well as for f{e, 1, 1)-coloring
problem on cellular grids. Ik < ), the channel separation technique may or may not be
more appealing than the guard frequency technique, depgiodi the values of. For
example, consider the(1, 1,1)- and theL(2, 1, 1)-coloring problems on a square grid.
By the above reasoning one obtains

Wguard = 86 + 77 and Wseparation = 96;

which implies that using channel separation is better thiating guard frequency when
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From a theoretical point of view, it remains as an intergstipen question to solve
the generalL(d1, d2, ..., d,—1)-coloring problem, withd; > d2 > -+ > §,-1, ON

honeycomb, square, or cellular grids.
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