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Abstract. The large development of wireless services and the scarcityof the us-
able frequencies require an efficient use of the radio spectrum which guarantees
interference avoidance. The Channel Assignment (CA) problem achieves this goal
by partitioning the radio spectrum into disjoint channels,and assigning channels to
the network base stations so as to avoid interference. On a flat region without geo-
graphical barriers and with uniform traffic load, the network base stations are often
placed according to a regular plane tessellation, while thechannels are permanently
assigned to the base stations. This paper surveys the CA problem on grid network
topologies, where the plane is tessellated by regular polygons. Interference between
two base stations at a given distance is avoided by forcing the channels assigned
to such stations to be separated by a gap which is proportional to the distance be-
tween the stations. Under these assumptions, the CA problemcan be modeled as a
suitable coloring problem. Formally, given an undirected graphG = (V, E) and a
vector (δ1, δ2, . . . , δσ−1) of positive integers, anL(δ1, δ2, . . . , δσ−1)-coloring
of G is a functionf from the vertex setV to a set of nonnegative integers such
that |f(u) − f(v)| ≥ δi, if d(u, v) = i, 1 ≤ i ≤ σ − 1, whered(u, v) is the
distance (i.e. the minimum number of edges) between the verticesu andv. An opti-
malL(δ1, δ2, . . . , δσ−1)-coloring forG is one minimizing the largest used integer
over all such colorings. This paper surveys efficient algorithms for finding optimal
L(2, 1)- andL(2, 1, 1)-colorings of honeycomb, square, and cellular grids.
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Introduction

In a wireless network, the main difficulty against an efficient use of the radio spectrum
is given by interferences, caused by unconstrained simultaneous transmissions, which
result in damaged communications. The Channel Assignment (CA) problem is the task
of efficiently assigning the radio spectrum to the set of basestations of the network. Such
a problem, that first appeared in TV broadcasting and military communications in late
1960s, keeps renewing its interest due to the large development of wireless telephone
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networks (e.g. FDMA, TDMA, GSM networks) and satellite communication [1]. Al-
though there are many different models, all scenarios are characterized by a set of trans-
mitters (usually, antennae), a set of disjoint channels (frequencies) obtained partition-
ing the radio spectrum, and a strategy for assigning channels to transmitters so that data
communications are possible.

The channel assignment can be done following several strategies [20]. In the Fixed
Channel Assignment (FCA), channels are statically assigned to the transmitters for their
exclusive and permanent use, and remain stable over time [1,9,23]. Opposite to FCA,
Dynamic Channel Assignment (DCA) maintains all channels ina central pool, and dy-
namically assigns them to the transmitters for temporary use [11,15,16]. Finally, Hybrid
Channel Assignment (HCA) combines the two above strategies[20]. FCA performs well
when the traffic load is uniform in time and in space, because it yields maximum channel
reusability. In contrast, DCA is more suited in the case of short-term temporal and spa-
tial traffic variations, because it privileges the flexibility of the channel allocation with
respect to the channel reusability. Under mixed traffic conditions, either HCA or FCA
with borrowing are used. HCA, which has channels partitioned into fixed and dynamic
sets, performs well when on the top of a constant traffic load there is a fraction of highly
variable communications. In the FCA with borrowing, a transmitter which has used all its
statically assigned channels can occasionally borrow freechannels from its neighbouring
transmitters.

This paper concentrates on FCA. Using this technique, CA canbe modeled as vari-
ants of vertex graph coloring [1,19,24]. Formally, an undirected graphG = (V, E) mod-
els the wireless network, where the vertices inV represent the transmitters and the edges
in E represent pairs of transmitters that may potentially interfere. The separation re-
quired to avoid interference between the frequencies assigned to the edge end-points is
represented by a label of the edge. Colors (i.e. frequencies) have to be assigned to the
vertices so that the separation constraints are verified andan objective function is op-
timized. Typical objective functions range from minimizing the difference between the
largest and the lowest used colors, while avoiding interferences (called, Minimum-Span),
up to minimizing interferences using a given number of colors (called, Fixed-Spectrum).

For arbitrary network topologies and general separation constraints, the resulting
vertex coloring problems are computationally intractable(i.e., NP-hard). Therefore, the
FCA problem is usually addressed by means of heuristic approaches, like genetic algo-
rithms, taboo search, saturation degree, simulated annealing, and ants heuristics, just to
name a few [1]. The performance of such heuristics is compared on widely accepted
benchmarks, like CELAR data, COST 259 data, and Philadelphia instances. In partic-
ular, the Philadelphia instances, that have been heuristically solved to optimal for the
Minimum-Span objective function, suggest the relevance oftopologies based on regular
tessellations of the plane. In such a case, the interferencephenomena depend on the dis-
tance among the antennae. Thus, the separation constraintsare modeled by a separation
vector(δ1, δ2, . . . , δσ−1) of positive integers such that channels assigned to base stations
at distancei be at leastδi apart [1,19,20], which implies that the same color can be reused
only at stations whose distance is at leastσ. Typical values of theco-channel reuse dis-
tance σ studied so far are upper bounded by5, while typical values of the separations
areδ1 = 3 or 2, δ2 = 2 or 1, andδ3 = δ4 = 1 [1]. However, in the next generation of
wireless access systems, due to the decreasing cost of infrastructures and to the need of
wider bandwidth, a large number of small cells, each with significant power, is expected
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Figure 1. Possible grids of 16 vertices: (a) honeycomb grid, (b) square grid, and (c) cellular grid.

to cover a wider communication region [31]. Therefore, the upper bound ofσ is expected
to become larger than5.

In this paper networks modeled by regular plane tessellations are considered. It is
well-known that there are only three different tessellations of the plane which use regu-
lar polygons, namely hexagons, squares, and triangles. Such tessellations can be used to
place at the polygon vertices the base stations of the wireless communication networks,
leading to three well-known topologies:honeycomb, square, andcellular grids, depicted
in Fig. 1 for 16 vertices. Each of these grids has its own pros and cons. The cellular net-
works are currently the most important to the radio engineerbecause the transmission ar-
eas of their stations cover the whole plane using the smallest possible transmitter density.
However, since the required transmitter power increases linearly with the bandwidth,
high speed radio access can be guaranteed in dense ubiquitous infrastructures, like cellu-
lar networks, only at tremendous costs. As a possible alternative to dense infrastructures,
sparse infrastructures of information-kiosks, called infostations, close to which high data
rate communication is possible, have been introduced. Examples of such infrastructures
distributed in a Manhattan fashion, modeled by square grids, are already available inside
big cities [31]. Moreover, the performance of a topology canbe evaluated with respect to
several parameters, such asdegree, diameter, andcost, which is defined as the product of
the degree and diameter. Comparing the above three grids in terms of such parameters,
measured with respect to the same number of vertices, one notes that a honeycomb grid
has the smallest degree and cost, a cellular grid has the smallest diameter, while a square
grid is always worse than at least one of the other two grids [28].

Summarizing, this paper reviews the Minimum-Span FCA problem on grid network
topologies, under the assumption that a single channel has to be assigned to each station,
and surveys several algorithms which find optimal solutionsin polynomial time [9,26,
27]. It is worth noting that such solutions can be used to derive sub-optimal solutions in
the more general uniform multi-coloring case, where the same numberm of channels has
to be assigned to each vertex. Indeed, this can be accomplished by optimally assigning
one color per vertex, e.g. usings colors in total, and then coloring each vertex bym

colors repeatedly shifteds channels up. Precisely, if a vertex gets the single colori, then
it receives also colorsi + s, i + 2s, . . . , i + (m − 1)s.

In this paper, the FCA problem is modeled as follows. LetG = (V, E) be an undi-
rected graph representing the network topology and let(δ1, δ2, . . . , δσ−1) be the sepa-
ration vector, withδ1 ≥ δ2 ≥ · · · ≥ δσ−1. A k-L(δ1, δ2, . . . , δσ−1)-coloring of G is
a functionf from the vertex setV to the set of nonnegative integers{0, . . . , k} such
that |f(u) − f(v)| ≥ δi, if d(u, v) = i, 1 ≤ i ≤ σ − 1, whered(u, v) is the dis-
tance (i.e. the minimum number of edges) between the vertices u andv. An optimal



L(δ1, δ2, . . . , δσ−1)-coloring for G is one minimizingk over all such colorings. The
largest color used by an optimalL(δ1, δ2, . . . , δσ−1)-coloring is denoted byλ(G). Note
that, since the set of colors includes0, the overall number of colors involved by an op-
timal coloringf is in factλ(G) + 1 (although, due to the channel separation constraint,
some colors in{1, . . . , λ(G)−1} might not be actually assigned to any vertex). Thus, the
channel assignment problem consists of finding an optimalL(δ1, δ2, . . . , δσ−1)-coloring
for G. Note that anL(1)-coloring is just a classical vertex coloring and in this case
λ(G) + 1 = χ(G), the chromatic number ofG.

The channel assignment problem has been widely studied whenthe separation
vector(δ1, δ2, . . . , δσ−1) is equal to(1, 1, . . . , 1) [3,5,14,22,26]. In particular, the in-
tractability of optimalL(1, 1, . . . , 1)-coloring, for any positive integerσ, has been proved
by McCormick [22]. In contrast, optimalL(1, 1, . . . , 1)-colorings have been proposed
in [5,7] for rings, square grids, and honeycomb grids, and in[2] for trees and interval
graphs. Moreover, when the separation vector is(δ1, 1, . . . , 1), optimalL(δ1, 1, . . . , 1)-
colorings have been proposed in [9,27] for rings, square grids, and cellular grids. Opti-
mal solutions have been proposed for theL(δ1, δ2)-coloring problem on rings [17] and
on square and cellular grids [30]. This latter paper provided also an optimalL(2, 1, 1)-
coloring for square grids. TheL(2, 1, 1)-coloring problem has been also optimally solved
for cellular grids, honeycomb grids, and rings in [8,9]. TheL(2, 1)-coloring has been
investigated in [8,10,13,18,25]. Bodlaender et al. [10] proved that theL(2, 1)-coloring
problem isNP -hard for planar, bipartite, and chordal graphs, and presented approxi-
mate solutions for outerplanar, permutation and split graphs. Moreover,L(2, 1)-colorings
for unit interval graphs and trees have been found, respectively, by Sakai [25] and by
Chang and Kuo [13]. A recent annotated bibliography on theL(δ1, δ2)-coloring prob-
lem for several special classes of graphs can be found in [12]. As a related case, when
(δ1, δ2) = (0, 1), the L(0, 1)-coloring problem models that of avoiding only the so-
calledhidden interferences, due to stations which are outside the hearing range of each
other and transmit to the same receiving station. OptimalL(0, 1)-colorings have been
provided for square grids in [21], whereas the intractability of optimalL(0, 1)-coloring
has been proved in [4], where also optimal solutions for rings and complete binary trees
are given. For arbitrary graphs and general separation vectors, theL(δ1, δ2, . . . , δσ−1)-
coloring problem is faced by heuristics [1]. However, approximation algorithms have
been discussed in [6] for trees and interval graphs.

This paper surveys efficient algorithms which find optimal solutions for theL(2, 1)-
andL(2, 1, 1)-coloring problems on honeycomb, square, and cellular grids. The graph
theoretical approach outlined in [14,18,21,22,26] is followed and the results proposed
in [7,8,9,30] are surveyed. The rest of the present paper is structured as follows. Sec-
tion 1 briefly recalls some preliminary graph theoretical results (e.g., augmented graph,
clique) that will be used in the following sections. Moreover, a simple distributed scheme
is sketched to allow the vertices to compute their own relative positions in the grid, in
case these info are not already available. Such positions will then be used by the vertices
to self-assign their proper channel in constant time. Sections 2, 3, and 4 provide simple
algorithms based on periodic and arithmetic rules to optimally solve theL(2, 1)- and
L(2, 1, 1)-coloring problems on honeycomb, square, and cellular grids, respectively. Fi-
nally, conclusions are offered in Section 5, where it is alsopointed out when the channel
assignment solutions proposed in this paper are better thanthose obtained by employing
guard frequencies between adjacent channels.



1. Preliminaries

The channel assignment problem on a networkN with no channel separation constraint
and co-channel reuse distanceσ, namely theL(1, 1, . . . , 1)-coloring problem, can be re-
duced to a classical coloring problem on anaugmented graphGN,σ, which is the(σ−1)-
th power ofG and is obtained as follows. The vertex set ofGN,σ is the same as the vertex
set ofN , while an edge[r, s] belongs to the edge set ofGN,σ if and only if the distance
d(r, s) between the verticesr ands in N satisfiesd(r, s) ≤ σ − 1. Now, colors must be
assigned to the vertices ofGN,σ so that every pair of vertices connected by an edge is as-
signed a couple of different colors and the minimum number ofcolors is used. Hence, the
role ofmaximum cliques in GN,σ is apparent for deriving lower bounds on the minimum
number of channels for theL(1, 1, . . . , 1)-coloring problem onN . A clique for GN,σ is
a subset of vertices ofGN,σ such that there is an edge for each pair of vertices in the
subset. A clique of sizen in the augmented graphGN,σ implies that at leastn different
colors are needed to colorGN,σ. In other words, the size of the largest clique inGN,σ is
a lower bound for the number of channels required to solve thechannel assignment prob-
lem without channel separation constraint. Clearly, in thepresence of both channel sepa-
ration and co-channel reuse distance constraints, at leastas many channels are required as
in the presence of the channel separation constraint only. Formally, a lower bound for the
L(1, 1, . . . , 1)-coloring problem is also a lower bound for theL(δ1, 1, . . . , 1)-coloring
problem, withδ1 ≥ 1. In particular, lower bounds forL(1, 1)- andL(1, 1, 1)-colorings
hold also forL(2, 1)- andL(2, 1, 1)-colorings, respectively.

Let thecomplement graph G = (V, E) of a graphG = (V, E) be the graph having
the same vertex setV asG and having the edge setE obtained by swapping edges with
non-edges inE. Recall that aHamilton path is a path that traverses each vertex of a graph
exactly once. The following two lemmas are due to Griggs and Yeh [18].

Lemma 1. Consider the L(2, 1, . . . , 1)-coloring problem on a graph G = (V, E) such
that d(u, v) < σ for every pair of vertices u and v in V . Then, λ(G) = |V | − 1 if and
only if G has a Hamilton path.

Proof. To satisfy the channel separation constraint, two verticesof G may get two con-
secutive colors if and only if they are not adjacent, that is,if and only if they are adjacent
in G. If λ(G) = |V | − 1 then there is an orderingv0, v1, . . . , v|V |−1 of the vertices such
that f(vi) = i, for i = 0, 1, . . . , |V | − 1. Therefore,v0, v1, . . . , v|V |−1 is a Hamilton
path forG. Conversely, ifG has a Hamilton pathv0, v1, . . . , v|V |−1, then the optimal
L(δ1, 1, . . . , 1)-coloring isf(vi) = i, for i = 0, 1, . . . , |V | − 1.

Consider thestar graphS∆ which consists of acenter vertexc with degree∆, and
∆ ray vertices of degree1.

Lemma 2. Let the center c of S∆ be already colored. Then, the largest color required
for a k-L(2, 1)-coloring of S∆ is at least:

k =

{

∆ + 1 if f(c) = 0 or f(c) = ∆ + 1
∆ + 2 if 0 < f(c) < ∆ + 1



Proof. By Lemma 1,k ≥ ∆ + 1 becauseS∆ has no Hamilton path. Iff(c) = 0 or
f(c) = ∆ + 1, either color1 or ∆ violates the channel separation constraint and cannot
be used at the ray vertices. Similarly, if0 < f(c) < ∆, both colorsf(c)−1 andf(c)+1
cannot be used at the ray vertices. Therefore, one or two extra colors are required with
respect to the star size, depending on the center colorf(c).

The channel assignment algorithms to be presented allow anyvertex to self-assign
its proper channel in constant time, provided that it knows its relative position within
the network. If this is not the case, such relative positionscan be computed for all the
vertices using simple distributed algorithms requiring optimal time and optimal number
of messages. Assume that each vertex of the network only knows its own geographic
position (e.g. by means of its I.D. or a local geographic position system (GPS)) and the
names of its neighbours (which can be easily obtained by the usual topology-exchange
distributed algorithm [29]). The vertices are assumed to beasynchronous and can com-
municate by exchanging control messages (e.g. via dedicated system signals such as SS7
or MAC protocols such as ALOHA). There is only one kind of control message, which is
sent by a vertex to tell its geographic position and its relative position to its neighbours.
The computation is started by a single vertex, which is the only vertex which initially
knows its relative position. When a vertex receives a control message from a neighbour,
it is capable of recognizing whether the sender is a North, South, East, or West neigh-
bour, by comparing its geographic position and that of the sender (the agreement about
the actual cardinality points can be established and broadcast by the vertex starting the
computation, after knowing the GPS positions of its neighbors). When a vertex receives
a control message from a neighbour, if it has not yet computedits position and some
conditions are met, then it computes its own relative position and in turn sends a control
message, otherwise it neglects the message.

2. Honeycomb Grids

A honeycomb grid H of sizer × c hasr rows andc columns, indexed respectively from
0 to r − 1 (from top to bottom) and from0 to c − 1 (from left to right), withr ≥ 3 and
c ≥ 2. A generic vertexu of H will be denoted byu = (i, j), wherei is its row index and
j is its column index. Each vertex has degree3, except for some vertices on the borders.
In particular, each vertex(i, j), which does not belong to the grid borders, is adjacent to
the following3 vertices:

1.







(i, j + 1) if (i is even andj is even) or (i is odd andj is odd)
or
(i, j − 1) if (i is even andj is odd) or (i is odd andj is even)

2. (i − 1, j)
3. (i + 1, j)

The optimal solutions for theL(2, 1)- andL(2, 1, 1)-coloring problems on honey-
comb grids surveyed in this section have been provided in [7,8].

Lemma 3. For r ≥ 3 and c ≥ 3 there is a k-L(2, 1)-coloring of a honeycomb grid H of
size r × c only if k ≥ 5.
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Figure 2. Optimal coloring obtained by the Honeycomb-5-L(2, 1)-coloring algorithm.

Proof. It follows immediately from Lemma 2 because there is at leastone vertex of
degree3 that cannot be colored either0 or 4. Hence,λ(H) ≥ 5.

Below, an optimal5-L(2, 1)-coloring is given to color all the vertices of any honey-
comb gridH of sizer × c, with r ≥ 3 andc ≥ 3.

Algorithm Honeycomb-5-L(2, 1)-coloring (H, r, c);

• If r ≥ 3 andc ≥ 3, then assign to each vertexu = (i, j) the color

f(u) = (2i + 3j) mod 6

An optimal coloring for a honeycomb grid of size6 × 5 is illustrated in Figure 2.

Theorem 1. The Honeycomb-5-L(2, 1)-coloring algorithm is optimal for any honey-
comb grid H of size r × c, with r ≥ 3 and c ≥ 3.

Proof. To prove the theorem, it must be shown that the algorithm satisfies the channel
separation and co-channel reuse constraints, and that it uses the minimum number of
colors.

Consider a generic vertexu = (i, j) of H . The channel separation constraint is
easily verified for any vertexv adjacent tou. Indeed, the colorf(v) can be rewritten in
terms off(u) as follows:

f(v) =































(f(u) + 3) mod 6 if [v = (i, j + 1), i is even, andj is even]
or [v = (i, j + 1), i odd, andj is odd]

(f(u) − 3) mod 6 if [v = (i, j − 1), i is even, andj is odd]
or [v = (i, j − 1), i is odd, andj is even]

(f(u) − 2) mod 6 if v = (i − 1, j)
(f(u) + 2) mod 6 if v = (i + 1, j)

The above coloring assigns the three different colors(f(u) − 2) mod 6, (f(u) + 2)
mod 6, and(f(u) + 3) mod 6 to the three vertices adjacent tou. Thus, since any two
vertices at distance2 are both adjacent to a common vertexu, vertices at distance2 verify
the co-channel reuse constraint. The coloring optimality follows from Lemma 3.

Lemma 4. For r ≥ 4 and c ≥ 3, or r ≥ 5 and c = 2, there is a k-L(2, 1, 1)-coloring of
a honeycomb grid H only if k ≥ 6.
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Figure 3. The subgraphHS with the dummy edges (dashed), and its complementHS .

Proof. Consider the augmented graphGH,4 = (V, E′) and the subset of verticesS =

{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)} Since all the6 vertices inS are mutually at
distance at most3 in H , they form a clique inGH,4. Therefore,λ(H) ≥ 5.

In the case wherer ≥ 4 andc ≥ 3, consider the subgraphHS induced byS and also
the vertex(3, 0). To satisfy the co-channel reuse constraint using exactly6 colors, vertex
(3, 0) must get the same color as vertex(0, 1). Moreover, due to the channel separation
constraint, the colors assigned to vertices(2, 0) and(3, 0) must have a gap of at least
δ1 = 2. Hence, also the colors of(2, 0) and(0, 1) must have a gap of at leastδ1 = 2.
This is equivalent to add inHS a dummy edge between vertices(2, 0) and(0, 1). The
same reasoning can be repeated for the pairs of vertices(1, 1) and(1, 0), and(2, 1) and
(0, 0), as illustrated in Figure 3. Now, consider the complementHS of HS , depicted
also in Figure 3. There is no Hamilton path inHS because it consists of two connected
components. It follows from Lemma 1 thatλ(H) ≥ 6.

By a similar argument, the same lower bound can be proved for honeycomb grids
when r ≥ 5 and c = 2. Indeed, whenr ≥ 5 and c = 2, vertices(2, 0) and (2, 1)

belong to two distinct cliques inGH,4. Then, to keepλ(H) = 5, the same colors used for
vertices(0, 0), (0, 1), (1, 0), (1, 1) must be reused for vertices(3, 0), (3, 1), (4, 0), (4, 1).
In particular, as explained before, vertices(3, 0) and(3, 1) must get the same colors as
(0, 1) and(0, 0). Thus, vertices(4, 1) and(4, 0) must get the same colors as(1, 0) and
(1, 1). As said, this is equivalent to add inHS the threedummy edges between the pairs
of vertices(2, 0) and(0, 1), (2, 1) and(0, 0), and(1, 0) and(1, 1). As before, there is no
Hamilton path inHS .

Below, an optimal6-L(2, 1, 1)-coloring is given to color all the vertices of a honey-
comb gridH of sizer × c, with r ≥ 4 andc ≥ 3 or r ≥ 5 andc = 2.

Algorithm Honeycomb-6-L(2, 1, 1)-coloring (H, r, c);

• If r ≥ 4 andc ≥ 3 or r ≥ 5 andc = 2, assign to each vertexu = (i, j) the
color

f(u) =































0 if (i ≡ 0 mod6 andj is even) or (i ≡ 3 mod6 andj is odd)
4 if (i ≡ 0 mod6 andj is odd) or (i ≡ 3 mod6 andj is even)
6 if (i ≡ 1 mod6 andj is even) or (i ≡ 4 mod6 andj is odd)
2 if (i ≡ 1 mod6 andj is odd) or (i ≡ 4 mod6 andj is even)
1 if (i ≡ 2 mod6 andj is even) or (i ≡ 5 mod6 andj is odd)
5 if (i ≡ 2 mod6 andj is odd) or (i ≡ 5 mod6 andj is even)
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Figure 4. Optimal coloring obtained by the Honeycomb-6-L(2, 1, 1)-coloring algorithm.

The optimalL(2, 1, 1)-coloring for the honeycomb grid depicted in Figure 2 is illustrated
in Figure 4.

Theorem 2. The Honeycomb-6-L(2, 1, 1)-coloring algorithm is optimal for honeycomb
grids of size r × c, with r ≥ 4 and c ≥ 3 or with r ≥ 5 and c = 2.

Proof. Consider a generic vertexu = (i, j) of H . By construction, the channel separation
constraint is immediately verified. Indeed, for any vertexv adjacent tou such thatv =
(i, j ± 1), f(v) = f(u) ± 4 holds. Moreover, as shown in Figure 4, any pairu, v of
adjacent vertices on the same column can be colored only as follows f(u) = 0 and
f(v) = 6, f(u) = 6 andf(v) = 1, f(u) = 1 andf(v) = 4, f(u) = 4 andf(v) = 2,
f(u) = 2 andf(v) = 5, f(u) = 5 andf(v) = 0. Therefore, the gap between the colors
assigned to each pair of adjacent vertices is at least2.

Now, in order to prove that the co-channel reuse constraint is verified, let us show
that two vertices colored the same are at distance greater than 3. First of all, note that
each row ofH is colored with two colors, and any3 consecutive rows ofH use different
colors. Thei-th and(i+3)-th rows ofH , for anyi, are colored with the same two colors,
except that the order of such two colors along the row is swapped. That is, vertices(i, j)
and(i, j + 1) are colored, respectively, as vertices(i + 3, j + 1) and(i + 3, j). Hence,
two vertices in rowsi and(i + 3) get the same color only if their distance is at least4.
Moreover, thei-th and(i + 6)-th rows ofH , for anyi, are colored the same. Hence, the
same color can be reused on the same column only in two vertices at distance6. Finally,
all the even (resp., odd) columns are colored the same. Although the vertices(i, j) and
(i, j + 2) get the same color, their distance is4 because there are no two consecutive
horizontal edges. Summarizing, a given color is reused onH according to the pattern
shown in Figure 5. The coloring optimality follows from Lemma 4.

2.1. Special Cases

Note that the honeycomb grid was defined withr ≥ 3 because forr = 1 it reduces to a
set of isolated edges plus a possible isolated vertex, whilefor r = 2 or c = 1 it consists
of a bus, namely a simple path, for which both theL(2, 1)- andL(2, 1, 1)-colorings can
be easily solved havingλ(H) = 4 as the largest used color [8,13]. Therefore, the only
special cases left out are the following:
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Figure 5. The vertices closest to vertexu = (i, j) where the colorf(u) is reused.

Lemma 5. An optimal L(2, 1)-coloring of a honeycomb grid H has

λ(H) =

{

4 if 3 ≤ r ≤ 4 and c = 2
5 if r ≥ 5 and c = 2

Proof. When3 ≤ r ≤ 4 andc = 2, H contains a ringR of sizen = 6, which has a
lower bound onλ(R) of 4 [18]. A 4-L(2, 1)-coloring forH of size4 × 2 is: f(0, 0) =
f(2, 1) = 0, f(1, 0) = f(1, 1) = 2, f(2, 0) = f(0, 1) = 4, f(3, 0) = 1, f(3, 1) = 3.

Whenr = 5 andc = 2, H consists of two rings of sizen = 6, which share an edge
e. Assumingλ(H) = 4, by [18], each ring should be colored using only the colors0, 2
and4. By Lemma 2, there is a4-L(2, 1)-coloring forH only if the endpoints ofe get
the colors0 and4, which forces the other4 vertices adjacent to the endpoints ofe to be
colored only by2. This violates the co-channel reuse constraint, because some of these
4 vertices are at distance2. Therefore,λ(H) ≥ 5. In this case, a5-L(2, 1)-coloring is
obtained by Algorithm Small-Honeycomb-L(2, 1)-coloring.

Algorithm Small-Honeycomb-L(2, 1)-coloring (H, r, c);

• If r ≥ 5 andc = 2, assign to each vertexu = (i, j) the color

f(u) = (2i + 3j) mod 6

Lemma 6. When 3 ≤ r ≤ 4 and c = 2 or r = 3 and c ≥ 3, an optimal L(2, 1, 1)-
coloring of a honeycomb grid H has λ(H) = 5.

Proof. Consider a honeycomb gridH of size3 × 2. Since the augmented graphGH,4 is
a clique,λ(H) ≥ 5. An optimal5-L(2, 1, 1)-coloring forH of size4 × 2 is: f(0, 0) =
f(3, 1) = 0, f(0, 1) = f(3, 0) = 4, f(1, 0) = 3, f(1, 1) = 2, f(2, 0) = 1, f(2, 1) = 5.
An optimal5-L(2, 1, 1)-coloring forH whenr = 3 andc ≥ 3 is obtained by Algorithm
Small-Honeycomb-L(2, 1, 1)-coloring.



Algorithm Small-Honeycomb-L(2, 1, 1)-coloring (H, r, c);

• If r = 3 andc ≥ 3, assign to each vertexu = (i, j) the color

f(u) =































3 if r = 0 andc ≡ 0 mod 2
0 if r = 0 andc ≡ 1 mod 2
1 if r = 1 andc ≡ 0 mod 2
4 if r = 1 andc ≡ 1 mod 2
5 if r = 2 andc ≡ 0 mod 2
2 if r = 2 andc ≡ 1 mod 2

2.2. Distributed Computation of Relative Positions

The channel assignment algorithms presented above allow any vertex to self-assign its
proper channel in constant time provided that it knows its relative position within the
honeycomb grid. If this is not the case, such relative positions can be computed for all the
vertices using a simple distributed algorithm requiring optimal time and optimal number
of messages, as detailed below.

The computation is started by the upper-left corner vertex in the honeycomb grid,
which is the only vertex knowing its position(0, 0). A control message is structured
asCM(v, gv, i, j), wheregv and (i, j) are the geographic and relative positions ofv,
respectively. When a vertexu receivesCM(v, gv, i, j) from a North neighbourv and
i ≥ 1, thenu computes its relative position(i + 1, j) and sendsCM(u, gu, i + 1, j) so
as to propagate the computation downwards along the columnsof the honeycomb grid.
In the first two rows, however, different conditions have to be dealt with. Specifically, if
v is a West neighbour ofu andi = 0, thenu computes its position(0, j + 1) and sends
CM(u, gu, 0, j + 1), while if v is a South neighbour ofu andi = 1, thenu computes
(0, j) and sendsCM(u, gu, 0, j). As for the vertices in the second row, ifv is a North
neighbour andi = 0, thenu computes(1, j) and sendsCM(u, gu, 1, j), while if v is a
West neighbour andi = 1, thenu computes(1, j + 1) and sendsCM(u, gu, 1, j + 1).

It is easy to see that the overall number of messages requiredis O(rc) while the total
time is O(r + c), assuming that a message reaches its destination inO(1) time. Since
there arerc vertices in the grid and the grid diameter isO(r+c), the channel assignment
for all the vertices can be performed in a distributed fashion so as to require an optimal
time and an optimal number of messages.

3. Square Grids

A square grid B of sizer × c, with both r ≥ 2 andc ≥ 2, can be obtained from a
honeycomb gridH of the same size connecting all the pairs of consecutive nodes lying
on the same row. Thus, a generic vertexu = (i, j) of B, which does not belong on
the borders, has degree4. In particular, vertexu = (i, j) is adjacent to the vertices
(i − 1, j), (i, j + 1), (i + 1, j) and(i, j − 1).

The optimal solutions for theL(2, 1)- andL(2, 1, 1)-coloring problems on square
grids surveyed in this section have been proposed in [8,30].
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Figure 6. Optimal coloring obtained by the Grid-6-L(2, 1)-coloring algorithm.

Lemma 7. There is a k-L(2, 1)-coloring of a square grid B of size r × c, with r ≥ 3
and c ≥ 3, only if k ≥ 6.

Proof. The lower bound fork follows immediately because there is at least a vertex ofB

with degree4 that cannot be colored either0 or 5. Hence, from Lemma 2,λ(B) = 6.

In the following, an algorithm for optimallyL(2, 1)-coloring a square gridB of size
at least3 × 3 is given.

Algorithm Grid-6-L(2, 1)-coloring (B, r, c);

• If r ≥ 3 andc ≥ 3, assign to each vertexu = (i, j) the color

f(u) = (2i + 4j) mod 7

Theorem 3. The Grid-6-L(2, 1)-coloring algorithm is optimal.

Proof. Whenr ≥ 3 andc ≥ 3, consider a generic vertexu = (i, j) of B. The channel
separation constraint is easily verified for any vertexv adjacent tou = (i, j) because

f(v) =

{

(f(u) ± 2) mod 7 if v = (i, j ± 1)
(f(u) ± 3) mod 7 if v = (i ± 1, j)

Moreover, the co-channel reuse constraint is verified because the4 vertices closest
to u and colored asu are(i+1, j−2), (i−1, j+2), (i−2, j−3), (i+2, j+3), as can be
easily checked observing Figure 6. Finally, the optimalityfollows from Lemma 7.

Lemma 8. There is a k-L(2, 1, 1)-coloring of a square grid B, with r ≥ 5 and c ≥ 4 or
r ≥ 4 and c ≥ 5, only if k ≥ 8.

Proof. For a square gridB = (V, E) of sizer × c, with r ≥ 5 andc ≥ 4, consider the
augmented graphGB,4 = (V, E′). For any pair of vertices on the same columnu = (i, j)
andv = (i+3, j), with 0 ≤ i ≤ r−4 and1 ≤ j ≤ c−2, letSu,v be the subset of vertices
{(i, j), (i+1, j), (i+2, j), (i+3, j), (i+1, j−1), (i+2, j−1), (i+1, j+1), (i+2, j+1)}
at pairwise distance no more than3. Similarly, for any pair of vertices on the same row
u = (i, j) andw = (i, j + 3), with 1 ≤ i ≤ r − 2 and0 ≤ j ≤ c − 4, let S′

u,w be
the subset of vertices{(i, j), (i, j + 1), (i, j + 2), (i, j + 3), (i + 1, j + 1), (i + 1, j +
2), (i−1, j +1), (i−1, j +2)} at pairwise distance no more than3. Since bothSu,v and
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Figure 7. The subsets of verticesLu,v (all) andSu,v (white).

S′
u,w induce a clique inGB,4, at least8 colors are needed to satisfy the co-channel reuse

constraint. However, as proved in the following,8 colors are not enough to color the set
Lu,v of vertices depicted in Figure 7, which consists ofSu,v along with all the vertices
of B at horizontal distance exactly1 from the vertices on the border ofSu,v.

Indeed, to color verticesa = (i, j + 1) andb = (i + 1, j + 2), consider the vertex
p = (i+1, j−1), the subsets of verticesSu,v andS′

p,b, and the square subgridM induced
by Su,v. OnceSu,v has been assigned to all different colors, the two verticesb anda of
S′

p,b must be assigned to the two colors used for the two verticesz = (i + 2, j − 1) and
v = (i + 3, j) of Su,v, if only 8 colors are to be used. Due to the channel separation
constraint, the colors assigned to verticesa andb must be at least2 apart from the color
assigned to the vertexs = (i + 1, j + 1). This is equivalent to add toM two dummy
edges: one between verticess andz, and the other between verticess andv, as shown in
Figure 8. Now repeating the same argument for the three pairsof verticesc = (i+2, j+2)
andd = (i+3, j+1), e = (i+3, j−1) andf = (i+2, j−2), andg = (i+1, j−2) and
h = (i, j − 1), other dummy edges must be added (see Figure 9), namely thosebetween
p andy, u andy, u andz, s andz, p andy, andp andv.

By the previous discussion, either vertexh or g is colored as vertexv. Analogously,
either vertexf or e is colored as vertexu. Examining the set of vertices{v, e, f, g, h, u},
it is easy to be convinced that whatever is the color assignment adopted for such
vertices, the colorsf(u) and f(v) must be assigned to two adjacent vertices among
{v, e, f, g, h, u}. Namely,f(u) andf(v) must appear in one of the following pair of ver-
tices:u andh, or v ande, or f andg. Thus, one further dummy edge between verticesu

andv must be added toM , as shown in Figure 9.
Finally, let us buildM , the complement ofM . SinceM consists of two con-

nected components (see also Figure 9),M does not contain a Hamilton path. Hence, by
Lemma 1, there is no7-L(2, 1, 1)-coloring for square grids of sizer × c, with r ≥ 5 and
c ≥ 4. Thus,λ(B) ≥ 8. The proof whenr ≥ 4 andc ≥ 5 is analogous.

The algorithm for optimallyL(2, 1, 1)-coloring a grid, withr ≥ 5 andc ≥ 4 or
r ≥ 4 andc ≥ 5, is given below.
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Algorithm Grid-8-L(2, 1, 1)-coloring (G, r, c);

• If r ≥ 5 and c ≥ 4 or r ≥ 4 and c ≥ 5, then assign to each vertex
u = (i, j) the color

f(u) =















































0 if (i + j) ≡ 0 mod 4, i is even, andj is even
1 if (i + j) ≡ 0 mod 4, i is odd, andj is odd
2 if (i + j) ≡ 2 mod 4, i is even, andj is even
3 if (i + j) ≡ 2 mod 4, i is odd, andj is odd
5 if (i + j) ≡ 3 mod 4, i is odd, andj is even
6 if (i + j) ≡ 3 mod 4, i is even, andj is odd
7 if (i + j) ≡ 1 mod 4, i is even, andj is odd
8 if (i + j) ≡ 1 mod 4, i is odd, andj is even

An example of optimal coloring for a square grid of size5× 5 is illustrated in Figure 10.

Theorem 4. The Grid-8-L(2, 1, 1)-coloring algorithm is optimal for a square grid B of
size r × c, with r ≥ 5 and c ≥ 4 or r ≥ 4 and c ≥ 5.

Proof. In order to prove that the channel separation constraint is verified, one notes that
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Figure 10. Optimal coloring obtained by the Grid-8-L(2, 1, 1)-coloring algorithm.

two consecutive colors cannot be assigned to two adjacent vertices. For example, con-
sider the pair of colors2 and3. A vertexu = (i, j) gets color2 if and only if bothi andj

are even, andi + j ≡ 2 mod 4, while a vertexv = (h, k) gets color3 if and only if both
h andk are odd, andh + k ≡ 2 mod 4. Therefore, the distance between the verticesu

andv is at least2. An analogous argument can be repeated for any pair of consecutive
colorsc andc + 1, with 0 ≤ c ≤ 8.

To show that the co-channel reuse constraint holds, one notes that two verticesu =
(i, j) andv = (h, k) are colored the same if and only if their distanced(u, v) = 4, and
both|i − h| and|j − k| are even. The optimality follows from Lemma 8.

3.1. Special Cases

Note that the square grid was defined withr ≥ 2 andc ≥ 2 because forr = 1 or c = 1 it
reduces to a bus. For the sake of simplicity, in the followingit is assumed thatr ≥ c ≥ 2.
Note that such an assumption is not restrictive because a square grid of sizec× r can be
obtained by transposition from one of sizer × c.

Lemma 9. There is a k-L(2, 1)-coloring of a square grid B of size r × c only if

k ≥

{

4 if r = 2 and c = 2
5 if r ≥ 3 and c = 2

Proof. By Lemma 1, there is no3-L(2, 1)-coloring for a square grid of size2 × 2. The
lower bound fork whenr ≥ 3 andc = 2 follows immediately because there is at least
a vertex ofB with degree3 that cannot be colored either0 or 4. Hence, from Lemma 2,
λ(B) ≥ 5.

An optimal 4-L(2, 1)-coloring of a square gridH of size2 × 2 assigns colors to
vertices as follows:f(0, 0) = 0, f(0, 1) = 4, f(1, 0) = 3, f(1, 1) = 1. Moreover, an
algorithm for optimally 5-L(2, 1)-coloring a square gridB whose size isr×2 with r ≥ 3
is the following.

Algorithm Small-Grid-L(2, 1)-coloring (B, r, c);

• If r ≥ 3 andc = 2, assign to each vertexu = (i, j) the color

f(u) = (2i + 3j) mod 6



Theorem 5. The Small-Grid-L(2, 1)-coloring algorithm is optimal.

Proof. When c = 2, the channel separation constraint is easily satisfied because the
colors assigned to two adjacent vertices are at least2 apart. Moreover, the co-channel
reuse constraint holds because two vertices get the same color if they belong to the same
column and they are at distance3. Optimality follows from Lemma 9.

Lemma 10. There is a k-L(2, 1, 1)-coloring of a square grid B of size r × c only if

k ≥































4 if r = 2 and c = 2
5 if r = 3 and c = 2
6 if r ≥ 4 and c = 2
7 if 3 ≤ r ≤ 6 and c = 3
7 if r = 4 and c = 4
8 if r ≥ 7 and c = 3

Proof. Since any optimalL(2, 1, 1)-coloring uses at least as many colors as an optimal
L(2, 1)-coloring, it follows from Lemma 9 thatλ(B) ≥ 4 andλ(B) ≥ 5 for square grids
of size2 × 2 and3 × 2, respectively.

Given a square gridB of size 4 × 2, the two pairs of vertices(3, 0)-(0, 1)
and (3, 1)-(0, 0) must be colored the same to satisfy the co-channel reuse dis-
tance constraint using as few colors as possible. This is equivalent to add two
dummy edges, between the two pairs above, in the subgridBS induced byS =
{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}. Therefore,λ(B) ≥ 6 follows from Lemma 1.

For a square gridB of size3×3, the verticesS = {(0, 0), (0, 1), (0, 2)(1, 0), (1, 1),
(1, 2), (2, 1)} form a clique in to the augmented graphGB,4. Moreover, the colors as-
signed to the vertices(1, 0) and(0, 2) (resp.,(1, 2) and(0, 0)) must be at least two apart
because vertices(2, 0) and(0, 2) (resp.,(2, 2) and(0, 0)) must be colored the same to
satisfy the channel separation constraint. Hence, in the subgrid BS induced byS four
dummy edges must be added between the vertices(1, 0) and (0, 2), (2, 1) and (0, 2),
(1, 2) and(0, 0), (2, 1) and(0, 0). Therefore, from Lemma 1,λ(B) ≥ 7.

To prove thatλ(B) ≥ 8 when the size isr × 3, with r ≥ 7, the following properties
are useful:

1. For any pair of verticesu = (i, 1) andv = (i + 3, 1), with 0 ≤ i ≤ r − 5,
the subset of verticesSu,v = {u, t, w, v, p, z, s, y} forms a clique inGB,4 (see
Figure 11).

2. Given the verticest andk and the associated sets of verticesSu,v andSt,k, let
Uu,v = {p, u, s} ⊂ Su,v andDt,k = {e, k, d} ⊂ St,k. The vertices inUu,v and
Dt,k get the same colors.

Property 1 follows from the fact thatSu,v is a clique in the augmented graphGB,4,
while Property 2 is a consequence of the fact thatSu,v andSt,k require8 colors and that
the5 verticest, v, w, z, y belong to bothSu,v andSt,k. Therefore, the remaining3 colors
must be used to color bothUu,v andDt,k.

Consider now the subgraphBSt,k
induced bySt,k. By Property 2, in the subsets

Su,v andSt,k, the pairs of verticest-e, t-k, andt-d must get colors which are at least 2
apart. Therefore, three dummy edges between such pairs of vertices must be added into
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Figure 12. A case study for a7-L(2, 1, 1)-coloring for a square grid of size7 × 3.

BSt,k
. Similarly, by Property 2, three dummy edges between the pairs of verticesk-z,

k-t, andk-y must be added intoBSt,k
. The subgraphBSt,k

with these five dummy edges
is depicted in Figure 11.

Now, letBSt,k
be the complement ofBSt,k

with the dummy edges. There is a Hamil-
ton path ofBSt,k

only if the verticesz andd or y ande get two consecutive colors. In-
deed, suppose by contradiction that there is a Hamilton pathof BSt,k

in which the pairs
of verticesz andd or y ande are not adjacent. If there is such a Hamilton path, then there
exists also a Hamilton path of the subgraphBSt,k

including the two new dummy edges
z-d, andy-e. But this is a contradiction because this latter subgraph consists of two con-
nected components. Therefore, from Lemma 1, any7-L(2, 1, 1)-coloring ofBSt,k

uses
two consecutive colors for either verticesz andd or y ande.
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Figure 13. The optimalL(2, 1, 1)-colorings for the square grids of size2 × 2, 3 × 2, 4 × 4, and6 × 3.

Consider a7-L(2, 1, 1) coloring for BSt,k
, and assume without loss of generality

that f(d) = f(z) + 1. In order to color the grid of size7 × 3, depicted in Figure 12,
Uu,v andDt,k must get the same colors by Property 1. Then, eitherf(p) = f(d) or
f(p) = f(k) must hold to satisfy the co-channel reuse distance constraint. However,
to satisfy the channel separation constraint,f(p) = f(k) becausep andz are adjacent.
Hence,f(s) = f(e) andf(u) = f(d) must result. Moreover, from Property 1,Dw,j

must be colored the same asUt,k. Now, vertexc may be colored with eitherf(t) or
f(z). Again, to satisfy the channel separation constraint,f(c) = f(t) follows. Thus,
f(b) = f(y) andf(j) = f(z) must result. Finally, also the set of verticesDv,m must be
colored asUw,k. However, the colorf(d) = f(z)+ 1 cannot be reused inDv,m because
all the vertices inDv,m are adjacent to a vertex coloredf(z). Hence,λ(B) ≥ 8 when
r ≥ 7 andc = 3.

The optimalL(2, 1, 1)-colorings for square grids of size2 × 2, 3 × 2, 4 × 4, and
6×3 are depicted in Figure 13. Instead, the algorithm for optimally coloring small grids,
with r ≥ 4 andc = 2, or r ≥ 7 andc = 3 is given below.

Algorithm Small-Grid-L(2, 1, 1)-coloring (G, r, c);

• If r ≥ 4 andc = 2, assign to each vertexu = (i, j) the color

f(u) =































0 if i ≡ 0 mod 6 andj = 0, or i ≡ 3 mod 6 andj = 1
1 if i ≡ 2 mod 6 andj = 0, or i ≡ 5 mod 6 andj = 1
2 if i ≡ 4 mod 6 andj = 0, or i ≡ 1 mod 6 andj = 1
4 if i ≡ 3 mod 6 andj = 0, or i ≡ 0 mod 6 andj = 1
5 if i ≡ 1 mod 6 andj = 0, or i ≡ 4 mod 6 andj = 1
6 if i ≡ 5 mod 6 andj = 0, or i ≡ 2 mod 6 andj = 1

• If r ≥ 7 andc = 3, apply Algorithm Grid-8-L(2, 1, 1)-coloring.

Theorem 6. The Small-Grid-L(2, 1, 1)-coloring algorithm is optimal for a square grid
B of size r × c, when r ≥ 4 and c = 2 or r ≥ 7 and c = 3.

Proof. Whenc = 2, both the co-channel reuse and channel separation constraints are
verified because the vertices of the first column are repeatedly assigned to the sequence
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Figure 14. A cellular gridC of size5 × 5 colored by the Cellular-8-L(2, 1)-coloring algorithm.

of colors0, 5, 1, 4, 2, 6, while each vertex(i, 1) of the second column copies the color
used at the vertex(i − 3, 0) of the first column. Whenc = 3, the correctness follows
from Theorem 4, and the optimality from Lemma 10.

In the case that the vertices of the square grid do not know their relative positions,
such positions can be computed as seen in Subsection 2.2 for the honeycomb grids, with
the exception that ifv is a West neighbour ofu andi = 0, thenu computes its position
(0, j + 1) and sendsCM(u, gu, 0, j + 1).

4. Cellular Grids

A cellular grid C of sizer × c, with r ≥ 2 andc ≥ 2, is obtained from a square grid
B of the same size augmenting the set of edges with left-to-right diagonal connections.
Specifically, each vertexu = (i, j) of C is also connected to the verticesv = (i−1, j−1)
andz = (i + 1, j + 1). Hence, each vertex has degree6, except for the vertices on the
borders.

This section reviews the optimal solutions for theL(2, 1)- andL(2, 1, 1)-coloring
problems on cellular grids published in [8,9,30].

Lemma 11. There is a k-L(2, 1)-coloring for a cellular grid C of size r × c, with r ≥ 5
and c ≥ 3, or r ≥ 3 and c ≥ 5, or r ≥ 4 and c ≥ 4, only if k ≥ 8.

Proof. Since there are at least three vertices with degree6 which must all get different
colors,λ(C) ≥ 8 follows from Lemma 2.

Algorithm Cellular-8-L(2, 1)-coloring (C);

• If r ≥ 4 andc ≥ 4, or r = 3 andc ≥ 5, or r ≥ 5 andc = 3, assign to
each vertexu = (i, j) the color

f(u) = (3i + 2j) mod 9

Figure 14 illustrates the optimal coloring obtained by means of the Cellular-8-L(2, 1)-
coloring algorithm described above.

Theorem 7. The Cellular-8-L(2, 1)-coloring algorithm is optimal for cellular grids of
size r × c, with r ≥ 4 and c ≥ 4, or r = 3 and c ≥ 5, or r ≥ 5 and c = 3.
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Figure 15. The subgraphD of C whose vertices form a clique inGC,4, and an optimal11-L(2, 1, 1)-coloring
for it.

Proof. By construction, the Cellular-8-L(2, 1)-coloring algorithm verifies the channel

separation constraint. In order to prove that the co-channel reuse distance is3, consider,

without loss of generality, a vertexu = (i, j) and all the vertices, on the right ofu,

lying on the rowsi, . . . , i + 3 of C. Among them, the vertices which are closest tou and

colored asu are(i, j + 9), (i + 1, j + 3), (i + 2, j + 7), (i + 3, j). Thus, all of them are

at distance at least3 from u. Finally, since the algorithm uses as few colors as required

by Lemma 11, the coloring is optimal.

Lemma 12. There is a k-L(2, 1, 1)-coloring of a cellular grid C of size r×c, with r ≥ 4

and c ≥ 4, only if k ≥ 11.

Proof. Given the cellular gridC = (V, E), consider the augmented graphGC,4 =

(V, E′) and the subgraphD of C illustrated in Figure 15. All the12 vertices ofD are mu-

tually at distance3 or less, and they form a clique inGC,4. Hence, they must be assigned

to all different colors, andλ(C) ≥ 11.

Figure 15 shows how to color the subgraphD in such a way that the channel sepa-

ration constraint is verified for every two adjacent vertices. Moreover, Figure 16 shows

a complete coloring of a cellular gridC obtained by replicating the coloring for the sub-

graphD. Note that the channel separation constraint is verified notonly for the vertices

belonging to each copy ofD, but also for the vertices belonging to the borders of two

contiguous copies ofD. Formally, the coloring of a cellular grid can be described as

follows.



2

5

6

11

7

9

4

0

3

1

7

9

3

1

7

9

3

1

7

9

3

1

7

9

2

5

6

11

10

8

2

4

0

5

6

11

87

9

10

10

7

1

2

4

0

5

6

11

87

9

10

10

3

1

3

1

11

10

4

0

8

2

3

1

4

0

5

6

11

87

9

10

2

4

0

5

6

11

8

10

2

4

0

5

6

11

8

9

4

0

7

2

5 118

10

8

6

8

2

4

0

5

6

11

8

10

3

9

610

0

5

3

1

2

4

1

3

Figure 16. Optimal11-L(2, 1, 1)-coloring for a cellular gridC.

Algorithm Cellular-11-L(2, 1, 1)-coloring (C);

• If r ≥ 4 andc ≥ 4, assign to each vertexu = (i, j) the color

f(u) =















































































0 if (i + j) ≡ 2 mod 6, i is even, andj is even
1 if (i + j) ≡ 0 mod 6, i is even, andj is even
2 if (i + j) ≡ 4 mod 6, i is even, andj is even
3 if (i + j) ≡ 1 mod 6, i is odd, andj is even
4 if (i + j) ≡ 3 mod 6, i is odd, andj is even
5 if (i + j) ≡ 5 mod 6, i is odd, andj is even
6 if (i + j) ≡ 5 mod 6, i is even, andj is odd
7 if (i + j) ≡ 2 mod 6, i is odd, andj is odd
8 if (i + j) ≡ 4 mod 6, i is odd, andj is odd
9 if (i + j) ≡ 1 mod 6, i is even, andj is odd
10 if (i + j) ≡ 3 mod 6, i is even, andj is odd
11 if (i + j) ≡ 0 mod 6, i is odd, andj is odd

Theorem 8. The Cellular-11-L(2, 1, 1)-coloring algorithm is optimal for cellular grids
of size r × c, with r ≥ 4 and c ≥ 4.

Proof. In order to prove that the channel separation constraint is verified, it is useful
to introduce theManhattan distance m(u, v) between any two verticesu andv, where
m(u, v) is the length of a shortest path betweenu andv including only horizontal and
vertical edges, thus excluding diagonal edges. Now, any twoconsecutive colors are con-



sidered and it will be proved that such colors cannot be assigned to two adjacent vertices.
For example, consider the pair of colors2 and3. A vertexu = (i, j) gets the color2 if
and only if bothi andj are even, andi + j ≡ 4 mod 6, while a vertexv = (h, k) is
colored3 if and only if h is odd,k is even, andh + k ≡ 1 mod 6. The verticesu and
v might belong to the same column, but to different rows. In this case, their distance is
at least3. In the case that they do not belong to the same column, they have Manhattan
distancem(u, v) = 3. Hence, the vertexv which is closest tou and assigned to color3
is v = (i + 1, j + 2), as illustrated in Figure 16. Keeping track of the diagonal edges,
the actual distanced(u, v) is 2, and therefore the channel separation constraint is still
verified. An analogous argument can be repeated for any pair of consecutive colorsc and
c + 1, with 0 ≤ c ≤ 10.

To show that the co-channel reuse constraint holds, one notes that two verticesu =
(i, j) andv = (h, k) get the same color if and only if their Manhattan distancem(u, v) =
6, and both|i − h| and|j − k| are even. Due to the diagonal edges, the actual distance
d(u, v) is at least 4. Indeed, the actual distanced(u, v) could be3 whenm(u, v) = 6,
but in this case|i − h| and|j − k| cannot be both even. The optimality follows from the
lower bound shown in Lemma 12.

4.1. Special Cases

As for square grids, in the following it is assumed thatr ≥ c ≥ 2, because a cellular grid
of sizec × r can also be obtained by transposition from one of sizer × c. Note that for
c = 1 the cellular grid reduces to a bus.

Lemma 13. There is an optimal L(2, 1)- and L(2, 1, 1)-coloring for a cellular grid C

of size r × c if and only if

λ(C) =







5 if 2 ≤ r ≤ 3 and c = 2
6 if r ≥ 4 and c = 2
7 if r = 3 and c = 3

Proof. By Lemma 1, for a cellular grid of size2 × 2, λ(C) ≥ 5. An optimal5-coloring
for C of size 3 × 2 is as follows:f(0, 0) = 3, f(0, 1) = 1, f(1, 0) = 0, f(1, 1) =
5, f(2, 0) = 4, f(2, 1) = 2.

In a cellular gridC of sizer×2, with r ≥ 4, there are at least3 vertices of degree3.
Therefore, by Lemma 2,λ(C) ≥ 6. An optimal6-coloring forC is given by Algorithm
Small-Cellular-coloring.

When r = c = 3, there is a vertex of degree6 in C. Therefore, by Lemma 2,
λ(C) ≥ 7. An optimal7-coloring isf(0, 0) = 7, f(0, 1) = 2, f(0, 2) = 1, f(1, 0) =
4, f(1, 1) = 0, f(1, 2) = 5, f(2, 0) = 1, f(2, 1) = 6, f(2, 2) = 3.

Algorithm Small-Cellular-coloring (C, r, c);

• If r ≥ 4 andc = 2, assign to each vertexu = (i, j) the color

f(u) = (3i + 2j) mod 7



Lemma 14. There is an optimal L(2, 1)-coloring for a cellular grid C of size 4 × 3 if
and only if λ(C) = 8.

Proof. To derive the lower bound onλ(C) observe thatC contains two stars of degree
6, whose centers areu = (1, 1) andv = (2, 1), respectively. Since each vertex of the
two stars must get a different color, vertices(2, 0), (3, 1) and (3, 2) must be colored
as vertices(0, 0), (0, 1) and (1, 2). That is, the color assigned tou must be at least
2 apart from the colors assigned to(2, 0), (3, 1) and (3, 2), and therefore there are 3
dummy edges betweenu and these vertices. Thus, considering the star centered inv,
λ(C) ≥ 8 follows from Lemma 1.C can be colored applying Algorithm Cellular-8-
L(2, 1)-coloring.

Lemma 15. There is an optimal L(2, 1, 1)-coloring for a cellular grid C of size r × 3,
with r ≥ 4, if and only if λ(C) = 9.

Proof. The lower bound onλ(C) derives from the existence of a clique of size10 in
the augmented graphGC,4. An optimal9-L(2, 1, 1)-coloring is provided by Algorithm
Small-Cellular-L(2, 1, 1)-coloring.

Algorithm Small-Cellular-L(2, 1, 1)-coloring (C, r, c);

• If r ≥ 4 andc = 3, assign to vertexu = (i, j) the color

f(u) =















































































































































0 if i ≡ 2 mod 10 andj = 0, or i ≡ 9 mod 10 andj = 1,

or i ≡ 6 mod 10 andj = 2
1 if i ≡ 0 mod 10 andj = 0, or i ≡ 7 mod 10 andj = 1,

or i ≡ 4 mod 10 andj = 2
2 if i ≡ 8 mod 10 andj = 0, or i ≡ 5 mod 10 andj = 1,

or i ≡ 2 mod 10 andj = 2
3 if i ≡ 6 mod 10 andj = 0, or i ≡ 3 mod 10 andj = 1,

or i ≡ 0 mod 10 andj = 2
4 if i ≡ 1 mod 10 andj = 0, or i ≡ 8 mod 10 andj = 1,

or i ≡ 5 mod 10 andj = 2
5 if i ≡ 3 mod 10 andj = 0, or i ≡ 0 mod 10 andj = 1,

or i ≡ 7 mod 10 andj = 2
6 if i ≡ 5 mod 10 andj = 0, or i ≡ 2 mod 10 andj = 1,

or i ≡ 9 mod 10 andj = 2
7 if i ≡ 7 mod 10 andj = 0, or i ≡ 4 mod 10 andj = 1,

or i ≡ 1 mod 10 andj = 2
8 if i ≡ 9 mod 10 andj = 0, or i ≡ 6 mod 10 andj = 1,

or i ≡ 3 mod 10 andj = 2
9 if i ≡ 4 mod 10 andj = 0, or i ≡ 1 mod 10 andj = 1,

or i ≡ 8 mod 10 andj = 2

Finally, note that, when the vertices do not initially know their relative position
within the cellular grid, a distributed algorithm can againbe executed which requires op-
timal time and number of messages. The computation is similar to that of square grids:
it still starts from vertex(0, 0), but it propagates along the “diagonals" of the grid.



Table 1. Minimum numberλ(G) + 1 of channels used for a sufficiently large networkG.

NetworkG L(1) L(0, 1) L(1, 1) L(2, 1) L(1, 1, 1) L(2, 1, 1)

Honeycomb grid 2 3 4 6 6 7

Square grid 2 4 5 7 8 9

Cellular grid 3 6 7 9 12 12

References folklore [4,21] [3,5] [8,13,18,30] [5] [8,30]

5. Conclusions

This paper has considered a graph theoretical approach for the Minimum-Span Fixed
Channel Assignment (FCA) problem on a flat region without geographical barriers,
where the wireless network stations, placed according to a plane tessellation made by
regular polygons, receive a single channel per station. Precisely, after recalling some pre-
liminary graph theoretical results, simple algorithms, based on periodic and arithmetic
rules, were surveyed which optimally solve theL(2, 1)- andL(2, 1, 1)-coloring prob-
lems for the honeycomb, square, and cellular grids, which correspond to the regular plane
tessellations based on hexagons, squares, and triangles, respectively.

The results surveyed in this paper are summarized in Table 1,which indicates the
minimum number of channels used for honeycomb, square, and cellular grids, not only
for theL(2, 1)- andL(2, 1, 1)-coloring problems but also for theL(1)-, L(0, 1)-, L(1, 1)-
andL(1, 1, 1)-coloring problems. The channel assigned to any vertex can be computed
locally provided that the relative position of the vertex inthe network is known. Such a
computation can be performed in constant time for all the networks.

For the sake of completeness, it is worth mentioning that theL(δ1, δ2)- and
L(δ1, 1, . . . , 1)-coloring problems have been optimally solved, for both square and cel-
lular grids, in [30] and in [9,27], respectively. In contrast, both problems remain open for
honeycomb grids, for which only theL(1, 1, . . . , 1)-coloring problem has been optimally
solved [7].

The solutions in Table 1 assume that a single channel is assigned to each station.
However, by standard techniques, the proposed solutions can be readily generalized to
derive sub-optimal solutions for uniform multi-channel assignment and Hybrid Channel
Assignment. Indeed, when the same numberm of channels has to be assigned to each
vertex, the above solutions can be extended as follows. Assume thatλ + 1 colors are
used in total and that a vertex gets the colori, then such a vertex receives also colors
i+λ+1, i+2(λ+1), . . . , i+(m−1)(λ+1). Moreover, such a uniform multi-channel
solution can be used to determine the channels in the fixed setused by a HCA strategy.
Instead, additional work is needed to extend the solutions to the FCA with borrowing as
well as to the DCA strategies. For instance, in DCA, the channels are often partitioned
into groups, while the base stations are partitioned into clusters. Base stations can try in
a distributed way to get a free channel group that is not held by one of its neighbors [11].
Usually groups have no structure other than to be a set of disjoint channels. Our approach
can provide groups with guaranteed separations among the channels in the group in order
to help base stations to dynamically select the channels to be used within the clusters.

It is worthy to note that the optimal solutions illustrated in this paper for the
L(2, 1, 1)-coloring problem on cellular grids use as few colors as theL(1, 1, 1)-coloring
problem on the same networks. Similarly, theL(δ1, 1, . . . , 1)-coloring problem on square



grids has been optimally solved using as few colors as theL(1, 1, . . . , 1)-coloring prob-
lem on the same networks [9] whenδ1 ≤ bσ−1

2
c. In other words, whenever no extra

channels are needed to satisfy the separation constraints,using channel separation is al-
ways better than adding guard frequencies between adjacentchannels. Indeed, suppose
that the bandwidth of a single channel isβ and that the bandwidth of a guard frequency
is γ. Consider a channel assignment problem with co-channel reuse distanceσ. If the
L(1, 1, . . . , 1)-coloring problem is optimally solved, say usingλ + 1 colors, and then a
guard frequency is added between adjacent channels to handle the adjacent frequency
interference problem, then the overall bandwidth used is

Wguard = (λ + 1)β + λγ.

In contrast, if channel separation is introduced as required by theL(δ1, 1 . . . , 1)-coloring
problem, say usingλ′ + 1 colors, then the total bandwidth used is

Wseparation = (λ′ + 1)β.

Clearly, if λ = λ′, thenWseparation < Wguard, which implies that using channel sep-
aration is better than using guard frequency. As mentioned above, this happens for the
L(δ1, 1, . . . , 1)-coloring problem on square grids, as well as for theL(2, 1, 1)-coloring
problem on cellular grids. Ifλ < λ′, the channel separation technique may or may not be
more appealing than the guard frequency technique, depending on the values ofγ. For
example, consider theL(1, 1, 1)- and theL(2, 1, 1)-coloring problems on a square grid.
By the above reasoning one obtains

Wguard = 8β + 7γ and Wseparation = 9β,

which implies that using channel separation is better than adding guard frequency when
γ ≥ 1

7
β.

From a theoretical point of view, it remains as an interesting open question to solve
the generalL(δ1, δ2, . . . , δσ−1)-coloring problem, withδ1 ≥ δ2 ≥ · · · ≥ δσ−1, on
honeycomb, square, or cellular grids.
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