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Abstract. In the context of scheduling and timetabling, we study a
challenging combinatorial problem which is very interesting for both
practical and theoretical points of view. The motivation behind it is
to cope with scheduled activities which might be subject to unavoidable
disruptions, such as delays, occurring during the operational phase. The
idea is to preventively plan some extra time for the scheduled activi-
ties in order to be “prepared” if a delay occurs, and absorb it without
the necessity of re-scheduling the activities from scratch. This realizes
the concept of designing so called robust timetables. During the planning
phase, one has to consider recovery features that might be applied at
runtime if disruptions occur. Such recovery capabilities are given as in-
put along with the possible disruptions that must be considered. As in
standard delay management problems, the main objective still remains
the minimization of the overall needed time. We show that finding an
optimal solution for this problem is NP-hard even though the topology of
the event activity network, which models dependencies among activities,
is restricted to trees. However, we manage to design a pseudo-polynomial
time algorithm.

1 Introduction

When dealing with many real world applications, the design of a solution can
be divided in two main phases: a strategic planning phase and an operational
planning phase. The two planning phases differ in the time in which they are
applied. The strategic planning phase aims to plan how to optimize the use
of the available resources according to some objective function before the sys-
tem starts operating. The operational planning phase aims to have immediate
reaction to disturbing events that can occur when the system is running. In
general, the objectives of strategic and operational planning might be in con-
flict with each other. As disturbing events are unavoidable in large and complex
systems, it is fundamental to understand the interaction between the objectives
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of the two phases. A concrete example of real world systems, where this inter-
action is important, is the timetable planning in railways systems. It arises in
the strategic planning phase of railway systems, and it requires to compute a
timetable for passenger trains that determines minimal passenger waiting times.
However, many disturbing events might occur during the operational phase, and
they might completely change the scheduled activities. The main effect of the
disturbing events is the arising of delays.

The conflicting objectives of strategic against operational planning are evi-
dent in timetable optimization. In fact, a train schedule that lets trains sit in
stations for some time will not suffer from small delays of arriving trains, be-
cause delayed passengers can still catch potential connecting trains. On the other
hand, large delays can cause passengers to loose trains and hence imply extra
traveling time. The problem of deciding when to guarantee connections from a
delayed train to a connecting train is known in the literature as delay manage-
ment problem [2–5]. Although its natural formalization, the problem turns out to
be very complicated to be optimally solved. In fact, it is NP-hard in the general
case, while it is polynomial in some particular cases (see [2, 4–7]).

In order to cope with the management of delays we follow the recent recover-
able robust optimization approach provided in [8, 9], continuing the recent study-
ing in robust optimization. Our aim is the design of timetables in the strategic
planning phase in order to be “prepared” to react against possible disruptions.
If a disruption (delay) occurs, the designed timetable should guarantee to re-
cover the scheduled events by means of the allowed operations represented by
given recovery algorithms. Events and dependencies among events are modeled
by means of an event activity network (see [2, 5]). This is a directed graph where
the nodes represent events (e.g., arrival or departure of trains) and arcs represent
activities occurring between events (e.g., waiting in a train, driving or changing
for another train). In this paper, we assume that only one delay of at most α
time might occur at a generic activity of the scheduled event activity network.
An activity may absorb the delay if it is associated with a so called slack time. A
slack time assigned to an activity represents some extra available time that can
be used to absorb limited delays. Clearly, if we associate a slack time of at least
α to each activity, every delay can be locally absorbed. However, this approach is
not practical as the overall duration time of the scheduled events would increase
too much. We plan timetables able to absorb the possible occurring delay in a
fixed amount of steps, ∆. This means that if a delay occurs, it is not required
that the delay is immediately absorbed (unless ∆ = 0) but it can propagate to
a limited number of activities in the network. Namely, the propagation might
involve at most ∆ activities. The objective function is then to minimize the total
time required by the events in order to serve all the scheduled activities and to
be robust with respect to one possible delay of time α. The challenging combi-
natorial problem arising by those restrictions is of its own interest. We restrict
our attention to event activity networks whose topology is provided by a tree. In
fact, in [2], the authors show that the described problem is NP -hard when the
event activity network topology is a DAG, and they provide algorithms which



cope with the case of ∆ = 0. In [10], the authors provide algorithms for a generic
∆ when the event activity network is a linear graph.

Our Results. In this paper, we study event activity networks which have a
tree topology. Surprisingly, the described problem turns out to be NP -hard even
in this restricted case. Then we present algorithmic results. We provide an algo-
rithm that solves the problem in O(∆2n) time where n is the number of events
in the input event activity network. The result implies that the problem can be
solved in pseudo-polynomial time. The algorithm exploits the tree topology in
order to chose which arc must be associated with some slack time. Intuitively, on
trees, we prove that the choice to carefully postpone the assignment of a slack
time to descendent activities as much as possible leads to cheapest solutions.
Another interesting property for tree topologies shows that a solution with two
consecutive activities associated both with a slack time either is not optimal or
it can be turned into an optimal solution without such occurrence, unless ∆ = 0.

Due to space restrictions, omitted proofs can be found in Appendix.

2 Recoverable Robustness Model

In this section, we summarize the model of recoverable robustness given in [8].
Such a model describes how an optimization problem P can be turned into
a robustness problem P. Hence, concepts like robust solution, robust algorithm
for P and price of robustness are defined. In the remainder, an optimization
problem P is characterized by the following parameters. A set I of instances
of P ; a function F , that associates to any instance i ∈ I the set of all feasible
solutions for i; and an objective function f : S → R, where S =

⋃
i∈I F (i) is

the set of all feasible solutions for P . Without loss of generality from now on
we consider minimization problems. Additional concepts to introduce robustness
requirements for a minimization problem P are needed:

– M : I → 2I – a modification function for instances of P . Let i ∈ I be the
considered input to the problem P , and let π ∈ S be the planned solution
for I. A disruption is meant as a modification to the input i. Hence, given
i ∈ I, M(i) represents the set of disruptions of the input of P that can be
obtained by applying all possible modifications to I.

– A – a class of recovery algorithms for P . Algorithms in A represent the
capability of recovering against disruptions. An element Arec ∈ A works as
follows: given (i, π) ∈ I×S, an instance/solution pair for P , and j ∈ M(i), a
disruption of the current instance i, then Arec(i, π, j) = π′, where π′ ∈ F (j)
represents the recovered solution for P .

Definition 1. A recoverable robustness problem P is defined by the triple
(P, M,A). All the recoverable robustness problems form the class RRP.

Definition 2. Let P = (P, M,A) ∈ RRP. Given an instance i ∈ I for P , an
element π ∈ F (i) is a feasible solution for i with respect to P if and only if the
following relationship holds:

∃Arec ∈ A : ∀j ∈ M(i), Arec(i, π, j) ∈ F (j)



In other words, π ∈ F (i) is feasible for i with respect to P if it can be recovered
by applying some algorithm Arec ∈ A for each possible disruption j ∈ M(i). The
solution π is called a robust solution for i with respect to problem P .

Definition 3. Let P = (P, M,A) ∈ RRP. A robust algorithm for P is any
algorithm Arob such that, for each i ∈ I, Arob(i) is a robust solution for i with
respect to P .

The quality of a robust solution is measured by the price of robustness as in
the following definition.

Definition 4. Let P ∈ RRP and let Arob be a robust algorithm for P.

– The price of robustness of Arob is: Prob(P, Arob) =
maxi∈I

{
f(Arob(i))

min{f(x):x∈F (i)}
}

.

– The price of robustness of P is: Prob(P) = min{Prob(P, Arob) : Arob is robust
for P}.

– Arob is P-optimal if Prob(P, Arob) = Prob(P).
– A robust solution π for i ∈ I is P-optimal if: f(π) =

min {f(π′) : π′is feasible for P} .

3 Robust Timetabling Problem

In this section, we first consider a particular timetable problem and then, accord-
ing to the model of Section 2, we turn it into a recoverable robustness problem,
the Robust Timetabling problem (RTT ).

Given a DAG G = (V, A), where the nodes represent events and the arcs
represent the activities, the timetabling problem consists in assigning a time
to each event in such a way that all the constraints provided by the set of
activities are respected. Specifically, given a function L : A → N that assigns the
minimal duration time to each activity, a solution Π ∈ R|V |≥0 for the timetable
problem on G is found by assigning a time Π(u) to each event u ∈ V such that
Π(v)−Π(u) ≥ L(a), for all a = (u, v) ∈ A.

An optimal solution for the timetabling problem is one that, given a function
w : V → R≥0 that assigns a weight to each event, minimizes the total weighted
time for all events. Formally, the timetabling problem TT is defined as follows.

TT

given: A DAG G = (V, A), a function L : A → N and a function w : V →
R≥0.

problem: Find a function Π : V → R≥0 such that Π(v) −Π(u) ≥ L(a) for
all a = (u, v) ∈ A and f(Π) =

∑
v∈V w(v)Π(v) is minimal.

Then, an instance i of TT is specified by a triple (G, L,w), where G is a DAG, L
associates a minimal duration time to each activity, and w associates a weight to
each event. The set of feasible solutions for i is: F (i) = {Π : Π(u) ∈ R≥0, ∀u ∈
V and Π(v)−Π(u) ≥ L(a), ∀a = (u, v) ∈ A}.



A feasible solution for TT may induce a positive slack time s(a) = Π(v) −
Π(u) − L(a) for each a ∈ A. That is, the planned duration Π(v) −Π(u) of an
activity a = (u, v) is greater than the minimal duration time L(a).

When we restrict to the TT problem where the DAG is an out-tree T =
(V, A), any feasible solution satisfies Π(v) ≥ Π(r) +

∑
a∈P (r,v) L(a), where r is

the root of T and P (r, v) the directed path from r to v in T . Moreover, without
loss of generality, we can fix our attention only on instances of TT with L(a) = 1,
∀a ∈ A. Indeed, as proved below, the cost f(Π) of a feasible solution Π for an
instance of TT with an arbitrary function L easily derives from the cost f(Π ′)
of a feasible solution Π ′ for the same instance of TT with L′(a) = 1, ∀a ∈ A.

Lemma 1. Given a tree T = (V,A) and an instance i = (T, L, w) of TT , if
i′ = (T, L′, w) where L′(a) = 1, ∀a ∈ A, then for any feasible solution Π of i,
there exists a feasible solution Π ′ of i′ such that

f(Π) = f(Π ′) +
∑

v∈V

∑

a∈P (r,v)

w(v)(L(a)− 1).

Proof. Any feasible solution Π of i is in the form: Π(v) = Π(r) +∑
a∈P (r,v)(L(a) + s(a)). We define Π ′ as Π ′(r) = Π(r) and Π ′(v) = Π ′(r) +∑
a∈P (r,v)(1 + s(a)). Note that, Π ′ is feasible for i′. The values of the ob-

jective functions of Π and Π ′ are f(Π) = Π(r)w(r) +
∑

v∈V Π(v)w(v) =
Π(r)w(r) +

∑
v∈V

∑
a∈P (r,v)(L(a) + s(a))w(v) and f(Π ′) = Π ′(r)w(r) +∑

v∈V Π ′(v)w(v) = Π ′(r)w(r) +
∑

v∈V

∑
a∈P (r,v)(1 + s(a))w(v), respectively.

Hence, f(Π) = f(Π ′) +
∑

v∈V

∑
a∈P (r,v) w(v)(L(a)− 1). ¤

TT can be solved in linear time by assigning the minimal possible time to
each event (i.e. by using the Critical Path Method [11]). However, such a solu-
tion cannot always cope with possible delays occurring at running time to the
activities. Recovery (on-line) strategies might be necessary. For this reason, let
now transform TT into a recoverable robustness problem RTT = (TT , M,A),
according to Section 2. Given an instance i = (G,L, w) for TT , and a constant
α ∈ G, we limit the modifications on i by admitting a single delay of at most α
time. We model it as an increase on the minimal duration time of the delayed
activity. Formally, M(i) is defined as follows:

M(i) = {(G,L′, w) : ∃ ā ∈ A : L(ā) ≤ L′(ā) ≤ L(ā) + α, L′(a) = L(a) ∀a 6= ā} .

We define the class of recovery algorithms A for TT by introducing the con-
cept of events affected by one delay as follows.

Definition 5. Given a DAG G = (V, A), a function s : A → R≥0, and a
number α ∈ R≥0, a node x is α-affected by a = (u, v) ∈ A (equivalently, a
α-affects x) if there exists a path p = (u ≡ v0, v ≡ v1, . . . , vk ≡ x) in G, such
that

∑k
i=1 s((vi−1, vi)) < α. The set of nodes α-affected by an arc a = (u, v) is

denoted as Aff(a).



In the following, given a feasible solution Π for TT , we will use the slack times
defined by Π as the function s in the previous definition. Thus, an event x is
affected by a delay α occurring on the arc a = (u, v) if the sum of the slack times
assigned by the function Π to the events on the path from u to x are smaller
than α. That is, the planned duration of the activities are not able to absorb
the delay α, which cannot be hidden from x .

We assume that the recovery capabilities allow us to change the time of at
most ∆ events. Formally, each algorithm in A is able to compute a solution
Π ′ ∈ F (j) if |Aff(a)| ≤ ∆, where ∆ ∈ N. This implies that a robust solution for
RTT ∆ must guarantee that, if a delay of at most α time occurs, then it affects
at most ∆ events. Note that RTT ∆ only requires to find a feasible solution.
Nevertheless, it is worth to find a solution that minimizes the objective function
of TT .

Moreover, we concentrate our work on the RTT ∆ problem, where the DAG
is an out-tree. Formally, the above optimization problem, denoted by RTT ∆,opt,
is defined as follows:

RTT ∆,opt

given: A tree T = (V,A), a function w : V → R≥0, and two numbers α
and ∆ ∈ N+.

problem: Find a function Π : V → R≥0 such that each arc in A α-affects
at most ∆ nodes, according to the function s : A → R≥0 de-
fined as s(a = (i, j)) = Π(j) − Π(i) − 1, and such that f(Π) =∑

v∈V Π(v)w(v) is minimal

In the next lemma, we prove that, when the modifications are confined to a
single delay of at most α time, there exists a solution for the RTT ∆,opt problem
which assigns only slack times equal to α.

Lemma 2. Given an instance i of RTT ∆, for each solution Π for i there exists
a solution Π ′ for i such that f(Π ′) ≤ f(Π) and, for each arc a = (x, y), either
Π ′(y) = Π ′(x) + 1 or Π ′(y) = Π ′(x) + 1 + α.

Next, let us analyze the complexity of the RTT ∆,opt problem, with ∆ ≥ 1. In
fact, observe that for the case ∆ = 0, the RTT 0,opt problem is optimally solved
in linear time by adding slack times equal to α for each arc of the tree.

Theorem 1. The RTT ∆,opt problem, with ∆ ≥ 1, is NP-hard.

Theorem 1 follows from the fact that the decisional version of the RTT ∆,opt

problem, with ∆ ≥ 1, is NP-complete. This can be found in the Appendix.

4 Pseudo-Polynomial Time Algorithm

Based on the dynamic programming techniques, in this section we devise a
pseudo-polynomial time algorithm for RTT∆,opt, with ∆ ≥ 1.



At first, let us introduce few notation. From now on, letRTT∆-optimal denote
a solution forRTT∆,opt. Let T = (V, A) be an arbitrarily ordered tree, i.e. for each
node v we can distinguish its children denoted as No(v) as an arbitrarily ordered
set {v1, v2, . . ., v|No(v)|}. For an arbitrary subtree S(v) rooted at v ∈ V , let
No(S(v)) denote the set of nodes y such that (x, y) ∈ A, x ∈ S(v) and y 6∈ S(v).
Clearly, when S(v) = {v}, No(S(v)) ≡ No(v). In addition, for each node v ∈ T ,
let T (v) be the subtree of T rooted in v and let Ti(v) denote the subtree of T
rooted at v limited to the first (according to the initially chosen order) i children
of v. Moreover, recalling that T is a weighted tree, let c(v) =

∑
x∈T (v) w(x) be

the sum of the weights of the nodes in T (v) and let |T (v)| be the number of
nodes belonging to T (v). Note that, for each v ∈ V , the values |T (v)| and c(v)
can be computed in linear time by visiting T (r) where r is the radix of T .

In order to characterize a RTT∆-optimal solution Π, we need the following
lemmata and definition.

Lemma 3. Given a tree T , consider two feasible solution Π ′ and Π of cost f ′

and f , respectively which differ only for their slack time on the arc a = (u, v).
Let Π ′ have s(a) = 0, and Π have s(a) = α. Then, f ′ = f − αc(v).

Proof. By construction, all the events contained in the subtree T (v) are delayed
in Π of α time with respect to Π ′ due to the slack time associated with arc a.
For each node x ∈ T (v) then, it holds Π ′(x) = Π(x)−α. Hence, f ′ = f −αc(v).
¤

Definition 6. Given a feasible solution Π for the RDM∆ problem and a node
v ∈ V , a ball BΠ(v) is the maximal subtree rooted in v such that each node in
BΠ(v) has its incoming arc a with s(a) = 0.

Note that if the incoming arc into v has its slack time equal to α, the ball
BΠ(v) is empty. In other words, the ball BΠ(v) represents the set of nodes in
solution Π which are affected by the delay occurring at the arc incoming to v.
Due to the feasibility of Π, no more than ∆ nodes can belong to BΠ(v).

Lemma 4. For each instance of RTT∆, there exists a RTT∆-optimal solution
such that for each v ∈ V , BΠ(v) cannot be extended by adding any node in
No(BΠ(v)) while keeping feasibility.

Proof. By contradiction, we assume that there exists an instance such that, for
each RTT∆-optimal solution Π ′ there exists a non empty set of nodes V which
contradict the thesis: for each v ∈ V, BΠ′(v) can be extended by adding a node
from No(BΠ(v)). Let v ∈ V be a node such that d(r, v) is minimal. As BΠ′(v)
can be extended, then there exists an arc (x, y) such that x ∈ BΠ′(v), y 6∈ BΠ′(v)
and for each a ∈ A such that x ∈ Aff(a), |Aff(a)| < ∆. It follows that Π ′(y) =
Π ′(x)+1+α. Then, the solution Π ′′ that assigns Π ′′(y) = Π ′(x)+1, Π ′′(yi) =
Π ′′(y) + 1 + α, for 1 ≤ i ≤ |No(y)|, and keeps the rest of the original solution is
feasible. Indeed, BΠ′′(v) = BΠ′(v)+1 ≤ ∆ for each v such that x ∈ BΠ′(v) and
BΠ′′(y) ≤ BΠ′(y) ≤ ∆. By Lemma 3, f(Π ′′) = f(Π ′)−αc(y)+

∑|No(y)|
i=1 αc(yi).



Observing that only the slack times of the arcs incoming into yi and y have been
changed, and since

∑|No(y)|
i=1 c(yi) ≤ c(y) because ∪|No(y)|

i=1 T (yi) ⊂ T (y), it holds
f(Π ′′) ≤ f(Π ′). This procedure is repeated until BΠ(v) becomes maximal, i.e.,
of size min{∆, |T (v)|}.

At the end of this process, the obtained solution is optimal as f(Π ′′) ≤ f(Π ′)
and none of the balls can be extended by adding nodes while keeping feasibility,
a contradiction. ¤
Lemma 5. For each instance of RTT∆, with ∆ ≥ 1, there exists a RTT∆-optimal
solution such that at most one of two consecutive arcs has a slack time of α.

Proof. Suppose, by contradiction, that each RTT∆-optimal solution Π ′ assigns a
slack time to both of two consecutive arcs, i.e. there exist (x, y), (y, z) ∈ A such
that Π ′(y) = Π ′(x) + 1 + α and Π ′(z) = Π ′(y) + 1 + α. Then, we can extend
the ball rooted in y by defining a solution Π ′′ such that Π ′′(z) = Π ′(y) + 1,
Π ′′(zi) = Π ′′(z) + 1 + α, 1 ≤ i ≤ |No(z)|, and keeping the rest of the original
solution. Π ′′ is feasible because BΠ′′(z) = 1 ≤ ∆. By Lemma 3, f(Π ′′) =
f(Π ′)−αc(z) +

∑|No(z)|
i=1 αc(zi). Since only the slack times of the arcs incoming

into zi and z have been changed, and since
∑|No(z)|

i=1 αc(zi) ≤ αc(z), it holds
f(Π ′′) ≤ f(Π ′). Therefore, Π ′′ is feasible and f(Π ′′) ≤ f(Π ′), a contradiction.
¤

Let us now consider an optimal solution Π for the RDM∆ problem on T .
Since the root r of T has no incoming edges, it cannot be affected by any delay.
In other words, r can be considered as a node reached by an edge associated
with a slack time of α, hence, by Lemma 5, for each arc a outgoing from the
root r, s(a) = 0. By Lemma 4, for each v ∈ No(r), Π induces a maximal ball
BΠ(v) of size min{|T (v)|,∆}.

In order to compute the RTT∆-optimal solution Π, by applying dynamic
programming techniques, we obtain an algorithm which requires O(∆2n) time
complexity and O(∆n) space. Such algorithm, called SA-DP∆ and illustrated in
Figure 2, considers an arbitrarily ordered tree T in input. and performs a visit
in post-order of T . It uses for each node v ∈ T two matrices Gv and SOLv of
dimensions (No(v) + 1)× (∆ + 1).

Let f∗ denote the cost of an RTT0-optimal solution on T , that is, the cost
of the solution which associates to each arc a slack time of α. The SA-DP∆

algorithm stores in each entry Gv[i, j] the maximum gain for a solution Π with
respect to f∗ achievable by constructing a ball BΠ(v) of size j when considering
only the first i children of v. As Gv[i, j] must be the maximum gain, solution Π
must be optimal with respect to Ti(v).

In practice, for each node v and each integer j ≤ ∆, we have to decide the
most profitable way of building a ball (i.e., a maximal subtree) of size j, rooted
at v. Since any node v belonging to the ball gains a profit of αc(v), independent
of the shape of the ball itself, each ball can be easily decomposed in maximal sub-
balls, possibly empty, rooted at the children v1, v2, . . . , v|No(v)| of v. Moreover,
note that, by Lemma 4, if j < |T (v)|, the maximum gain is obtained by setting
BΠ(v) ≡ T (v).



For a generic internal node v of T , in Figure 1 shows the possible configura-
tions to consider when evaluating Gv[i, j].

1 + α

1
v

...

(a) (b) (c)

1 + α

1 1...

... ...

v

v

i-th

1

...

v
v1

1
i-th

v
G [i,0] G [0,j] G [i,j]

Fig. 1. The three possible configurations that must be considered when computing
matrix Gv.

If j = 0 (see Fig. 1(a) and Line 5 of the algorithm), then the entry Gv[i, 0]
is defined as the maximum gain of a solution Π with respect to f∗ achievable
by an empty ball BΠ(v). Thus, solution Π must have the slack time on the arc
incoming into v set to α. Therefore, by Lemma 5, all the arcs outgoing from
v have a slack time equal to 0, and so the optimal solution Π with respect to
Ti(v) in each subtree rooted at the child v`, 1 ≤ ` ≤ i, of v has a ball BΠ(v`) of
maximum possible size, as proved in Lemma 4. Specifically, BΠ(v`) has size ∆
if ∆ < |T (v`)|, and size |T (v`)| otherwise. Hence, the overall gain Gv[i, 0] with
respect to f∗ is recursively computed as the sum of the gains achieved at the
first i children of v, that is, Gv[i, 0] =

∑i
`=1 Gv`

[|No(v`)|,∆].
If i = 0 and j > 0 (see Fig. 1(b) and Line 7 of the algorithm), then the

entry Gv[0, j] is defined as the maximum gain for a solution Π with respect
to f∗ achievable by constructing a ball BΠ(v) of size j without considering
the children of v, that is |BΠ(v)| = 1 independent of the specified value j. By
Lemma 3, Gv[0, j] = αc(v).

If i > 0 and j > 0 (see Fig. 1(c) and Line 10 of the algorithm), then the entry
Gv[i, j] takes its most general meaning. Since j > 0, the considered solution Π
sets the slack time incoming into v to 0. Exploiting the sub-optimality property,
BΠ(v) is built recursively on the subtrees Ti−1(v) and T (vi) where two balls
of complementary sizes (i.e., whose sizes sum up to j) are considered. Observe
that for a chosen size s of BΠ(vi), the gain is recursively computed as Gv[i −
1, j − s] + Gvi [|No(vi)|, s]. Thus, Gv[i, j] is determined by considering all the
possible sizes s, with 0 ≤ s ≤ j − 1, of BΠ(vi) when considering only the first
i children of v. Note that since j > 0, the incoming arc into v has the slack
time set to 0, and hence BΠ(vi) cannot have size larger than j − 1. Formally,
Gv[i, j] = max0≤s<j {Gv[i− 1, j − s] + Gvi [|No(vi)|, s]}.



Algorithm SA-DP∆

Input: v ∈ V
let No(v) = {v1, . . . , vk},

1. for i = 1 to k
2. SA-DP∆(vi)
3. for i = 0 to k
4. for j = 0 to ∆

5. if j == 0 then Gv[i, 0] =
∑i

`=1 Gv` [|No(v`)|, ∆]
6. else
7. if i == 0 then Gv[i, j] = αc(v);
8. else

9. if j ≤ ∑i
`=1 |T (v`)|+ 1 then

10. Gv[i, j] = max0≤s<j {Gv[i− 1, j − s] + Gvi [|No(vi)|, s]}
11. let s∗ be the index determining the maximum at Line 10,

SOLv[i, j] = s∗

12. else Gv[i, j] = Gv[i, j − 1]

Fig. 2.

For each node v, the SA-DP∆ algorithm also memorizes in each matrix SOLv

the choices that lead to the optimal gains computed in the corresponding matrix
Gv (see Line 11 of the algorithm). All matrices SOLv, v ∈ T , are first initialized
by assigning 0 to each entry. Then, if i, j > 0, the entry SOLv[i, j] stores the size
s of the ball BΠ(vi) rooted at the i-th child vi of v which gives the maximum
gain when evaluating Gv[i, j]. Basically, if SOLv[i, j] 6= 0, it means that the arc
(v, vi) has no slack time, that is, it belongs to the ball BΠ(v) of the optimal
solution Π. Viceversa, if SOLv[i, j] = 0, either the arc (v, vi) has a slack time of
α (i.e., |BΠ(vi)| = 0) or such an arc does not exist (i.e., i = 0 or j > |T (v)|).

A call to Procedure SA-DP∆ from a node v evaluates all the entries of the
matrices associated to each node belonging to T (v). As by Lemma 5, we know
that the children of the root r must be all at distance 1 from r, we need |No(r)|
separate calls of the procedure in order to evaluate all the entries of the matrices,
each one involving the subtree rooted at a child of r. Alternatively, the optimal
gain for the entire tree T is computed in Gr[|No(r)|, 0] by calling Procedure
SA-DP∆ on the root r of T .

Once all the matrices Gv and Solv have been computed, we have to show
how to construct the optimal solution Π, i.e. how to assign to each v ∈ T the
value Π(v). Recall first that, by Lemma 5, Π(r) = 0 and for each v` ∈ No(r),
1 ≤ ` ≤ |No(r)|, Π(v`) = Π(r) + 1 = 1.

Moreover, a ball BΠ(v`) of size min = {|T (v`)|,∆} is rooted at each
v` ∈ No(r). Then, we need |No(r)| separate calls of Procedure BUILD, each one
involving the subtree rooted at a child of r, to find the value Π for each node in
T . Specifically, for each child v` ∈ No(r), the procedure BUILD(v`, |No(v`)|,∆),
depicted in Figure 3, is invoked to build the corresponding BΠ(v`).

Procedure BUILD(v, i, j) recursively builds the most profitable ball BΠ(v) of
size j with respect to Ti(v). At first, it determines the slack time on the arc
(v, vi) depending of the value of SOLv[i, j].



Algorithm BUILD

Input: v ∈ V , i ∈ [0, |No(v)|], j ∈ [0, ∆]
1. if v is not a leaf and i > 0 then
2. if SOLv[i, j] > 0 then
3. s := SOLv[i, j]
4. Π(vi) := Π(v) + 1
5. BUILD(vi, |No(vi)|, s)
6. BUILD(v, i− 1, j − s)
7. else
8. if i ≤ |No(v)| then
9. Π(vi) := Π(v) + 1 + α
10. w := vi

11. for k = 1 to |No(w)|
12. Π(wk) := Π(w) + 1
13. BUILD(wk, |No(wk)|, ∆)
14. BUILD(v, i− 1, j)

Fig. 3.

If SOLv[i, j] > 0, it means that the slack time on the arc (v, vi) is equal to
0, and the ball BΠ(v) consists of two sub-balls: one of size SOLv[i, j] in T (vi)
and one of size j − SOLv[i, j] in Ti−1(v).

Whereas, if SOLv[i, j] = 0, the ball of size j in the subtree T (v) does not
extend over T (vi) and it completely belongs to Ti−1(v). Hoverer, since the slack
time on the arc (v, vi) is equal to α, by Lemma 5, all the arcs outgoing from vi,
say (vi, wk) for 1 ≤ k ≤ |No(vi)|, have slack time equal to 0. The balls of size
at most ∆ rooted at the nodes wk, with 1 ≤ k ≤ |No(vi)|, are recursively built
invoking |No(vi)| times Procedure BUILD, i.e. one for each child of vi.

Theorem 2. For ∆ ≥ 1, SA-DP∆ is correct.

The proof of Theorem 2 follows by induction on ∆ and by Lemmata 3, 4,
and 5.

Theorem 3. Prob(RTT∆, SA-DP∆) ≤ 1 + α
2 .

Theorem 4. Prob(RTT∆) ≥ 1 + α
∆+1 .

Theorem 5. SA-DP∆ requires O(∆2n) time and O(∆n) space. BUILD requires
O(n) time.

5 Conclusion

We have presented the problem of planning robust timetables when the input
event activity network topology is a tree. The delivered timetables can cope with
one possible delay that might occur at runtime among the scheduled activities.
In particular, our algorithms ensure that if a delay occurs, no more than ∆



activities are affected by the propagation of such a delay. We have proved that
the problem is NP -hard in general, while it is pseudo-polynomially solvable.

Although the combinatorial optimization problem arisen by our study is of its
own interest, the paper continues the recent study on robust optimization theory.
This is an important rising field led by the necessity of managing unpredictable
limited disruptions with limited resources.

Several directions for future works deserve investigation such as the analysis
of different recovery strategies, the application of other modification functions to
the expected input and the enforcement of the recoverable robustness to other
fundamental optimization problems.
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5. Schöbel, A.: Integer programming approaches for solving the delay management
problem. In: Proc. of the Algorithmic Methods for Railway Optimization (AT-
MOS04). Volume 4359 of LNCS. (2007) 145–170

6. Gatto, M., Jacob, R., Peeters, L., Widmayer, P.: Online Delay Management on a
Single Train Line. In: Proc. of the Algorithmic Methods for Railway Optimization
(ATMOS04). Volume 4359 of LNCS. (2007) 306–320
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Appendix

Proof (of Lemma 2). Given Π, we define Π ′ = Π and then we perform iteratively
the next two operations starting from the root, downward to the leaves until none
of them can be applied.

1. For each arc a = (x, y) such that Π ′(y) > Π ′(x) + 1 + α, we assign Π ′(y) =
Π ′(x) + 1 + α;

2. For each arc a = (x, y) such that Π ′(x) + 1 < Π ′(y) < Π ′(x) + 1 + α, we
assign Π ′(y) = Π ′(x) + 1.

Clearly, at the end of the procedure, for each arc a = (x, y), either Π ′(y) =
Π ′(x) + 1 or Π ′(y) = Π ′(x) + 1 + α. The feasibility of applying Rule 1 follows
directly by the fact that any modification does not introduce delays larger than α.
The feasibility of applying Rule 2 follows by noting that it only shifts downward
positive slack times smaller than α. As the process is started from the root, at
each step, if an arc a = (x, y) is such that Π ′(x) + 1 < Π ′(y) < Π ′(x) + 1 + α,
then either 1) it is used to absorb a portion of a possible delay as a last edge,
hence successive nodes were not affected by the same delay; or 2) it is used to
absorb a portion of a possible delay but not as a last edge, hence successive
nodes are affected by the same delay; or 3) it is used for both cases 1) and 2)
but then we consider it as just for case 1); or 4) it is not necessary. In case 1), by
applying Rule 2 downward from the root, eventually a will be associated with a
slack time of at least α (and Rule 1 might be applied on it), hence it is still able
to absorb the original delay for which it was assigned and successive nodes are
still not affected by the same delay. In case 2), shifting downward the slack time
originally assigned to a implies that successive nodes are still affected by the
original delay for which a was designed to absorb a portion, but such a portion
is now absorbed by the successive edges. In case 4), the shifting downward of
the slack time (or its removal when there are no successive edges) does not
change affection properties. Hence, in all cases the feasibility of the solution is
maintained. ¤

Proof (of Theorem 1). The result immediately follows from the fact that the de-
cisional version of the RTT ∆,opt problem, with ∆ ≥ 1, is NP-complete. Formally
let the RTT∆,dec be defined as follows.

RTT∆,dec

given: A tree T = (V,A), a function w : V → R≥0, and three numbers
α,∆ ∈ N+,K ′ ∈ R≥0.

problem: Is there a function Π : V → R≥0 such that each arc in A α-affects
at most ∆ nodes, according to the function s : A → R≥0 defined as
s(a = (i, j)) = Π(j) −Π(i) − 1, and such that

∑
v∈V Π(v)w(v) ≤

K ′?



We now show that RTT∆,dec (briefly, RTTdec), is NP-complete by a transfor-
mation from Knapsack [12].

A solution for RTTdec can be verified in polynomial time, as we only need
to find out whether there exists a subtree of size bigger than ∆ where no slack
time α has been added. This can be performed by counting for each node v,
how many descending nodes are affected if a delay of α is assumed to occur at
the in-edge of x. Starting from the leaves of the tree and moving up until the
root, the procedure needs a simple visit of the tree, hence we can conclude that
RTTdec is in NP.

First, let us recall the Knapsack problem.

Knapsack

given: A finite set U, for each u ∈ U a size S(u) ∈ Z+, a value v(u) ∈ Z+,
and positive integers B, K ∈ Z+.

problem: Is there a subset U ′ ⊆ U such that
∑

u∈U ′ S(u) ≤ B and∑
u∈U ′ v(u) ≥ K?

Given an instance I of Knapsack where U = {u1, u2, . . . , u|U |}, we define
an instance I ′ of RTTdec. See Figure 4 for a visualization of I ′. Without loss
of generality, we assume that S(ui) ≤ B, for each ui ∈ U . The set of nodes is
made of: nodes r, r′ and the sets of nodes Xi = {x1

i , x
2
i , . . . , x

S(ui)
i ≡ zi}, for

each ui ∈ U . The set of arcs A is made of: arc (r, r′); arcs (r′, x1
i ), for each

i = 1, 2, . . . , |U |; and for each ui such that S(ui) > 1, arcs (xj
i , x

j+1
i ), for each

i = 1, 2, . . . , |U | and for each j = 1, 2, . . . , S(ui)− 1.
The weight of each node in V is 0 except for nodes zi, i = 1, 2, . . . , |U |, where

w(zi) = v(ui). Finally, ∆ = B +1, α = 1 and K ′ =
∑

ui∈U v(ui)(S(ui)+2)−K.
It is worth noting that the particular tree construction preserves the size of
the Knapsack instance, as each path of nodes of the same weight w can be
compacted and implicitly be represented by two numbers, namely, the number
of nodes of the path and the weight w of each node. This implies that each
path (x1

i , x
2
i , . . . , x

S(ui)−1
i ) of our construction will be represented by the pair

(S(ui)− 1, 0). Also the operations performed on such paths do not need the ex-
plicit representation of the tree. In particular, the check needed to verify whether
a solution is feasible can be done efficiently with respect to the compacted in-
stance. The representation provided in Figure 4 is just for better explain the
transformation, which indeed can be maintained polynomial.

Now we show that, if there exists a satisfying solution for Knapsack , then
there exists a satisfying solution for RTTdec.

Given a satisfying set U ′ ⊆ U for I, we define the following solution Π for
I ′:

– Π(r) = 0, Π(r′) = 1;
– Π(x1

i ) = 2 for each ui ∈ U ′ and Π(x1
i ) = 3 for each ui 6∈ U ′;

– Π(xj
i ) = Π(x1

i ) + j − 1, for each i = 1, 2, . . . , |U | and for each j =
2, 3, . . . , S(ui).
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Fig. 4. Instance of RTT used for the transformation from an instance of knapsack.

Note that, for each ui ∈ U ′, Π(zi) = S(ui) + 1 while for each ui 6∈ U ′, Π(zi) =
S(ui) + 2. As the weight of each node in V is 0 except for nodes zi, then

f(Π) =
|U |∑

i=1

Π(zi) · w(zi) =
∑

ui∈U ′
(S(ui) + 1) · v(ui) +

∑

ui 6∈U ′
(S(ui) + 2) · v(ui) =

=
∑

ui∈U

(S(ui) + 2) · v(ui)−
∑

ui∈U ′
v(ui) ≤

∑

ui∈U

(S(ui) + 2) · v(ui)−K = K ′.

We have to show that each arc in A α-affects at most ∆ nodes. As ∆ = B +1 >
S(ui), for each ui ∈ U , then all the arcs but (r, r′) do not α-affect more than ∆
nodes. Moreover, for each ui 6∈ U ′, Π(x1

i )−Π(r′) = 1 + α. Hence, the arc (r, r′)
α-affects r′ and nodes xj

i for each ui ∈ U ′ and for each j = 1, 2, . . . , S(ui). Then,
the overall number of affected nodes is 1 +

∑
ui∈U ′ S(ui) ≤ 1 + B = ∆.

Now we show that, if there exists a satisfying solution for RTTdec, then there
exists a satisfying solution for Knapsack .

Given a satisfying solution Π ′ for I ′, we define a satisfying solution Π that
assigns slack times only to arcs (r′, x1

i ), i = 1, 2, . . . , |U | as follows.

– Π(r) = 0, Π(r′) = 1;
– Π(x1

i ) = 3 for each i such that Π ′ assigns at least a slack time in the path
from r′ to zi, i.e. Π ′(zi)−Π ′(r′) ≥ S(ui) + α;

– Π(x1
i ) = 2 for each i such that Π ′(zi)−Π ′(r′) < S(ui) + α;



– Π(xj
i ) = Π(x1

i ) + j − 1, for each i = 1, 2, . . . , |U | and for each j =
2, 3, . . . , S(ui).

Note that, if Π ′ is a satisfying solution for I ′ then Π is also a satisfying solution
for I ′. In fact, Π(zi) ≤ Π ′(zi) and then f(Π) ≤ f(Π ′) ≤ K ′. Moreover, the
number of nodes α-affected by (r, r′) in the solution Π is less than or equal to
the number of nodes α-affected by (r, r′) in the solution Π ′.

We define a solution for I as U ′ = {ui : Π(x1
i ) = 2}. We have to show that∑

u∈U ′ S(u) ≤ B and
∑

u∈U ′ v(u) ≥ K.
As the number of nodes α-affected by (r, r′) in the solution Π is less than

or equal to ∆, then ∆ ≥ 1 +
∑

i:Π(x1
i )=2 |Xi| = 1 +

∑
ui∈U ′ S(ui). Hence∑

ui∈U ′ S(ui) ≤ ∆− 1 = B.
As the weight of each node in V is 0 except for nodes zi, then f(Π) =∑|U |

i=1 Π(zi) ·w(zi) =
∑

i:Π(x1
i )=2(S(ui)+1) ·w(zi)+

∑
i:Π(x1

i )=3(S(ui)+2) ·w(zi)

=
∑

i:Π(x1
i )=2(S(ui) + 1) · v(ui) +

∑
i:Π(x1

i )=3(S(ui) + 2) · v(ui) =
∑|U |

i=1(S(ui) +
2) · v(ui)−

∑
i:Π(x1

i )=2 v(ui) =
∑

ui∈U (S(ui) + 2) · v(ui)−
∑

ui∈U ′ v(ui) ≤ K ′ =∑
ui∈U (S(ui) + 2) · v(ui)−K. Hence

∑
ui∈U ′ v(ui) ≥ K. ¤

Proof (Sketch for Theorem 2). The proof is by induction on ∆.
Inductive basis. We prove the statement for ∆ = 0. In this case, only Line 5 is
executed as j = 0, and assigns G[i, j] = 0 to each entry. Matrix SOL remains
as it was initialized, with all entries equal to 0. This is RTT∆-optimal as there
is no possibility to gain anything when ∆ = 0.
Inductive step. We prove that if SA-DP∆ builds the correct matrices for any
δ ≤ ∆ − 1, then it does the same for δ = ∆. When constructing a ball of
size ∆ > 0 rooted at some node v, first of all we have to consider the gain
with respect to f∗ rising from removing the slack time of α from the incoming
edge leading to v, that is αc(v) (Line 7). Then we have to consider all the
possibilities for constructing the ball. These are determined by the combination
of the number of children of v that the ball takes into account and for each
considered child, the size of the ball rooted at such child (size 0 means that
the child is not part of the ball). All such combinations are optimally evaluated
in Gv and SOLv at Lines 10-11 as each entry is determined by means of balls
of size δ < ∆ which by inductive hypothesis are correctly found. Hence, by
choosing the maximum obtainable value among all such combinations gives us
an RTT∆-optimal solution. ¤

Proof (of Theorem 3). Unless ∆ = 0, by construction, SA-DP∆ does not leave
slack times associated to two consecutive arcs. In fact, for any pair of consecutive
arcs a = (x, y), b = (y, z) ∈ A either Π(z) = Π(x) + 2 or Π(z) = Π(x) + 2 + α.
Then, for each v ∈ V , Π(v) ≤ d(r, v) + αbd(r,v)

2 c ≤ d(r, v)
(
1 + α

2

)
. For any

optimal solution Π ′ of TT , Π ′(v) ≥ d(r, v). When ∆ = 0, Π ′(v) ≥ d(r, v)α and



this is equal to the solution provided by SA-DP∆, as it does not remove any slack
time. Therefore, the statement holds. ¤

Proof (of Theorem 4). It is sufficient to give an instance such that any robust
solution Π implies f(Π) ≥ (1 + α

∆+1 ) · f(Π ′), where Π ′ is an optimal solution
for TT . Let us consider a tree consisting of a single path of ∆+1 arcs (xi, xi+1),
i = 0, 1, . . . , ∆. For each i = 0, 1, . . . , ∆, w(xi) = 0 and w(x∆+1) > 0. Each
solution Π of RTT∆ is such that Π(x∆+1) ≥ d(x0, x∆+1) + α = ∆ + 1 + α. An
optimal solution Π ′ for TT is such that Π ′(x∆+1) = d(x0, x∆+1) = ∆+1. Hence,
f(Π) = (∆+1+α)w(x∆+1) = (1+ α

∆+1 ) · (∆+1)w(x∆+1) = (1+ α
∆+1 ) · f(Π ′).

¤

Proof (of Theorem 5).
The time complexity of the SA-DP∆ procedure follows by observing that, for

a given v ∈ T , to fill the entry of Gv[i, j] requires O(i) time if j = 0, O(1) if
i = 0 and j > 0, and O(j) if i, j > 0 (see the recurrence defined by Lines 3-10),
and hence the matrices Gv and SOLv are filled in O(|No(v)|∆2) time. Thus, to
fill all the matrices in T , it costs

∑
v∈T O(|No(v)|∆2) = n∆2. On the other side,

procedure BUILD performs a visit of T to compute the assignment Π(v) for each
node v ∈ T and thus, it takes O(n) time. ¤


