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Abstract. A scalable energy-efficient training protocol is proposed for
massively-deployed sensor networks, where sensors are initially anony-
mous and unaware of their location. The protocol is based on an intuitive
coordinate system imposed onto the deployment area which partitions
the anonymous sensors into clusters. The protocol is asynchronous, in
the sense that the sensors wake up for the first time at random, then
alternate between sleep and awake periods both of fixed length, and no
explicit synchronization is performed between them and the sink. Theo-
retical properties are stated under which the training of all the sensors
is possible. Moreover, a worst-case analysis as well as an experimental
evaluation of the performance is presented, showing that the protocol is
lightweight and flexible.

1 Introduction

Ultra-high integration and low-power electronics have enabled the development
of miniaturized, low-cost, battery-operated sensor nodes (sensors, for short)
that integrate signal processing and wireless communications capabilities [1, 13].
Many applications require the aggregation of massively deployed sensors into
sophisticated computational and communication infrastructures, called wireless
sensor networks. Such sensor networks pose unique challenges, like the design
of protocols for harvesting the data sensed and for interfacing sensors to the
outside world. For these goals, many techniques proposed so far rely on one or
several sinks, i.e. special long-range radios deployed alongside with the sensors.
Each sink has a full range of computational capabilities, can send long-range
directional broadcasts to the sensors at distance at most ρ, can receive messages
from nearby sensors, and has a steady power supply. In this scenario, the raw
data collected by individual sensors are fused, in stages, and forwarded via multi-
hop paths to the nearest sink that provides the interface to the outside world.
Such a scenario for a sensor network with a single central sink is depicted in Fig-
ure 1(a). Moreover, the random deployment results in sensors initially unaware
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Fig. 1. (a) A sensor network with a central sink. (b) The trained sensor network.

of their location. However, many probable applications require that individual
sensors have to determine either their exact geographic location or else a coarse-
grain approximation thereof. The former task is referred to as localization and
has been extensively studied in the literature [7, 9]. The latter task, referred to
as training, has been considered in several recent papers by Olariu et al. [3,
10–12]. In particular, they devised some training protocols for sensor networks,
which differ on whether or not sensors need some kind of explicit synchronization
with the sink. Such training protocols have different performance, measured in
terms of total time for training, overall sensor awake time, and number of sensor
sleep/wake transitions. In particular, the model in [12] assumes that the sink
and the sensors are asynchronous, in the sense that the sensors wake up for the
first time at random and then alternate between sleep and awake periods both
of fixed length, while no explicit synchronization is performed between them and
the sink.

The main contribution of this paper is to further study the task of training,
assuming the same asynchronous model as that originally defined in [12]. The
present paper completes the work of [12], by stating novel theoretical properties
under which the training of all the sensors in the network is possible. Moreover,
a new protocol is presented which is lightweight in terms of both the number of
wake/sleep transitions and the overall sensor awake time for training.

The remainder of this paper is organized as follows. Section 2 discusses the
wireless sensor network model and introduces the task of training. Training im-
poses a coordinate system which divides the sensor network area into equiangular
wedges and concentric coronas centered at the sink, as first suggested in [11].
Section 3 is the backbone of the entire paper, presenting the theoretical under-
pinnings of the training protocol, along with its worst-case performance analysis.
Section 4 presents an experimental evaluation of the performance, tested on ran-
domly generated instances, showing that the protocol behaves much better in the
average case than in the worst case. Finally, Section 5 offers concluding remarks.



2 The network model

In this work a wireless sensor network is assumed that consists of a sink and a set
of sensors randomly deployed in its broadcast range as illustrated in Figure 1(a).
For simplicity, the sink is centrally placed, although this is not really necessary.

A sensor is a device that possesses three basic capabilities: sensory, com-
putation, and wireless communication, and operates subject to the following
fundamental constraints:

a. Sensors are anonymous – they do not have individually unique IDs;
b. Each sensor has a modest non-renewable energy budget and a transmission

range of r;
c. In order to save energy, each sensor alternates between sleep periods and

awake periods – the sensor sleep-awake cycle is of total length L out of
which the sensor is in sleep mode for L − d time and in awake mode for d

time;
d. Each sensor is asynchronous – it wakes up for the first time according to

its internal clock and is not engaging in an explicit synchronization protocol
with either the sink or the other sensors;

e. Each sensor has no global information about the network topology, but can
hear transmissions from the sink;

f. Individual sensors must work unattended – once deployed it is either infea-
sible or impractical to devote attention to individual sensors.

The task of training is essential in several applications. One example is clus-
tering where the set of sensors deployed in an area is partitioned into clusters
[1, 2, 5]. As a result of training, we impose a coordinate system onto the sen-
sor network in such a way that each sensor belongs to exactly one cluster. The
coordinate system involves establishing [11]:

1. Coronas: The deployment area is covered by k coronas c0, c1, . . . , ck−1 de-
termined by k concentric circles, centered at the sink, whose radii are 0 <

r0 < r1 < · · · < rk−1 = ρ;
2. Wedges: The deployment area is ruled into a number of equiangular wedges,

centered at the sink, which are established by directional transmission [10].

For the sake of simplicity, in this paper, it is assumed that the corona width
is equal to the sensor transmission range r, and hence the (outer) radius ri of
corona ci is equal to (i + 1)r. As illustrated in Figure 1(b), at the end of the
training period each sensor has acquired two coordinates: the identity of the
corona in which it lies, as well as the identity of the wedge to which it belongs.
In particular, a cluster is the locus of all nodes having the same coordinates in
the coordinate systems [10].

3 The corona training protocol

The main goal of this section is to present the details of the corona training
protocol (the wedge training protocol is similar and will not be discussed), where



each individual sensor has to learn the identity of the corona to which it belongs,
regardless of the moment when it wakes up for the first time. To see how this is
done, it is useful to assume the time ruled into slots. The sensors and the sink
use equally long, in phase slots, but they do not necessarily start counting the
time from the same slot.

The idea of the protocol, called Flat–, is as follows. Immediately after deploy-
ment the sink cyclically repeats a transmission cycle which involves k broadcasts
at successively lower power levels. Each broadcast lasts for a slot and transmits
a beacon equal to the identity of the outmost corona reached. Precisely, the sink
starts out by transmitting the beacon k − 1 at the highest power, sufficient to
reach the sensors up to the outmost corona ck−1; next, the sink transmits the
beacon k−2 at a power level that can be received up to corona ck−2, but not by
the sensors in corona ck−1. For the subsequent k − 2 slots, the sink continues to
transmit at decreasing power levels until it concludes its transmission cycle with
a broadcast that can be received only by the sensors in corona c0. In general, at
time slot τ , with τ ≥ 0, the sink transmits the beacon k − 1− |τ |k with a power
level that can reach all the sensors up to corona ck−1−|τ |k , where |a|b stands
for the non negative remainder of the integer division between a and b (i.e. |a|b
is the same as a modulo b). The sink transmission cycle is repeated for a time
sufficient to accomplish the entire corona training protocol.

In order to describe the Flat– protocol for sensors, it is crucial to point out
that each sensor is aware of the sink behaviour and of the total number k of
coronas. Immediately after deployment, each sensor wakes up at random within
the 0-th and the (k − 1)-th time slot and starts listening to the sink for d time
slots (that is, its awake period). Then, the sensor goes back to sleep for L−d time
slots (that is, its sleep period). Such a sleep/wake transition will be repeated until
the sensor will learn the identity of the corona to which belongs, that is, until
the sensor will be trained. Each sensor, during the training process, uses a k-bit
register R to keep track of the beacons, i.e. corona identities, transmitted by the
sink while the sensor is awake. As soon as the sensor hears a sink transmission
for the first time, it starts to fill the register R and it is able to learn the sink
global time t within the current sink transmission cycle, that is t = |τ |k. From
now on, such a time will regularly increase so that the sensor can derive from
t the beacon |k − 1 − t|k that the sink is transmitting. Then, in each time slot
when the sensor is awake, one entry of R can be always set either to 0 or to
1. In fact, if the sensor hears beacon c, then it sets Rc = 1, while if the sensor
hears nothing, it sets R|k−1−t|k = 0. Note that the awake sensors which belong
to corona c, with c > 0, are able to receive any transmitted beacon from c up to
k−1, whereas they cannot hear the beacons from 0 up to c−1. Hence, if a sensor
sets Rc = 0 (resp., Rc = 1) then it belongs to a corona whose identity is higher
than (resp., smaller than or equal to) c. Note that only the sensors in corona 0
can hear beacon 0 and thus they are the only ones which can set R0 = 1. From
the above discussion, the following training condition holds:



Lemma 1. A sensor which belongs to corona c, with c > 0, is trained as soon
as the entries Rc and Rc−1 of its register R are set to 1 and 0, respectively. A
sensor which is in corona 0 is trained as soon as R0 is set to 1.

In the following, some conditions on the parameters k, L, and d will be in-
vestigated which guarantee that all the sensors are trained, independent of their
first wakeup time and from the corona c they belong to. Hereafter, let (a, b)
denote the greatest common divisor between a and b. Moreover, if (a, b) = 1, let
∣

∣

1
a

∣

∣

b
be the multiplicative inverse of a modulo b (e.g. see [6]).

Consider a sensor that wakes up for the first time at the global time slot
τ = x, while the sink is transmitting the beacon cx = |k− 1− τ |k = |k− 1−x|k.
The i-th sleep-awake cycle of such a sensor starts at time x + iL while the sink
is transmitting the beacon |k − 1− x− iL|k = |cx − i|L|k|k, with i ≥ 0. Observe
that L and k can be rewritten as L = gL′ and k = gk′, where g = (L, k). Since
|L|k = |gL′|k = g|L′|k′ , one has |cx − i|L|k|k = |cx − ig|L′|k′ |k. Hence, there are
exactly k′ different coronas which can be transmitted by the sink when the sensor
starts its awake period, independent of how long the training process will be. In-
deed, since |cx − (i + k′)|L|k|k = |cx − (i + k′)g|L′|k′ |k = |cx − (ig + k′g)|L′|k′ |k
= |cx − (ig + k)|L′|k′ |k = |cx − ig|L′|k′ |k, the same corona is transmitted again
at the beginning of any two awake periods of the sensor which are k′ apart.
Moreover, for any two awake periods, say the i-th and the j-th ones, such that
i > j and i − j < k′, the coronas cx+iL and cx+jL are distinct and differ by a
multiple of g. Such overall k′ corona identities can be rearranged so that in the
new order two consecutive coronas differ exactly by g. Indeed the s-th corona
in the new order, that is |cx − sg|k, corresponds to the first beacon transmit-
ted in the

∣

∣s| 1
L′
|k′

∣

∣

k′
-th awake period, with 0 ≤ s ≤ k′ − 1. Therefore, after

exactly k′ sleep-awake cycles, and hence k′L time slots, the sink has performed
k′L
k

= k′L
gk′

= L
g

= L′ transmission cycles. From now on, the behaviour of the

sensor and the sink is cyclically repeated with a period of k′L time slots. In
other words, in the k′-th awake period, the sensor and the sink are in the same
reciprocal state as in the 0-th one, the only difference being that the sensor has
heard the sink at least once. Summarizing:

Lemma 2. Fixed L, d, and k, there are exactly k′ = k
(L,k) different corona iden-

tities that can be transmitted by the sink when the sensor starts any awake period.
Assuming that the sensor wakes up for the first time at slot x, 0 ≤ x ≤ k − 1,
then the corona identity transmitted when the sensor starts its i-th awake period
is |cx − i(L, k)|L′|k′ |k = |cx − |i|k′(L, k)|L′|k′ |k. Such k′ coronas identities can
be reindexed as |cx − s(L, k)|k, for 0 ≤ s ≤ k′ − 1.

Thus, since during an awake period of the sensor the sink transmits d distinct
beacons, overall the sink transmits no more than k′d different corona identities
during the first k′ awake periods of the sensor, and such coronas will be repeat-
edly transmitted again. Recalling that a sensor starts to fill R only after it heard
the sink for the first time and observing that all the entries that the sensor can
fill are set in further k′ sleep-awake cycles, it follows:



Lemma 3. Fixed L, d, and k, all the entries of R the sensor can fill are set
within the first 2k

(L,k) sleep-awake cycles, or equivalently, 2L
(L,k) sink transmission

cycles.

In other words, if a sensor has not been trained after 2kL
(L,k) time slots, it will

never be trained, independent of how long the training process will continue.

Theorem 1. The training condition is satisfied for all the sensors after at most
2k′ = 2 k

(L,k) sleep/wake cycles if and only if d ≥ (L, k).

Proof. For brevity let g = (L, k). By contradiction, suppose that all the sensors
have been trained and let d < g. By Lemmas 2 and 3, after at most 2k

g
sleep-

awake periods, each sensor has filled at most k′d entries of R. Since d < g, each
sensor has filled less than k entries of R. Such filled entries depend on the time
slot x when the sensor woke up for the first time. Consider now all the sensors
that woke up at the same time x. Note that they have filled, although with
different configurations, the same positions of R independent of the corona they
belong. Let c be one unfilled entry of R. By the hypothesis of massive random
deployment, there is at least one sensor that woke up at time x in each corona,
and hence at least one sensor in corona c. Clearly, such a sensor will not be
trained because the training condition in Lemma 1 will be never satisfied.

Conversely, if d ≥ g, by Lemma 2, in k′ consecutive sleep-awake cycles, the
beacons transmitted by the sink in the first slot of such k′ cycles are exactly g

apart. Since an awake period lasts d ≥ g slots, at least g new corona identities
are transmitted by the sink during an awake period of the sensor. Hence, after
the first k′ awake periods, the sensor fills at least g entries of R in each awake
period and completely fills R in at most other k′ awake periods. Therefore, the
sensor is trained in at most 2k′ consecutive awake periods by Lemma 3. Note
that this happens for all the sensors, independent of their first wake-up time x

and of the corona c to which they belong.

In the following, some properties of the training protocol are analyzed start-
ing from a couple of particular cases, namely, when d = (L, k) and d = |L|k.
Note that, since d = |L|k = (L, k)|L′|k′ , Theorem 1 holds in both cases.

First, the maximum number of sleep/wake transitions required to train a
sensor is discussed. Precisely, the following lemma specifies when a sensor, that
wakes up for the first time at slot x, is awake while the sink is transmitting c.

Lemma 4. Let c be any corona identity and assume d = (L, k). The sink trans-
mits the beacon c during the ic,x-th awake period of a sensor that wakes up for

the first time at slot x, where ic,x =
∣

∣

∣

⌊

|cx−c|k
d

⌋

∣

∣

1
L′

∣

∣

k′

∣

∣

∣

k′

, L′ = L
d
, and k′ = k

d
.

Proof. When the sensor wakes up at time x the sink is transmitting the beacon
cx. Moreover, the beacon values decrease within a sink transmission cycle. Thus,
the beacon c will be transmitted, starting from cx, during the j-th group of d

consecutive corona identities such that j =
⌊

|cx−c|k
d

⌋

. Such a j-th group of d



consecutive corona identities will be transmitted during the ic,x-th sensor awake

period in which the sink transmits
∣

∣

∣
cx −

⌊

|cx−c|k
d

⌋

d

∣

∣

∣

k
as the first beacon. Hence,

by Lemma 2, ic,x is derived by solving the equation |cx − ic,x(L, k)|L′|k′ |
k

=
∣

∣

∣
cx −

⌊

|cx−c|k
d

⌋

d
∣

∣

∣

k
. Recalling that d = (L, k), the solution of the equation is

ic,x =
∣

∣

∣

⌊

|cx−c|k
d

⌋

∣

∣

1
L′

∣

∣

k′

∣

∣

∣

k′

.

Lemma 5. Let c be any corona identity and assume d = |L|k. The sink trans-
mits the beacon c during the ic,x-th awake period of a sensor which wakes up for

the first time at slot x, where ic,x =
⌊

|cx−c|k
d

⌋

.

Theorem 2. Let (L, k) ≤ d < |L|k. A sensor which wakes up for the first time
at slot x and belongs to corona c, with c > 0, is trained during the i-th awake
period where i = ic−1,x, if ic,x ≤ ic−1,x, or i ≤ ic,x +

∣

∣

1
L′

∣

∣

k′
, if ic,x > ic−1,x. If

c = 0, then i = i0,x.

Proof. Consider first the case d = (L, k). If ic,x ≤ ic−1,x, during the ic,x awake
period the sensor hears the beacon c and hence it sets Rc = 1. Moreover, during
the ic−1,x awake period, the sensor sets Rc−1 = 0 because it does not hear c− 1
but, having already heard c, it knows what the sink is transmitting. If ic,x >

ic−1,x, in the worst case the sensor hears for the first time during the ic,x-th awake
period and sets Rc = 1. Then, the beacon c − 1 will be transmitted at the i-th

awake period such that |cx−i(L, k)|L′|k′ |k = |cx−(j+1)d|k, where j =
⌊

|cx−c|k
d

⌋

.

Solving the above equation, one has i =
∣

∣(j + 1)
∣

∣

1
L′

∣

∣

k′

∣

∣

k′
= ic,x +

∣

∣

1
L′

∣

∣

k′
. When

d > (L, k), since by Lemma 2 the k′ coronas transmitted by the sink when the
sensor wakes up do not depend on d, the sensor cannot be trained later than in
the case d = (L, k).

Theorem 3. Let |L|k ≤ d < k. A sensor which wakes up for the first time at
slot x and belongs to corona c, with c > 0, is trained during the i-th awake period
where i = ic−1,x, if ic,x ≤ ic−1,x, or i ≤ ic,x + 1, if ic,x > ic−1,x. If c = 0, then
i = i0,x.

In order to analytically evaluate the performance of the Flat– training pro-
tocol, let us consider the number ν of sensor sleep/wake transitions, the overall
sensor awake time ω, and the total time τ for training. Since a sleep-awake pe-
riod has length L, and a sensor is awake for d time slots per sleep-awake period,
one has ω = νd and τ = νL. Thus, the worst case performance for the Flat–
protocol can be summarized as follows:

Corollary 1. Fixed L, d, and k, if d < (L, k) then there are sensors which
cannot be trained by the Flat– protocol; otherwise all the sensors are trained,
and:

1. If (L, k) ≤ d < |L|k, then ν ≤ k
(L,k) +

∣

∣

1
L′

∣

∣

k′
, where k′ = k

(L,k) and L′ = L
(L,k) ;

2. If |L|k ≤ d < k, then ν ≤
⌊

k
|L|k

⌋

+ 1,

3. If d=k, then ν ≤ 2.



3.1 Improvements

The Flat– protocol can be improved so as to reduce the number ν of sleep/wake
transitions, and hence also the overall sensor awake time as well as the total time
for training.

In fact, as soon as a sensor hears the sink transmission for the first time, it
learns from the beacon the sink global time modulo the sink transmission cycle.
Therefore, it can immediately retrieve backwards the coronas which it did not
hear and which were transmitted by the sink during its previous awake periods,
setting to 0 the corresponding entries of R. The resulting improved protocol is
called Flat. Observed that the sensor behaviour is the same as it would have set
the entries of R since its first wake up, Lemma 3 and Theorem 1 can be restated
as follows:

Lemma 6. Fixed L, d, and k, all the entries of R the sensor can fill are set
within the first k

(L,k) sleep-awake cycles, or equivalently, L
(L,k) sink transmission

cycles.

Theorem 4. The training condition is satisfied for all the sensors after at most
k′ = k

(L,k) sleep/wake cycles if and only if d ≥ (L, k).

In other words, after at most k′L time slots the training process is completed.
Such a bound is tight in the particular case that d = (L, k), while it can be
lowered when d = |L|k. Indeed, Theorems 2 and 3 become:

Theorem 5. A sensor which wakes up for the first time at slot x and belongs
to corona c is trained during the i-th awake period where i = max{ic−1,x, ic,x},
if c > 0, or i = i0,x, if c = 0.

Note that i varies between 0 and k
|L|k

when d ≥ |L|k, whereas it varies

between 0 and k
(L,k) otherwise. Hence, the worst case performance for the Flat

protocol is summarized below:

Corollary 2. Fixed L, d, and k, if d < (L, k) then there are sensors which
cannot be trained by the Flat protocol; otherwise all the sensors are trained, and:

1. If (L, k) ≤ d < |L|k, then ν ≤ k
(L,k) ;

2. If |L|k ≤ d < k, then ν ≤ d k
|L|k

e;

3. If d = k, then ν = 1.

Note that, when d = (L, k) or d = |L|k, each of the k distinct beacons is
transmitted exactly once in the dk

d
e awake periods during which each sensor is

trained.
A further improvement to the Flat protocol exploits the fact that when a

sensor hears a beacon c, it knows that it will also hear all the beacons greater
than c, and thus it can immediately set to 1 the entries from Rc up to Rk−1.
Similarly, when a sensor sets an entry Rc to 0, it knows that it cannot hear any
beacon smaller than c, and thus it can immediately set to 0 the entries from



Rc−1 down to R0, too. In contrast to the previous protocols, the sensor now fills
entries of R relative to beacons not yet transmitted during its awake periods.
Therefore, it can look ahead to decide whether it is worthy or not to wake up
in the next awake period. If the d entries of R that will be transmitted by the
sink in the next awake period have already been filled, then the sensor can skip
its next awake period, thus saving energy. The sensor repeats the look ahead
process above until at least one unfilled entry is detected among the d entries
corresponding to a future awake period. The resulting protocol is called Flat+.
Clearly, the number ν of sleep/wake transitions of Flat+ cannot be larger than
that of Flat. Moreover, when d = |L|k or d = (L, k), one can find bad instances
where ν, in the worst case, is the same for both Flat+ and Flat. For example,
when d = |L|k, a sensor which belongs to corona c and wakes up when the sink
transmits cx = c − 1 requires dk

d
e transitions to be trained by both protocols.

However, as it will be experimentally checked in the following section, the average
behaviour of Flat+ is much better than that of Flat.

4 Experimental tests

In this section, the worst and average performance of the Flat–, Flat, and Flat+
protocols are experimentally tested. The algorithms were written in C++ and
the experiments were run on an AMD Athlon X2 4800+ with 2 GB RAM.
In the simulation, the number k of coronas is fixed to 64, and each corona
has a unit width. There are N = 10000 sensors uniformly distributed within a
circle, centered at the sink, having radius ρ = k. Precisely, the polar coordinates
of each sensor are generated choosing at random two real numbers. The first
one, uniformly distributed between 0 and k, represents the radial coordinate of
the sensor, that is, its distance from the sink. The second number, uniformly
distributed between 0 and 2π, represents the angular coordinate of the sensor,
that is, the positive angle required to reach the sensor from the polar axis. The
length L of the sensor sleep-awake cycle assumes the values 104 and 168. Finally,
in all the experiments, the sensor awake period d is an integer that varies, with
a step of 4, between the greatest common divisor (L, k) = 8 and k = 64, thus
including |L|k = 40. The results are reported only when all the sensors can be
trained, that is for d ≥ 8, and are averaged over 3 independent experiments. In
the experiments, both the worst and average number of transitions, denoted by
νmax and νavg, as well as both the worst and average overall sensor awake time,
ωmax and ωavg, are evaluated. Such average values are obtained by summing up
the values for each single sensor and then dividing by the number of sensors.
Moreover, the total time τ , which measures the time required to terminate the
whole training process, is evaluated.

Figure 2 shows the number νmax and νavg of transitions for the different
values of d. According to Corollaries 1 and 2, Flat– has νmax = 13 when d = 8,
while both Flat and Flat+ have νmax = 8. Similarly, when d = 40, all protocols
take νmax = 2 transitions. Except for the extreme values d = 8 and d = 64,
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Fig. 2. Number of transitions when k = 64, L = 104, and 8 ≤ d ≤ 64.

the greatest percentage of gain for νmax is achieved when d = 24, where both
Flat+ and Flat employ forty percent less transitions than Flat–. As regard to the
average performance, one notes that νavg is considerable better than νmax for all
three protocols. Flat and Flat– have almost the same average performances, while
Flat+ always behaves better than them. In particular, its greatest percentage of
gain for νavg is obtained in the range 8 ≤ d ≤ 20, where Flat+ improves about
twenty/thirty percent upon Flat–.

Figure 3 shows the awake times ωmax = νmaxd and ωavg = νavgd, which
measure the overall energy spent by each sensor to be trained. Although the
number of transitions decreases as d increases, Figure 3 suggests to choose a
small value of d from the sensor awake time perspective. The minimum ωmax is
achieved by Flat and Flat+ for d = 8 and d = 64, as expected by Corollaries 1
and 2. However, when d = 8, ωavg lowers to about two thirds of ωmax for Flat–
and Flat, and to about one third for Flat+. Note that Flat+ has the maximum
gain when d is small. Indeed, it can fill the same entries of R just listening to
the sink for a single slot or for d slots. Hence, small values of d save the same
number of transitions as larger values, but allow sensors to reduce their energy
consumption because they stay awake for smaller periods.

Figure 4 exhibits the total time τ required to accomplish the entire training
task, for both L = 104 and L = 168. Since |168|64 = |104|64 = 40, by Lemma 2,
each protocol maintains the same behaviour with respect to the number of tran-
sitions. Thus, the plots for L = 168 of νmax and νavg, and hence of ωmax and
ωavg, are exactly the same as those shown in Figures 2 and 3. Recalling that
τ = νmaxL, the total time for L = 168 scales by a constant 168

104 , as depicted
in Figure 4. In general, all values of L such that |L|k is the same present the
properties above, namely, ν and ω are identical, while τ scales. Therefore, the
minimum total time τ is achieved for the smallest value of L. However, larger
values of L could be also selected in order to increase the longevity of the wireless
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Fig. 3. Overall sensor awake time when k = 64, L = 104, and 8 ≤ d ≤ 64.

sensor network. Fixed d, a longer L results in a longer life as the life of a sensor
is measured in terms of the overall number of sleep-awake cycles until its energy
is exhausted.

5 Concluding remarks

In this work a protocol has been proposed which employs the asynchronous
model originally presented in [12] and is lightweight in terms of the number of
sleep/wake transitions and overall sensor awake time for training. Among the
protocol variants, Flat– is the simplest one from the computational viewpoint
because each sensor performs O(1) operations per time slot. In contrast, Flat+
has the best performance for small values of d, but it cannot be used if the sensor
is not allowed to skip one or more awake periods.

The results presented in this paper show that the protocol is flexible, in the
sense that its parameters can be properly tuned. For instance, fixed the number
k of coronas, one can decide the optimal values of d and L so as to minimize
the number of sleep/wake transitions and/or the overall awake time per sensor.
Conversely, one can fix the desired number of sleep/wake transitions, and then
select suitable values of d and L.

However, several questions still remain open. In particular, a good idea for
further work should be that of comparing the performance of the protocol pro-
posed in the present paper with that devised in [3]. Indeed, the synchronous
training protocol of [3] presents an irregular toggling between sleep and wake
periods, so as to optimize the overall time for training, but it consumes energy
in the explicit synchronization between the sensors and the sink to handle such
irregular sleep/wake toggling. In contrast, the protocol proposed in Section 3
may force sensors to be awake for a longer time but avoids irregular toggling
because sensors alternate between awake and sleep periods both of fixed length.
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