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Abstract. Due to their small form factor and modest energy budget, in-
dividual sensors are not expected to be GPS-enabled. Moreover, in most
applications, exact geographic location is not necessary, and all that the
individual sensors need is a coarse-grain location awareness. The task of
acquiring such a coarse-grain location awareness is referred to as training.
In this paper, a scalable energy-efficient training protocol is proposed for
massively-deployed sensor networks, where sensors are initially anony-
mous and unaware of their location. The training protocol is lightweight
and simple to implement; it is based on an intuitive coordinate system
imposed onto the deployment area which partitions the anonymous sen-
sors into clusters where data can be gathered from the environment and
synthesized under local control.

1 Introduction

Recent advances in nano-technology have made it feasible to develop miniatur-
ized low-power devices that integrate sensing, special-purpose computing and
wireless communications capabilities [1, 12, 19]. These small devices, commonly
called sensors, will be mass-produced, making their production cost negligible. A
sensor has a small, non-renewable power supply and, once deployed, must work
unattended. A massive deployment of sensors, perhaps in the order of thousands
or even tens of thousands [17], is expected.

Aggregating sensors into sophisticated computational and communication
infrastructures, called wireless sensor networks, will have a significant impact on
a wide array of applications ranging from military, to scientific, to industrial, to
health-care, to domestic, establishing ubiquitous wireless sensor networks that
will pervade society redefining the way in which we live and work [12]. The
novelty of wireless sensor networks and the tremendous potential for a multitude
of application domains has triggered a lot of activity in both academia and
industry [3–5, 7, 9].

The peculiar characteristics of sensor networks (a massive deployment of
sensors, the anonymity of individual sensors, a limited battery power budget
per sensor, and a possibly hostile environment) pose unique challenges to the
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Fig. 1. (a) A sensor network with a central sink node. (b) The trained sensor network.

design of protocols. First of all, the limited power budget requires the design
of ultra-lightweight communication protocols. However, how data collected by
sensors are queried and accessed and how concurrent sensing can be performed
internally are of significance as well. An important guideline in this direction is
to perform as much local data processing at the sensor level as possible, avoiding
the transmission of raw data through the sensor network. This implies that the
sensor network must be multi-hop and only a small number of sensors have the
sink as one of their one-hop neighbors. For reasons of scalability, it is assumed
that no sensor knows the topology of the network.

Several possible techniques can be used for interfacing sensor networks to the
outside world and for harvesting the data they produce. The simplest technique
involves using one or several sink nodes, i.e. special long-range radios deployed
alongside with the sensors. Each sink has a full range of computational capa-
bilities, can send long-range directional broadcasts to the sensors at distance
at most R, can receive messages from nearby sensors, and has a steady power
supply. In this scenario, the raw data collected by individual sensors are fused,
in stages, and forwarded to the nearest sink that provides the interface to the
outside world. Such a scenario for a sensor network with a single central sink is
depicted in Figure 1(a).

There are some applications requiring sensory data with exact geographi-
cal location, motivating the development of communication protocols that are
location aware and perhaps location dependent. In some other applications, how-
ever, exact geographic location is not necessary, and all that the individual sen-
sors need is only coarse-grain location awareness [11, 16]. Of course, there is a
trade-off, because coarse-grain location awareness is lightweight but the resulting
accuracy is only a rough approximation of the exact geographic coordinates.



The random deployment results in sensors initially unaware of their location.
Further, due to limitations in form factor, cost per unit and energy budget,
individual sensors are not expected to be GPS-enabled. Moreover, many probable
application environments limit satellite access. Therefore, individual sensors have
to determine their exact geographic location, if required by the application,
or else a coarse-grain approximation thereof. The former task is referred to as
localization and has been extensively studied in the literature [8, 10]. The latter
task, referred to as training, has been considered by Olariu et al. [11, 16, 18].
In particular, they devised two elegant training protocols for sensor networks,
which differ on whether or not sensors need some kind of synchronization with
the sink. Such two training protocols have different performance, measured in
terms of overall time for training, sensor awake time, and number of sensor
wake/sleep transitions.

The main contribution of the present paper is to present a new training pro-
tocol which outperforms that originally presented in [16], lowering its overall
time for training from a linear to a square-root function of the size of the coor-
dinate system used for location awareness. The protocol assumes that the sink
and the sensors are somehow synchronized [11, 13, 14].

The remainder of this paper is organized as follows. Section 2 discusses the
sensor model used throughout the work. Section 3 introduces the task of train-
ing, that is, endowing individual sensors with coarse-grain location awareness.
Training imposes a coordinate system which divides the sensor network area into
equiangular wedges and concentric coronas centered at the sink, as first suggested
in [16]. Section 4 is the backbone of the entire paper, presenting the theoretical
underpinnings of the training protocol. In the corona training protocol, time is
ruled into slots and each sensor has to learn a string of bits representing its
corona number. The protocol consists of two phases. The first phase is central-
ized and sink-driven. Its computation can be thought as a visit of a complete
binary tree, whose leaves represent coronas, whose vertex preorder numbers are
related to the time slots, and whose vertex inorder numbers are related to the
transmission range used by the sink. At the end of the first phase, sensors that
belong to a group of some consecutive coronas have learned the same most sig-
nificant bits. The second phase is distributed and, within each group, the sensors
that have already known their corona number inform those in the next corona to
properly set their remaining bits. Finally, Section 5 offers concluding remarks.

2 The sensor model

We assume a sensor to be a device that possesses three basic capabilities: sensory,
computation, and wireless communication. The sensory capability is necessary
to acquire data from the environment; the computational capability is necessary
for aggregating data, processing control information, and managing both sensory
and communication activity. Finally, the wireless communication capability is
necessary for sending/receiving aggregated data and control information to/from
other sensors or the sink.



We assume that individual sensors are tiny, mass-produced devices that op-
erate subject to the following fundamental constraints.

a. Sensors are anonymous – they do not have individually unique IDs;
b. Each sensor has a modest non-renewable energy budget;
c. In order to save energy, sensors are in sleep mode most of the time, waking

up for short intervals;
d. Each sensor has a modest transmission range, perhaps a few meters – this

implies that out-bound messages can reach only the sensors in its proximity,
typically a small fraction of the sensors deployed;

e. Individual sensors must work unattended – once deployed it is either infea-
sible or impractical to devote attention to individual sensors.

It is worth mentioning that while the energy budget can supply short-term
applications, sensors dedicated to work over extended periods of time may need
to scavenge energy from the specific environment they are placed into, employing
light, temperature, vibration, kinetics, magnetic fields, etc.

3 Training a sensor network

In this work we assume a wireless sensor network that consists of a sink and a
set of sensors randomly deployed in its broadcast range as illustrated in Figure
1(a). For simplicity, we assume that the sink is centrally placed, although this
is not really necessary.

The task of endowing sensors with coarse-grain location awareness, referred
to as training, is essential in several applications. One example is clustering where
the set of sensors deployed in an area is partitioned into clusters [1, 2, 6, 15]. As a
result of training, we impose a coordinate system onto the sensor network in such
a way that each sensor belongs to exactly one cluster. The coordinate system
divides the sensor network area into equiangular wedges. In turn, these wedges
are divided into sectors by means of concentric circles or coronas centered at
the sink and whose radii are determined to optimize the transmission efficiency
of sensors-to-sink transmission. Sensors in a given sector map to a cluster, the
mapping between clusters and sectors being one-to-one. In particular, a cluster
is the locus of all nodes having the same coordinates in the coordinate systems
[11].

Referring to Figure 1(b), the task of training a sensor network involves es-
tablishing [16]:

1. Coronas: The deployment area is covered by k coronas determined by k
concentric radii 0 < r1 < r2 < · · · < rk = R centered at the sink.

2. Wedges: The deployment area is ruled into a number of angular wedges,
centered at the sink, which are established by directional transmission [11].

As illustrated in Figure 1(b), at the end of the training period each sensor
has acquired two coordinates: the identity of the corona in which it lies, as well
as the identity of the wedge to which it belongs. Importantly, the locus of all the
sensors that have the same coordinates determines a cluster.
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Fig. 2. Illustrating corona training. Labels outside nodes of T ′ give their preorder num-

bers, while labels inside give their inorder numbers. Leaves represent coronas, numbered

from 1 to k.

4 The corona training protocol

The main goal of this subsection is to present the details of the corona training
protocol. The wedge training protocol is similar (in fact, simpler) and will not
be discussed.

Let k be an integer known to the sensors and let the k coronas be determined
by concentric circles of radii r1 < r2 < · · · < rk centered at the sink node. For
simplicity we shall assume that k is a power of two. Given the transmission range
r of each sensor, the radius ri is assumed to be equal to ir, namely the corona
width is ri+1 − ri = r.

The idea of the corona training protocol is for each individual sensor to
learn the identity of the corona to which it belongs. For this purpose, each
individual sensor learns a string of log k bits from which the corona number can
be determined easily. To see how this is done, it is useful to assume time ruled
into slots and that the sensors can synchronize to the master clock running at
the sink node.

In time slot s1 all the sensors are awake and the sink transmits with a power
level corresponding to r k

2
. In other words, in the first slot the sensors in the first

k
2 coronas will receive the message above a certain threshold, while the others
will not. Accordingly, the sensors that receive the signal set b1 = 0, the others
set b1 = 1.



Consider a k-leaf complete binary tree T , whose leaves are numbered left
to right from 1 to k. The edges of T are labeled by 0’s and 1’s in such a way
that an edge leading to a left-subtree is labeled by a 0 and an edge leading to a
right subtree is labeled by a 1. Let `, (1 ≤ ` ≤ k), be an arbitrary leaf and let
b1, b2, . . . , blog k be the edge labels of the unique path leading from the root to `.
It is both well known and easy to prove by a standard inductive argument that

` = 1 +

log k
∑

j=1

bj2
log k−j . (1)

For example, refer to Figure 2, where k = 16. Applying Equation (1) to leaf 7,
we have: 7 = 1 + 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20.

Let h be an integer known to the sensors which is a power of two such that
1 ≤ h ≤ k/2. Consider the subtree T ′ consisting of the uppermost 2h− 1 nodes
of T . Refer again to Figure 2, where h = 4 and T ′ consists of the uppermost 7
nodes. Let u be an arbitrary node in T ′, other than the root, and let b1, b2, . . . , bi

be the edge labels on the unique path from the root to u, where i is the depth
of u in T ′ and 1 ≤ i ≤ log h. Note that the root of T ′ is at depth i = 0, and it is
characterized by an empty sequence of edge labels.

We take note of the following technical result.

Lemma 1. Let u be an arbitrary node of depth i in T ′. Then, the preorder

number p(u) of u is given by

p(u) = 1 +

i
∑

j=1

cj

where

cj =

{

1 if bj = 0
h

2j−1 if bj = 1.

Proof. The proof was first given in [16], and it is reported here for the sake of
completeness. The proof is by induction on the depth i of node u in T ′. To settle
the basis, note that for i = 0, u must be the root and p(u) = 1, as expected.

For the inductive step, assume the statement true for all nodes in T ′ of depth
less than the depth of u. Indeed, let v be the parent of u and consider the unique
path of length i joining the root to u. Clearly, nodes u and v share b1, b2, . . . , bi−1

and, thus, c1, c2, . . . , ci−1. By the inductive hypothesis,

p(v) = 1 +

i−1
∑

j=1

cj . (2)

On the other hand, since v is the parent of u, we can write

p(u) = p(v) +

{

1 if u is the left child of v
h

2i−1 otherwise
(3)



Notice that if u is the left child of v we have bi = 0 and ci = 1; otherwise bi = 1
and ci = h

2i−1 . This observation, along with (2) and (3) combined, allows us to
write

p(u) = 1 +

i−1
∑

j=1

cj + ci = 1 +

i
∑

j=1

cj

completing the proof of the lemma.

As an example, consider node u in Figure 2. Applying Lemma 1, one gets
p(u) = 1 + 1 + 4

21 = 4.

Lemma 2. Let u be an arbitrary node of depth i in T ′. Then, the inorder number

n(u) of u is given by

n(u) = h +
i

∑

j=1

dj

where

dj =

{

− h
2j if bj = 0

+ h
2j if bj = 1

Proof. The proof is by induction on the depth i of node u in T ′. To settle the
basis, note that for i = 0, u must be the root and n(u) = h, as expected.

For the inductive step, assume the statement true for all nodes in T ′ of depth
less than the depth of u. Indeed, let v be the parent of u and consider the unique
path of length i joining the root to u. Clearly, nodes u and v share b1, b2, . . . , bi−1

and, thus, d1, d2, . . . , di−1. By the inductive hypothesis,

n(v) = h +

i−1
∑

j=1

dj . (4)

On the other hand, since v is the parent of u, we can write

n(u) = n(v) +

{

− h
2i if u is the left child of v

+ h
2i otherwise

(5)

Notice that if u is the left child of v we have bi = 0 and di = − h
2i ; otherwise

bi = 1 and di = h
2i . This observation, along with (4) and (5) combined, allows

us to write

n(u) = h +

i−1
∑

j=1

dj + di = h +

i
∑

j=1

dj

completing the proof of the lemma.

As an example, consider again node u in Figure 2. Applying Lemma 2, one
gets n(u) = 4 − 4

21 + 4
22 = 3.



With these technicalities out of the way, we now return to the corona train-
ing protocol. In our setting, the leaves of T represent the k coronas, while the
preorder and inorder numbers of the nodes in T ′ are related, respectively, to
the time slots in the training protocol and to the transmission ranges used by
the sink. The goal of the training protocol is that all the sensors belonging to
any corona c have to learn the log k bits, b1, b2, . . . , blog k, which are the binary
representation of their corona number minus one.

The corona training protocol consists of two phases: a first centralized phase,
followed by a second distributed phase. The first phase is sink-driven and lasts
for 2h− 1 time slots. During this phase, the sensors learn the leftmost log h + 1
bits, while the remaining bits will be learned in the second phase. At each time
slot of the first phase, the sink transmits with a suitable power level and some
sensors are awake to learn one more bit. The procedures performed by the sink
node and the awake sensors in the centralized phase are described as follows.

Referring again to the T ′ tree, consider a generic time slot sz, with 1 ≤
z ≤ 2h − 1. Let u be the vertex of T ′ such that its preorder number p(u) = z,
and let Su be the subtree of T rooted at u (see e.g. Figure 2). At time slot
sz, the sink node transmits with a power level equal to r k

2h
n(u), where n(u) is

the inorder number of node u, and the awake sensors are those belonging to
the coronas which are the leaves of Su. Although all the sensors in the coronas
1, . . . , k

2h
n(u) can hear the sink transmission, only those awake will learn one

more bit. Precisely, the awake sensors that hear the sink transmission get bi+1 =
0, while the awake sensors that do not hear anything get bi+1 = 1, where i is
the depth of node u in T ′. It is worthy to note that, at time slot s1, u is the
root of T ′ and thus all the sensors are awake. As soon as a sensor has learned
bi+1, with i ≤ log h, it can easily compute the value ci+1 given in Lemma 1,
and hence derive p(u) + ci+1. If p(u) + ci+1 = z + 1 (i.e., bi+1 = 0), the sensor
remains awake; otherwise, it goes to sleep. If i < log h, then the sensor will wake
up again at time slot sp(u)+ci+1

. If i = log h, let γ be the integer represented by

the log h + 1 bits learned so far by the sensor, namely γ =
∑log h+1

j=1 bj2
log h+1−j ,

then the sensor will wake up again at time slot s2h+2γ .
In order to verify the correctness of the first phase of the corona training

protocol, the following lemma is useful.

Lemma 3. Let u be any node of T ′, with depth i > 0, and let v be the parent of

u. The subtree Su rooted at u contains |n(v)− n(u)| k
h

leaves, whose indices are:







(2n(u) − n(v)) k
2h

+ 1, . . . , n(v) k
2h

if u is the left child of v

n(v) k
2h

+ 1, . . . , (2n(u) − n(v)) k
2h

if u is the right child of v

Proof. It follows immediately by the definition of the inorder number n(u) and
by the fact that any subtree Su, with root at depth i = log h, has k

h
leaves of T .

As an example, refer again to Figure 2, where the labels outside the nodes
of T ′ give their preorder numbers, while those inside give their inorder numbers.



Consider the node u having p(u) = 4 and n(u) = 3. The subtree Su contains
4 leaves, indexed 5, 6, 7, 8. Indeed, u is a right child, its parent v has n(v) = 2,
|n(v)−n(u)| k

h
= |2−3| 164 = 4, n(v) k

2h
+1 = 2 16

8 +1 = 5, and (2n(u) − n(v)) k
2h

=
(6 − 2)16

8 = 8.

Theorem 1. Consider a time slot sz, with 1 ≤ z ≤ 2h − 1. At time sz, all

the sensors belonging to any corona c, with 1 ≤ c ≤ k, have learned bits

b1, b2, . . . , bi+1, where i is the depth of the deepest node u on the unique path

from the root to leaf c such that p(u) ≤ z.

Proof. The proof is by induction on z. As the basis, observe that for z = 1, the
root of T ′ is the only node with p(u) ≤ 1. Observe that the depth of the root u
is 0, all the sensors are awake, and the sink has transmitted with a power level
rn(u) k

2h
= rh k

2h
= r k

2
. Therefore, all the sensors in any corona c have learned

bit b1, namely those in the first k
2 coronas have learned 0, and the others have

learned 1.
For the inductive step, assume the statement true for z − 1. At time slot sz,

the only sensors awake are those belonging to the coronas which are the leaves
of the subtree Su, rooted at the node u such that p(u) = z. All the sensors in the
other coronas are sleeping. Indeed, this is correct since the deepest node on the
unique path from the root has not changed, and therefore such sensors have to
learn no bits during this time slot. To check that the sensors in Su learn the right
bit, consider the node v such that p(v) = z− 1, and let w be the lowest common
ancestor between u and v. Let ` be the depth of w. By inductive hypothesis,
since p(w) < p(u), all the sensors in Su already know bits b1, . . . , b`+1. At time
sz, the sink transmits with power level rn(u) k

2h
. Two cases may arise.

Case 1. Node u is the left child of w, that is w = v. By Lemma 3, the index of the
middle corona among the leaves of Su is (2n(u) − n(v)) k

2h
+ (n(v) − n(u)) k

2h
=

n(u) k
2h

. Therefore, the sensors in the coronas (2n(u) − n(v)) k
2h

+ 1, . . . , n(u) k
2h

learn b`+2 = 0, while those in n(u) k
2h

+ 1, . . . , n(v) k
2h

learn b`+2 = 1. Since the
depth of u is ` + 1, the statement is proved.

Case 2. Node u is the right child of w, and hence w 6= v. By Lemma 3, the
index of the middle corona among the leaves of Su is n(w) k

2h
+(n(u)−n(w)) k

2h
=

n(u) k
2h

. Therefore, the sensors in the coronas n(w) k
2h

+1, . . . , n(u) k
2h

learn b`+2 =

0, while those in n(u) k
2h

+ 1, . . . , (2n(u)− n(w)) k
2h

learn b`+2 = 1. Since the
depth of u is ` + 1, the statement is proved.

To illustrate Theorem 1, refer again to node u of Figure 2. Only the sensors in
the leaves of Su are awake in time slot sp(u) = s4, while the sink node transmits

with a range of rn(u) k
2h

= r6 since k
2h

= 16
8 = 2 and n(u) = 3. The sensors in the

leaves of Su at a distance from the sink not exceeding r6 will receive the signal,
while the others will not. Since the depth of u is 2, the sensors in leaves 5 and 6
learn bit b3 = 0, while those in leaves 7 and 8 learn bit b3 = 1.



Corollary 1. At time slot s2h−1, the first phase of the corona training protocol

is completed, and the sensors belonging to any corona c, with 1 ≤ c ≤ k, have

learned the leftmost log h + 1 bits, b1, . . . , blog h+1, of the binary representation

of their corona number minus one.

Consider now the second phase of the corona training protocol, which starts
at time slot s2h. During such a phase, all the sensors have to learn the remaining
log k− log h−1 bits, blog h+2, . . . , blog k. Observe that there are 2h groups, each of
k
2h

consecutive coronas which have learned the same log h + 1 bits. Within each
group, the sensors that belong to the first and last corona can become aware
of their position by listening to the sink. Subsequently, in a distributed way,
the sensors that have already known their position can inform those in the next
corona to properly set their remaining bits.

The algorithm for the second phase is detailed as follows. Consider a generic
group γ consisting of coronas γ k

2h
+ 1, . . . , (γ + 1) k

2h
, with 0 ≤ γ ≤ 2h − 1.

At the beginning of the second phase, all the sensors in such a group know
γ =

∑log h+1
j=1 bj2

log h+1−j , and wake up at time slot s2h+2γ . At time slot s2h+2γ ,
the sink transmits with a power level of r(γ+1) k

2h
−1. The sensors that do not hear

it set every bit blog h+2, . . . , blog k to 1 and go to sleep. At time slot s2h+2γ+1,
the sink transmits with a power level of rγ k

2h
+1. The sensors that hear it set

blog h+2, . . . , blog k to 0, start the distributed computation by sending a message
within their local transmission range, and then go to sleep. In a subsequent time
slot st, an awake sensor that receives a message from another sensor computes
δ = t−(2h+2γ+1), sets its bits blog h+2, . . . , blog k to the binary representation of
δ (with the most significant bit assigned to blogh+2

), and goes to sleep. Therefore,
the following result easily holds.

Lemma 4. All the sensors belonging to corona c, with 1 ≤ c ≤ k, have learned

the binary representation of c − 1 at time slot

{

s2h+2γ+1+δ if c = γ k
2h

+ δ + 1
s2h+2γ if c = (γ + 1) k

2h

where 0 ≤ γ ≤ 2h − 1 and 0 ≤ δ ≤ k
2h

− 1.

The sensors in corona k − 1 are the last to learn all their bits. Since they
belong to the

(

k
2h

− 1
)

-th corona of group γ = 2h − 1, this happens at time
s(2h+2(2h−1)+1)+ k

2h
−1. Thus, the entire corona training protocol finishes at time

s6h−2+ k
2h

. Therefore, the overall time to accomplish the above corona training

protocol is O(h + k
h
). Such a time is minimized when h = O(

√
k), and in such

a case it becomes O(
√

k), improving over the O(k) time of the training protocol
presented in [16].

It is also worth noting that only the sensor nodes that need to be awake in a
given time slot will stay awake, the others will sleep minimizing the power expen-
diture. Yet another interesting feature of the training protocol is that individual
sensors sleep for as many contiguous time slots as possible before waking up,



Performance Measure Complexity h = O(
√

k) h = O
(

k

log k

)

Overall Time O
(

h + k

h

)

O(
√

k) O
(

k

log k

)

Sensor Awake Time O
(

log h + k

h

)

O(
√

k) O(log k)

] Wake/Sleep Transitions O(log h) O(log k) O
(

log
(

k

log k

))

Table 1. Performance of the corona training protocol. The sensor awake time is optimal

when h = O
(

k

log k

)

, while the overall time is minimized when h = O(
√

k).

thus avoiding repeated wake-sleep transitions that are known to waste energy.
To see this, observe that the sensors remain awake O(log h) time during the first
phase because they wake up just at the time slot when they have to learn one
more bit. Moreover, the sensors are awake for O( k

h
) consecutive time slots dur-

ing the second phase. Therefore, the sensor awake time is O(log h + k
h
), which is

minimized when h = O( k
log k

). In such a case the sensor awake time is O(log k)
which is optimal since every sensor has to learn log k bits and it cannot learn
more than one bit at a time. In addition, the number of wake-sleep transitions
is O(log h). Precisely, referring again to Figure 2, one notes that a wake-sleep
transition occurs every time a node u on the path of T ′ from the root to a generic
corona is a right child of its parent. This is because the preorder numbers of u
and its parent are not consecutive. Thus, the worst case arises for the sensors
in the coronas of group 2h − 1, which go through exactly log h + 1 transitions
during the first phase, plus one more transition during the second phase. The
performance achieved by the corona training protocol for the above mentioned
measures are summarized in Table 1.

5 Concluding remarks

In this work a new training protocol has been proposed which outperforms that
originally presented in [16] in terms of the overall time for training, lowering it
from a linear to a square-root function of the size of the coordinate system used
for location awareness. However, a number of questions still remain open. In
particular, a good idea for further work should be that of comparing the perfor-
mance of the protocol proposed in the present paper with that devised in [18].
Indeed, while the training protocol of Section 4 requires individual sensors to be
awake for a short time but consumes energy in both the synchronization between
the sensors and the sink and the toggling between sleep and wake periods, the
asynchronous protocol proposed in [18] may force sensors to be awake for longer
periods but avoids frequent transitions from sleep to wake periods.
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