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AbstractÐWe present a hardware-algorithm for sortingN elements using either a p-sorter or a sorting network of fixed I/O size p while

strictly enforcing conflict-free memory accesses. To the best of our knowledge, this is the first realistic design that achieves optimal

time performance, running in ��N logN
p log p � time for all ranges of N. Our result completely resolves the problem of designing an

implementable, time-optimal algorithm for sorting N elements using a p-sorter. More importantly, however, our result shows that, in

order to achieve optimal time performance, all that is needed is a sorting network of depth O�log2 p� such as, for example, Batcher's

classic bitonic sorting network.

Index TermsÐSpecial-purpose architectures, hardware-algorithms, sorting networks, columnsort, VLSI.
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1 INTRODUCTION

RECENT advances in VLSI have made it possible to
implement algorithm-structured chips as building

blocks for high-performance computing systems. Since
sorting is one of the most fundamental computing
problems, it makes sense to endow general-purpose
computer systems with a special-purpose parallel sorting
device, invoked whenever its services are needed.

In this article, we address the problem of sorting
N elements using a sorting device of I/O size p, where N
is arbitrary and p is fixed. The sorting device used is either a
p-sorter or a sorting network of fixed I/O size p. We assume
that the input, as well as the partial results, reside in several
constant-port memory modules. In addition to achieving
time-optimality, it is crucial that we sort without memory
access conflicts. In real-life applications, the number N of
elements to be sorted is much larger than the fixed size p
that a sorting device can accommodate. In such a situation,
the sorting device must be used repeatedly in order to sort
the input. The following natural question arises: ªHow
should one schedule memory accesses and the calls to the
sorting device in order to achieve the best possible sorting
performance?º Clearly, if this question does not find an
appropriate answer, the power of the sorting device will not
be fully utilized.

A p-sorter is a sorting device capable of sorting p

elements in constant time. Computing models for a p-sorter

do exist. For example, it is known that p elements can be

sorted in O�1� time on a p� p reconfigurable mesh [3], [7],

[8]. Beigel and Gill [2] showed that the task of sorting N

elements, N � p, requires 
�N logN
p log p � calls to a p-sorter and

presented an algorithm that achieves this bound. However,

their algorithm assumes that the p inputs to the p-sorter can

be fetched in unit time, irrespective of their location in

memory. Since, in general, the address patterns of the

operands of p-sorter operations are irregular, it appears that

the algorithm of [2] cannot realistically achieve the time

complexity of ��N logN
p log p �, unless one can solve in constant

time the addressing problem inherent in accessing the

p inputs to the p-sorter and in scattering the output back

into memory. In spite of this, the result of [2] poses an

interesting open problem, namely that of designing an

implementable ��N logN
p log p � time sorting algorithm that uses a

p-sorter.

Consider an algorithm A that sorts N elements using a

p-sorter in O�f�N; p�� time. It is not clear that algorithm A

also sorts N elements using a sorting network T of I/O size

p in O�f�N; p�� time. The main reason is that the task of

sorting p elements using the network T requires O�D�T ��
time, i.e., time proportional to the depth D�T �, which is the

maximum number of nodes on a path from an input to an

output, of the network. Thus, if each p-sorter operation is

replaced naively by an individual application of T , the

time required for sorting becomes O�D�T � � f�N; p��. To

eliminate this O�D�T �� slowdown factor, the network

must be used in a pipelined fashion. In turn, pipelining

requires that sufficient parallelism in the p-sorter opera-

tions be identified and exploited. Recently, Olariu et al.

[9] introduced a simple but restrictive designÐthe row

merge modelÐand showed that, in this model, N

elements can be sorted in �� N
p logN� time using either a
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p-sorter or a sorting network of I/O size p. We would like

to memtion that Zhang and Zheng ([10]) proposed a

powerful VLSI architecture which can use a p-sorter or a

sorting network of I/O size p to sort N elements in O� N
p log p�

time. The lower bound of 
�N logN
p log p � does not apply to this

architecture since its memory modules are implemented as

linear systolic arrays in which each memory word is

equipped with a comparator and is actually a small

processing element.
To achieve better sorting performance, a new algorithm-

structured architecture must be designed. This involves
devising a sorting algorithm suitable for hardware imple-
mentation and, at the same time, an architecture on which
the algorithm can be executed directly. Such an algorithm-
architecture combination is commonly referred to as a
hardware-algorithm. The major contribution of this article is
to present the first realistic hardware-algorithm design for
sorting an arbitrary number of input elements using a fixed-
size sorting device in optimal time, while strictly enforcing
conflict-free memory accesses. We introduce a parallel
sorting architecture specially designed for implementing a
carefully designed algorithm. The components of this
architecture include a parallel sorting device, a set of
random-access memory modules, a set of conventional
registers, and a control unit. This architecture is very simple
and feasible for VLSI realization.

We show that, in our architectural model, N elements

can be sorted in ��N logN
p log p � time using either a p-sorter or a

sorting network of fixed I/O size p and depth O�log2 p�. In

conjunction with the theoretical work of [2], our result

completely resolves the problem of designing an imple-

mentable, time optimal, algorithm for sorting N elements

using a p-sorter. More importantly, however, our result

shows that, in order to achieve optimal sorting perfor-

mance, a p-sorter is not really necessary: All that is needed

is a sorting network of depth O�log2 p� such as, for example,

Batcher's classic bitonic sorting network. As we see it, this is

exceedingly important since any known implementation of

a p-sorter requires powerful processing elements, whereas

Batcher's bitonic sort network uses simple comparators.

2 ARCHITECTURAL ASSUMPTIONS

In this section, we describe the architectural framework

within which we specify our optimal sorting algorithm

using a fixed-size sorting device. We consider that a

sequential sorting algorithm is adequate for the case

N < p2. Consequently, from now on, we assume that

N � p2: �1�
This assumption implies that, just for addressing purposes,

we need at least 2 log p bits.1 For the reader's convenience,

Fig. 1 depicts our design for p � 9. To keep the figure

simple, control signal lines are not shown. The basic

architectural assumptions of our sorting model include:

1. A data memory organized into p independent,
constant-port, memory modules M1;M2; . . . ;Mp.
Each word is assumed to have a length of w bits,
with w � 2 log p. We assume that the N input
elements are distributed evenly, but arbitrarily,
among the p memory modules. The words having
the same address in all memory modules are
referred to as a memory row. Each memory module
Mi is randomly addressed by an address registerARi,
associated with an adder. Register ARi can be
loaded with a word read from memory module Mi

or by a row address broadcast from the CU (see
below).

2. A set of data registers, Ri, �1 � i � p�, each capable of
storing a �w� 1:5 log p�-bit word. We refer to the
word stored in register Ri as a composed word since it
consists of three fields:

. an element field of w bits for storing an element,

. a long auxiliary field of log p bits, and

. a short auxiliary field of 0:5 log p bits.

These fields are arranged such that the element field

is to the left of the long auxiliary field, which is to the

left of the short auxiliary field. Each field of register

Ri can be loaded independently from memory

module Mi, from the ith output of the sorting
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device, or by a broadcast from the CU. The output of
register Ri is connected to the ith input of the sorting
device, to the CU, and to memory module Mi.

We assume that:

. In constant time, the p elements in the data
registers can be loaded into the address registers
or can be stored into the p modules addressed
by the address registers.

. The bits of any field of register Ri, �1 � i � p�,
can be set/reset to all 0s in constant time.

. All the fields of data register Ri, �1 � i � p�, can
be compared with a particular value and each of
the individual fields can be set to a special value
depending on the outcome of the comparison.
Moreover, this parallel compare-and-set operation
takes constant time.

3. A sorting device of fixed I/O size p, in the form of a
p-sorter or of a sorting network of depth O�log2 p�.
We assume that the sorting device provides data
paths of width w� 1:5 log p bits from its input to its
output. The sorting device can be used to sort
composed words on any combination of their
element or auxiliary fields. In case a sorting network
is used as the sorting device, it is assumed that the
sorting network can operate in pipelined fashion.

4. A control unit (CU, for short), consisting of a control
processor capable of performing simple arithmetic
and logic operations and of a control memory used to
store the control program as well as the control data.
The CU generates control signals for the sorting
device, for the registers, and for memory accesses.
The CU can broadcast an address or an element to all
memory modules and/or to the data registers, and
can read an element from any data register. We
assume that these operations take constant time.

Described above are minimum hardware requirements
for our architectural model. In case a sorting network is
used as the sorting device, one can use a ªhalf-pipeliningº
scheme: The input to the network is provided in groups of
D rows. The next group is supplied only after the output of
the previous group is obtained. D is the depth of the sorting
network. For the sorting network to operate at full capacity,
one may add an additional set of address (resp. data)
registers. One set of address (resp. data) registers is used for
read operations, while the order set is used for write
operations; both operations are performed concurrently.

Let us now estimate the VLSI area that our design uses
for hardware other than data memory, the sorting device,
and the CU under the word model, i.e., assuming that the
word length w is a constant. We exclude the area taken by
the CU: This is because, in a high-performance computer
system, one of the processors can be assigned the task of
controlling the parallel sorting subsystem. Clearly, the extra
area is only that used for the address and the data registers
and this amounts to O�p�Ðwhich does not exceed the VLSI
area of any implementation of a p-sorter or of a sorting
network of I/O size p.

We do not include the VLSI area for running the data

memory address bus, which has a width of logN
p bits, and

the control signal lines to data memory and to the sorting

device since they are needed for any architecture involving

a data memory and a sorting device. It should be pointed

out that, for any architecture that has p memory modules

involving a total of N � p2 words, the control circuitry itself

requires at least 
�maxflog p; logN
p �g� � 
�logN

p � VLSI area.

Since the operations performed by the control processor are

simple, we can assume that it takes constant area. The

length of the control memory words is at least logN
p , which

is the length of data memory addresses. As will become

apparent, our algorithms require O�Np � rows of data

memory and, consequently, the control memory words

have length O�logN
p �. The control program is very simple

and takes constant memory. However, O� N
p3=2� control words

are used for control information, which can be stored in

data memory.

3 AN EXTENDED COLUMNSORT ALGORITHM

In this section, we present an extension of the well-known
Columnsort algorithm [5]. This extended Columnsort
algorithm will be implemented in our architectural model
and will be invoked repeatedly when sorting a large
number of elements. There are two known versions of
Columnsort [5], [6]: One involves eight steps, the other
seven. We provide an extension of the 8-step Columnsort
because the 7-step version does not map well to our
architecture.

Columnsort was designed to sort, in column-major

order, a matrix of r rows and s columns. The ªclassicº

Columnsort contains eight steps. The odd-numbered steps

involve sorting each of the columns of the matrix

independently. The even-numbered steps permute the

elements of the matrix in various ways. The permutation

of Step 2 picks up the elements in column-major order and

lays them down in row-major order. The permutation of

Step 4 is just the reverse of that in Step 2. The permutation

of Step 6 amounts to a br2c shift of the elements in each

column. The permutation of Step 8 is the reverse of the

permutation in Step 6. The 8-step Columnsort works under

the assumption that r � 2�sÿ 1�2. In [5], Leighton poses as

an open problem to extend the range of applicability of

Columnsort without changing the algorithm ªdrastically.º

We provide such an extension. We show that one additional

sorting step is necessary and sufficient to complete the

sorting in case r � s�sÿ 1�. Our extension can be seen as

trading one additional sorting step for a larger range of

applicability of the algorithm.
Fig. 2 shows a matrix of r rows and s columns with

r � s�sÿ 1� for which the condition r � 2�sÿ 1�2 is not
satisfied. The first eight steps of this example correspond to
the 8-step Columnsort algorithm which does not produce a
sorted matrix. By adding one more step, Step 9, in which the
elements in each column are sorted, we obtain an extended
Columnsort algorithm. We assume a matrix M of r rows
and s columns, numbered from 0 to rÿ 1 and from 0 to
sÿ 1, respectively. Our arguments rely, in part, on the
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following well-known gem of computer science mentioned
by Knuth [4]:

Proposition 1. Let M be a matrix whose rows are sorted. After
sorting the columns, the rows remain sorted.

The following result was proven in [5].

Lemma 1. If some element x ends up in position M�i; j� at the
end of Step 3, then x has rank at least si� sjÿ �sÿ 1�2.

The following result was mentioned without proof in [5].

Lemma 2. If element x ends up in position M�i; j� at the end of
Step 3, then its rank is at most si� sj.

Proof. We are interested in determining a lower bound on
the number of elements known to be larger than or equal
to x. For this purpose, we note that, since at the end of
Step 3, element x was in position M�i; j�, rÿ i elements
in column j are known to be larger than or equal to x.
Among these, at most s are known to be smaller than or
equal to sÿ j elements in their columns at the end of
Step 1. The remaining rÿ iÿ s elements must be smaller
than or equal to s other elements in their column at the
end of Step 1. Consequently, x is known to be smaller
than or equal to at least

s�sÿ j� � �rÿ iÿ s�s � rsÿ �si� sj� � nÿ �si� sj�
elements of M. It follows that the rank of x is at most
si� sj, as claimed. tu
For later reference, we now choose r such that

s�sÿ 1� � r: �2�

Lemma 3. If some element x ends up in column c at the end of
Step 4, then the correct position of x in the sorted matrix is in
one of the pairs of columns �cÿ 1; c� or �c; c� 1�.

Proof. Consider, again, a generic element x that ended up in
position M�i; j� at the end of Step 3. The permutation
specific to Step 4 guarantees that x will be moved, in
Step 4, to a position that corresponds, in the sorted
matrix, to the element of rank si� j. In general, this is
not the correct position of x. However, as we shall prove,

x is ªcloseº to its correct position in the following sense:
If x is in column c at the end of Step 4, then, in the sorted
matrix, x must be in one of the pairs of columns �cÿ 1; c�
or �c; c� 1�.

Recall that, by virtue of Lemmas 1 and 2, combined, x
has rank no smaller than si� sjÿ �sÿ 1�2 and no larger
than si� sj. Moreover, simple algebraic manipulations
show that

si� sjÿ �sÿ 1�2 � si� j � si� sj: �3�
Now, consider the elements y and z of ranks si� sjÿ
�sÿ 1�2 and si� sj, respectively. The number N�y; z� of
elements of the matrix M lying between y and z, in
sorted order, is:

N�y; z� � si� sjÿ siÿ sj� �sÿ 1�2 � 1 � �sÿ 1�2 � 1

and, so, by (2), we have

N�y; z� � �sÿ 1�2 � 1 � r: �4�
Observe that (4) implies that y and z must lie in adjacent
columns of the sorted matrix. As we saw, at the end of
Step 4, x lies in the position corresponding to the element
of rank is� j in the sorted matrix. Now, (3) confirms that
x lies somewhere between y and z. Assume that x lies in
column c at the end of Step 4. Thus, the correct position
of x is in one of the columns cÿ 1 or c in case z is in the
same column as x and in one of the columns c or c� 1 if y
is in the same column as x. tu

Lemma 4. The rows of M are sorted at the end of Step 4.

Proof. Consider an arbitrary column k (0 � k � sÿ 1) at the
end of Step 3. The permutation specified in Step 4
guarantees that the first r

s elements in column k will
appear in positions k; k� s; k� 2s; � � � ; k� rÿ s in col-
umn 0; the next group of r

s elements will appear in
positions k; k� s; k� 2s; � � � ; k� rÿ s of column 1, and
so on. Since the columns were sorted at the end of Step 3,
it follows that all the rows k; k� s; k� 2s; . . . ; k� rÿ s of
M are sorted at the end of Step 4. Since k was arbitrary,
the conclusion follows. tu

Lemma 5. If some element x is in the bottom half of column c at
the end of Step 5, then its correct position in the sorted matrix
is in one of the columns c or c� 1.

Proof. By Lemma 3, we know that the correct position of x

is in one of the pairs of columns �cÿ 1; c� or �c; c� 1�.
Thus, to prove the claim we only need to show that x

cannot be in column cÿ 1. For this purpose, we begin by

observing that by Proposition 1 and by Lemma 4,

combined, the rows and columns are sorted at the end

of Step 5. Now, suppose that element x ends up in row t,

t � br2c, at the end of Step 5. If x belongs to column cÿ 1

in the sorted matrix, then all the elements of the matrix in

columns cÿ 1 and c belonging to rows 0; 1; . . . ; t must

belong to column cÿ 1 or below. By Lemma 3, all

elements that are already in columns 0; 1; . . . ; cÿ 2 must

belong to columns 0; 1; . . . ; cÿ 1 in the sorted matrix.
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Thus, at least 2�br2c � 1� > r additional elements must

belong to column cÿ 1 or below, a contradiction. tu
In a perfectly similar way, one can prove the following

result.

Lemma 6. If some element is in the top half of column c at the end
of Step 5, then its correct position in the sorted matrix is in one
of the columns cÿ 1 or c.

Now, suppose that we find ourselves at the end of Step 8
of the 8-step Columnsort.

Lemma 7. Every item x that is in column c at the end of Step 8
must be in column c in the sorted matrix.

Proof. We begin by showing that

no element in column c can be in column cÿ 1: �5�
We proceed by induction on c. The basis is trivial: No
element in column 0 can lie in the column to its left.
Assume that (5) is true for all columns less than c. In
other words, no element that ends up in one of the
columns 0; 1; . . . ; cÿ 1 at the end of Step 8 can lie in the
column to its left. We only need to prove that the
statement also holds for column c. To see that this must
be the case, consider first an element u that lies in the
bottom half of column c at the end of Step 8. At the end
of Step 5, u must have been either in the bottom half of
column c or in the top half of column c� 1. If u belonged
to the bottom half of column c, then, by Lemma 6, it must
belong to columns c or c� 1 in the sorted matrix. If u
belonged to the top half of column c� 1, then, by
Lemma 5, it must belong to columns c or c� 1 in the
sorted matrix. Therefore, in either case, u cannot belong
to column cÿ 1.

Next, consider an element v that lies in the top half
of column c at the end of Step 8. If v belonged to
column cÿ 1, then all the elements in the bottom half
of column cÿ 1, as well as the elements occurring
above v in column c, must belong to column cÿ 1. By
the induction hypothesis, no element that lies in
column cÿ 1 at the end of Step 8 can lie in column
cÿ 2. By Lemmas 5 and 6 combined, no element that lies
in the top half of column cÿ 1 can belong to column c.
But now, we have reached a contradiction: Column cÿ 1
must contain more than r elements. Thus, (5) must hold.

What we just proved is that no element in a column
can belong to the column to its left. A symmetric
argument shows that no element belongs to the column
immediately to its right, completing the proof. tu

By Lemma 7, one more sorting step completes the task.
Thus, we have obtained a 9-step Columnsort that trades an
additional sorting step for a larger range of r versus s.

Theorem 1. The extended 9-step Columnsort algorithm correctly
sorts an r� s matrix such that r � s�sÿ 1�.

4 THE BASIC ALGORITHM

In this section, we show how to sort, in row-major order, m,
1 � m � p1

2, memory rows using our architectural model

while enforcing conflict-free memory accesses. The result-
ing algorithm, referred to as the basic algorithm, will turn out
to be the first stepping stone in the design of our time-
optimal sorting algorithm. The basic algorithm is an
implementation of the extended Columnsort discussed in
Section 3 with m � s and p � r.

Our presentation will focus on the efficient use of a
generic sorting device of I/O size p. With this in mind, we
shall keep track of the following two parameters that will
become key ingredients in evaluating the running time of
the algorithm:

. the number of calls to the sorting device, and

. the amount of time required by all the data move-
ment tasks that do not involve sorting.

Assume that we have to sort, in row-major order, the
elements in m � p1

2 memory rows. The case 1 � m < p
1
2 is

perfectly similar. We assume, without loss of generality,
that the input is placed, in some order, in memory rows
a� 1 through a� p1

2 for some integer a � 0. The sorted
elements will be placed in memory rows b� 1 through b�
p

1
2 such that the ranges �a� 1; a� p1

2� and �b� 1; b� p1
2� do

not overlap.

Step 1: Sort all the rows independently.
This step consists of the following loop:

for i � a� 1 to a� p1
2 do

read the ith memory row and sort it in nondecreasing
order using the sorting device;

let x1 � x2 � � � � � xp be the resulting sorted sequence;
for all j, 1 � j � p do in parallel

store xj in the ith word of memory module Mj

endfor

endfor

Step 1 requires p
1
2 calls to the sorting device and O�p1

2� time
for data movement not involving sorting.

Step 2: Permuting rows.
The permutation specific to Step 2 of Columnsort

prescribes picking up the elements in each memory row
and laying them down column by column. For an
illustration, consider the case p � 9, with the initial element
distribution featured in the following matrix:

M1 M2 M3 M4 M5 M6 M7 M8 M9

1 2 3 4 5 6 7 8 9
10 20 30 40 50 60 70 80 90

100 200 300 400 500 600 700 800 900
�6�

At the end of Step 2, the permuted matrix reads:

M1 M2 M3 M4 M5 M6 M7 M8 M9

1 4 7 10 40 70 100 400 700

2 5 8 20 50 80 200 500 800

3 6 9 30 60 90 300 600 900

A careful examination of the permuted matrix reveals
that consecutive elements in the same memory row will end
up in the same memory module (e.g., elements 1, 2, 3 will
occur in memory module M1). Therefore, in order to
achieve the desired permutation without memory-access
conflicts, one has to devise a different way of picking up the
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elements in various memory rows. For this purpose, we
find it convenient to view each element x stored in a
memory module as an ordered triple hx; row�x�;module�x�i,
where row�x� and module�x� stand for the identity of the
memory row and of the memory module, respectively,
containing x. Further, we let row�x�jmodule�x� denote the
binary number obtained by concatenating the binary
representations of row�x� and module�x�. The details are
spelled out in the following procedure.

procedure PERMUTE

begin

for i � 0 to p
1
2 ÿ 1 do

for all j, 1 � j � p, do in parallel

read the ��i� jÿ 1�mod p
1
2 � a� 1�th word of

memory module Mj

endfor

using the sorting device, sort the p elements in
nondecreasing order of row�x�jmodule�x�;

let x1 � x2 � � � � � xp be the resulting sorted sequence;
for all j, 1 � j � p, do in parallel

store xj in the
��module�xj� ÿ 1�mod p

1
2 � b� 1�th word of

memory module Mj

endfor

endfor

end

Clearly, this procedure involves p
1
2 iterations. In each

iteration, p words are read, one from each memory module,

sorted, and then written back into memory, one word per

module, with no read and write memory access conflicts. It

would seem as though each memory module requires an

arithmetic unit to compute the address of the word to be

accessed in each iteration. In fact, as we now point out, such

arithmetic capabilities are not required. Specifically, we can

use p
1
2 memory rows to store ªoffsetsº used for memory

access operations. For the above example, the offsets are:

M1 M2 M3 M4 M5 M6 M7 M8 M9

0 1 2 0 1 2 0 1 2
1 2 0 1 2 0 1 2 0
2 0 1 2 0 1 2 0 1

�7�

At the beginning of Step 2, all the address registers
contain a� 1. In the first iteration, the entries in the first
row of the offset matrix are added to the contents of the
address registers, guaranteeing that the correct word in
each memory module is being accessed. As an illustration,
referring to (7), we note that the offsets in the first row
indicate that the words involved in the read operation will
be found at address a� 1� 0 in memory module M1,
address a� 1� 1 � a� 2 in memory module M2, address
a� 1� 2 � a� 3 in memory module M3, and so on.

The key observation for understanding what happens in
all the iterations is that, in any column of the offset matrix
(7), once the entry in the first row is available, the
subsequent elements in the same column can be generated
by modulo p

1
2 arithmetic. In our architecture, this computa-

tion can be performed by the adder associated with each
address register. In turn, this observation implies that, in

fact, the offset matrix need not be stored at all, as its entries
can be generated on the fly.

Yet another important point to note is that each ordered
triple hx; row�x�;module�x�i is a composed word with three
fields and that the composed words are sorted using the
combination of two fields, namely, row�x� and module�x�.
Clearly, module�x� has log p bits, but it seems that, in order
to represent row�x�, we need logN

p bits. Actually, we can
replace row�x� with the address offset contained in the
offset matrix discussed above. Since the entries in that
matrix are integers no larger than p

1
2, 0:5 log p bits are

sufficient. Therefore, the concatenation row�x�jmodule�x�
involves 1:5 log p bits.

From the above discussion, it is clear that Step 2
requires p

1
2 calls to the sorting device and that the time

spent on data movement operations not involving sorting
is bounded by O�p1

2�.
Step 3: Same as Step 1.

Step 4: The permutation of Step 2 is performed in reverse;
the permuted set of words are stored in rows
a� 1; a� 2; . . . ; a� p1

2.

Step 5: Same as Step 1.

Step 6: Shifting rows.
We shall permute the elements slightly differently from

the way specified by Columnsort. However, it is easy to
verify that the elements supposed to end up in a given row,
indeed end up in the desired row. Since Step 7 sorts the
rows, the order in which the elements are placed in the row
in Step 6 is immaterial. The permutation of Step 6 is best
illustrated by considering a particular example. Specifically,
the permutation specified by Step 6 of Columnsort invol-
ving the three rows shown in (6) is:

M1 M2 M3 M4 M5 M6 M7 M8 M9

ÿ1 ÿ1 ÿ1 ÿ1 1 2 3 4 5
6 7 8 9 10 20 30 40 50

60 70 80 90 100 200 300 400 500

600 700 800 900 �1 �1 �1 �1 �1
Our permutation is a bit different:

M1 M2 M3 M4 M5 M6 M7 M8 M9

1 2 3 4 5 ? ? ? ?
10 20 30 40 50 6 7 8 9
100 200 300 400 500 60 70 80 90

100 200 300 400 500 600 700 800 900

Assume that the p
1
2 consecutive input rows are stored in

memory starting from memory row a� 1. In addition, we

assume that memory row a is available to us. Some of its

contents are immaterial and will be denoted by ª?ºs. The

motivation is anchored in the observation that, in Step 7, we

do not have to sort memory rows a and a� p1
2: The elements

in these rows will be sorted in Step 9. Consequently, the

only rows that have to be sorted in Step 7 are rows a� 1

through a� p1
2 ÿ 1. The details follow.

procedure ROW_SHIFT

begin

for i � a� 1 to a� p1
2 � 1 do
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for all j, 1 � j � dp2e, do in parallel

read the ith word of memory module Mj and
store it in the �iÿ 1�th word of memory module Mj

endfor

endfor

end

It is important to note that, in our implementation, Step 6
does not involve sorting. However, O�p1

2� time is spent on
data movement operations that do not involve sorting.

Step 7: Same as Step 1.

Step 8: This is simply the reverse of the data movement in
Step 6.

Step 9: Same as Step 1.

To summarize, we have proven the following result.

Theorem 2. A set of p
3
2 elements stored in p

1
2 memory rows can be

sorted, in row-major order, without memory-access conflicts,
in at most 7p

1
2 calls to a sorting device of I/O size p and in

O�p1
2� time for data movement not involving sorting.

In essentially the same way, one can prove the following
companion result to Theorem 2.

Theorem 3. The task of sorting, in row-major order, a set of mp
elements stored in m, �1 � m � p1

2� memory rows can be
performed, without memory-access conflicts, in at most 7m
calls to a sorting device of I/O size p and in O�m� time for data
movement operations not involving sorting.

In the remainder of this section, we present an important
application of the basic algorithm. Suppose that we wish to
merge two sorted sequences A � a1 � a2 � � � � � an and
B � b1 � b2 � � � � � bn. Our algorithm for merging A and B
relies on the following technical result.

Lemma 8. Assume that adn2e � bbn2c�1 and let C � c1 � c2 �
� � � � cn be the sequence obtained by merging b1; b2; . . . ; bdn2e
and adn2e�1; adn2e�2; . . . ; an. Then, no element in the sequence

D � a1; a2; . . . ; adn2e; c1; c2; . . . ; cbn2c is strictly larger than any

element in the sequence

E � bdn2e�1; bdn2e�2; . . . ; bn; cbn2c�1; cbn2c�2; . . . ; cn:

Proof. We begin by showing that no ai, �1 � i � dn2e�, is

strictly larger than any element in E. The assumption

that adn
2e
� bbn2c�1 guarantees that if the claim is false, then

some element ai, 1 � i � bn2c, is strictly larger than some

element ck, (k � bn2c � 1), in E.
To evaluate the position of the element ck in the sorted

sequence C, observe that all the bn2c elements in C that
come from A are known to be larger than or equal to ai
and, therefore, strictly larger than ck. Consequently, if n
is even, then bn2c elements in C are larger than ck,
implying that k � bn2c, a contradiction. On the other hand,
if n is odd, then dn2e � bn2c � 1 and, by assumption, bdn2e is
larger than ai and, therefore, strictly larger than ck. In this
case, at least dn2e elements in C are strictly larger than ck.
It follows that k � bn2c, contradicting that ck belongs to E.

Next, we claim that no ci, �1 � i � bn2c�, is larger than
any element in E. Since C is sorted, if the statement is

false, then ci > bk for some k, (k � bn2c � 1). Notice that all
elements of C that come from B are smaller than or equal
to bk and, therefore, strictly smaller than ci. It follows that
i � bn2c � 1, contradicting that ci belongs to D. This
completes the proof of the lemma. tu

A mirror argument proves the following companion
result to Lemma 8.

Lemma 9. Assume that adn2e > bbn2c�1 and let C � c1 � c2 �
� � � � cn be the sequence obtained by merging a1; a2; . . . ; adn2e
and bdn2e�1; bdn2e�2; . . . ; bn. Then, no element in the sequence
D0 � b1; b2; . . . ; bdn2e; c1; c2; . . . ; cbn2c is strictly larger than any
element in the sequence

E0 � adn2e�1; adn2e�2; . . . ; an; cbn2c�1; cbn2c�2; . . . ; cn:

It is worth noting that Lemmas 8 and 9, combined, show
that given two sorted sequences, each of size n, the task of
merging them can be handled as follows: We begin by
splitting the two sequences into two sequences of size n
each such that no element in the first one is strictly larger
than any element in the second one. Once this ªseparationº
is available, all that remains to be done is to sort the two
sequences independently. The noteworthy feature of this
approach is that it fits extremely well our architecture.

Let 1 � m � p1
2 and consider a sorted sequence A � a1 �

a2 � � � � � amp stored in m memory rows rA; rA � 1; . . . ; rA �
mÿ 1 and a sorted sequence B � b1 � b2 � � � � � bmp stored
in m memory rows rB; rB � 1; . . . ; rB �mÿ 1. The goal is to
merge these two sequences and to store the resulting sorted
sequence in memory rows

rA; rA � 1; . . . ; rA �mÿ 1; rB; rB � 1; . . . ; rB �mÿ 1:

The details follow.

procedure MERGE_TWO_GROUPS

begin

if admp2 e � bbmp2 c�1 then

use the basic algorithm to sort
b1; b2; . . . ; bdmp2 e; admp2 e�1; admp2 e�2; . . . ; amp in nonincreasing
order as cmp � cmpÿ1 � � � � � c1 and store the result in
memory rows rC; rC � 1; . . . ; rC �mÿ 1

else

use the basic algorithm to sort
a1; a2; . . . ; admp2 e; bdmp2 e�1; bdmp2 e�2; . . . ; bmp in nonincreasing
order as cmp � cmpÿ1 � � � � � c1 and store the result in
memory rows rC; rC � 1; . . . ; rC �mÿ 1

for i � 1 to m
2

� �
do

copy memory row rB � iÿ 1 into memory row
rA � iÿ 1;
copy memory row rA �mÿ i into memory row
rB �mÿ i

endfor

if m is odd then

copy the leftmost dp2e elements in row rB � dm2e into the
leftmost dp2e positions of row rA � dm2e;
copy the rightmost bp2c elements in row rA � bm2c into the
rightmost bp2c positions of row rB � bm2c;

endif

endif
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if m is odd then

copy the leftmost dp2e elements in memory row rC � bm2 c
into the leftmost dp2e positions of row rB � bm2c;
copy the rightmost bp2c elements in row rC � bm2 c into the
rightmost bp2c positions of row rA � bm2c

endif

for i � 1 to bm2 c do

copy memory row rC � iÿ 1 into memory row
rB � iÿ 1;
copy memory row rC �mÿ i into memory row
rA �mÿ i

endfor

use the basic algorithm to sort memory rows
rA; rA � 1; . . . ; rA �mÿ 1 in nondecreasing order;
use the basic algorithm to sort memory rows
rB; rB � 1; . . . ; rB �mÿ 1 in nondecreasing order

end

It is obvious that procedure MERGE_TWO_GROUPS can
be implemented directly in our architectural model. One
point is worth discussing, however. Specifically, the task of
sorting a sequence in nonincreasing order can be performed
in our architecture as follows: The signs of all the elements
to be sorted are flipped and the resulting sequence is then
sorted in nondecreasing order. Finally, the signs are flipped
back to their original value. The correctness of the
procedure follows from Lemmas 8 and 9. Moreover, the
procedure requires three calls to the basic algorithm.

Consider the task of sorting a collection of 2mp

memory rows, with m as above. Having partitioned the

input into two subgroups of m consecutive memory rows

each, we use the basic algorithm to sort each group. Once

this is done, we complete the sorting using procedure

MERGE_TWO_GROUPS. Thus, we have the following

result.

Theorem 4. The task of sorting 2mp, 1 � m � p1
2, elements

stored in 2m memory rows can be performed in five calls to the
basic algorithm and O�m� time for data movement operations
not involving sorting.

5 AN EFFICIENT MULTIWAY MERGE ALGORITHM

Consider a collection A �< A1; A2; . . . ; Am > of m,

(2 � m � p1
2), sorted sequences, each of size p

i
2, for some

i � 3. We assume that A is stored, top-down, in the order

A1; A2; . . . ; Am in mp
iÿ2

2 consecutive memory rows. The

multiway merge problem is to sort these sequences in row-

major order. The goal of this section is to propose an

efficient algorithm MULTIWAY_MERGE for the multiway

merge problem, and to show how it can be implemented on

our architecture.

procedure MULTIWAY_MERGE(A, m, i);
{Input: m; �2 � m � p1

2�, sorted sequences
A �< A1; A2; . . . ; Am > each of size p

i
2, for i � 3;

Output: the resulting sorted sequence stored in row-major
order in mp

iÿ2
2 contiguous memory rows.}

Step 1. Select a sample S of size mp
iÿ2

2 from A by retaining

every pth element in each sequence Aj (1 � j � m) and
move S to its own dmpiÿ4

2 e memory rows2 as discussed
below;

Step 2.

if i � 3 then

sort S by one call to the sorting device
else if i � 4 then

sort S by one call to the basic algorithm
else

MULTIWAY MERGE�S;m; iÿ 2�; {recursively
multiway merge S}

endif

let s1 � s2 � � � � � smp�iÿ2�=2 be the sorted version of S;

Step 3. Partition A into p
iÿ2

2 buckets B1; B2; . . . ; Bp�iÿ2�=2 , each
containing at most 2mp elements, as discussed below,
and move the elements of A to their buckets without
memory access conflicts;

Step 4. Sort all the buckets individually using the basic
algorithm and procedure MERGE_TWO_GROUPS;

Step 5. Coalesce the sorted buckets into the desired sorted
sequence.

The remainder of this section is devoted to a detailed

implementation of this procedure on our architecture.

5.1 Implementing Step 1 and Step 2

For convenience, we view A as a matrix of size mp
iÿ2

2 � p,

with the tth element of memory row j being denoted by

A�j; t�. The element A�j; p� is termed the leader of memory

row j.
The goal of Step 1 is to extract a sample S of A by

retaining the leader s of every memory row in A, along with

the identity k of the subsequence Ak to which the leader

belongs. In this context, k is referred to as the sequence index

of s. Two disjoint groups of dmpiÿ4
2 e consecutive memory

rows each are set aside to store the sample S and the

corresponding set I of sequence indices. In the remainder of

this subsection, we view the memory rows allocated to S

and I as two matrices of size dmpiÿ4
2 e � p. The intention is

that, at the end of Step 1, S�x; y� and I�x; y� store the ��xÿ
1�p� y�th leader of A and its sequence index, respectively.

To see how Step 1 can be implemented without

memory access conflicts, notice that, in each memory

row, the leader to be extracted is stored in memory

module Mp. For a generic memory row j, the CU

interchanges temporarily the elements A�j; p� and

A�j; d�j��, where d�j� � 1� �jÿ 1�mod p. (This interchange

will be undone at the end of Step 1). Next, dmpiÿ4
2 e parallel

read operations are performed, each followed by two

parallel write operations. The jth parallel read operation

picks up the ��jÿ 1�p� k�th word of memory module Mk,

�1 � k � p�, and these p elements are stored in the jth

memory row allocated to S. The second parallel write

operation stores the sequence indices of these p elements in

the jth memory row allocated to I. Thus, Step 1 can be

implemented in O�mpiÿ2
2 ) time for data movement and no

calls to the sorting device.
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The sampling process continues, recursively, until a level
is reached where procedure MULTIWAY_MERGE is in-
voked with either i � 3, in which case the corresponding
sample set is stored in one memory row and will be sorted
in one call to the sorting device, or with i � 4, in which case
the sample set is stored in m memory rows, and will be
sorted in one call to the basic algorithm. Since the operation
of sorting one row is direct, we only discuss the way the
basic algorithm operates in this context.

Conceptually, the process of sorting the samples benefits
from being viewed as one of sorting the concatenation sjk,
where s is a sample element and k its sequence index. Recall
that, as described in Section 2, our design assumes that the
sorting device provides data paths of size w� 1:5 log p from
its inputs to its outputs. This implies that Steps 1, 3, 5, 7, and
9 of the extended Columnsort can be executed directly. To
sort a row r of S and the corresponding row r of I, the CU
loads, in two parallel read operations, the element field and
the short auxiliary field of data register Rj (1 � j � p) with
S�r; j� and I�r; j� and the long auxiliary field with 0.

Let sr;j and kr;j be the element and its sequence index
stored in register Rj and let sr;jjkr;j denote their concatena-
tion. Next, the contents of the data registers are supplied as
input to the sorting device. Let sr;j0 jkr;j0 be received by Rj

after sorting, with sr;j0 and kr;j0 stored, respectively, in the
element and short auxiliary field of Rj. In two parallel write
operations, the CU stores the element field and the short
auxiliary field of each register Rj �1 � j � p) into S�r; j� and
I�r; j�, respectively.

Steps 2, 4, 6, and 8 of the basic algorithm perform
permutations. The implementation of Steps 6 and 8 does not
involve sorting. In this case, the data movement involving
the sample elements and that of the corresponding
sequence indices will be performed in two companion
phases. Specifically, viewing the sample set S and its
corresponding sequence index set I as two matrices, the
same permutation is performed on S and I. Steps 2 and 4 of
the basic algorithm involve both data movement operations
and sorting. The data movement operations in these steps
are similar to those in Steps 6 and 8 and will not be detailed
any further. Recall that the sorting operations in Steps 2 and
4 of the basic algorithm are performed on the concatenation
of the two auxiliary fields storing the relative row number
and the column number of the element. Hence, we perform
two companion sorting phases, one for permuting the
sample elements and the other for permuting sequence
indices. Clearly, this can be implemented with the same
time complexity.

It is easy to confirm that, at the end of Step 2 of
procedure MULTIWAY_MERGE, the sample set S is sorted
in row-major order. Furthermore, viewed as matrices, I�x; y�
is the sequence index of the sample element S�x; y�. Let the
sorted version of S be

S � s1 � s2 � � � � � smp�iÿ2�=2 : �8�
Equation (8) will be used in Step 3 to partition the elements
of A into buckets. In order to do so, the leader of each row in
A needs to learn its rank in (8).

Our next goal is to associate with every memory row in
A the rank �xÿ 1�p� y of its leader s � S�x; y� in S. This

task will be carried out in two stages. In the first stage, using

the sequence index and the rank of s in S, the CU assigns to

s a row number row�s� in A. For every s in S, row�s� is

either the exact row number from which s was extracted in

Step 1 or, in case the leaders of several rows are equal,

row�s� achieves a possible reassignment of leaders to rows.

The details of the first stage are spelled out in procedure

ASSIGN_ROW_NUMBERS presented below. For conveni-

ence, we use the matrix representation of S and I. These

operations can be easily implemented using the addresses

of words corresponding to S�x; y� and I�x; y�. Initially, I

contains the sequence indices of samples in S. When the

procedure terminates, I�x; y� contains row�s� corresponding

to s � S�x; y�.
procedure ASSIGN_ROW_NUMBERS

begin

for k � 1 to m do

rk :� the row number of the first memory row storing
the sequence Ak

endfor

for x � 1 to dmpiÿ4
2 e do

for y � 1 to p do

k :� I�x; y�; I�x; y� :� rk; rk :� rk � 1

endfor

endfor

end

In the second stage, the CU assigns the rank �xÿ 1�p� y
of s � S�x; y� with the memory row row�s� contained in

I�x; y�. The operations performed on the matrix representa-

tions of S and I can be easily implemented using the

addresses of words corresponding to S�x; y� and I�x; y�.
Since only read/write operations are used in the procedure

described, the total time spent on these operations is

bounded by O�mpiÿ2
2 �.

5.2 Implementing Step 3 and Step 4

Once the rank of each leader in A is known, we are ready to

partition A into buckets. Our first objective is to construct a

collection B1; B2; . . . ; Bp�iÿ2�=2 of buckets such that the

following conditions are satisfied:

b1. Every element of A belongs to exactly one bucket;
b2. No bucket contains more than 2mp elements;
b3. For every i and j (1 � i < j � piÿ2

2 ), no element in Bi

is strictly larger than any element in Bj.

Before presenting our bucket partitioning scheme, we

need a few definitions. Let S � s1 � s2 � � � � � smp�iÿ2�=2 be as

in (8). The memory row with leader sb is said to be regular

with respect to bucket Bj �1 � j � piÿ2
2 � if

�jÿ 1�m < b � jm: �9�
Notice that (9) guarantees that every memory row in A is

regular with respect to exactly one bucket and that the

identity of this bucket can be determined by the CU in

constant time. Conversely, with respect to each bucket,

there are exactly m regular memory rows.
A memory row r with leader sb in some sequence Ak

(1 � k � m) is termed special with respect to bucket Bt if,
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with sa standing for the leader of the preceding memory
row in Ak, if any, we have

a � tm < b: �10�
Let the memory rows with leaders sa and sb be regular

with respect to buckets Bj0 and Bj, respectively, such that
j0 < j. It is very important to note that (10) implies that the
memory row whose leader is sb is special with respect to all
the buckets Bj0 ; Bj0�1; . . . ; Bjÿ1.

Conceptually, our bucket partitioning scheme consists of
two stages. In the first stage, by associating all regular and
special rows with respect to a generic bucket Bj

(1 � j � piÿ2
2 ), we obtain a set Cj of candidate elements for

bucket Bj. In the second stage, we assign the elements of A
to buckets in such a way that the actual elements assigned
to bucket Bj form a subset of the candidate set Cj.

Specifically, an element x of a memory row regular with
respect to bucket Bj is assigned to Bj if one of the conditions
below is satisfied:

s�jÿ1�m < x � sjm whenever s�jÿ1�m < sjm �11�
or

s�jÿ1�m � x � sjm whenever s�jÿ1�m � sjm: �12�
The elements of A that have been assigned to a bucket by
virtue of (11) or (12) are no longer eligible for being
assigned to buckets in the remainder of the assignment
process.

Consider, further, an element x that was not assigned to
the bucket with respect to which its memory row is regular.
Element x will be assigned to exactly one of the buckets
with respect to which the memory row containing x is
special. Assume that the memory row containing x is
special with respect to buckets Bj1 ; Bj2

; . . . ; Bjl�x� with
j1 < j2 < . . . < jl�x�. Let jn be the smallest index,
1 � n � l�x�, for which one of (11) or (12) holds, with jn in
place of j. Now, x is assigned to bucket Bjn . The next result
shows that the buckets we just defined satisfy the
conditions b1-b3.

Lemma 10. Every bucketBj �1 � j � piÿ2
2 � satisfies conditions b1,

b2, and b3.

Proof. Clearly, our assignment scheme guarantees that
every element of A gets assigned to some bucket and that
no element of A gets assigned to more than one bucket.
Thus, condition b1 is verified.

Further, notice that, by (9) and (10), combined, for
every j �1 � j � piÿ2

2 � the candidate set Cj with respect to
bucket Bj contains at most 2m memory rows and,
therefore, at most 2mp elements of A. Moreover, as
indicated, the elements actually assigned to bucket Bj are
a subset of Cj, proving that b2 is satisfied.

Finally, (11) and (12) guarantee that if an element x
belongs to some bucket bj, then it cannot be strictly larger
than any element in a bucket Bk with j < k. Thus,
condition b3 holds as well. tu

It is worth noting that the preceding definition of buckets
works perfectly well even if all the input elements are
identical. In fact, if all elements are distinct, one can define

buckets in a simpler way. Moreover, in the case of distinct
elements, Steps 1-3 of procedure MULTIWAY_MERGE can
be further simplified.

We now present the implementation details of the
assignment of elements to buckets. Write s0 � ÿ1 and
denote, for every j (1 � j � piÿ2

2 ), the ordered pair
�s�jÿ1�m; sjm� as the jth bounding pair. Notice that (11) and
(12) amount to testing whether a given element lies between
a bounding pair.

By b2, no bucket contains more than 2mp elements from
A. This motivates us to set aside 2m memory rows for each
bucket Bj. Out of these, we allocate the first m memory
rows to elements assigned to Bj coming from regular
memory rows with respect to Bj; we allocate the last
m memory rows to elements assigned to bucket Bj that
reside in special memory rows with respect to Bj. In
addition, we find it convenient to initialize the contents of
the 2m memory rows allocated to Bj to all �1s.

It is important to note that the regular memory rows with
respect to a bucket Bj are naturally ordered from 1 to m by
the order of the corresponding leaders in S. To clarify this
last point, recall that, by (9), the m leaders belonging to
bucket Bj are

s�jÿ1�m�1; s�jÿ1�m�2; . . . ; sjm:

Accordingly, the memory row whose leader is s�jÿ1�m�1 is
the first regular row with respect to Bj, the memory row
whose leader is s�jÿ1�m�2 is the second regular row with
respect to Bj, and so on. Similarly, the fact that each
sequence Ak is sorted guarantees that it may contain at most
one special memory row with respect to bucket Bj. Now, in
case such a special row exists, it will be termed the kth
special memory row with respect to Bj to distinguish it
from the others.

In order to move the elements to their buckets, the CU
scans the memory rows in A one by one. Suppose that the
current memory row being scanned is row r in some
sequence Ak. We assume that the leader of row r is sb and
that the leader of row rÿ 1 is sa. Using (9), the CU
establishes that row r is regular with respect to bucket Bj,
where j � d bme and, similarly, that the previous memory row
is regular with respect to bucket Bj0 , where j0 � d ame � j. In
case row r is the first row of Ak, j

0 is set to 1.
Next, the elements in memory row r are read into the

element fields of the data registers; the CU broadcasts to
these registers the bounding pair �s�jÿ1�m; sjm�. Using
compare-and-set, each register stores in the short auxiliary
field a 1 if the corresponding element is assigned to bucket
Bj by virtue of (11) or (12) and a 0 otherwise. We say that an
element x in some data register is marked if the value in the
short auxiliary field is 1; otherwise, x is unmarked.

Clearly, every element x that is marked at the end of this
first broadcast has been assigned to bucket Bj. In a parallel
write operation, the CU copies all the marked elements to
the corresponding words of the ��bÿ 1�modm� 1�th
memory row allocated to bucket Bj. Once this is done,
using compare-and-set, all the marked elements in the data
registers are set to �1 and the short auxiliary fields are
cleared.
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Further, the CU broadcasts to the data registers, in
increasing order, the bounding pairs of the buckets
Bj0 ; Bj0�1; . . . ; Bjÿ1. Let us follow the processing specific
to bucket Bj0 . Having received the bounding pair
�s�j0ÿ1�m; sj0m�, each data register determines whether the
value x stored in its element field satisfies (11) or (12) with j0

in place of j and marks x accordingly. In a parallel write
operation, the CU copies all the marked elements to the
corresponding words of the next available memory row
allocated to bucket Bj. Next, using compare-and-set, all the
marked elements in the data registers are set to �1 and the
short auxiliary fields are cleared. The same process is then
repeated for all the remaining buckets with respect to which
row r is special.

The reader will not fail to note that, when the processing

of row r is complete, each of its elements has been moved to

the bucket to which it has been assigned. Moreover, by (9)

and (10), there are, altogether, at most mp
iÿ2

2 regular rows

and at most mp
iÿ2

2 special rows and, so, the total time

involved in assigning the elements of A to buckets is

bounded by O�mpiÿ2
2 � and no calls to the sorting device. In

summary, Step 3 can be implemented in O�mpiÿ2
2 ) time for

data movement and no calls to the sorting device.
In Step 4, the buckets are sorted independently. If a

bucket has no more than p
1
2 memory rows, it can be sorted in

one call to the basic algorithm. Otherwise, the bucket is
partitioned in two halves, each sorted in one call to the basic
algorithm. Finally, the two sorted halves are merged using
procedure MERGE_TWO_GROUPS. By Theorem 4, the task
of sorting all the buckets individually can be performed in
O�mpiÿ2

2 � calls to the sorting device and in O�mpiÿ2
2 � time for

data movement not involving sorting.

5.3 Implementing Step 5

To motivate the need for the processing specific to Step 5,
we note that, after sorting each bucket individually in Step 4,
there may be a number of �1s in each bucket. We refer to
such elements as empty; memory rows consisting entirely of
empty elements will be termed empty rows. A memory row
is termed impure if it is partly empty. It is clear that each
bucket may have at most one impure row. A memory row
that contains no empty elements is referred to as pure.

The task of coalescing the nonempty elements in the
buckets into mp

iÿ2
2 consecutive memory rows will be

referred to as compaction. For easy discussion, we assume
that all sorted buckets are stored in consecutive rows. That
is, the nonempty rows of B2 follow the nonempty rows of
B1, the nonempty rows of B3 follow the nonempty rows of
B2, and so on, assuming that all empty rows have been
removed. The compaction process consists of three phases.

Phase 1: Let C be the row sequence obtained by
concatenating nonempty rows of Bjs obtained in Step 4 of
MULTIWAY_MERGE in the increasing order of their
indices. We partition sequence C into subsequences
C1; C2; . . . ; Cx such that each Cj contains p

1
2 consecutive

rows of C, except the last subsequence Cx, which may
contain fewer rows. Clearly, x � 2mp

iÿ3
2 . We use the basic

algorithm to sort these subsequences independently. Let the
sorted subsequence corresponding to Ci be C0i with empty

rows eliminated for future consideration. Let D be the row
sequence obtained by concatenating rows of C0js in the
increasing order of their indices. We partition sequence D
into subsequences D1; D2; . . . ; Dy such that each Dj contains
p

1
2 consecutive rows of D, except the last subsequence Dy,

which may contain fewer rows. We then use the basic
algorithm to sort these subsequences independently. Let the
sorted subsequence corresponding to Di be D0i with empty
rows eliminated. Let E be the row sequence obtained by
concatenating rows of D0js in the increasing order of their
indices.

Lemma 11. The preceding row of every impure row, except the
last row, of E is a pure row.

Proof. We notice the following fact: Except for the last row
of D, every row of D either contains at least p

1
2 nonempty

elements or if it contains fewer than p
1
2 nonempty

elements, then its preceding row must be a pure row.
This is because each row of C contains at least one
nonempty element. An impure row of D can be
generated under one of two conditions: 1) if Cj contains
fewer than p nonempty elements, then C0j contains only
one row, an impure row, with its nonempty elements
coming from p

1
2 impure rows of Cj, and 2) if a Cj contains

more than p nonempty elements, then C0j contains only
one impure row and its preceding row is a pure row. The
lemma directly follows from this fact. tu

Phase 2: This phase computes a set of parameters which

will be used in the next phase. Let w be the total number of

(nonempty) rows in E. Assume that the rows of E are

located from row 1 through row w. For every j (1 � j � piÿ2
2 ),

we let nj stand for the number of nonempty elements in the

impure memory row cj. The first subtask of Phase 2 is to

determine n1; n2; . . . ; n
p
iÿ2

2
. Consider a generic impure row

cj. To determine nj, the CU reads the entire row cj into the

data registers R1; R2; . . . ; Rp such that, for every k.,

(1 � k � p), the cjth word of memory module Mk is read

into register Rk. The long auxiliary field of data register Rk

is set to k. By using the compare-and-set feature, the CU

instructs each register Rk to reset this auxiliary field to ÿ1
if the element it holds is �1 (i.e., empty). Next, the data

registers are loaded into the sorting device and sorted in

increasing order of their long auxiliary fields. It is easy to

confirm that, after sorting, the largest such value kj is

precisely the position of the rightmost nonempty element in

memory row cj. Therefore, the CU sets nj � p� 1ÿ kj.
Consequently, the task of computing all the numbers

n1; n2; . . . ; n
p
iÿ2

2
involves O�piÿ2

2 � calls to the sorting device

and O�piÿ2
2 � read/write operations and does not involve

sorting. Once the numbers n1; n2; . . . ; nw are available, the

CU computes the prefix sums

�1 � n1; �2 � n1 � n2; . . . ; �j � n1 � n2 � . . . ;�nj; . . . ;

�w � n1 � n2 � . . . ;�nw:

This, of course, involves only additions and can be

performed by the CU in O�mpiÿ2
2 � time without any call to
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the sorting device. Let g � d w

p
1
2ÿ2
e. Define �0 � �g � 0 and

�k � �
k�p1

2ÿ2� mod p, for 1 � k < g. Define

�k � n
k�p1

2ÿ2� � nk�p1
2ÿ2�ÿ2

:

Phase 3: Construct row group Ek, 1 � k � g, of con-

secutive rows as follows: If �kÿ2 > 0, then row k�p1
2 ÿ 2� ÿ 2

is the starting row of Ek, else row k�p1
2 ÿ 2� is the starting

row of Ek; the ending row of Ek, k < g, is row k�p1
2 ÿ 2� and

the ending row of Eg is row w. Note that Ek and Ek�1 may

share at most two rows. By Lemma 11, for 1 � k < g, each

Ek contains at least �p�1�p1
2

2 elements and the last two rows of

Ek contains at least p� 1 elements. For each Ek, 1 � k < g,

perform the following operations:

1. Sort using the basic algorithm;
2. Replace the �kÿ1 ÿ �kÿ1 smallest elements by �1s;
3. Sort using the basic algorithms; and
4. If �k > 0 and k < g, eliminate the last row.

For Eg, perform 1, 2, and 3 only. Let E0k be the row group

obtained from Ek and let F be the row sequence obtained by

concatenating rows of E0js in the increasing order of their

indices. F is the compaction of C.
Setting selected elements in a row to �1s can be done in

O�1� time by a compare-and-set operation. For example,

setting the leftmost s elements of a row to �1s can be

carried out as follows: Read the row into Ris, then CU

broadcast s to all Ris and each Ri compare i with s and set

its content to �1 if i � s; then, the modified row is written

back to the memory array.
Based on Lemma 10, it is easy to verify that elements in F

are in sorted order after Step 5, which can be implemented

in O�mpiÿ2
2 � calls to the sorting device and O�mpiÿ2

2 � data

movement not involving sorting.

5.4 Complexity Analysis

With the correctness of our multiway merge algorithm

being obvious, we now turn to the complexity. Specifically,

we are interested in assessing the total amount of data

movement, not involving sorting, that is required by

procedure MULTIWAY_MERGE. Specifically, let J�mpi2�
stand for the time spent on data movement tasks that do not

involve the use of the sorting device. If i � 3, Step 2 takes

O�1� time. In case i � 4, Step 2 takes O�m� time (refer to

Theorem 3). Finally, if i > 4, our previous discussion shows

that each of Step 1, Step 3, Step 4, and Step 5 require at most

O�mpiÿ2
2 � time, while Step 2 requires, recursively, J�mpiÿ2

2 �
time. Thus, we obtain the following recurrence system:

J�mpi2� 2 O�mpiÿ2
2 � if i � 3 or 4

J�mpi2� � J�mpiÿ2
2 � �O�mpiÿ2

2 � if i > 4:

�
It is easy to confirm that, for p � 4, the solution of the

above recurrence satisfies J�mpi2� 2 O�mpiÿ2
2 �. A similar

analysis, that is not repeated, shows that the total number

of calls to a sorting device of I/O size p performed by

procedure MULTIWAY_MERGE for mergingm �2 � m � p1
2�

sorted sequences, each of size p
i
2, is bounded by O�mpiÿ2

2 �. To

summarize our discussion, we state the following important

result:

Theorem 5. Procedure MULTIWAY_MERGE performs the task

of merging m �2 � m � p1
2� sorted sequences, each of size p

i
2,

in our architecture, using O�mpiÿ2
2 � calls to the sorting device

of I/O size p and O�mpiÿ2
2 � time for data movement not

involving sorting.

6 THE SORTING ALGORITHM

With the basic algorithm and the multiway merge at our

disposal, we are in a position to present the details of our

sorting algorithm using a sorting device of fixed I/O size p.

The input is a set � of N items stored, as evenly as possible,

in p memory modules. Dummy elements of value �1 are

added, if necessary, to ensure that all memory modules

contain dNp e elements: These dummy elements will be

removed after sorting. Our goal is to show that, using our

architecture-algorithm combination, the input can be sorted

in O�N logN
p log p � time and O�N� data space. We assume that

p � 16, which, along with (1), implies that

log2 p � p � N
p
: �13�

Equation (13) will be important in the analysis of this

section, as our discussion will focus on the case where a

sorting network of I/O size p and depth O�log2 p� is used as

the sorting device.3 A natural candidate for such a network

is Batcher's classic bitonic sorting network [1] that we shall

tacitly assume.
Recall that, by virtue of (1), we have, for some t; t � 4,

p
t
2 � N < p

t�1
2 : �14�

In turn, (14) guarantees that

t � logN

log p
1
2

� �
: �15�

At this point, we note that (14) and (15), combined,

guarantee that

log2 p � N
p
k
2

for all k � tÿ 2: �16�

Write

q � N

p
t
2

� �
�17�

and observe that, by (14),

1 � q � p1
2: �18�

For reasons that will become clear later, we pad � with an

appropriate number of �1 elements in such a way that,
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with N 0 standing for the length of the resulting sequence �0,
we have

N 0 � q � pt2: �19�
It is important to note that (14), (17), and (19), combined,
guarantee that

N � N 0 � 2N; �20�
suggesting that the number of memory rows used by the
sorting algorithm is bounded by O�Np �. Later, we will show
that this is, indeed, the case.

In order to guarantee an overall running time of

O�N logN
p log p �, we ensure that each iteration can be performed

in O�Np � time. As we will see shortly, the sorting network

will be used in the following three contexts:

1. to sort, individually, M memory rows;
2. to sort, individually, M groups, each consisting of m

consecutive memory rows, where m � p1
2;

3. to sort, individually, M groups, each consisting of
2m consecutive memory rows, where m � p1

2.

For an efficient implementation of 1, we use simple
pipelining: The M memory rows to sort are input to the
sorting network, one after the other. After an initial
overhead of O�log2 p� time, each subsequent time unit
produces a sorted memory row. Clearly, the total sorting
time is bounded by O�log2 p�M�.

Our efficient implementation of 2 uses interleaved
pipelining. Let G1; G2; � � � ; GM be the groups we wish to
sort. In the interleaved pipelining, we begin by running
Step 1 of the basic algorithm in pipelined fashion on
group G1, then on group G2, and on so. In other words,
Step 1 of the basic algorithm is performed on all groups
using simple pipelining. Then, in a perfectly similar fashion,
simple pipelining is used to carry out Step 2 of the basic
algorithm on all the groups G1; G2; � � � ; GM . The same
strategy is used with all the remaining steps of the basic
algorithm that require the use of the sorting device.
Consequently, the total amount of time needed to sort all
the groups using interleaves pipelining is bounded by
O�log2 p�Mm�.

An efficient implementation of 3 relies on extended
interleaved pipelining. Let G1; G2; � � � ; GM be the groups we
want to sort. Recall that Theorem 4 states that sorting a
group of 2m consecutive memory rows requires five calls to
the basic algorithm. The extended interleaved pipelining
consists of five interleaved pipelining steps, each corre-
sponding to one of the five calls to the basic algorithm.
Thus, the task of sorting all groups can be performed in
O�log2 p�Mm� time. We now discuss each of the iterations
of our sorting algorithm in more detail.

Iteration 1. The input is Partitioned into N 0
p groups, each

involving p
1
2 memory rows. By using interleaved pipelining

with m � p1
2, each such group is sorted individually. As

discussed above, the running time of Iteration 1 is bounded
by O�log2 p� N 0

p � � O�Np �.
Iteration k; 2 � k � tÿ 2. Let ik � k� 1. The input to

Iteration k is a collection of N 0

p
ik
2

sorted sequences each of size

p
ik
2 , stored in p

ikÿ2

2 consecutive memory rows. The output of

iteration k is a collection of N 0

p
ik�1

2

sorted sequences, each of

size p
ik�1

2 , stored in p
ikÿ1

2 consecutive memory rows.

Having partitioned these sorted sequences into N 0

p
ik�1

2

groups G�k; 1�; G�k; 2�; . . . ; G�k; N

p
ik�1

2

� of p
1
2 consecutive se-

quences each, we proceed to sort each group G�k; j� by the

call

MULTIWAY MERGE�S1�k; j�; p1
2; ik�;

where S1�k; j� � G�k; j�. We refer to the call

MULTIWAY MERGE�S1�k; j�; p1
2; ik�

as a MULTIWAY_MERGE call of the first level. Observe

that, since there are N

p
ik�1

2

groups, there will be, altogether,

N

p
ik�1

2

MULTIWAY_MERGE calls of the first, one for each

group. In Step 1 of a MULTIWAY_MERGE call of the first

level, we extract a sample S2�k; j� of S1�k; j� consisting of

p
1
2 sorted sequences, each of size p

ikÿ2

2 , stored in p
ikÿ4

2

consecutive memory rows. In turn, for every j

(1 � j � N

p
ik�1

2

), the sample S2�k; j� is sorted by invoking

MULTIWAY MERGE�S2�k; j�; p1
2; ik ÿ 2�, which is re-

ferred to as a MULTIWAY_MERGE call of the second level.

Step 1 of a MULTIWAY_MERGE call of the second level

extracts a sample S3�k; j� of S2�k; j� and so on.

For every u, 1 � u � bikÿ1
2 c, a MULTIWAY_MERGE call of

level u is of the form

MULTIWAY MERGE�Su�k; j�; p1
2; ik ÿ 2�uÿ 1��:

In Step 2 of the call

MULTIWAY MERGE�Su�k; j�; p1
2; ik ÿ 2�uÿ 1��;

we perform a MULTIWAY_MERGE call of level u� 1,
which is of the form

MULTIWAY MERGE�Su�1�k; j�; p1
2; ik ÿ 2u�:

Let rk;u denote the total number of rows in all samples
Su�k; j� of level u. Clearly, we have rk;u � N 0

pu . By (13), rk;u �
qp and rk;u � qp only when t is even and k � tÿ 2. The
recursive calls to MULTIWAY_MERGE end at level bikÿ1

2 c,
the last call being of the form

MULTIWAY MERGE Sbikÿ1

2 c
�k; j�; p1

2;
�
ik ÿ 2

ik ÿ 1

2

� �
ÿ 1

� ��
:

Note that ik ÿ 2�bikÿ1
2 c ÿ 1� � 3 or ik ÿ 2�bikÿ1

2 c ÿ 1� � 4,
depending on whether or not ik is odd.

We proceed to demonstrate that, for 2 � k � tÿ 2,
Iteration k takes O�rk;1� time. We will do this by showing
that the total time required by each of the five steps of the

1322 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 12, DECEMBER 2000



MULTIWAY_MERGE calls of each level u is bounded by
O�rk;u�.

Consider a particular level u. Step 1 of all
MULTIWAY_MERGE calls of level u is performed on the
samples Su�k; j�, in increasing order of j, so that all the
samples Su�1�k; j� are extracted one after the other. Clearly,
the total time for these operations is O�rk;u�.

We perform Step 3 of all the MULTIWAY_MERGE calls

of level u, in increasing order of j, to partition into buckets

each of the samples Su�k; j� using the corresponding

Su�1�k; j�. By Lemma 10, each sample Su�k; j� is partitioned

into p
ikÿ2u

2 buckets and no bucket contains more than 2p
3
2

elements. As discussed in Section 5.2, the task of moving all

the elements of each Su�k; j� to their buckets can be carried

out in O�pikÿ2u�1

2 � time without using the sorting device.

Thus, the total time for partitioning the samples Su�k; j� in

all the MULTIWAY_MERGE calls of level u is bounded by

O� N 0
p
ik�1

2

� pikÿ2u�1

2 � � O�N 0pu� � O�rk;u�.
Step 4 of a MULTIWAY_MERGE call of level u sorts the

buckets (involving the elements of Su�k; j�) obtained in

Step 3. We perform Step 4 of all MULTIWAY_MERGE calls

of level u in increasing order of j and use extended

interleaved pipelining with m � p1
2 to sort all buckets of

each Su�k; j�. There are, altogether, N 0

p
2u�1

2

buckets in all the

Su�k; j�s. Thus, the total time for sorting all buckets is

bounded by O�log2 p� p1
2 � N 0

p
2u�1

2

� � O�log2 p� rk;u�. By (13)

and 4, the total time for sorting the buckets in all

MULTIWAY_MERGE calls of level u is O�rk;u�.
Step 5 of a MULTIWAY_MERGE call of level u has three

phases. As discussed in Section 5.3, the operations of Phase 1
and Phase 3 that involve the sorting device can be carried
out using interleaved pipelining. The operations of Phase 2
that involve the sorting device can be carried out using
simple pipelining. Clearly, the time complexity of Step 5 for
all MULTIWAY_MERGE calls of level u is bounded by
O�log2 p� rk;u� � O�rk;u�.

We now evaluate the time needed to perform Step 2 of all
the MULTIWAY_MERGE calls of level u. First, consider the
call of level bikÿ1

2 c,

MULTIWAY MERGE Sbikÿ1

2 c
�k; j�; p1

2;
�
ik ÿ 2

ik ÿ 1

2

� �
ÿ 1

� ��
:

The sample Sbikÿ1

2 c�1
�k; j� extracted in Step 1 of this call has p

elements if ik is odd, and p
3
2 elements if ik is even. If ik is

odd, we use simple pipelining to sort all the samples

Sbikÿ1

2 c�1
�k; j� in O�log2 p� N 0

p
ik�1

2

� time; if ik is even, we use

interleaved pipelining with m � p1
2 to sort all the samples

Sbikÿ1

2 c�1
�k; j� in O�log2 p� N 0

p
ik
2

� time. In either case, the time

required is bounded by O� N 0

pb
ikÿ1

2
c�1
�, which is no more than

O� N 0

pb
ikÿ1

2
c
� � O�r

k;bikÿ1

2 c
�. Thus, the total time for Steps 1

through 5 of all the MULTIWAY_MERGE calls of level

bikÿ1
2 c� is no more than O�r

k;bikÿ1

2 c
�. Next, the time to perform

Step 2 of all MULTIWAY_MERGE calls of level u is

inductively derived as O�rk;u� using our claim that the total

time for Steps 1, 3, 4, and 5 of all MULTIWAY_MERGE calls

of level u is no more than O�rk;u� and the hypothesis that

Step 2 of all MULTIWAY_MERGE calls of level u� 1 is

O�rk;u�1�. This, in turn, proves that the total time required

for all the MULTIWAY_MERGE calls of level u is bounded

by O�rk;u�.
Having shown that the time required for all the

MULTIWAY_MERGE calls of level u of Iteration k is
O�rk;u�, we conclude that the total time to perform
Iteration k is O�rk;1�, which is O�Np �.

Iteration tÿ 1. If N � pt2 the N input elements are

sorted at the end of tÿ 2 iterations. Assume that the

algorithm does not terminate in tÿ 2 iterations. The input

to Iteration tÿ 1 is a collection of q � N 0

p
t
2

sorted sequences,

where 2 � q < p
1
2. Each such sequence is of size p

t
2, stored

in p
tÿ2

2 consecutive rows. To complete the sorting, we need

to merge these q sequences into the desired sorted

sequence. This task is performed by the call

MULTIWAY MERGE��0; q; t�. The detailed implementa-

tion of MULTIWAY MERGE��0; q; t� using a sorting

network as the sorting device and the analysis involved

are almost the same as that of Iteration 2 to Iteration

tÿ 2, except that different parameters are used. If the

interleaved pipelining with m � p1
2 is used in a step of

MULTIWAY_MERGE for iterations 2 to tÿ 2, then the

corresponding step of MULTIWAY_MERGE for iteration

tÿ 1 uses the interleaved pipelining with m � q. Similarly,

if the extended interleaved pipelining with m � p1
2 is used in

a step of MULTIWAY_MERGE for iterations 2 to tÿ 2, then

the corresponding step of MULTIWAY_MERGE for itera-

tion tÿ 1 uses the extended interleaved pipelining with

m � q. The MULTIWAY_MERGE call of level btÿ1
2 c is

MULTIWAY MERGE�Sbtÿ1
2 c�tÿ 1�; q; tÿ 2�btÿ1

2 c ÿ 1��.
If t is odd, then tÿ 2�btÿ1

2 c ÿ 1� � 3, and if t is even, then

tÿ 2�btÿ1
2 c ÿ 1� � 4. The recursion stops at the �btÿ1

2 c�th
level. The sample set Sbtÿ1

2 c�1�tÿ 1� obtained in Step 1 of the

MULTIWAY_MERGE call of level btÿ1
2 c has qp

1
2 elements if t

is odd and it has qp elements if t is even.

Let rtÿ1;u be the total number of memory rows in

Stÿ1�u�. Clearly, rtÿ1;u � qptÿ2u
2 . By a simple induction, we

conclude that the MULTIWAY_MERGE call of level u,

1 � u < btÿ1
2 c, takes no more than O�rtÿ1;u� time. The

running time of Iteration tÿ 1 is the running time of the
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MULTIWAY_MERGE call of the first level and it takes

O�rtÿ1;1� � O�qptÿ2
2 � � O�Np �.

We have shown that each of the tÿ 1 iterations of

MULTIWAY_MERGE can be implemented with time O�Np �.
By (15), we conclude that the running time of our sorting

algorithm is O�N logN
p log p �. Since a p-sorter can be abstracted as a

sorting network of I/O size p and depth O�1�, this time

complexity stands if the sorting device used is a p-sorter.

The working data memory for each iteration is O�N� simply

because the sample size of a MULTIWAY_MERGE call of

level u is p times the sample size of a MULTIWAY_MERGE

call of level u� 1. Since the working data memory of one

iteration can be reused by another iteration, the total data

memory required by our sorting algorithm remains O�N�.
Summarizing all our previous discussions, we have proven

the main result of this work.

Theorem 6. Using our simple architecture, a set of N items

stored in N
p memory rows can be sorted in row-major order,

without any memory access conflicts, in O�N logN
p log p � time and

O�N� data space, by using either a p-sorter or a sorting

network of I/O size p and depth O�log2 p� as the sorting device.
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