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Abstract. The honeycomb grid is a network topology based on the
hexagonal plane tessellation, which is convenient to model the regular
placement on the plane of the base stations of wireless networks. For
an efficient use of the radio spectrum in such networks, channels have
to be assigned to the base stations so as to avoid interferences. Such a
problem can be modeled as a suitable coloring problem. Precisely, given
an integer ¢ and a honeycomb grid G = (V; E), an L(1%)-coloring of G
is a function f from the vertex set V to a set of nonnegative integers
such that |f(u) — f(v)| > 1, if the distance between the vertices u and v
is at most ¢. This paper presents efficient algorithms for finding optimal
L(1%)-colorings of honeycomb grids.

1 Introduction

In the 4th generation of wireless access systems, due to the decreasing cost of in-
frastructures and to the need of wider bandwidth, a large number of small cells,
each with significant power, is expected to cover a huge communication region
[16]. Such a covering can be achieved by placing the base stations according to
a regular plane tessellation. It is well-known that only three different regular
tessellations of the plane exist, depending on the kind of regular polygons used.
Specifically, the honeycomb, square and hexagonal tesselations cover the plane,
respectively, by regular hexagons, squares, and triangles. Such tessellations can
be used to place at the polygon vertices the base stations of the wireless com-
munication networks, leading to three well-known topologies: honeycomb, square

and hexagonal grids, depicted in Fig. 1 for 16 vertices.
So far, the most studied topology for wireless communication networks has

been the hexagonal grid [3,9,12]. However, the performance of a topology can
be evaluated with respect to several parameters, such as degree and diameter.
As proved in [14], defined the network cost as the product of the degree and
diameter, the honeycomb grid beats both the hexagonal and square grids, as
summarized in Table 1 for grids with n vertices (in such a table, coefficients
are rounded and additive constants are neglected). Therefore, the honeycomb
grid appears more convenient than the hexagonal and square grids to model the

placement of the base stations.
In a wireless network, the main difficulty against an efficient use of the radio

spectrum is given by interferences, which result in damaged communications.
Interferences can be eliminated by means of suitable channel assignment tech-
niques, which partition the given radio spectrum into a set of disjoint channels.
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Fig. 1. The possible grids of 16 vertices: (a) honeycomb, (b) square, and (c) hexagonal.

The same channel can be reused by two stations at the same time provided that
no interference arises. To avoid interference, a separation vector (61,02, -..,0;)
of non increasing positive integers is introduced in such a way that channels
assigned to interfering stations at distance ¢ be at least §; apart, with 1 <i <'¢,
while the same channel can be reused only at stations whose distance is larger
than ¢ [8,9]. Since only a continuous interval of the radio spectrum can be ac-
quired, the objective is to minimize its width (or span), namely the difference
between the highest and lowest channels assigned. In case of separation vectors
containing repeated integer values, a more compact notation will be convenient
and so, as an example, (41, 17) is a shorthand for (d1,1,1,...,1).
————r

Formally, given (61,02,...,d;) and an undirected gr;ph G = (V,E), an
L(d1,62,...,0:)-coloring of G is a function f from the vertex set V' to the set
of nonnegative integers {0,...,A} such that |f(u) — f(v)| > d;, if d(u,v) =
i, 1 <1i <t, where d(u,v) is the distance between vertices v and v. An optimal
L(d1, 62, -.,0¢)-coloring for G is one minimizing A over all such colorings. Thus,
the channel assignment problem consists of finding an optimal L(;,0da, ..., d:)-
coloring for G.

The L(1%)-coloring problem has been widely studied in the past [1,6,10,
12]. In particular, its intractability has been proved by McCormick [10], while
optimal L(1%)-colorings have been proposed in [1, 2] for rings, trees, and square
grids. Moreover, optimal L(d;,1?~1)-colorings have been proposed in [3,13] for
rings, square grids and hexagonal grids. Optimal L(d;,d2)-colorings on square
grids and hexagonal grids have been given by Van Den Heuvel et al. [15], who
provided also an optimal L(2, 12)-coloring for square grids. The L(2, 1?)-coloring

network degree|diameter| cost
honeycomb grid| 3 1.63\/n |4.9v/n
square grid 4 2y/n 8v/n
hexagonal grid 6 1.164/n [6.93/n

Table 1. [14] Comparison of networks, each with n vertices (data are approximated).



problem has been also optimally solved for hexagonal grids and rings in [3].
Finally, the L(2,1)-coloring problem has been studied also in [4,5,7,11].

This paper provides, for the first time, optimal L(1%)-colorings on honey-
comb grids. Such colorings use less colors than those needed by the hexagonal
and square grids. Therefore, honeycomb grids beat the hexagonal and square
grids in terms of both the network cost and channel requirement. The proposed
algorithms allow any vertex to self-assign its proper channel in constant time,
provided that it knows its relative position within the network. If this is not the
case, such relative positions can be computed for all the vertices using simple
distributed algorithms requiring optimal time and optimal number of messages,
as explained in [3].

2 Preliminaries

The L(1)-coloring problem on a graph G is exactly the classical vertex coloring
problem on G, where the minimum number of colors needed is A + 1 = x(G),
the chromatic number of G. In the case of L(1%)-colorings, the term t-chromatic
number of G, denoted by x¢(G), will be used. A lower bound for x;(G) is the
size w(Ag,¢) of the mazimum clique of the augmented graph Ag ¢, which has the
same vertex set as G and the edge [r, s] iff d(r,s) <t in G.

A t-independent set is a subset S; of vertices of G whose pairwise distance
is at least t + 1. If the size of S; is the largest possible, then S; is a mazimum
t-independent set, and is denoted by S;. Assigning different colors to different
t-independent sets one obtains a feasible L(1%)-coloring. Conversely, given a fea-
sible L(1%)-coloring, all the vertices with the same color form a t-independent
set. Any feasible L(1¢)-coloring uses at least as many colors as the minimum
number p;(G) of maximum ¢-independent sets that cover all the vertices, that
is x¢(G) > m(G).

Let G; and G2 be any two graphs, and let V(G) denote the vertex set of a
graph G. A t-homomorphism from G; to G, is a total function ¢ : V(G1) —
V(G2) such that: (i) ¢(u) = ¢(v) only if u = v or d(u,v) > t, and (ii) d(p(u), d(v))
< d(u,v) for all nodes u, v of G1. Now, if g is an L(d1,.. ., d;)-coloring of G2,
and ¢ is a t-homomorphism from G; to G4, then the composition g o ¢ is an
L(4y,...,d;)-coloring of Gy.

In this paper, brick representations of honeycomb grids are adopted where
each hexagon is represented by a rectangle spanning 3 rows and 2 columns. In
this way, a honeycomb grid H of size n = rc is represented by r rows and c
columns, indexed respectively from 0 to r — 1 (from top to bottom) and from 0
to ¢ — 1 (from left to right), with » > 3 and ¢ > 2. A generic vertex u of H is
denoted by u = (4,7), where i is its row index and j is its column index. Note
that each vertex (7, ), which does not belong to the grid borders, has degree 3
and is adjacent to the following 3 vertices: (i — 1,7), (1 + 1,4), and (4,5 + 1) if
i+ jis even, or (4,5 — 1) if i + j is odd.



3 Optimal L(1%)-coloring

In this section, optimal L(1%)-colorings of sufficiently large honeycomb grids will
be presented, which depend on the parity of ¢. In particular, when ¢ is odd the
lower bound on x¢(H) is given by w(Am,) and this bound is achievable. When
t is even, such a lower bound is not achievable, and a stronger lower bound is
needed which depends on p:(H). In both cases, the optimal colorings are based
on a grid tessellation.

3.1 L(1%)-coloring with t odd

Lemma 1. Let t = 8p + q, with p > 0 and ¢ = 1,3,5,7. There is an L(1%)-
coloring of a honeycomb grid H of size v X ¢, withr > t+ 1 and ¢ > [%1 +
[%J + 1, only if
24p®> +12p+2 ifqg=1
) 24p* +24p+6 ifqg=23
Xe(H) 2 w(Ane) = 3 9402 1 36p 4 14ifq = 5
24p> +48p + 24 ifq =17
Proof The maximum clique of A, is a diamond with [2] + |HL] +1

columns. The leftmost column has (t+1) —2 [£52] vertices, and each subsequent
column has two extra vertices up to the central column which counts t+1 vertices.
Each of the remaining | “ | columns, on the right of the central one, decreases
its size by two. In particular, the rightmost column has (t+1) —2 | 2L | vertices.
Depending on the value of ¢, the number of left and right columns is, respectively:

ifg=1

. 2p
_ 2p ifg=1,3 .
P43]:{2p+1ifq=57 |42 = 2p+1ifg=3,5
’ 2p+2ifqg="7

Note that the shape of the maximum clique varies with q. For instance, Fig. 2
shows the maximum cliques when ¢ = 1,3,5 and 7 and ¢ = 17,19,21 and 23,
respectively. Then,

=] 22
wAme) = (t+1)+ Y (t+1-20)+ > (t+1-2i)
=1 i=1
Solving the above formula with ¢ = 8p + ¢, the proof follows. v

By the above lemma, all the vertices of each diamond must get a different
color. An optimal L(1%)-coloring, with ¢ odd, can be easily achieved tessellating
the honeycomb grid by means of diamonds, all colored in the same way. Ob-
serving Fig. 2, one notes that diamonds have the same number of left and right
columns, i.e. they are symmetric, for ¢ = 1,5; while they have one more right
column, i.e., they are asymmetric, for ¢ = 3, 7. Therefore, there are two possible
tessellations depending on the symmetry of the diamonds, which are illustrated
in Figure 3 (where ¢t = 13 and ¢ = 15 are assumed).

In the following, it is shown how a color can be assigned in constant time to
any vertex u of the grid. The coloring depends on the symmetry of the diamond.



gigiaiaieisisizisisleizisisisisNsRN
Pp+ 1

7,7,7p2Z<§Ep77777%7Z>§§p117773244775<
THH TN A N HE
A N N LA
piglaininini s iainiainisininisininl
NG A T A
HH NI H AN A HH NG H
77757,,,,,\KZ,,,,§\,
O H G HTH I H NG
HHHHed2 HHHHEE HHHH HE
Bylgholic ol pipl B Rl o ialinlalsin
Baipininisininl sl Celinininlglirns
pipiaiisiaisinisininisinizinisizish

Fig. 2. The maximum cliques (diamonds) for ¢t = 17,19, 21 and 23.

Coloring with symmetric diamonds in O(1) time Consider the case with
t = 8p + 1 (the other case with ¢ = 8p + 5 can be dealt with similarly). The
diamond has as many right columns as its left columns, namely 2p (see the
leftmost diamond in Fig. 2).

Observe the honeycomb tessellation by the symmetric diamonds, and restrict
the attention to the rectangle R, consisting of the leftmost 4p + 1 columns and
the uppermost w(Am gp+1) = 24p?+12p+1rows of the grid, as depicted in Fig. 4
(left) for t = 9, namely p = 1. Clearly, the top left corner of R has coordinates
(0,0). Sequentially scanning top-down the vertices in column 0 of R, 4p + 1
different diamonds are encountered. Moreover, for each traversed diamond, a
different column is encountered and overall all the 4p + 1 diamond columns,
and hence all the diamond vertices, are met. By the above property, assigning a
different color to each vertex in column 0 of R allows each diamond within the

tessellation to be colored the same using the minimum number of colors.
To achieve such a goal, let the diamond columns be numbered from left to

right, starting from 0 and ending at 4p. The diamond columns met along column
0 of R follow the order shown in Table 2. Formally, denoted by z(j) the order
in which the diamond column j is encountered, z(j) = j(4p — 1) mod (4p + 1).
Conversely, given the order z in which a column is encountered, the column
index col(z) = 2pz mod (4p + 1).

order (0/1]|2] 3 4 |...[4p—1] 4p
column|(0|2p|4p|2p —1|4p—1|...| 1 |2p+1

Table 2. The order in which diamond columns are encountered.
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Fig. 3. The honeycomb tessellation: on the left, by the symmetric diamonds (t = 13);
on the right, by the asymmetric diamonds (¢t = 15).

Moreover, the size, i.e. the number of vertices, of the diamond column j is:

N J4p+2425 f0<i<2p
SZZC(J)_{12p+2—2jif2p§j§4p

Finally, the number of vertices of a diamond that have been encountered before
the topmost vertex of column j is:

z(j)—1
pred(j) = Z size(col(k)).
k=0

As an example, z(j), size(j) and pred(j) are also shown in Fig. 4 for t =9 (i.e.
=1).

P N())w, in order to assign different colors to all the vertices in column 0 of
R, let the color of vertex (i,0) be simply g(i,0) = i. The coloring of the entire
rectangle R is obtained assigning to the remaining columns a suitable cyclic shift
of the coloring of column 0. Such a cyclic shift is chosen so that all the diamond
columns with the same number are colored the same in all diamonds. To do
this, let the shift for column j be denoted by A(j). Given the above coloring for
column 0 of R, it is easy to see that A(j), where 0 < j < 4p, must be:

Al) = {(pred(j) +2p) — (2p—j)f0<j<2p
= (ored(j) +2p) — (- 2p) if 2p < j < 4p

In conclusion, given any vertex (i,j) € R, its color is defined as

g(i,j) = (A(§) + i) mod (24p* + 12p + 1).
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Fig. 4. The diamond columns encountered by scanning column 0 of R (left). The
coloring of H by copies of R (right).

The coloring of the entire grid H is obtained by defining a t-homomorphism
¢ : V(H)— V(R), which can be viewed as a covering of H with colored copies
of R. Such copies are shifted up by one row, to reproduce, within each rectangle,
the same diamond pattern as in R, as shown in Fig. 4 (right). Hence, for any
vertex (i,7) € H, its color f(i,7) is given by g(¢(4,5)), where

#(i,j) = ((z + M}JTD mod (24p® + 12p + 1), j mod (4p + 1)) )

Observe that [TPJFLJ counts how many rows the rectangle to which (i, j) be-

longs is shifted up with respect to the leftmost rectangle containing row i. Clearly,
if (i,7) € R then ¢(i, ) = (i,7) and thus f(i,j) = g(4,7)- The correctness easily
follows since all diamonds are colored the same, while the t~-homomorphism pro-
vides a constant time coloring of each vertex which depends only on the vertex



indices. Observe also that R contains O(p®) vertices, and that the computation
of each A(j) requires O(p) time. Since ¢ (and hence p) is a costant, the coloring
of vertex (i, j) takes O(1) time.

Coloring with asymmetric diamonds in O(1) time Consider now the case
with ¢t = 8p + g, where ¢ = 3,7. The diamond has one more right column than
its left columns (see Fig. 2). Due to the fact that the diamonds are horizontally
aligned in the tessellation (see Fig. 3), the coloring is much simpler than in the
symmetric case. Let le ft and right denote the number of left and right columns,
respectively. As one can check in the proof of Lemma 1:

[ 2p ifg=3 .. [2p+1ifg=3
kf“‘{2p+1ﬁq=7 ”W”_{2p+2ﬁq:7

Observe the honeycomb tessellation by the asymmetric diamonds, and re-
strict the attention to the rectangle R, consisting of the leftmost le ft +right + 1
columns and the uppermost ¢ — left — 1 rows of the grid. As before, the top
left corner of R is vertex (0,0). The number of vertices in R is exactly w(Am,),
where 12

24p* +24p+5 ifg=3
w(Amy) = { 24p? +48p + 23 ifq =7

Any coloring of the grid H obtained by covering H by colored copies of R
leads to a feasible and optimal coloring (see Fig. 5). Let R be colored in row-
major order. In details, given any vertex (i,j) € R, let its color be

9(i,5) = (i(left + right + 1) + j) mod w(Am,).

A i

Foeh H H | H o

e
| AN /

R

i Sz%:: 1

Fig. 5. The coloring of H by copies of R in the asymmetric case.



The coloring of the entire grid H is obtained by defining a t-homomorphism
¢:V(H) — V(R). For any vertex (i,7) € H, f(i,5) = g(¢(i,7)) where

o(i,7) = (z mod (t — left), (j — right L—ZTftJ) mod (left + right + 1))

3.2 L(1%)-coloring with t even

Lemma 2. Let t = 8p + q, with p > 0 and q = 0,2,4,6. There is an L(1%)-
coloring of a honeycomb grid H of sizer X ¢, withr > t+1 and ¢ > LEJ + fﬁ'l +1,
only if

24p> +6p+1 ifg=0

24p® + 18p+4 ifqg=2

24p® +30p+ 10 ifq = 4

24p? +42p+19ifq =6

xt(H) > w(Ag) =

Proof As in Lemma 1, the maximum clique of Ap; is again a diamond,
which can be symmetric or asymmetric. However, there are some holes (i.e.,
vertices not included in the clique) on a single border column of the diamond.
The holes are located according to the center of the diamond. The center is
the middle vertex (i, ) of the central column, which can be termed either left
center or right center depending on whether it is horizontally connected either
to vertex (4,7 — 1) or (4,5 + 1), respectively. In the symmetric case, the holes are
located in the furthest column on the opposite side with respect to the horizontal
connection of the center. Instead, in the asymmetric case, the holes are located
on the same side as the center connection.

To compute the clique size w(Am ), a reasoning similar to that in the proof
of Lemma 1 is followed. As an example, Fig. 6 shows the maximum cliques when
g =0,2,4 and 6 and ¢t = 16,18,20 and 22, respectively (in such a figure, the
clique centers are depicted by black dots). \Y

A stronger lower bound based on t-independent sets In contrast to the
case t odd, when ¢ is even the lower bound on the number of colors given by
w(Ag,+) is no more reachable by an L(1%)-coloring. Indeed it is possible to derive
a stronger lower bound by considering how a maximum ¢-independent set S}
can be built.

Lemma 3. When t is even, the minimum distances among three closest vertices
belonging to S; aret+1,t+1 and t + 2.

Proof Let a vertex u = (4,) of H be a left verter, if it is horizontally con-
nected to vertex s = (4,j — 1), or a right vertex if it is connected to d = (i, +1).
By contradiction, assume there are 3 vertices u,v and w such that d(u,v) =
d(v,w) = d(w,u) =t+1. W.lo.g., let u be a left vertex. Since ¢ + 1 is odd, then
both v and w must be right vertices. This implies that d(v, w) must be even and
greater than ¢. But this is a contradiction, and d(v, w) = ¢ + 2. \vJ
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Fig. 6. The maximum cliques (diamonds) for ¢ = 16, 18,20 and 22. The number of
holes is denoted by h.

Given a vertex v, let By(v) be the set of vertices at distance exactly ¢ + 1
from v. One can show that |By(v)| = 3t + 3 for any ¢ even. To build a maximum
t-independent set that contains v, let select as many vertices as possible among
those in By(v). By Lemma 3, since those vertices are all at distance t + 1 from
v, they must be at distance at least ¢t + 2 among them.

Lemma 4. When t is even, there is no way to select 6 vertices ug, Uy, - -.,us of
By(v) such that d(u;, (it1) moa s) = t + 2.

Proof  Since any two consecutive vertices of B(v) are at distance 2, no more

than one out of % consecutive vertices of B;(v) can be selected. Therefore at

most [%ﬂfJ = 5 vertices can be selected. \vJ
2

Lemma 5. When t is even, there is no way to select 6 vertices ug,uy,...,us
such that: (1) u; belongs to By(v) for i = 1,...,5; (2) d(u;,ujr1) = t + 2, for
i=1,...,4; and (3) d(ug,u1) = d(ug,us) =t + 1.

Proof After selecting wy,...,us on By(v) such that d(u;,u;+1) =t + 2 for
i=1,...,4, there are t — 2 vertices of B;(v) left out between us and u;. Then,
there are t vertices at distance ¢t + 2 from v between us and u;. Moreover, the
shortest path from wus to u1, which does not include any other vertex of By(v),
has length 2t. Therefore, there is no way to choose on such a path any vertex ug
at distance ¢t + 1 from both ug and wus. \Y

By the previous lemmas, to build a maximum ¢-independent set including a
given vertex v, one should choose the six vertices closest to v such that at most



four of them are at distance t+1 from v, and at least two of them are at distance
t 4+ 2. Moreover, in a maximum t¢-independent set such a property should hold
for any of its vertices, and in particular for the 6 vertices closest to v.

Lemma 6. Lett =8p+q, with p > 0 and q = 0,2,4,6. The minimum number
of mazimum t-independent sets that cover a sufficiently large honeycomb grid H
18:

24p> +8p+1 ifg=0
24p* +20p+4 ifqg=2
24p? + 32p+ 11 if g = 4
24p? +44p+20ifq =6

pe(H) >

Proof  Choose a vertex v of S} and its 6 closest vertices such that 4 of them
are at distance ¢t + 1 and the remaining 2 are at distance ¢ + 2. By Lemma 2,
each of these vertices can be perceived as a center of a diamond. The vertices
of each diamond must belong all to different independent sets because they are
pairwise at distance at most ¢. Building such a diamond around each vertex of
S}, one obtains a tessellation of H with some uncovered vertices between any
two diamonds whose centers are at distance ¢ + 2. A possible placement of the
vertices of the maximum ¢-independent set is depicted in Figure 7 for t = 8 (on
the left) and ¢ = 10 (on the right). Note that there is no way to decrease the
number of uncovered vertices because, by Lemmas 4 and 5, v and its 6 closest
vertices are as dense as possible. Clearly, these uncovered vertices cannot belong
to Sf.

SAZANZANV4N I
o ANANNT T ]
N\

[ T T VT TN

V1
C TN
[
[T
[
[T
[

Fig. 7. The maximum 8-independent set (left) and 10-independent set (right) consist-
ing of the diamond centers (depicted by black dots). The uncovered vertices are shown
by white circles.



Since every center has two closest vertices at distance ¢ + 2, by observing
Figure 7, one notes that there are two groups of uncovered vertices adjacent to
any diamond: one group is above the diamond left columns and the other group
is below the diamond right columns. Now, a mapping can be defined between
each diamond center and the uncovered vertices by assigning to a diamond with
a left center the uncovered vertices above its left columns, and assigning to a
diamond with a right center the uncovered vertices above its right columns. Note
that if the two diamond centers are at distance t + 2, they are both either left
or right centers. Hence, the mapping assigns the uncovered vertices between the

two diamonds to one and only one of them.
Finally, the number of uncovered vertices associated to each diamond is the

minimum between the number of left and right columns of the diamond, which
in turn is exactly equal to the number A of holes of the diamond, that is: h = 2p
if g=0,2,or h =2p+ 1if ¢ = 4,6. Hence, only one vertex out of the diamond
vertices and its holes, that is one out of w(Ag) + h vertices, can belong to Sy.
Therefore, pi(H) > w(Ant) + h, and by Lemma 2 the proof follows. \Y

Optimal coloring By Lemma, 6, to derive optimal colorings when ¢ is even, one
only needs to consider a diamond enlarged in such a way that it includes also
all its h holes. Then one tessellates the grid by means of the enlarged diamonds,
using exactly the same techniques already seen in the case that ¢ is odd.

4 Conclusion

Table 3 summarizes the results for optimal L(1%)-coloring for the three grids
based on regular tessellations. By observing Table 3, one notes that the pro-
posed colorings for honeycomb grids use less colors than those required by the
hexagonal and square grids for any ¢ > 1. Therefore, honeycomb grids beat
the hexagonal and square grids in terms of both network cost and channel re-
quirement. However further work has still to be done on honeycomb grids. For
instance, one could study the L(d;,d2)- and L(d;,1t~1)-coloring problems with
arbitrary &, d, or t.
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