
Channel Assignment on Strongly-Simplicial Graphs �

A.A. Bertossi M.C. Pinotti R. Rizzi
Dept. Comp. Science Dept. Comp. Science & Telecomm. Dept. Comp. Science & Telecomm.

University of Bologna, Italy University of Tren to, Italy University of Trento, Italy
bertossi@cs.unibo.it pinotti@science.un itn.i t rrizzi@science.unitn.it

Abstract

Given a vector (�1; �2; : : : ; �t) of non increasing pos-
itive inte gers, and an undirected graph G = (V;E),
an L(�1; �2; : : : ; �t)-coloring of G is a function f from
the vertex set V to a set of nonnegative inte gers such
that jf(u) � f(v)j � �i, if d(u; v) = i; 1 � i � t;
where d(u; v) is the distance (i.e. the minimum num-
ber of edges) between the vertic es u and v. This
paper presents e�cient algorithms for �nding opti-
mal L(1; : : : ; 1)-colorings of trees and interval graphs.
Moreover, e�cient algorithms are also provided for
�nding approximate L(�1; 1; : : : ; 1)-colorings of trees
and interval graphs, as well as appr oximateL(�1; �2)-
colorings of unit interval graphs.

1 Introduction

In the channel assignment problem for wireless com-
munication netw orks, the scarce radio spectrum is par-
titioned into a set of disjoint channels. The same chan-
nel can be reused by tw ostations at the same time
provided that no interference arises. The interference
phenomena are so strong that even di�erent channels
assigned to tw o near stations must be su�ciently apart
in the radio spectrum. T oavoid suc h interference, a
separation vector (�1; �2; : : : ; �t) of non increasing posi-
tive integers is in troduced in such a way that channels
assigned to interfering stations at distance i be at least
�i apart, with 1 � i � t, while the same channel can be
reused only at stations whose distance is larger than
t [6]. The purpose of channel assignment algorithms
is to assign channels to the stations so that the above
channel separations are veri�ed and the di�erence be-
tw een the highest and lowest channels assigned is kept
as small as possible.

F ormally, the channel assignment problem can be
modeled as an appropriate coloring problem on an
undirected graph G = (V;E) representing the wire-

�This work is supported by MIUR-RealWine Research Pro-
gram.

less netw ork topology, whose vertices in V correspond
to stations, and edges in E correspond to pairs of sta-
tions that can hear eac h other transmission. Specif-
ically , given a vector (�1; �2; : : : ; �t) of non increasing
positive integers, and an undirected graph G = (V;E),
an L(�1; �2; : : : ; �t)-coloring of G is a function f from
the vertex set V to the set of nonnegative integers
f0; : : : ; �g such that jf(u) � f(v)j � �i, if d(u; v) =
i; 1 � i � t; where d(u; v) is the distance (i.e. the
minimum number of edges) between the vertices u and
v. An optimal L(�1; �2; : : : ; �t)-coloring for G is one
minimizing � over all suc h colorings.Note that, since
the set of colors includes 0, the overall number of colors
involved b y an optimal coloringf is in fact � + 1 (al-
though, due to the channel separation constraint, some
colors in f1; : : : ; �� 1g might not be actually assigned
to any vertex). Thus, the channel assignment problem
consists of �nding an optimal L(�1; �2; : : : ; �t)-coloring
for G.

The channel assignment problem has been widely
studied in the past [1, 2, 3, 4, 5, 7, 9, 10]. This paper
further investigates the channel assignment problem for
particular separation vectors and tw o speci�c classes of
graphs { trees and interval graphs.

First, the notions of t-simplicial and strongly-
simplicial vertices of a graph will be in troduced.
Two algorithms will be devised to optimally solve
the L(1; : : : ; 1)-coloring problem on trees and interval
graphs, which run in O(nt) time, where n is the number
of vertices. Such algorithms will then be generalized
to �nd approximate solutions for the L(�1; 1; : : : ; 1)-
coloring problem on the same classes of graphs. More-
over, approximate L(�1; �2)-colorings of unit interval
graphs are also devised.

2 Preliminaries

Throughout this paper, it is assumed that G is a
connected undirected graph with at least 2 vertices and
that the separations verify �1 � �2 � : : : � �t.

The L(1; : : : ; 1)-coloring problem can be reduced to
a classical coloring problem on an augmented graph
AG;t obtained as follo ws. The vertex set of AG;t is

1

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

the same as the vertex set of G, while an edge uv be-
longs to the edge set of AG;t i� the distance d(u; v)
betw een the vertices u and v in G satis�es d(u; v) � t.
The size of the largest clique in AG;t is a lo w er bound
for the L(1; : : : ; 1)-coloring problem. Clearly, a low er
bound for the L(1; : : : ; 1)-coloring problem is also a
low erbound for the L(�1; 1; : : : ; 1)-coloring problem,
with �1 � 1.

For any value of t � jV j, let ��G;t denote the min-
imum value of � over all the L(1; : : : ; 1)-colorings f :
V ! f0; : : : ; �g of G = (V;E). Note that ��G;1 � 1
since G is assumed to be connected and has at least 2
vertices, and that ��G;t + 1 is at least as large as the
size of the largest clique of the augmented graph AG;t.

Lemma 1 The largest color needed by any
L(�1; �2; : : : ; �t)-coloring is at least max1�i�tf�i��G;ig:

Given G = (V;E), let S be a subset of V . Then G[S]
denotes the subgraph of G induced by S, i.e. G[S] =
(S; fuv 2 E : u; v 2 Sg). A vertex x of G is called
t-simplicial when, for every pair of vertices u and v
such that d(x; u) � t and d(x; v) � t, it holds also that
d(u; v) � t. A vertex x is called strongly-simplicial
when x is t-simplicial for any value of t.

Lemma 2 Given G = (V;E) and an integer t, let v be
a t-simplicial vertex of G. Consider G0 = G[V � fvg]
and let f 0 be an optimal L(1; : : : ; 1)-coloring of G0 us-
ing ��G0;t as the largest color. De�ne an L(1; : : : ; 1)-
coloring f of V extending f 0 to v so that f(x) =
min fi : i 6= f 0(u) for each u 2 G0 with d(u; v) � tg
if x = v, and f(x) = f 0(x) if x 2 V � fvg. Then f is
an optimal L(1; : : : ; 1)-coloring for G.

Proof Clearly, ��G;t � ��G0;t. If f(v) � ��G0;t, then
f is trivially optimal. Assume therefore that f(v) >
��G0;t, and let Nt(v) = fu 2 V � fvg : d(u; v) � tg.
Then, ff 0(u) : u 2 Nt(v)g = f0; : : : ; ��G0;tg. Since
v is t-simplicial, an y tw overtices in Nt(v) [fvg are
at distance at most t, and hence Nt(v) [fvg is a
clique of AG;t. Since jNt(v) [fvgj = ��G0;t + 2, and
f(v) = ��G0;t + 1, then f is optimal.

Note that verifying whether a vertex is t-simplicial
or not can be done in polynomial time. Therefore,
Lemma 2 implies the existence of an algorithm that
optimally solves in polynomial time the L(1; : : : ; 1)-
coloring problem on an yclass of graphs closed under
taking induced subgraphs and with the property that
ev ery graph of that class has a t-simplicial vertex. In
this paper, we will look more closely at two classes of
graphs with this property: trees and interval graphs.

3 Interval Graphs

A graph G = (V;E) is termed an interval graph if it
has an interval repr esentation, namely, if eac h vertex
of V can be represented by an interval of the real line
such that there is an edge uv 2 E if and only if the
in tervals corresponding to u and v in tersect.

More formally, let the graph G = (V;E) ha ven
vertices. Two integers lv and rv , with lv < rv , (the
interval endpoints) are associated to every v ertexv of
G, and there is an edge uv 2 E if and only if lu < lv <
ru or lu < rv < ru. Without loss of generality, one can
assume that all the 2n interval endpoints are distinct
and are indexed from 1 to 2n.

Lemma 3 Every interval graph has a strongly-
simplicial vertex.

Proof Let G = (V;E) be an interval graph with
n vertices, and consider its interval representation. It
will be now shown that x is t-simplicial for any value
of t. Let x be the vertex of G whose left endpoint
lx is maximum. Consider tw overtices u and v suc h
that d(u; x) � t and d(v; x) � t. Without loss of
generality, let lu < lv < lx. Since there is a shortest
path sp(u; x) betw eenu and x, there m ust be a vertex
w 2 sp(u; x)� fxg such that lw � lv < rw. Therefore,
d(u; v) � d(u;w) + 1 � d(u; x) � t, and vertex x
is t-simplicial. Since such a condition holds for any
t � n, x is strongly-simplicial.

Lemmas 2 and 3 suggest to scan the vertices of an
in terval graph by increasing left endpoints since, in this
w ay, the t-simplicial vertex v of the induced subgraph
G[f1; : : : ; vg] is processed at every time, for 1 � v � n.

3.1 Optimal L(1; : : : ; 1)-coloring

In this subsection, an O(nt) time algorithm is pro-
posed to �nd an optimal L(1; : : : ; 1)-coloring of inter-
val graphs, which exploits the properties given in Lem-
mas 2 and 3.

Consider the interval representation of G, and as-
sume that the intervals (vertices) are indexed by in-
creasing left endpoints, namely l1 < l2 < : : : < ln.
For eac h endpoint k, an interval v is called op en if
lv � k < rv and deepest if it is open and its righ t
endpoint is maximum.

The algorithm scans the 2n interval endpoints from
left to right, and it maintains a family of t + 1 sets of
colors, called palettes, denoted by P0; P1; : : : ; Pt. F or
each endpoint k, the palette P0 contains the readily
usable colors, while the palette Pt includes the colors
used for the currently open intervals. Moreover, the

2

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Algorithm Interval-L(1; : : : ; 1)-coloring (G; t);

set Lv := ; for ev eryv 2 V ;
set Pi := ; for i = 0; : : : ; t; max-r := 0; ��G;t := �1;
for k := 1 to 2n do

if k = lv for some v, then
if P0 = ; then

��G;t := ��G;t + 1;
insert ��G;t in P0;

extract a color c from P0 and set f(v) := c;
insert color c into both Lv and Pt;
if rv > max-r then
max-r := rv ;
deep := v;

otherwise, if k = rv for some v, then
for each color c in Lv do

let j be such that c 2 Pj ;
extract c from Pj and insert c into Pj�1;
if j > 1 then insert c into Ldeep;

Figure 1. The algorithm for optimal L(1; : : : ; 1)-
coloring an interval graphG = (V;E).

generic palette Pi, with 1 � i � t� 1, contains the col-
ors that can be reused as soon as all the next i deepest
intervals will be ended.

Whenever a new in terval v begins, that is a left
endpoint lv is encountered, v is colored by a color c
extracted from the palette P0 and, if needed, the deep-
est interval is updated. Moreover, the used color c is
put both in the palette Pt and in the set Lv of colors
depending on vertex v.

Whenever an in terval v ends, that is a right end-
point rv is encountered, every color c belonging to Lv

is moved from its current palette, say Pj , to the pre-
vious palette Pj�1 and it is inserted in the set Ldeep

of the colors depending on the current deepest interval
deep.

Figure 1 illustrates the algorithm for optimal
L(1; : : : ; 1)-coloring of interval graphs.

Lemma 4 Consider to be at the b eginning of iteration
k of the algorithm. L et u be any vertex yet uncolor ed
and let w be any vertex color ed with some color c. As-
sume c 2 Pj . L etz be the vertex with rz maximum and
such that c 2 Lz. Then the following holds:

(i) d(u;w) > t� j;

(ii) if lu > rz, then d(u;w) > t� j + 1;

(iii) if lu < rz, then d(u;w) = t� j + 1.

(iv) the minimum distance from z to a vertex colored
c is t� j.

Proof The statement is vacuously true before the
�rst iteration, when every vertex is still uncolored. As-
sume that the statement holds before iteration k, and
let us show that it holds also after iteration k. There
are tw o cases to consider, depending on whetherk cor-
responds to a left or right interval endpoint.

Case 1: At iteration k, k = lv for some vertex v.
In this case, it is enough to check what happens for

w = v. Indeed, during iteration k, v is the only vertex
which gets assigned a color, namely c, which is inserted
both into Pt and Lv. Moreover, no other color moves to
a palette of low er index.Hence, j = t and z = v = w.
Since u is uncolored whereas v has just been colored,
then u 6= v which accounts for (i): d(u; v) > 0 = t� t.
Clearly, if lu > rz, or in other words lu > rw , then
d(u;w) > 1, which gives (ii). Moreover, if lu < rz, or
in other words lu < rw, then d(u;w) = 1, which giv es
(iii). Finally, (iv) is trivial.

Case 2: At iteration k, k = rv for some vertex v.
Here one needs only to chec kwhat happens when

c 2 Lv. Now, since c 2 Lv and lu > rv, then
d(u;w) > t � j follo ws since (ii) was true at the
beginning of iteration k. F urthermore, in case j > 0,
then c 2 Ldeep. If lu > rdeep, then d(u; v) > t� j + 1,
since in any path from u to v the vertex closest to u
must be uncolored. Moreover, (ii) follo ws from the
fact that, clearly ,z = deep. Besides, if lu < rz, or
equivalently lu < rdeep, then d(u;w) = t� j+1 follows
since (iv) w as true at the beginning of iteration k.
Finally, d(deep; v) = 1, which combined with (i) gives
(iv).

Theorem 1 The Interval-L(1; : : : ; 1)-coloring algo-
rithm gives an optimal coloring and runs in O(nt) time.

Proof The correctness follows from Lemmas 2, 3,
and 4.

All the palettes Pi, 0 � i � t and all the sets Lu,
with 1 � u � n, are implemented by double linked lists,
so that insertions and extractions can be performed
in constant time by means of a vector C, indexed by
colors, where each entry C[c] stores the current palette
index j, to which c belongs, along with a pointer to the
position of c within the double linked list Pj .

In order to evaluate the overall time complexity,
observe that the algorithm consists of 2n iterations
and, at every iteration k, eac h step takes O(1) time,
except the scan of list Lv whenever in tervalv ends.
Each color c, after being assigned to a vertex, goes
through t lists Ldeep before to be reassigned to another

3

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

vertex. In fact, every time c moves from palette Pj
to Pj�1, the distance between the last vertex colored
c and the uncolored vertices increases by one as
shown in Lemma 4. Hence, between tw oconsecutive
assignments of the same color c, there are at most
t + 1 moves, each performed in a di�erent iteration
and each taking constant time. Let mc be the overall
number of vertices of G colored c. Therefore, the total
number of moves for color c is at most (t + 1)mc.
Summing up over all the used colors, the overall
number of moves is at most

P
c(t + 1)mc = O(nt),

since
P

cmc = n. In conclusion, the algorithm takes
O(nt) time provided that the interval representation of
G is available and the 2n in terval endpoints are sorted.

3.2 Approximate L(�1; 1; : : : ; 1)-coloring

In this subsection, a generalization of the Interval-
L(1; : : : ; 1)-coloring algorithmn is proposed to �nd an
approximate L(�1; 1; : : : ; 1)-coloring.

A t �rst, the algorithm computes ��G;1 and ��G;t

invoking twice the Interval-L(1; : : : ; 1)-coloring algo-
rithm. As before, the palettes P0; P1; : : : ; Pt are
maintained, but P0 is initialized to the set of colors
f0; 1; : : : ; Ug, where U = ��G;t + 2(�1 � 1)��G;1.

The main di�erence, with respect to the Interval-
L(1; : : : ; 1)-coloring algorithm, relies on the fact that
when a color c is extracted from P0 and assigned to
vertex v, the �1-separation constraint must be guaran-
teed. Therefore, all the colors in

fmaxf0; c� �1 + 1g; : : : ;minfc+ �1 � 1; Ugg ;

but c itself, are inserted in P1. In this way, such colors
cannot be reused until the in tervalv ends.

Theorem 2 The Interval-L(�1; 1; : : : ; 1)-coloring al-
gorithm gives a 3-appr oximate coloring using ��G;t +
2(�1 � 1)��G;1 as the largest c olor.

Proof The correctness follows from Theorem 1 and
from the fact that, once an interval is coloredc, the �1-
separation constraint is achiev ed b y inserting inP1 the
2(�1 � 1) closest colors to c.

One also needs to sho wthat the colors initially in
P0 are enough to obtain a legal L(�1; 1; : : : ; 1)-coloring
of G. When a color c is assigned to an interval v,
all intervals in G[f1; : : : ; vg] at distance smaller than
or equal to t from v must get a di�erent color since
v is t-simplicial. Hence, all their colors, which are
at most ��G;t, must belong to P1 [P2 [: : : [Pt.
Moreover, due to the �1 separation-constraint, at most
2(�1 � 1)��G;1 colors have been forced into P1. Hence,

jP1 [P2 [: : : [Ptj � ��G;t + 2(�1 � 1)��G;1 and since
initially there were ��G;t + 2(�1 � 1)��G;1 + 1 colors in
P0, it holds jP0j� jP1 [P2 [: : : [Ptj � 1. Thus, there
is always an available color that can be assigned to v.

In order to �nd the approximation factor, the ratio
between the upper bound U on the maximum color
used by the above algorithm and the low erbound,
L = max

�
�1�

�
G;1; �

�
G;t

	
on the maximum color needed,

given by Lemma 1, is

U

L
=

��G;t + 2(�1 � 1)��G;1

max
n
�1��G;1; �

�
G;t

o :

If �1�
�
G;1 � ��G;t, the above ratio U=L becomes

U

L
=

��G;t + 2(�1 � 1)��G;1

�1��G;1

�

3�1�
�
G;1 � 2��G;1

�1��G;1

� 3�
2

�1
� 3:

If �1�
�
G;1 < ��G;t, the ratio U=L is

U

L
=

��G;t + 2(�1 � 1)��G;1

��G;t

�

3��G;t � 2��G;1

��G;t

� 3� 2
��G;1

��G;t

� 3:

3.3 ApproximateL(�1; �2)-coloring of unit interval
graphs

This subsection deals with the L(�1; �2)-coloring
problem on the class of unit interval graphs. This is
a subclass of the interval graphs for which all the in-
tervals are of the same length, or equivalen tly, for which
no interval is properly contained within another. Re-
calling that vertices are assumed to be indexed by in-
creasing left endpoints, the main property of unit in-
terval graphs is that whenever v < u and vu 2 E, then
the vertex set fv; v+1; : : : ; u�1; ug forms a clique and
u � v + ��G;1 (as a consequence, the maximum vertex
w at distance 2 from v veri�esw � v + 2��G;1).

In this subsection, it is assumed that the unit inter-
val graph to be colored is not a path, since otherwise
the optimal L(�1; �2)-coloring algorithm in [10] can be
applied.

In Figure 2, a linear time algorithm, called Unit-
In terval-L(�1; �2)-coloring, is presented. The algorithm
distinguishes tw o cases and uses either at most�2 ad-
ditional colors with respect to the optimum, when �1 >
2�2, or at most 2�2 additional colors when �1 � 2�2.

4

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Algorithm Unit-Interval-L(�1; �2)-coloring (G);

if �1 > 2�2 then
for ev ery vertex v 2 V do

set p := (v � 1) mod (2��G;1 + 2);
if 0 � p � ��G;1

then f(v) := �1(�
�
G;1 � p)

else f(v) := �1(�
�
G;1 � p) + �2;

if �1 � 2�2 then
for ev ery vertex v 2 V do
f(v) := (2�2(v � 1)) mod (2�2�

�
G;1 + 3�2);

Figure 2. The L(�1; �2)-coloring algorithm for a
unit interval graph G = (V;E).

Theorem 3 The Unit-Interval-L(�1; �2)-coloring al-
gorithm gives an appr oximate coloring using as the
largest color �1�

�
G;1 + �2, if �1 > 2�2, or 2�2�

�
G;1 +3�2,

if �1 � 2�2.

Proof When �1 < 2�2, the algorithm colors the
vertices b y repeating thefollo wing sequence of length
2��G;1 + 2:

0; �1; 2�1; : : : ; �
�
G;1�1; �2; �1+�2; �1+2�2; : : : ; �

�
G;1�1+�2:

Consider a vertex v colored c = j�1, with 0 � j �
��G;1 (an analogous reasoning holds when c = j�1+�2).
First of all, the color c is used exactly once within
the sequence. Thus if c is assigned to vertex v, then
it is reused at vertex v + 2��G;1 + 2, which is at dis-
tance at least 3 from v, since otherwise ��G;1 would
not be optimal. In order to verify the �1 separation-
constraint, it remains to check that all the colors
c��1+1; : : : ; c�1; c+1; : : : ; c+�1�1 cannot be reused
for any vertex at distance 1 from v. Among such colors,
only the color c+ �2 is used in the sequence, and it is
assigned to the vertices v�(��G;1+1), as one can easily
check by inspecting the sequence above. The vertices
v and v � (��G;1 + 1) cannot be adjacent, since other-
wise there would be a clique of size ��G;1+2, including
vertices v; v � 1; : : : ; v � (��G;1 + 1), which contradicts
the optimality of ��G;1. Moreover, the �2 separation-
constraint trivially follows from the fact that the colors
c� �2+1; : : : ; c� 1; c+1; : : : ; c+ �2� 1 are never used.

When �1 � 2�2, the algorithm colors the vertices b y
repeating the following sequence of length 2��G;1 + 3:

0; 2�2; 4�2; : : : ; 2(�
�
G;1+1)�2; �2; 3�2; 5�2; : : : ; 2�

�
G;1�2+�2:

Consider, again, a vertex v colored f(v) = c. As in the
previous case, the color c is used exactly once within

the sequence. Thus if c is assigned to vertex v, then it
is reused at vertex v + 2��G;1 + 3, which cannot beat
distance 1 or 2 from v. As regard to the �1 separation-
constraint, note that, other than c, only the colors c��2
are used in the sequence. They are assigned to vertices
v � (��G;1 + 1), as one can easily check by computing
f(v � (��G;1 + 1)). Those vertices cannot be adjacent
because otherwise the vertices v; v� 1; : : : ; v� (��G;1 +
1) would form a clique, con tradictingthe optimality
of ��G;1. F urthermore, the colors c � �2 + 1; : : : ; c �
1; c+1; : : : ; c+ �2� 1 are never used, and hence the �2
separation-constraint holds too.

In order to �nd the approximation factor, observe
that, by Lemma 1, the largest color used by any
L(�1; �2)-coloring is at least L = max

�
�1�

�
G;1; �2�

�
G;2

	
.

When �1 > 2�2, L becomes �1�
�
G;1 since �2�

�
G;2 �

2�2�
�
G;1 < �1�

�
G;1. In contrast, when �1 � 2�2, L can

be either �1�
�
G;1 or �2�

�
G;2. On the other hand, the

maximum color U used by the algorithm is �1�
�
G;1+ �2

when �1 > 2�2, and 2�2�
�
G;1 + 3�2 when �1 � 2�2.

Therefore, it holds:

U

L
=

8>><
>>:

�1�
�

G;1+�2

�1�
�

G;1

if �1 > 2�2;

2�2�
�

G;1+2�2
maxf�1��G;1;�2��G;2g

if �1 � 2�2:

Although the ratio U=L can be evaluated exactly
since the values of ��G;1 and ��G;2 can be computed
in polynomial time invoking the Interval-L(1; : : : ; 1)-
coloring algorithm, the worst value U=L can be
bounded from above by a constant, independent of G,
�1 and �2.

Speci�cally, when �1 > 2�2, the ratio is

�1�
�
G;1 + �2

�1��G;1

= 1 +
�2
�1

1

��G;1

�
3

2
;

because �2
�1

1
��
G;1

� 1
2 from the assumption that the unit

in terval graph is connected.
Moreover, when �1 � 2�2 and L = �1�

�
G;1; the above

ratio becomes

2�2�
�
G;1 + 2�2

�1��G;1

= 2
�2
�1

1 +

1

��G;1

!
� 3;

since �2
�1

� 1 and 1
��
G;1

� 1
2 from the assumption that

the unit interval graph is not a path.
Finally, when �1 � 2�2 and L = �2�

�
G;2,

2�2�
�
G;1 + 2�2

�2��G;2

= 2
��G;1

��G;2

1 +

1

��G;1

!
� 3;

5

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

since
��G;1
��
G;2

� 1 and 1
��
G;1

� 1
2 as in the previous case.

In conclusion, the Unit-Interval-L(�1; �2)-coloring
algorithm giv es an approximate solution which, in
the worst case, is far from the optimal by a factor of 3.

It is worth to note that, when �1 = 2 and �2 = 1, the

ratio U=L becomes
2��G;1+2

2��
G;1

, namely the same derived

in [8] for the L(2; 1)-coloring problem on unit interval
graphs.

4 Trees

Given an ordered tree T of height h and an integer
` � h, the induced subtr eeT` consists of all the vertices
v with lev el l(v) � ` as w ellas all the original edges
among them. F or each vertex v of T , let anci(v) denote
the ancestor of v at distance i from v (which clearly is
at lev ell(v) � i). Besides, let Di(v) denote the set of
the desc endentsof v at distance i from v (which clearly
belong to level l(v) + i).

Lemma 5 Every tree has a strongly-simplicial vertex.

Proof Let T be a tree and consider a vertex x
with l(x) = h. Let t be an y arbitrary in teger not
larger than 2h. Consider tw overtices u and v such
that d(u; x) � t and d(v; x) � t. Consider also the
shortest paths sp(x; v), sp(x; u), and sp(x;w), where
w is the vertex of smallest level belonging to both
sp(x; v) and sp(x; u). Since l(x) � maxfl(u); l(v)g,
then minfd(u;w); d(v; w)g � d(x;w). Assume
w.l.o.g. d(u;w) to be minimum. Then, d(u; v) =
d(u;w) + d(w; v) � d(x;w) + d(w; v) � d(x; v) � t.
Therefore, vertex x is t-simplicial. Since such a
condition holds for any t � 2h, x is strongly-simplicial.

Lemmas 2 and 5 suggest to visit the tree in breadth-
�rst-searc h order, namely scanning the vertices by in-
creasing levels, and those at the same level from left to
righ t. In this way, at every turn, a t-simplicial vertex
v at level l(v) of the induced subtree Tl(v) is processed,
for 1 � v � n. For this purpose, hereafter, it is as-
sumed that the vertices are numbered according to the
above breadth-�rst-search order.

4.1 Optimal L(1; : : : ; 1)-coloring

In this subsection, an O(nt) time algorithm is ex-
hibited to �nd an optimal L(1; : : : ; 1)-coloring of trees.
The algorithm �rst performs a preprocessing in order
to compute, for eac h vertex x of T , the t + 1 lists

Procedure Explore-Descendents (x; T = (V;E); t);

set D0(x) := fxg and Di(x) := ;, for 1 � i � t;
if x is not a leaf then

for every child v of x do
Explore-Descendents(v; T; t);
for i := 1 to t do
Di(x) := Di(x) [Di�1(v);

Figure 3.The recursive procedure to compute the
lists of the descendents up to distance t.

Di, 0 � i � t. Suc h a computation can be per-
formed in O(nt) time by visiting the tree in postorder.
The corresponding recursive procedure, called Explore-
Descendents, is shown in Figure 3 and has to be invoked
starting from the root r of T . It can be easily modi�ed
to compute in the sameO(nt) time also all the cardinal-
ities jDi(x)j for ev ery vertex x simply by substituting
the last statement with jDi(x)j := jDi(x)j+ jDi�1(x)j.

The algorithm also uses another function, called Up-
Neighborho odand illustrated in Figure 4, which tak es in
input a vertex y and a distance uplevel and returns the
set F of the vertices at distance no larger than uplevel
from vertex y in the induced subtree Tl(y), rooted at y.
Conceptually, F corresponds to the set Fuplevel(y) of
vertices up to distanceuplevel traversed by a Breadth-

F unction Up-Neighborhood (y; uplevel): vertex-set;

set F := ;;
set anc := y;
for i := 1 to d t2e � 1 do
set anc := father(anc);

for i := d t2e to uplevel do
set anc := father(anc);
if i = d t2e then

F := F [Dt�i�1(anc);
if t is odd then F := F [Dt�i(anc);

if d t2e < i < t then
F := F [Dt�i�1(anc) [Dt�i(anc);

if i = t then
F := F [Dt�i(anc);

return F ;

Figure 4. The function to compute the neigh-
borhood of vertex y at distance no larger than
uplevel in Tl(y) rooted at y.

6

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

First-Search starting from y in Tl(y). How ev er, comput-
ing F in such a w ayw ouldimply to change the root
of the subtree at ev ery time the function is invoked.
To avoid this, the tree is maintained with the original
root, and the set F is computed from the sets of the
descendents which have been obtained once for all by
the Explore-Descendents procedure.

In practice, when uplevel = t, the function
visits the vertices along the path from ancd t

2
e(y)

up to anct(y), building the required neighbor-
hood set Ft(y) including the follo wing descendent
sets of the vertices on suc h a path. In details,
let S = D0(anct�1(y)) [D1(anct�1(y)) [: : : [
Db t

2
c�2(ancd t

2
e+1(y)) [Db t

2
c�1(ancd t

2
e+1(y)). Then,

Ft(y) = D0(anct(y)) [S [Db t
2
c�1(ancd t

2
e(y)) if

t is even, and Ft(y) = D0(anct(y)) [S [
Db t

2
c�1(ancd t

2
e(y)) [Db t

2
c(ancd t

2
e(y)) if t is odd.

Note that if uplevel < t, the path from ancd t
2
e(y)

to ancuplevel(y) ends at the root of T and only the
sets of descendents associated with those vertices are
included.

Clearly, the largest color ��T;t needed by an y
L(1; : : : ; 1)-coloring of T is given by the size
of the largest neighborhood set returned by the
Up-Neighborhood function. Therefore, ��T;t =
maxy2V fjFt(y)jg, which can be computed in O(nt)
time simply modifying the Up-Neighborhood function
so as to manipulate the set cardinalities in place of
the sets themselves. The T ree-L(1; : : : ; 1)-coloring al-
gorithm, illustrated in Figure 5, starts invoking the
Explore-Descendents procedure to compute the sets of
the descendents and the largest color ��T;t, and hence-
forth initializes accordingly the palette P . Then, ob-
serv ed that all the vertices in the uppermost b t2c + 1
levels are all mutually at distance at most t, the al-
gorithm colors them with all di�erent colors extracted
from P . The rest of the tree is colored level by level.
F or each level ` > b t2c, P is set to f0; : : : ; ��T;tg. The
vertices in level ` are then colored from left to right,
iden tifyinggroups of consecutive vertices which share
the same palette. Each group contains all the vertices
suc h that the lev el of their low estcommon ancestor
lca is larger than or equal to `� d t2e+ 1. Each group
is iden ti�ed by its leftmost vertex x and its rightmost
vertex lastx. When a new lev el ` starts, x is simply
the leftmost vertex in lev el `. Otherwise, tw o con-
secutiv e groupsfoldx; : : : ; lastoldxg and fx; : : : ; lastxg
at the same lev el ` verify x = lastoldx + 1. T ocolor
the leftmost group, the Up-Neighborhood function is
invoked with uplevel = minft; `g. Suc ha procedure
returns in F the vertices whose colors are no longer
available, and which are then removed from the palette
P . Then the colors in P are used to color all the

Algorithm Tree-L(1; : : : ; 1)-coloring (T = (V;E); t);

Explore-Descendents(r; T; t);
set ��T;t := maxx2V fjFt(x)jg;
set P := f0; : : : ; ��T;tg;

for ` := 0 to b t2c do
for each vertex x with l(x) = ` do

extract a color c from P and set f(x) := c;
for ` := b t2c+ 1 to h do

set P := f0; : : : ; ��T;tg;
set x to the leftmost vertex with l(x) = `;
set lastx := rightmost vertex inDd t

2
e(ancd t

2
e(y));

set uplevel to minft; `g;
set F := Up-Neighborhood(x; uplevel);
set P := P � fc : c = f(u); u 2 Fg;
for each vertex u with x � u � lastx do

extract a color c from P and set f(u) := c;
while l(lastx + 1) = ` do

set oldx := x, x := lastx + 1;
set lca := low est common ancestor(x; oldx);
set uplevel to minft; `� l(lca)� 1g;
set F := Up-Neighborhood(oldx; uplevel);
set P := P [fc : c = f(u); u 2 Fg;
set F := Up-Neighborhood(x; uplevel);
set P := P � fc : c = f(u); u 2 Fg;
for each vertex u with x � u � lastx do

extract a color c from P and set f(u) := c;

Figure 5. The algorithm for optimal L(1; : : : ; 1)-
coloring of trees.

vertices in fx; : : : ; lastxg. F or each of the remaining
groups at the same level, the palette is updated by in-
voking twice the Up-Neighborhood function. The �rst
call Up-Neighborhood(oldx; uplevel) returns in F the
set Fuplevel(oldx) of the vertices whose colors are again
available. Such colors are then added to the palette P .
The second call Up-Neighborhood(x; uplevel) returns
in F the set Fuplevel(x) of the vertices whose colors are
forbidden, which are then removed from the paletteP .
As before the colors currently in P are then used to
color the vertices of the group.

Theorem 4 The T ree-L(1; : : : ; 1)-coloring algorithm
gives an optimal coloring and runs in O(nt) time.

Proof The correctness follo ws from Lemma 5,
while the optimality follows since only the colors in
f0; : : : ; ��T;tg are used, and ��T;t is a lo w er bound.

The palette P is implemented by means of a double
linked list of colors and a vector C indexed by colors,
as explained in Theorem 1.

7

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

To evaluate the time complexity, observe �rst that
both the computations of lastx and lca require O(t)
time. Then, given a vertex v, consider a level ` along
with the leftmost group at level ` for which v belongs
to some neighborhood set. F or the same level `, once
v en ters in a neighborhood, it remains in the neigh-
borhood of the leftmost vertex for some consecutive
groups, and �nally it leaves. Thus, v is involved twice
by the Up-Neighborhood function: the �rst time to be
inserted in F and the second time to be removed from
F .

Since each vertex v can appear in sets F 's only for
t consecutive levels l(v); : : : ; l(v) + t, v is involved in
exactly t insertions into the neighborhood F 's and
exactly t deletions from the neighborhood F 's while
coloring the en tire tree, and an overall O(nt) time
complexity follows.

4.2 Approximate L(�1; 1; : : : ; 1)-coloring

In this subsection, a generalization of the Tree-
L(1; : : : ; 1)-coloring algorithm is proposed to �nd an
approximate L(�1; 1; : : : ; 1)-coloring. The algorithm
computes ��T;t by means of the T ree-L(1; : : : ; 1)-
coloring algorithm and uses an enriched palette
P = f0; 1; : : : ; Ug, where U = ��T;t + 2(�1 � 1).
Moreover, in order to satisfy the �1 separation con-
straint, the instructions to color a vertex u become:

�nd a color c in P suc h thatjc�f(anc1(u))j � �1;
extract c from P and set f(u) := c;

Therefore, to color a single vertex, O(�1) time is re-
quired and hence an overall time complexity of
O(n(t+ �1)) results.

Theorem 5 The T ree-L(�1; 1; : : : ; 1)-coloring algo-
rithm gives a 3-appr oximate coloring using ��T;t+2(�1�
1) as the largest c olor.

Proof The proof is similar to that of Theorem 2.

5 Conclusion

This paper has considered the channel assignment
problem for particular separation vectors and two spe-
ci�c classes of graphs { trees and interval graphs. Based
on the notions of t-simplicial and strongly-simplicial
vertices,O(nt) time algorithms have been proposed to

�nd optimal L(1; : : : ; 1)-colorings on trees and inter-
val graphs. Suc h algorithms have been generalized to
�nd approximate L(�1; 1; : : : ; 1)-colorings on the same
classes of graphs. Moreover, an approximate L(�1; �2)-
coloring of unit interval graphs has been presented.

Sev eralquestions still remain open. F or instance,
one could devise polynomial time algorithms for �nd-
ing optimal L(�1; 1; : : : ; 1)-colorings of interval graphs
and trees, as well as optimal L(�1; �2)-colorings of unit
in terval graphs.

Moreover, one could search for further classes of
graphs that verify the strongly-simplicial property.

References

[1] R. Battiti, A.A. Bertossi, and M.A. Bonuccelli, \Assigning
Codes in Wireless Networks: Bounds and Scaling Proper-
ties", Wireless Networks, Vol. 5, 1999, pp. 195-209.

[2] A.A. Bertossi and M.C. Pinotti, \Mappings for Conict-Free
Access of Paths in Bidimensional Arrays, Circular Lists, and
Complete Trees", Journal of Parallel and Distributed Com-

puting, Vol. 62, 2002, pp. 1314-1333.

[3] A.A. Bertossi, M.C. Pinotti, and R. Tan, \E�cient Use of
Radio Spectrum in Wireless Netw orks with Channel Sepa-
ration bet w een Close Stations",DIAL M for Mobility; Int'l

A CMWorkshop on Discrete A lgorithms and Methods for

Mobile Computing, Boston, August 2000.

[4] A.A. Bertossi, M.C. Pinotti, and R.B. Tan, \Channel Assign-
ment with Separation for Interference Av oidance in Wireless
Netw orks", to appear IEEE T ransactions on Parallel and

Distribute d Systems.

[5] I. Chlamtac and S.S. Pinter, \Distributed Nodes Organiza-
tions Algorithm for Channel Access in a Multihop Dynamic
Radio Netw ork",IEEE Transactions on Computers, Vol. 36,
1987, pp. 728-737.

[6] W.K. Hale, \Frequency Assignment: Theory and Applica-
tion", Proceedings of the IEEE, Vol. 68, 1980, pp. 1497-1514.

[7] S.T. McCormick, \Optimal Approximation of Sparse Hes-
sians and its Equivalence to a Graph Coloring Problem",
Mathematical Programming, V ol. 26, 1983, pp. 153{171.

[8] D. Sakai, \Labeling Chordal Graphs: Distance Two Condi-
tion", SIAM Journal on Discrete Mathematics, Vol. 7, 1994,
pp. 133-140.

[9] A. Sen, T. Roxborough, and S. Medidi, \Upper and Low er
Bounds of a Class of Channel Assignment Problems in Cel-
lular Net w orks", T echnical Report, Arizona State University,
1997

[10] J. V an den Heuvel, R. A. Leese, and M.A. Shepherd, \Graph
Labelling and Radio Channel Assignment", Journal of Graph
The ory, Vol. 29, 1998, pp. 263-283.

8

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

