IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002 399

Optimal Tree Access by Elementary
and Composite Templates in
Parallel Memory Systems

Vincenzo Auletta, Sajal K. Das, Member, IEEE, Amelia De Vivo,
M. Cristina Pinotti, Member, IEEE Computer Society, and Vittorio Scarano

Abstract—In this paper, we study efficient strategies for mapping onto parallel memory systems complete trees that are accessed by

fixed templates (like complete subtrees, paths, or any combinations their of). These mappings are evaluated with respect to the

following criteria: 1) the largest number of data items that can be accessed in parallel without memory conflicts; 2) the number

of memory conflicts that can occur when accessing templates of size equal to the number of available memory modules,

thereby exploiting the full parallelism of the system; 3) the complexity of the memory addressing scheme, i.e., the cost of

retrieving the module where a given data item is mapped. We show that there exist trade-offs between these three criteria and

the performance of different mapping strategies depends on the emphasis given on each of these criteria. More specifically, we

describe an algorithm for mapping complete binary trees of height H onto M memory modules and prove that it achieves the

following performance results: 1) conflict-free access to complete subtrees of size K and paths of size NV such that

N + K — [log K| < M; 2) at most 1 conflict in accessing complete subtrees and paths of size M; 3) O(% + c) conflicts when accessing

a composite template of K nodes consisting of ¢ disjoint subsets, each subset being a complete subtree, or a path or a set of

consecutive nodes in a level of the tree. Furthermore, we show that an existing mapping algorithm results in a larger number, namely

O<ﬁ + c), of conflicts when accessing a composite template. However, such an algorithm maps each single node in O(1) time,
M log 1

while the new algorithm requires O(H/N — log K) time.

Index Terms—Complete trees, composite templates, conflict-free access, elementary templates, mapping scheme, parallel memory

system.

1 INTRODUCTION

N this paper, we study efficient strategies for mapping

data structures onto parallel memory systems. A parallel
memory system consists of several modules that can be
accessed in parallel; however, it is not allowed to perform
simultaneous accesses by different processors to the same
module (called a memory conflict) and, therefore, these
accesses must be queued.

In a multiprocessor environment, the cost of an operation

can be distributed among several processors. A consider-
able amount of research has been done to reengineer

algorithms for a parallel environment. For example, a large

o V. Auletta, A. De Vivo, and V. Scarano are with the Dipartimento di
Informatica ed Applicazioni “RM Capocell,” Universitd di Salerno, 84081,
Baronissi (SA), Italy. E-mail: {auletta, amedev, vitsca}@dia.unisa.it.

e S.K. Das is with the Department of Computer Science & Engineering,
University of Texas at Arlington, Arlington, TX 76019-0015.

E-mail das@cse.uta.edu.

o M.C. Pinotti is with the Dipartimento di Informatica e Telecomunicazioni,
Universita di Trento, 38050 Povo (TN), Italy.

E-mail pinotti@science.unitn.it.

Manuscript received 24 Jan. 2000; accepted 8 Oct. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 111320.

body of literature exists on designing parallel algorithms for
a variety of machine models [4], [12], [13].

Most of these works concentrate on optimizing the time
complexity, by splitting the computation work among the
processors and/or optimizing the cost of communications.
In particular, to reduce the communication costs, algo-
rithms are reengineered in order to exploit the properties of
the interconnection network topology such that each
processor communicates only with its neighbors.

In an idealized model, such as a parallel random access
machine (PRAM), all the processors can access the memory
concurrently and obtain their values. In reality, however,
the memory consists of several distinct blocks, called
modules, accessed by the processors through a bus or an
interconnection network, where each module can be
accessed by only one processor at any instant. Therefore,
the cost of implementing an operation on a parallel machine
architecture depends not only on how the parallel algo-
rithm is able to share the workload among the processors,
but also on how the items of the data structure are mapped
onto the memory modules. For improved performance of
frequently accessed data structures, it is helpful to add a
high degree of data-parallelism in memory accesses.

1045-9219/02/$17.00 © 2002 IEEE

400 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

In this paper, we focus on the problem of mapping data
onto a parallel memory system such that a high degree of
data-parallelism is achieved. Assuming that the multi-
processor machine is able to request a number of data items
from the memory subsystem, our goal is to store data items
in such a manner that fewer (ideally, zero) conflicts occur in
accessing memory. As a consequence, we are not particu-
larly interested in how the processors communicate, nor do
we worry about the actual implementation of the proposed
algorithm on a real machine.

Informally, the problem we aim to solve is defined as
follows: Given a data structure and the operations allowed
on it or, equivalently, given a graph representing the data
structure and a family of subsets of nodes, called
“templates,” that describe which elements of the data
structure are to be accessed together, our objective is to
design an algorithm for mapping data items on to the
memory modules.

The mapping strategy must be 1) efficient, meaning
that it has to achieve a minimum number of conflicts on
given templates and compute memory addresses easily
and 2) versatile, meaning that it has to allow efficient
access to different types of templates.

1.1 Problem Definition

Mapping a data structure D onto a parallel memory system
consisting of M modules can be viewed as a coloring
problem, where the distribution of nodes of D into the
memory is nothing but assigning them colors from the set
{0,1,2,..., M —1}.

Let Gp = (V, E) be the graph underlying D. A template T
of D is defined as a subgraph of Gp, and any occurrence of
7 in D will be called a template instance. After coloring D, we
say k conflicts occur if k + 1 nodes of a template instance are
assigned to the same color (module). Thus, the problem of
mapping D on M memory modules, when D is accessed by
template Z, can be formulated as a coloring problem as
follows: find an M-coloring of Gp such that the maximum
number of nodes of any template instance that have the
same color is minimized.

In the general case, this problem is computationally hard
[15]. A natural way to deal with it is to restrict the problem
to special or structured graphs on which simple but useful
templates can be characterized easily. In this paper, we
restrict our attention to data structures represented by trees.

Let T be a complete binary tree Yand let {Z,,75,---,Z,}
be a family of templates. We consider a data structure D that
has T as underlying graph and each operation on D
requires to access a subset of 7' that belongs to a template Z;,
for some i. We aim to solve the coloring problem for
accessing D by templates {Z,Z5,---,Z4}. More specifically,
we focus on four templates for tree data structures:

complete subtrees (called S-template),

ascending or leaf-to-root paths (called P-template),
tree levels (called L-template),

any combination of the above templates (called
C-template).

hal i e

Throughout this paper, by trees and subtrees, we mean
only complete binary trees and complete binary subtrees.
In the sequel, we will refer to S-templates, L-templates,

1. A tree is complete if and only if all of its leaves are at the same level.

VOL. 13, NO. 4, APRIL 2002

S . L

Fig. 1. Templates for tree data structures.

and P-templates as elementary templates, while C-tem-
plates as composite ones. Example templates are illustrated
in Fig. 1.

It can be easily seen that most of the meaningful
operations for concurrent access to sets of items in tree
data structures belong to one of these four templates. As an
example, heaps and dictionaries are among the two most
popular data structures implemented with trees.

In a binary tree min-heap, operations like insertion of a
new key and decrease-key are traditionally implemented by
accessing all the nodes of a leaf-to-root path (P-template) of
the tree. Furthermore, as shown in [9], [14], the deletion of
the minimum can also be implemented (storing proper
information at each heap node) by accessing all the nodes of
a suitable leaf-to-root path.

In a B-tree, implemented as a complete tree, a range
query means accessing (in parallel) all the nodes whose keys
belong to a given range; that is, the set of nodes to be accessed
can be partitioned into a composite template (C-template)
consisting of a set of complete subtrees (S-template) and a
path of cardinality no larger than the height of the B-tree.

1.2 Previous Work

Over the last two decades, the problem of conflict-free
mapping and access to two-dimensional array data struc-
tures have received significant attention, where templates of
interest are rows, columns, diagonals, and subarrays. For
recent results, refer to [3], [10], [16].

In contrast, mapping of tree structures has been
considered only recently [5], [9], [10], [11], [17]. The focus
of most of this research has been to guarantee conflict-free
access while using as few memory modules as possible.
Most of the proposed mappings considers only one kind
of elementary templates at a time, such as the P-template
or S-template [9], [11], [8]. In particular, Das et al. [6],
[10], [11] proposed several conflict-free algorithms for
accessing complete binary trees according to S-templates
or P-templates that use as few memory modules as
possible. However, the mapping strategy for S-templates
is substantially different from that of P-templates.

Das and Pinotti [6], [7] provided conflict-free mappings
for accessing f-ary subtrees of a complete k-ary tree,
subtrees of a binomial tree, and subcubes of a binary or
generalized hypercube. In those works, they show that the
overlapping of template instances (of a given type) in the
data structure plays a significant role in determining the

AULETTA ET AL.: OPTIMAL TREE ACCESS BY ELEMENTARY AND COMPOSITE TEMPLATES IN PARALLEL MEMORY SYSTEMS 401

minimum number of memory modules needed to achieve
conflict-free mappings.

Auletta et al. [2] described a mapping algorithm for
accessing an M-node subtree, M adjacent nodes in the same
level of the tree, or M consecutive nodes of a leaf-to-root
path such that the number of conflicts is given by
O(y/M/log M). This algorithm can be seen as a first step
toward a “unifying” approach that maps an N-node
complete binary tree onto M memory modules, providing
efficient access to several types of elementary templates.

1.3 New Results

This paper follows the route traced by [1], [2] and provides
“better” algorithms for mapping complete trees into parallel
memory systems when access is performed according to a
variety of templates.

We extend the family of templates with respect to their
structure and size. We believe that allowing variable size of
the template leads to more significant results. In fact, in a
multiprocessor environment the number of available
memory modules for a single cluster of processors is not
fixed and the cluster can be (temporarily) forced to use only
a part of all the available resources (1/ memory modules)
for executing a program. Therefore, the mapping algorithm
must scale with the number of memory modules.

We measure the performance of our mapping algorithm
by two important criteria: the maximum number of conflicts
for any template instance and the “versatility” (i.e.,
possibility of accessing by different templates). Additional
criteria include:

1. Data-Parallelism. The number of items that can be
accessed in parallel should be as large as possible. Note
that more than M items, where M is the number of
memory modules, cannot be accessed in parallel;

2. Fast Addressing. Algorithms for computing the memory
module, where a given data item is stored, should be
simple and fast.

We show that there exist trade-offs between all the above
criteria. In fact, it is possible to reduce the number of
memory conflicts by reducing the number of items that
have to be accessed in parallel and by using costly
algorithms for retrieving memory addresses. On the other
hand, if we want to use all the available parallelism of the
memory system (i.e., access subsets of size equal to the total
number of modules) and design fast algorithms for
retrieving data addresses, then the presence of conflicts in
accessing the memory is unavoidable.

Our versatile mapping algorithms are presented in the
same order as the performance criteria mentioned above. In
particular, we first present a conflict-free algorithm that
achieves limited parallelism for accesses by S-templates and
P-templates, and prove that no algorithm can achieve the
same result using fewer memory modules. Next, we show
that the same algorithm achieves maximum parallelism at
the expense of one conflict for the same templates. Hence,
we study the performance of two different mapping
algorithms on the (larger) composite template. Both algo-
rithms obtain maximum parallelism. However, the first one
has fewer conflicts and an expensive address retrieval,
while the second one offers constant-time address retrieval
but induces more conflicts.

The rest of the paper is organized as follows: Section 2
introduces some definitions and notations. Section 3
presents the algorithm COLOR(T, N, K) to map a complete
binary tree T on N + K — [log K| memory modules,
guaranteeing conflict-free access to P-templates of size N
and S-templates of size K. Thus, we also prove that the
minimum number of memory modules needed to guaran-
tee conflict-free access to S-templates and P-templates of
size M is 2M — [log M. This settles an open question
proposed in [2].

Section 4 measures the performance of the algorithm
COLOR when we force maximum parallelism, ie., when
we want to access templates of size equal to the number
of available memory modules M. In this case, we prove
that the COLOR algorithm is optimal since it guarantees
at most one conflict. Moreover, it improves on the
algorithm LABEL-TREE, proposed in [2], that accesses S-
and P-templates of size M with O(y/M/log M) conflicts.
However, this improvement is obtained at the expense of a
more difficult and expensive data addressing scheme.

In Section 5, we study the versatility properties of the
COLOR algorithm, by considering its performance on the
C-template. We prove that it yields O(K /M + ¢) conflicts
on instances of the C-template of size K that consist of ¢
disjoint instances of elementary templates. However, this
algorithm suffers from two drawbacks: It overloads some
memory modules and its intrinsic recursive nature makes
the computational cost of the mapping quite expensive.

Finally, Section 6 considers the LABEL-TREE algorithm,
discussed in [2], and proves that this algorithm yields

0 K

(\/71\4 Tog 0T C)

conflicts on instances of the C-template of size K that
consist of ¢ disjoint instances of elementary templates.
Although this algorithm produces a larger number of
memory conflicts than the COLOR algorithm, it allows
computing the module where a given data item is stored
in O(1) time, if a preprocessing phase of space and time
complexity O(M) is executed, or in O(log M) time, if no
preprocessing is allowed [2].

Another interesting property of the LABEL-TREE algo-
rithm is that it equally distributes data items among the
memory modules (balanced memory load). Precisely, the
ratio between the maximum and minimum number of data
items mapped onto the same module is 1 + o(1). This result
shows an interesting trade-off between the number of
conflicts, the simplicity of the addressing scheme, and the
balancing of load among memory modules.

2 PRELIMINARIES

Let T be a tree of height H and let 7 = {Z,,Z,,---,Z4} be a
family of templates used to access T'. A mapping of T" onto
an M-module parallel memory system consists of coloring
each element of T' with a color r from the set {0,---, M — 1}.
For each mapping algorithm U and for each instance I of a
template Z;, we define the cost Cy(7',I,M) of U as the
number of conflicts produced by U on I, that is:

Cu(T, I, M) =

max

Hu € I : uis colored by 7}‘ -1
0<r<M-1

402 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

The cost of U on the template Z; is then defined as
CU(TaIivM) = ?laIXCU(T7 Ia M)
€1

The cost of coloring the tree 7" by the algorithm U under the
hypothesis that all accesses are according to the family of
templates 7, is defined as

Cost(T,U,Z, M) = max {CU(T, I., M) }

The mapping of the tree T" on an M-module parallel
memory system produced by the algorithm U is M-conflict-
free (in short, M-CF) on the family of templates 7 if

Cost(T,U,Z,M) =0.

An M-CF mapping U for accessing 7 is M-CF-optimal
on Z if, for any M’ < M, there is no M'-CF mapping
algorithm for Z. In other words, an M-CF-optimal
mapping achieves the maximum possible data-parallelism
possible with M memory modules: if we consider
templates of larger size (or equivalently, fewer colors),
no M-CF mapping is possible.

A mapping U* is M-optimal on T if

Cost(T,U*,T,M) = lI]IliII}[COSt(T, U,Z,M),
S

where U denotes the set of all mapping algorithms. In other
words, an M-optimal algorithm guarantees to access

templates of size M with the minimum number of conflicts.
In the remaining sections, we will omit the notations T

and U when they are clear from the context.
Let us emphasize the use of M in the above definitions.

In M-CF-optimal mapping, M stands for the number of
memory modules available; whereas in M-optimal nota-
tion, M stands for the size of templates. Notice that if 7
contains a subset of size K > M, any mapping U has
Cost(U,Z,M) > [4;] — 1. Moreover, it is worthy to point
out that the number of memory modules necessary to
have an optimal conflict-free mapping on Z depends not
only on the size of the instances contained in Z but also on
their structures. In particular, if the instances overlap, then a
number of memory modules than M is required for optimal
conflict-free mapping [6], [7].

2.1 Notations and Terminology

Finally, let us introduce few notations that will be used
from now on. For each node v € T, the level of v is defined as
the distance of v from the root of the tree (the root is at level
0). The level j of T, denoted by LEV7(j), is the subset of all
nodes of T' at level j, where the nodes at a level are in the
left-to-right order and the first node is indexed as 0. Thus,
the node i of LEVy(j) is the (i + 1)st node visited while
traversing LEVy(j) in left-to-right order. This node will be

denoted as vy (i, j).
Let ANCr(i,j,k) be the kth ancestor of wvr(i,j). For

instance, if T" is a binary tree, then

ANCr(3,5,1) = U(EJ G- 1> and

awcrti) = of |- 8).

For each node vy (i, j), we consider the following subsets
of nodes in T

e SL(i,j) is the complete subtree of size K rooted at
’UT(ivj)/
e L1(i,j) is the set (of size K) of consecutive nodes
vp(i + h,j) at level jfor 0 < h < K,
e PL(i,j) is the set of nodes belonging to the path (of
size K) starting from vr(4,j) to ANCr(s, 5, K —1).
For each K =2"—-1, k>1, we define the elementary
template ST(K) as the family of all the complete subtree
instances of 1" having size K, i.e.,

ST(E) = |J Sk(id),

0<j<H—k
0<i<2/
where H is the height of the tree.
For each K > 0, let us define the elementary template
LT(K) as the family of all the instances of K consecutive
nodes in a level of T, i.e.,

"K)= |J LkGi)
[log K]

0<i<2i—K

Similarly, for each K < H, we define the elementary
template P”(K) as the family consisting of all the ascending
paths of length K in T, i.e,,

PI(K)= |J PiG.J).

K-1<j<H

0<i<2i
For each K > 0 and ¢ > 0, we define the composite template
CT (K, c) as the family consisting of all the subsets of size K
that can be partitioned into C1, Cy, - - -, C,, where each C; is
an instance of an elementary template.

In the sequel, we omit the name of the tree 7' (in the

superscript) whenever it is clear from the context.

3 A CF-OpPTIMAL MAPPING FOR ELEMENTARY
TEMPLATES

Let K =2 —1 and N > k. In this section, we describe a
mapping algorithm, called COLOR, to access without
conflicts all subtrees of size K and paths of size N of a
complete binary tree using (N + K — k) memory modules.
We also prove that COLOR is (N + K — k)-CF-optimal.

The main idea of COLOR is to split the tree into a set of
intersecting complete subtrees of height N and color each
subtree separately. Thus, COLOR uses a subroutine BASIC-
COLOR(B, N, K) to color a height-N subtree B using N +
K —k colors in such a way to minimize the number of
conflicts on accessing the templates of PP(N) and SP(K).

3.1 Algorithm Basic-COLOR

Let B be a complete binary tree of height N that is accessed
by templates 7 = {S?(K), P?(N)}. Notice that PB(N)
consists of all the paths from the leaves of B up to the root.

AULETTA ET AL.: OPTIMAL TREE ACCESS BY ELEMENTARY AND COMPOSITE TEMPLATES IN PARALLEL MEMORY SYSTEMS 403

BorToMm(B, N, K, 7)
1 for each j=kto N -1

BASIC-COLOR(B, N, K)

1 LetZ={0,1,---, K—-1}and '={K,K+1,--- , N+ K —k—1}
2 for each j=0tok—1

3 do

4 for eachi=0to 2/ —1

5 do

6 color v(i, j) with color 2/ +i—1€ X

7 BortoMm(B,N,K.I')

2 do

3 for each h=0to 2/ —1

4 do

5 les by, by, - -+, bye-1_; be the nodes of block(h, j)

6 let v, = ANCg(h-2°7! 5,k — 1), let v, be the sibling of v, and S, be the
subtree of size K rooted at v,

7 color node b; with the color assigned to the (i + 1)st node of Sy (level-
by-level, left-to-right order)

8 color byr—1_| with the (j — & + 1)th color of Z

Fig. 2. Algorithm BASIC-COLOR.

For each j > k, we partition LEV3(j) into 2/-*1 blocks,
each of 2"! nodes. For 0<h <27¥1 -1, block(h,)
consists of the nodes v(i, j) with h2"¥! <i < (h+1)2F1 It
is worthy to note that block(h,j) consists of leaves of the
subtree Sk (h,j—k+1).

Without loss of generality, let {0,1,---,N+ K —k—1}
be the set of colors used to color the binary tree B. The
algorithm BASIC-COLOR(B, N, K), presented in Fig. 2,
constructs two lists of colors Y ={0,1,---,K —1} and
I'={K,K+1,---,N+ K —k—1}. Then, the coloring of
the tree is computed in two phases. In the first phase, each
node in the first k levels of B is colored with a distinct color
of >°. In the second phase, performed by the algorithm
BOTTOM(B, N, K,T'), the remaining levels of B are colored

Fig. 3. Description of BASIC-COLOR.

in a top down order using colors from both the sets > and
I". Each level j is colored blockwise, starting from block(0, j).

Consider block(h,j) containing nodes by,bi,...,byu-1_1
with 0 <h<2 —1and k< j< N-—1. Let v; = ANCp(h
2k=1 5 k—1) be the (k—1)st ancestor of the nodes in
block(h, j) and let vy be the sibling of v;. Let S; and S,
denote the subtrees of size K that are rooted at v; and vs,
respectively (see Fig. 3). By construction, when the algo-
rithm colors the nodes of block(h, j), all the nonleaf nodes of
Si and S, have already been colored. The algorithm colors
the first 2! —1 nodes of block(h,j) with the colors
assigned to the nonleaf nodes of S;. More formally, node
by gets its color from the already colored node

hmod2 .
) J

Vg = (h+ (71

—k+1),

404 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

RETRIEVING-Basic-CoLor(B, v(i,j), UP)

1 if UP[u(s, 5)] = v(r, s)

2 then color v(4, j) with color 2° +r — 1
3 else UP[v(i,j)] =*

4 color v(i, 7) with color j — k + K

Fig. 4. Algorithm RETRIEVING-BASIC-COLOR.

and node b;, with1 < i <21 -2 suchthati =21 -1 +s,
with0<s< 2 !'—1landr>1, gets the same color as node

o2 (h+ (=D)"™) f s j—k+r+1)eS.

Finally, node by-1_; gets color j—k+ K, which is the
(j = k+ 1)th color of I'. Therefore, lines 6 and 7 of the
BOTTOM procedure can be performed in constant time,
and the BASIC-COLOR algorithm colors the entire tree B in
O(2") time.

Although the coloring of the tree takes time proportional
to the size of the tree, O(N — k) time is needed to retrieve
the color assigned to a given node. Indeed, let z = v(z, j) be
a leaf in the second half of a block (at level N —1). By
previous remarks, z gets its color from a node at level N — 2
that may belong to the right half of a block and, therefore,
takes the color from a node at level N — 3. This process
climbs up the tree, until a node, say w = v(r, s), belonging to
one of the k uppermost levels of B, is reached. Notice that w
is directly colored in the first phase of BASIC-COLOR and
node z inherits w’s color. Thus, to retrieve the color of z we
need to discover w and this takes O(N — k) time.

Let us also point out that retrieval cost can be reduced to
constant time if an appropriate preprocessing step, called
PREBASIC-COLOR, is performed to build a table UP of size
O(2"). For each node z of B, UP[2] stores either the special
mark * if z belongs to one of the first k levels of the tree or it
is colored with a color from the list I (i.e., if z is the last
node in a block); otherwise, it stores the node w of B which
v inherits its color from. Once UP is available, each single
node of B is colored as in Fig. 4.

In order to prove that the BASIC-COLOR algorithm is
(N + K — k)-CF on S(K) and P(N), we will consider a new
family of subsets of B, that contains both S(K) and P(N),
and prove that BASIC-COLOR is (N + K — k)-CF on this
larger family too.

For each node v(i, j) of B, we define the subset T Pk (3, j)
as consisting of the nodes lying on the path from the root of
B to v(i, j) and the nodes of the complete subtree of size K
rooted at v(¢,j). (Note that if j > N — k, subtree rooted at
v(i,j) has size smaller than K.) We define the family
TP(K,j) as

TP(K,j) = {TPx(i,j—1):0 <i< 2}

Lemma 1. The BASIC-COLOR algorithm yields mappings of
binary trees of height N that are (N + K —k)-CF on
TP(K,j), for each j < N.

Proof. In order to prove the lemma, we will show that, for
each i =0,1,---,27!, no two nodes of TPx(i,j) are
colored with the same color.

The proof is by induction on the length of the path
segment of the subset T'P. The basis holds trivially. In
fact, TP(K,1) contains only the subset TPg(0,0) =
Sk(0,0) that is colored in the first phase of the BASIC-
COLOR algorithm, assigning to each node a different
color of Y. Since all the colors of) are distinct, it
follows that T'Px (0, 0) is conflict-free. Now, suppose that
all subsets in T'Pk(i,7 — 1) are conflict-free, for j > 1. We
will prove that, for each i =0,1,---,2/ — 1, the subset
T Pxk(i,j) is also conflict-free.

Observe that, if j > N — k then

and, by inductive hypothesis, it is conflict-free. On the
other hand, if j < N — k, we can partition TPk (1, j) into
two parts (see Fig. 5) as follows: 1) a bottom part T,
containing all the leaves of the subtree of size K rooted at
v(i,j) and 2) a top (upper) part T,, containing the
remaining nodes. In order to prove that TPx(i,j) is
conflict-free, we will show that both T, and T, are
conflict-free and colors used for 7} are different from
those used to color T,,.

T, is conflict-free since T, C T Px(|i/2],j — 1) and, by
inductive hypothesis, this subset is conflict-free.

Observe that T}, = block(i,j+ k — 1) and the ith node
of the block is colored with either the color of a node in
Sk (i',7) (Step 7) where (7, j) is the sibling of (¢, j), or
with a color of T' (Step 8), when i = 2¥-1 — 1.

Thus, the algorithm defines a one-to-one correspon-
dence between the colors of the first 2~ — 1 nodes of T},
and the colors of the first £k — 1 levels of Sk (7, 7). Since
the first k—1 levels of Sk(i,j) are contained in
TPk(|i/2],7 — 1), by inductive hypothesis it follows that

Fig. 5. Description of TP template.

AULETTA ET AL.: OPTIMAL TREE ACCESS BY ELEMENTARY AND COMPOSITE TEMPLATES IN PARALLEL MEMORY SYSTEMS

there is no conflict between the first 2! — 1 nodes of Tj.
Moreover, these colors are different from the colors used
in T,,. Finally, the last node of T}, is colored with a color of
I" that was never used before. Since I" contains all distinct
colors, this new color is different from all the other colors
assigned to nodes of T'P(3, j).]

Theorem 1. The BASIC-COLOR algorithm yields mappings of
binary trees of height N that are (N + K — k)-CF on S(K)
and P(N).

Proof. We observe that P(N) € TP(K,N) and, for each
Sk(i,7) € S(K), Sk(i,7) C TPk(3,j). Thus, by Lemma 1
we have that the mapping is (N + K — k)-CF on P(N)
and S(K). O

Theorem 2. Any mapping of binary trees of height N that is M-CF
on S(K) and P(N) requires M > N + K — kcolors. Then, the
BASIC-COLOR algorithm is (N + K — k)-CF-optimal.

Proof. Observe that all subsets included in TP(K,N — k)
have size equal to N+ K —k. Thus, any mapping
algorithm that is M-CF on T'P(K, N — k) must use M >
N + K — k memory modules. We prove the theorem by
showing that each mapping algorithm that is M-CF on
S(K) and P(N) is M-CF on TP(K,N — k).

Let U be an algorithm for mapping binary trees that is
M-CF on S(K) and P(N) and let Z € TP(K, N — k). For
each pair of nodes v; and v, in Z, we prove that they are
colored with different colors by U. We distinguish two
cases, depending on the positions of v; and v,. If v; and
vy belong to the tree part of Z, then they are colored
differently, since U is M-CF on S(K). If, instead, at least
one of the two vertices, say v;, does not belong to the tree
part of Z, then there exists a path in T of length N that
contains both v; and vy. Since U is M-CF on P(N), then v,
and v, have different colors. O
Theorem 1 proves that BASIC-COLOR is M-CF on

S(K) and P(N). A similar result does not hold for

accessing L-templates. However, we can prove that,

using the same number of memory modules, the number

of conflicts on L(K) is at most 1.

Lemma 2. The BASIC-COLOR algorithm yields mappings of
binary trees of height N on (N + K — k) memory modules
that have cost at most 1 on L(K).

Proof. Let L € L(K) be a set of K consecutive nodes of
LEV(j). It can be easily seen that the mapping cost on L
yielded by the BASIC-COLOR algorithm is at most 2. In
fact, L spans at most three consecutive blocks of LEV (j).
Each block contains all the leaves of a subtree of S(K)
and, by Theorem 1, it is conflict-free. Thus, the number of
nodes with the same color in L is upper bounded by the
number of blocks spanned by L.

In the rest of the proof, we show how to improve this
result and prove that each color is used to color at most
two nodes of L. In particular, we show that the color
taken from T' to color the last node of a block is the
unique color that is used in all the three blocks. Since L
has size K, then either L contains nodes of only two
blocks or it does not contain the last node of the third

405

A\

PV G-Ik
By @)

LEV j(N-k)

B y (i)

= \ LEV
/

(+1DN-k)

LY (G42)(N-k)

Fig. 6. Description of the template family B(N).

block. Thus, the number of nodes of L with the same
color is 2 (and, hence, there is only one conflict).

Assume that the first node of L belongs to block(h, j)
and let v, v1, v be the (k — 1)st ancestors of the nodes of
block(h, j), block(h + 1, j) and block(h + 2, j), respectively.
We observe that one among vy and vy (say vp) is the
sibling of v;. We prove that the unique pair of nodes of
block(h, j) U block(h + 1,) that is colored with the same
color is the pair containing the last nodes of the two
blocks. Since this pair is colored with a color taken from
I' that is not used to color the first 2! — 1 nodes of
block(h + 2, j), we obtain that the number of conflicts for
the template L is 1.

The BASIC-COLOR algorithm colors block(h,j) with
the colors used in the first &k — 1 levels of the subtree
rooted at vy, and block(h + 1,j) with the colors used in
the first £ — 1 levels of the subtree rooted at vy. Since
there exists a tree in S(K) that contains all the nodes of
the first k — 1 levels of the trees rooted at vy and vy, by
Theorem 1, there is no conflict on the first 2*~1 — 1 nodes
of block(h, j) and block(h + 1, j). O

3.2 Algorithm Color

In the previous section, we presented an algorithm to map
binary trees of height NV that is (N + K — k)-CF-optimal on
S(K)and P(N).In the following, we show how this algorithm
can be used as a building block for an algorithm to color
binary trees of any height that is (N + K — k)-CF-optimal
on S(K) and P(N).

Let T be a binary tree of height H = h(N — k) + N, for
h>1(@if H # h(N — k) + N, dummy levels are added). We
split T" into a family of (not necessarily disjoint) subtrees of
height N and color each subtree as described in the

previous subsection.
Consider the family of subtrees

B(N) = {Sox_1 (i, j(N — k))|0 < j < h,0 < i < 20V=P,

For brevity, let us denote the subtree Sov_ (i, (N —k))
as By(i,j). Notice that B(N) is not a partition of T (see
Fig. 6). In particular, By(%,j) has nonempty intersection
with 2¥7* 4 1 distinct subtrees of the family: It shares its
first k levels with B(i,j — 1), where i’ = [i2- V=0] j 1),

406 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

j)}, where By (i, j) =

Let I'(4, j) be the list, in top-down order, of colors used for nodes lying
on the path from the root of By ([i2~@=# | j—1) to the root of By (i, 5)

CoLor(T, N, K)

1 Consider the family B(N) = {Bx/(i,.

2 BASIC-COLOR(Bx(0,0), K, N)

3 for each j=1 to {LJ

4 do

5 for each i =0 to /(N5 _1

6 do

7

8 BotTtoMm(By(i,7), N, K,I'(7,5))

Sy (i, J(N = k)

Fig. 7. Algorithm COLOR.

and a subtree of height k with By(h,j+ 1), for each
i-2VF<h < (i4+1)-2N7F,

The algorithm COLOR(T, N, K), presented in Fig. 7, first
constructs the family B(N) and then color its subtrees in a
top down order, starting with By(0,0) that is colored by
calling the algorithm BASIC-COLOR(B(0,0), N, K). Notice
that when the algorithm starts coloring By(i, j), for j >0,
the first k levels of this subtree have been already
colored and only the bottom part of the tree needs to be
colored. For this purpose, we use the algorithm
BOTTOM(Bx (4, §), N, K,T'(3,7)),
as the list of colors assigned to the nodes of Py_;(4,J),
that is simply the path from the node vj;o-«v1 ;1 to v;j,
taken in a top down order.

where T'(i,j) is defined

Theorem 3. Algorithm COLOR yields mappings of binary trees
that are (N + K — k)-CF-optimal on S(K) and P(N).

Proof. Consider first the template S(K’). Observe that, for
each S € S(K), there exists a subtree B € B(N) such that
S C B. By Theorem 1, the B’s coloring is (N + K — k)-CF
on the template Sp(K). Therefore, the mapping of
COLOR is (N + K — k)-CF-optimal on S(K).

Consider, now, the template P(N) and let P be an
instance of this template. It can be easily seen that there
exist two not-disjoint subtrees B, By € B(N) such that
all the nodes of P belong to B;, B> or both. Without loss
of generality, assume that the root of B, is an ancestor of
the root of Bs.

Fig. 8. Description of the splitting of P.

We split P into three parts: P, € By, P, € B; N By, and
P; € B, (see Fig. 8). By Theorem 1, the coloring of B,
(respectively, By) is (N + K — k)-CF on Pp, (N) (respec-
tively, Pg,(V)). Thus, each of P;, for 1 < < 3, is conflict-
free and the colors assigned to the nodes of P, are
distinct from those assigned to nodes of P, and P;. It still
remains to prove that there are no two nodes in P, and
P; having the same color.

Observe that algorithm BOTTOM colors the last
N — k levels of By using colors assigned to the nodes
of the first k levels of B, and colors taken from a list
I'(; j), consisting of the colors assigned to the nodes on the
path (in top-down order) from the root of B; to the root
of B;. By Lemma 1, all the colors used in the first k levels
of By are different from those assigned to P;. On the
other hand, the hith color of I'; ;) is used only on jth level
of By, for j>k+h—1. Thus, the nodes of P, can be
colored only with the last |P;| colors of T'(; j), while nodes
of P3 are colored with the first |P;| colors of T'; ;. Since
|P| + |Ps| = N — k=T, it follows that none of the
colors assigned to the nodes of P; is used in P;. Hence,
the mapping is (N + K — k)-CF on P(N). Optimality
follows from Theorem 2. O

The COLOR algorithm requires O(2f) time, while
O(H) time is required to retrieve the memory module
where a single node of T is mapped. In fact, BASIC-
COLOR assigns to v(r,s) the same color as one of the
nodes of the uppermost k levels of subtree By (i,) € B(N)
which o(r,s) belongs to. However, the coloring of the
uppermost k levels of By(i,j) depends on the coloring of
the tree By(i¢,j—1) that shares the first k levels with
By (3, j)-

This process climbs up the tree until subtree By(0,0) is
reached. Then, the algorithm must compute the coloring of
O(H/N — k) trees on the path from By (i, j) (Where v(r, s) is)
up to By(0,0). By the analysis of BASIC-COLOR, each step
costs O(N — k) time and, therefore, the time for retrieving
the memory module where v(r, s) is mapped is O(H).

Similarly to previous section, the retrieval time can be
reduced to O(H/N — k) if the PRE-COLOR algorithm is
performed with a new preprocessing step, called PRE-
COLOR algorithm.

AULETTA ET AL.: OPTIMAL TREE ACCESS BY ELEMENTARY AND COMPOSITE TEMPLATES IN PARALLEL MEMORY SYSTEMS 407

RETRIEVING-COLOR(v(i,j), UP, NEW)
ifj<N
if UP[v(i,7)] = =

if UP[v(4,5)] = v(m,n)

=] O Tk Lo =

// Find the color assigned to the node v(i, j) by COLOR
then return RETRIEVING-DBAs1c-CoOLOR(B(0, 0), UP)
then return RETRIEVING-COLOR(ANCy(4, 4, N), UP, NEW)

then return RETRIEVING-COLOR(NEW[v (1,1)],UP,NEW)

Fig. 9. Algorithm RETRIEVING-COLOR.

PRE-COLOR builds a table NEW of size O(K) that stores,
for each node v(r,s) of the k uppermost levels of any
By (i, 7), its relative address in the subtree By(i',j — 1) that
shares the first k levels with By (3, j). Notice that NEW[v(r, s)]
is a function of both the relative position of v(r, s) in By (%, j)
and the root v(i, j) of By(i,).

Formally, assuming that both preprocessing steps PRE-
BASIC-COLOR and PRE-COLOR have been performed, the
recursive RETRIEVING-COLOR algorithm can be described
as in Fig. 9.

4 AN OpPTIMAL MAPPING FOR ELEMENTARY
TEMPLATES

By Theorem 3, it is possible to obtain conflict-free access to
S(M) and P(M) if and only if the memory system has at
least 2M — [log M| memory modules, i.e., the degree of
memory parallelism is greater than the size of the subset to
be accessed in parallel.

This section restricts our attention to mappings that
exploit all the parallelism of the memory system. We prove
that if M colors are available, letting m = [log M|, COL-
OR(T, 2™t —1,2™"1 + m — 1) yields a mapping that has
unit cost on S(M) and P(M), and thus it is M-optimal on
these set of templates. In the remainder of this section,
COLOR stands for COLOR(T, 2"~ — 1,2™~! 4+ m — 1).

Theorem 4. For each integer M =2™ —1, the COLOR
algorithm vyields mappings of binary trees on M memory
modules such that

max{Cost(COLOR, S(M), M),
Cost(COLOR, P(M), M)} = 1.

Proof. We evaluate separately the cost of the mapping on
S(M) and P(M), and prove that in both the cases the cost
is at most 1.

Let P € P(M). By Theorem 3, COLOR colors with no
conflicts each path of length <2™ !+ m —1. Since
M/2 < 2™ 1+ m —1, we can split P into two segments
of size < M/2 such that each of them is conflict-free.
However, the same color could be used to color a node in
each of the two segments. Thus, there are at most two
nodes in S colored with the same color and

Cost(COLOR, P(M), M) < 1.

Let S € S(M). By Theorem 3, the first m — 1 levels of S
are colored by COLOR with no conflicts. On the other
hand, the last level of S contains the nodes of two
consecutive blocks that are colored with [¥| —1 colors
already used in the previous levels of S and a new color.
Thus, there are at most two nodes in S colored with the
same color and

Cost(COLOR, S(M), M) = 1.
O

Since there exists no algorithm [2] for mapping of binary
trees that is M-CF on {S(M), P(M)}, we can state that

Theorem 5. The algorithm COLOR is M-optimal on
I ={SM),P(M)}.

In Section 6, we introduce algorithm LABEL-TREE which
exhibits constant time retrieval cost at the cost of a slightly
larger number of memory modules. Intuitively, LABEL-
TREE beats COLOR since it colors 1" by a family of disjoint
subtrees.

5 ACCESSING TREES BY COMPOSITE TEMPLATES

Let us study the efficiency of COLOR with respect to
composite templates (C-templates) introduced in Section 2.

For this purpose, we first consider the cost of the
mapping yielded by COLOR(T,2™ ! —1,2""! +m —1) on
elementary templates of any size D; then, we combine these
results for deriving the cost of mapping instances of the
composite templates C(D,c), where D is the size of the
template and c¢ is the number of constituent elementary
templates. As earlier, we set

K=2""-1,
N=2""14m—1,
M=2"—-1,

and we simply say COLOR for
COLOR(T,2™ ' —1,2" ' 4 m — 1).

For sake of simplicity, we assume in the rest of the
paper that the parallel memory system consists of M =
2™ —1 modules. In the general case, all results presented
in this and next section still hold, but the number of
conflicts increases by a constant factor.

408 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

Lemma 3. For each integer D > M, the COLOR algorithm yields
mappings of binary trees of height H > D on a memory system
consisting of M = 2™ — 1 modules such that

Cost(COLOR, P(D), M) < 2 {% Y

Proof. Consider P € P(D) and split it into segments
PP, -- ,P(2] in such a way that each segment, except
for the last one, has length M.

By Theorem 4, each segment of P contains at most two
nodes with the same color. Therefore, the cost of the
mapping on P is at most 2 (%] -1 O

Lemma 4. For each integer D > M, the COLOR algorithm yields
mappings of binary trees of size larger than 2D —1 on a

memory system with M modules such that

Cost(COLOR, L(D), M) < 4 {% .

Proof. Let L € L(D). Recall that the algorithm splits each
level of the tree into blocks of size 2"~% and color each
block without conflicts. Thus, the number of conflicts in
L is upper bounded by the number of blocks that contain
nodes of L. Since L spans at most [;2;| + 1 consecutive

blocks, the number of conflicts on L is at most
D 4D D
— | < | —| <4|=].
7| <[] <[5

Lemma 5. For each integer D = 24 1, where d > m, the
COLOR algorithm yields mappings of binary trees of size

greater than D on a memory system with M modules such that

D
Cost(COLOR, S(D), M) < 4%1 ~1

Proof. Let d = hm + i be the height of a tree S € S(D), for
some h>0 and ¢<m. We partition S into i+1
subsets Sy, S1,---,5; such that S; consists of the first
hm levels of S and S; consists of the nodes of level

hm+ j, where 1< j<i. Observe that S, can be

ohm _q
M

By Theorem 4, each of these trees has at most two

partitioned into [subtrees of size M, where | =

nodes colored with the same color. Thus, the number of

nodes of Sy with the same color is at most 2I.

Moreover, the number of nodes in S; with the same
color is upper bounded by 72, that is the number of
blocks at level hm + j. Summing over all S;, the number
of conflicts in S is at most

i 2hm+j71 th
2l + ZW —1=20+

J=1

(20—1)—1

om—2

2171 —1
=2
o)
2d—i 2d—i)
2 4 2 —1)—1
<2(r) <1(r)z-
2d 2d7i
() ()
d _ d—i
(P 2
M M
D 1 2
=1(5) G 25r)

2(1772
Qm—2

(2'—1)—1

Theorem 6. For each pair of integers D > M and c > 0, the
algorithm COLOR yields mappings of binary trees of size
greater than D on a memory system with M modules such that
the cost of accessing composite templates is given by

D
Cost(COLOR, C(D, c), M) < 4<M) +ec.

Proof. Consider a composite template instance C € C(D, c)
and let C1,Cs, - -
templates that form C. By Lemmas 3, 4, and 5, the

-, C, be disjoint instances of elementary

mapping of C; has a cost no greater than 4 {%‘-‘ , for each

i. Thus, the cost of the mapping on C is at most

ZJ%} < Z:<4|0Mi|+1) :4(%) +ec.

3

For ¢ = O(£), the algorithm
COLOR(T,2™ ' —1,2" ' 4+ m — 1)

is M-optimal, within a constant factor, on C-templates.

6 FASTER ALGORITHM FOR ACCESSING
CoMPOSITE TEMPLATES

The COLOR algorithm is intrinsically recursive in nature
and the color of a node depends on the previously colored
nodes. However, as the RETRIEVING-COLOR procedure
shows, one can trade-off time with memory space and, in
this case, reduce the time to compute the address of a node
to O(H/N).

In this section, we describe a different mapping algo-
rithm for accessing complete trees through composite
templates that distributes the nodes among the memory
modules in a very balanced way and also allows retrieval of
node addresses in constant time with a moderate size table.
In [2], it is shown that LABEL-TREE maps complete binary

AULETTA ET AL.: OPTIMAL TREE ACCESS BY ELEMENTARY AND COMPOSITE TEMPLATES IN PARALLEL MEMORY SYSTEMS

409

MIcRrRO-LABEL(B, ¥)

let b(),b], v

-, by-1_ be the nodes of block(h, j)

let w(h',5 — L+ 1) be the sibling of u(h,j — 1+ 1)

color b; with the color assigned to the ith node of Sy _ (W', 5 — 14+ 1)
color by 1_y with the (28 + 2970 4 |h/2] — 1)th color of X.

1 for each j=0tol—1
2 do
3 for eachi=0to 2/ —1
4 do
5 color u(i, j) with (29 — 1 +i)th color of 3.
6 for each j=[ltom—1
7 do
8 for each h=0to 211 -1
9 do
10
11
12
13

Fig. 10. Algorithm MICRO-LABEL.

trees on M memory modules with the following perfor-
mances:

Theorem 7 [2]. Algorithm LABEL-TREE vyields mappings of
binary trees on M memory modules such that:
M

log M
elementary templates of size M;

o the memory load is 1 + o(1);

e for each node of the tree, the address of the module where
this node is mapped can be computed in O(1) time if an
O(M) size table is precomputed, otherwise it takes
O(log M) time.

e there are O(conflicts on all instances of

In this section, we extend the analysis in [2] and show
that the algorithm LABEL-TREE scales well when the size of

the templates grows. In particular, we prove that for each

. i D
integer D, LABEL-TREE has cost O(N

of elementary templates of size D and, hence, a cost

D
O(MlogM+C)

on composite templates C(D,c). These results show an
interesting trade-off between the number of conflicts and
the simplicity of node-addressing, and balancing the
memory load.

In the following, we first give an overview of the
algorithm LABEL-TREE [2] for completeness, and then
compute its cost on C-templates.

6.1 Algorithm LABEL-TREE

The basic idea of the algorithm LABEL-TREE is to divide the
tree in a set of disjoint subtrees of height m = [log M| and
color each subtree independently so that no conflict occurs
on accessing paths of each subtree and a few conflicts
occurs on levels. The set of colors is split in groups and then
the following three steps are followed for each subtree B.

) on instances

e MACRO-LABEL. Assign a group of colors to B such
that if the roots of two subtrees lie on the same
ascending path and are assigned the same group,

then their distance is at least (/M log M). The goal
is to reduce conflicts for P-templates.

e ROTATE. Select a list of ¢ colors from among the
colors of the group assigned to B in such a way that
two subtrees at the same level with the same list of
colors are as far as possible. Goals are 1) to reduce
conflicts for L- and S-templates, 2) balance the load
on memory modules.

e MICRO-LABEL. Color the nodes of B using the

colors of the list assigned to B. It yields mappings of
binary trees of height m that are ¢-conflict-free (¢

defined right below) on the path template P(m) and

M
log M

Since MICRO-LABEL is the core of our coloring strategy a
more detailed description is needed. Let

1= [tog|\/MTlog2T] |,

¢=2'+2"""—2 and p= |%]. We partition the color set
{0,1,---,M — 1} into p subsets Gy,G,...,G, 1, where

G| = H or gJ 41

have cost O() on the subtree template S(M).

P

MICRO-LABEL is similar to BASIC-COLOR, presented in
Section 3, but it uses a different number of colors. In fact,
MICRO-LABEL uses more colors and is tailored to guarantee
conflict-free access to S(2' —1). Whereas, BASIC-COLOR
uses less colors and guarantees conflict-free access to S(M).
Notice that, here, we are trading the number of colors and
the number of conflicts with the balancing of loads on the
elements of the parallel memory system.

Let B be a subtree of the forest B and let) =
{fo,..., fic1} be the list of colors assigned to B by the
algorithm ROTATE. Algorithm MICRO-LABEL(B,)"),
shown in Fig. 10, consists of two steps. In the first step it
assigns a distinct color to each of the nodes of the [top
levels of B; in the second step it colors the remaining levels
in a top-down order, on a block basis (e.g. here the blocks
have size 2/~!). The coloring of the nodes of a block is
similar to the coloring of BASIC-COLOR. Let block(h, j) be
the block that has to be colored, with j > [, and let u(h,j —
l+1) and u(h/,j—1+1) be the (I —1)th ancestor of the
nodes in block(h,j) and its sibling, respectively. As in

410 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

BASIC-COLOR we color (2~! — 1) nodes of block(h, j) with
the colors of the subtree rooted at u(h/,7—1+ 1) and the
last node with the (2! +2/~'+ |h/2] —1)th color of),
that was never used in the previous levels of the tree.

Observe that the procedure MICRO-LABEL uses only
colors of > to color B. In fact, the largest index of a
color taken from) is 2! +2" 1 —2=/—1, for j=m -1
and h=2""—-1.

It can be proved that MICRO-LABEL gives a mapping of
the subtree B that is /-conflict-free on templates P(m) and
S(2!—1) (the proof is similar to that of Theorem 1).
Moreover, the following property holds for the number of
conflicts on the nodes of a level of B.

Lemma 6. For each D = 2, with d > |, MICRO-LABEL vyields
mappings of binary trees such that

D
Cost(MICRO-LABEL, L(D),#) = O ————).
ost(L(D)Y (s/]\/flogjw>

Proof. We observe that MICRO-LABEL maps nodes of each
block without conflicts. Thus the number of conflicts on
each instance L € L(D), the level template, is upper
bounded by the number of blocks spanned by L.]

6.2 Cost Analysis

The problem of computing the number of conflicts
produced by LABEL-TREE on instances of elementary
templates of size M has been studied in [2]. In this section,
we extend the analysis to instances of the composite
templates. Before proceeding further, we study the
performance of the algorithm on instances of elementary
templates of any size D.
Mlog M) ’

D
2. Cost(LABEL-TREE, P(D), M) < [m} +1

T D
3. Cost(LABEL—TREE,S(D),M)fO< \/m)

Proof. The result is a nontrivial extension of similar results
presented in [2]. Here, we prove only the first statement
above and leave the others to the reader.

Let L € L(D) and assume that nodes of L belong to
the hth level of B;. Thus, there are at most [£] + 1 trees
of B; that contain nodes of L. As for the previous lemma,
we divide L in segments, each consisting of the nodes
contained in a tree of B;.

Lemma 7. For each integer D, it holds that
1. Cost(LABEL-TREE, L(D), M) = O

We distinguish two cases, depending on the value of
h. If h>1, then by Lemma 6, the algorithm MICRO-
LABEL colors each segment of L with O< 2)

\/Mlog M

conflicts. Thus, the number of conflicts on L is at most

([51+2) (Gareeen) = o(Gareem)

On the other hand, if h < [, a more accurate analysis
occurs. In fact, for small i, the number of segments of L
is greater than D. Observe that algorithms MICRO-LABEL
and ROTATE assign different lists of colors to trees of 5;

thatare close. In particular, if Band B’ are two consecutive
trees of B; that are assigned the same color group, ROTATE
assigns lists of colors to the trees such that list(B) =

{fo, f,-+, fertandlist(B') = { fi, fo, -, fe}. Thus, if fis
the color assigned to the last node of the first segment of L,
then fisused in the first 2" segments of L and afterwards it
is never used until segment ¢+ 1.

In general, if we group the segments of L into sets
of ¢ consecutive segments, the number of conflicts in
each set being at most 2" Thus, the total number of
conflicts is

(=) (%) -olriem)

Theorem 8. For each pair of positive integers D and c, algorithm
LABEL-TREE yields mappings of binary trees on M memory
modules such that

D
Cost(LABEL-TREE, C(D, ¢), M) = O| ——— .
Proof. Let C € C(D,c) be a composite template, and let
Cy,Cy,---,C, be the components of C. Recall that each

C; is an instance of an elementary template of size at
most D.

By Lemma 7, each component C; is colored by LABEL-

TREE so that the number of conflicts on C; is

o[z

—D Thus, the number of conflicts on C' is

([t) = (e <)

7 CONCLUSIONS

In this paper, we have presented several strategies for
mapping complete binary tree data structures onto parallel
memory systems and evaluated each strategy with respect
to three criteria: 1) the number of memory conflicts that can
occur when a parallel access to the data structure is
performed, 2) the number of elements that can be accessed
in parallel, and 3) the complexity of the addressing scheme.
We have also shown that interesting trade-offs exist
between these criteria. In fact, it is not possible to guarantee
conflict-free access to both subtree and path templates of
size equal to the number of memory modules. On the other
hand, it is possible to have conflict-free access to subtrees
and paths of size K if there are at least 2K — log K memory
modules.

Moreover, when considering parallel access to templates
obtained by composition of subtrees, paths and levels, we
have shown that there exists a trade-off between the
number of conflicts and the complexity of the addressing
scheme, measured in terms of the time needed by a
processor to compute the address of a node in the memory.

AULETTA ET AL.: OPTIMAL TREE ACCESS BY ELEMENTARY AND COMPOSITE TEMPLATES IN PARALLEL MEMORY SYSTEMS 411

ACKNOWLEDGMENTS

The authors would like to acknowledge the editor and the
anonymous referees for their valuable comments that
contributed to greatly improve the paper. Preliminary
versions of this paper appeared in [1], [2]. This work has
been partially supported by Progetto MURST 40% Algor-
itmi, Modelli di Calcolo e Strutture Informative, Texas
Advanced Research grant TARP-003594-013 and Texas
Advanced Technology grant TATP-003494-031.

REFERENCES

[1] V. Auletta, SK. Das, A. De Vivo, M.C. Pinotti, and V. Scarano,
“Towards a Universal Mapping Algorithms for Accessing Trees in
Parallel Memory Systems,” Proc. Int’l Parallel Processing Symp.
(IPPS/SPDP), pp. 447-459, Apr. 1998.

[2] V. Auletta, S.K. Das, M.C. Pinotti, and V. Scarano, “Optimal Tree
Access by Elementary and Composite Templates in Parallel
Memory Systems,” Proc. Int’l Parallel and Distributed Processing
Symp. (IPDPS), Apr. 2001.

[3] V. Auletta, A. De Vivo, and V. Scarano, “Multiple Template
Access of Trees in Parallel Memory Systems,”]. Parallel and
Distributed Computing, vol. 49, np. 1, pp. 22-39, Feb. 1998.

[4] CJ. Colbourn and K. Heinrich, “Conflict-Free Access to Parallel
Memories,”]. Parallel and Distributed Computing, vol. 14, pp. 193-
200, 1992.

[5] T. Cormen, C. Leiserson, and R. Rivest, An Introduction to
Algorithms. Mit Press, 1990.

[6] R. Creutzburg and L. Andrews, “Recent Results on the Parallel
Access to Tree-Like Data Structures—The Isotropic Approach,”
Proc. of Int’l Conf. Parallel Processing, vol. 1, pp. 369-372, 1991.

[71 SK. Das and M.C. Pinotti, “Conflict-Free Template Access in
k-Ary and Binomial Trees,” Proc. 11th ACM Int’l Conf. Super-
computing, pp. 237-244, July 1997.

[8] SXK. Das and M.C. Pinotti, “Load Balanced Mapping of Data
Structures in Parallel Memory Modules for Fast and Conflict-Free
Templates Access,” Proc. Fifth Int'l Workshop Algorithms and Data
Structures, vol. 1272, pp. 272-281, Aug. 1997.

[9] SXK. Das and M.C. Pinotti, “Optimal Mappings of g-Ary and
Binomial Trees into Parallel Memory Modules for Fast and
Conflict-Free Access to Path and Subtree Templates,” J. Parallel
and Distributed Computing, vol. 60, no. 8, pp. 998-1027, 2000.

[10] S.K.Das, M.C. Pinotti, and F. Sarkar, “Optimal and Load Balanced
Mapping of Parallel Priority Queues in Hypercubes,” IEEE Trans.
Parallel and Distributed Systems, vol. 7, no. 6, pp. 555-564, June 1996.

[11] SK. Das and F. Sarkar, “Conflict-Free Data Access of Arrays and
Trees in Parallel Memory Systems,” Proc. Sixth IEEE Symp. Parallel
and Distributed Processing, pp. 377-383, 1994.

[12] S.K. Das, F. Sarkar, and M.C. Pinotti, “Conflict-free Path Access of
Trees in Paralle]l Memory Systems with Application to Distributed
Heap Implementation,” Proc. 24th Int'l Conf. Parallel Processing,
vol. I, pp. 164-167, 1995.

[13] J. JaJa, An Introduction to Parallel Algorithms. Addison Wesley,
1992.

[14] F.T. Leighton, Introduction to Parallel Algorithms and Architectures.
Morgan Kaufman, 1992.

[15] M.C. Pinotti and G. Pucci, “Parallel Algorithms for Priority Queue
Operations,” Theoretical Computer Science, vol. 148, pp. 171-180,
1995.

[16] D.Kaznachey, A.Jagota, and S. K. Das, “Primal-Target Neural Net
Heuristics for the Hypergraph k-Coloring Problem,” Proc. Int’l
Conf. Neural Networks (ICNN '97), pp. 1251-1255, June 1997.

[17] K. Kim and V.K. Prasanna, “Latin Squares for Parallel Array
Access,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 4,
pp- 361-370, Apr. 1993.

[18] H.A.G. Wijshoff, “Storing Trees into Parallel Memories,” Parallel
Computing, pp. 253-261, 1986.

Vincenzo Auletta received the Laurea degree
(summa cum laude) in computer science from
the University of Salerno, ltaly, in 1987. He
received the doctorate degree in applied mathe-
matics and computer science from the University
of Naples, ltaly, in 1992. He is an associate
professor of computer science in the Depart-
ment of Computer Science of the University of
Salerno. His research interests are in the areas
of design and analysis of algorithms, distributed/
parallel processing, network architectures and protocols, security.

Sajal K. Das received the BTech degree from
Calcutta University, 1983, the MS degree from
the Indian Institute of Science, Bangalore, and
the PhD degree in 1988 from the University of
Central Florida, Orlando, all in computer
science. Currently he is a full professor of
computer science and engineering and also the
founding director of the Center for Research in
Wireless Mobility and Networking (CReWMaN)
at the University of Texas at Arlington (UTA).
Until 1999, he was a professor of computer science at the University of
North Texas (UNT), Denton, where he founded the Center for Research
in Wireless Computing (CReW) in 1997, and also served as the director
of the Center for Research in Parallel and Distributed Computing
(CRPDC) from 1995 to 1997. He is a recipient of the UNT Student
Association’s Honor Professor Award in 1991 and 1997 for best
teaching and scholarly research, the UNT Developing Scholars Award
in 1996 for outstanding research, and the UTA Outstanding Senior
Faculty Research Award in Computer Science in 2001. He has visited
numerous universities, research organizations, and industry research
labs for collaborative research and invited seminar talks. He was a
Visiting Scientist at the Council of National Research in Pisa, Italy, and
Slovak Academy of Sciences in Bratislava, and was also a Visiting
Professor at the Indian Statistical Institute, Calcutta. He is frequently
invited as a keynote speaker at international conferences and symposia.
His current research interests include resource and mobility manage-
ment in wireless networks, mobile computing, QoS provisioning and
wireless multimedia, mobile Internet, network architectures and proto-
cols, distributed/parallel processing, performance modeling and simula-
tion. He has published more than 185 research papers in these areas,
directed several projects funded by industry and government, and filed
four US patents in wireless moble networks. He is a member of the IEEE
and the IEEE Computer Society. He received the Best Paper Awards for
significant research contributions in the ACM Fifth International
Conference on Mobile Computing and Networking (MobiCom’99), Third
ACM International Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM 2000), and ACM/IEEE Interna-
tional Workshop on Parallel and Distributed Simulation (PADS '97). He
serves on the editorial boards of the Journal of Parallel and Distributed
Computing, Parallel Processing Letters, Journal of Parallel Algorithms
and Applications, and Computer Networks. Each year he serves on
numerous |EEE and ACM conferences as technical program committee
member, program chair, or general chair. He is a member of the IEEE
TCPP executive committee and advisory boards of several cutting-edge
companies.

Amelia De Vivo received the degree in compu-
ter science from University of Salerno in 1993. In
1997, she achieved the masters degree in
information technology from lIstituto Internazio-
nale per gli Asti Studi Scientifici (IIASS), Italy. In
1998, she joined Quadrics Supercomputers
World, where she worked on a parallel compiler
for the APE100 SIMD machine. Currently, she is
working on the PhD degree in computer science
at the University of Salerno. Her research
interests include parallel compilers, parallel computing, and commu-
nication systems for high performance cluster networking.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

