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Abstract
Protocol State Machines in UML 2.0 [10] combine
state-based behavior specifications with event-based
descriptions of valid sequences of operation calls. To
support modeling components, UML 2.0 introduces
structured classifiers, featuring Ports associated with
provided and required interfaces. Unfortunately,
Protocol State Machines are applicable only to a single
interface, either a provided or required one. Moreover,
the definition of protocol conformance is rather fuzzy
and reasoning on the relation is not possible in general.

In this paper, we propose Port State Machines to
capture the interleaving and nesting of operation calls
on a Port. Building on our experience with behavior
protocols [15], we introduce notation shortcuts to
conveniently capture an operation call as two atomic
events request and response; moreover, the notation
also explicitly distinguishes events on provided and
required interfaces.

We demonstrate how communication on a Port can
be modeled with Port State Machines in a way that
yields a regular language, formed by the set of traces
of atomic events on the Port. Thus, Port State
Machines form a basis suitable for behavioral
reasoning; establishing a formally specified
compliance relation is subject of future research.

1. Introduction
1.1. UML 2.0: State Machines and Protocol State
Machines
The Unified Modeling Language (UML) [9] features
StateMachines, which allow to model behavior in a
state-based way; nevertheless, the execution of a State
Machine can be observed as the sequence of events
accepted and actions executed. The upcoming new
version of the standard, UML 2.0 [10], introduces the
ProtocolStateMachine (PSM), which can be used to
model the ordering of operation calls on a Classifier
(typically an Interface).

Moreover, UML 2.0 introduces the concepts
StructuredClassifier and EncapsulatedClassifier,
providing support for internal structure and featuring
Ports associated with provided and required interfaces.
Based on these concepts, the Component metaclass is
defined, providing a possibly hierarchical component

model, with external communication of the component
encapsulated in its Ports.

In Component-Based Software Engineering, a basis
for reasoning on behavioral compliance of software is
highly desirable in order to validate software
architectures.

UML explicitly considers “conformance” of
PSMs, however, the role of conformance is limited to
explicitly declaring, via the ProtocolConformance
model element, that a specific StateMachine (possibly
a PSM) conforms to a general PSM. Note that UML
defines the semantics of protocol conformance only
partially (based on structural equivalence and matching
guards on transitions); it is not clear under which
circumstances may protocol conformance be declared
and thus, it is not feasible to automatically decide on
protocol conformance.

UML employs the protocol conformance in the
Components framework, requiring realization of a
Component (possibly a StateMachine specifying the
component) to be conforming with its Interfaces.
Moreover, when a required interface IR is connected to
a provided interface IP, the PSM of IR must be
conforming to the PSM of IP. However, with no exact
definition of protocol conformance, reasoning on
soundness of component architectures is not feasible.

1.2. Motivations
Although the State Machines in UML permit modelers
to clearly communicate ideas to each other, they are
not suitable for specifying component behavior as a
basis for model checking. The observable behavior of
components is typically captured as communication on
its provided and required interfaces [13, 5, 6, 4].
However, in UML State Machines, significantly
different mechanisms are employed to specify events
received (typically operations on the provided
interfaces), captured as triggers associated with
transitions, and events sent (typically operations on the
required interfaces), captured as various actions inside
activities specifying the effect of a transition, or
associated with entering/exiting a state or as the
doActivity of the state. As the spectrum of actions is
rather huge and it is not possible to establish a one-to-
one correspondence between triggers and actions
related to communication, it is not possible to reason
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on composed behavior of multiple communicating
components specified with State Machines.

Protocol State Machines (further PSM), a
refinement of the (generic) behavioral State Machine,
impose a restriction on its transitions, requiring that no
activities are associated neither with transitions, nor
with states. This reduces the specification mechanism
from a mixture of Activities (Petri-net like constructs
in principle) and State Machines to pure State
Machines. However, as a consequence, only one
“direction of communication” can be captured with a
PSM. Typically, a PSM is associated with an Interface,
the concrete usage of the interface in a Port (possibly
of a Component) determines whether the events
captured by the PSM are received (in case of a
provided interface) or sent (in case of required
interface). Thus, a PSM can only capture the
communication on a single interface. 

UML State Machines employ the run-to-
completion semantics, i.e., only after a transition of the
State Machine completes may another event be
processed. Thus, while executing a method (modeled,
e.g., as the effect activity of the transition), no other
event may be processed by the State Machine, i.e., no
other method call may be accepted. Therefore, not
only do not StateMachines support (unlimited)
recursion, but not even nested calls (e.g., a simple call-
back – single-level indirect recursion).

Surprisingly, the situation is no easier in PSMs –
although no activities modeling the method are
captured in a PSM, a transition completes only after
the method implementing the operation completes.
Therefore, no call may be accepted before the call
being received completes and thus, the same
restrictions (on recursion) apply to PSMs.
Consequently, although a PSM specifies a sequence of
operation calls, this sequence cannot be properly
reflected as a trace for further behavioral reasoning,
due to the non-atomicity of the events (operation-call)
in the sequence. Furthermore, the sequence cannot
capture nesting of calls (as nested calls are not
supported by PSMs).

Being “close” to a regular automaton, PSMs evoke
the idea to employ a tool to decide on compliance
(“compatibility of behavior”) of two PSMs.
Unfortunately, that is not feasible, as such a
compliance (basically, a relation upon the languages
generated by the automata) would be undecidable for
the following reasons: (i) Constraint language used for
guards of transitions is arbitrary (thus of arbitrary
power, though “without side-effects”) (ii) Events may
be deferred and processed later, thus the automaton
gets a stack (though without clear semantics of the
order of retrieval; thus rather resembling a bag). Here,
the bottom line is that verification of compliance is
feasible only on regular automata (or other abstractions

with equivalent expressive power). In certain cases, the
relation may be decidable for a context-free grammar
/ stack automaton; however, actually evaluating
(computationally) such a relation is likely to be
unfeasible for any non-trivial case. A compliance
relation is typically defined on regular languages, e.g.,
a decidable relation is defined in [15]; the work on the
consent operator [1] provides an alternative approach
[2].

The widely recognized, state oriented, State-chart
notation [8] (basis of UML State Machines) is intuitive
to modelers; while the derived sequences of event are
helpful to developers. Moreover, in case a trace model
can be defined for the sequences of events (i.e., the
events are atomic), reasoning on compliance may be
done.

Last but not least, we miss a layer of description
between a PSM (focused on a single interface) and a
behavioral State Machine specifying a component, i.e.,
a layer suitable for specifying communication on a
Port.

Thus, our motivations are: (i) State Machines in
UML do not properly capture interleaving of sent and
received events. (ii) The form State Machines use does
not permit establishing a decidable compliance
relation. (iii) A State-based notation is intuitive to
modelers. (iv) Traces of atomic events can be
employed in formal reasoning. (v) A specification
mechanism is missing to capture the communication on
a Port.

1.3. Goals and Structure of the Paper
In [15], we developed Behavior Protocols, modeling
behavior of agents as traces of atomic events. Applied
to the SOFA component model [13], behavior
protocols capture the interleaving of operation calls
sent and received by a SOFA component. Nested calls
can be captured here. Moreover a decidable
compliance relation is defined; a verifier tool [16] for
SOFA components is available.

A correspondence can be established between the
SOFA hierarchical component model and UML 2.0
Components based on Structured Classifiers.
Considering the motivations discussed in Sect. 1.2, we
propose Port State Machine (PoSM) with the
following goals: (1) Provide a state-based notation (2)
that allows to capture interleaving of events sent and
received (by a Port of a Component) (3) and nested
calls (4) in such a way that the behavior can be
captured as a trace of atomic events. (5) Moreover, a
compliance relation should be possible to define.

This paper is structured as follows: Sect. 2
introduces the Port State Machines (PoSMs); a case
study follows in Sect. 3. Sections 4 and 5 evaluate the
contribution, discuss Related work and line out Future
Work; the paper concludes in Sect. 6.
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PortStateMachine PortTransition
+CommunicationDirection: cdKind
+OperationCallPart: ocpKind

ProtocolTransition
(from ProtocolStateMachines)

<<enumeration>>
cdKind

sent
received

Package PortStateMachines

ProtocolStateMachine
(from ProtocolStateMachines) <<enumeration>>

ocpKind
request
response

Figure 1: Port State Machines: abstract syntax
(metamodel extension)

 ?a^

 !b^

 ?b$

 !a$

?a

!a$

?a^

 ?a

 !b

a) receiving call of operation a

b) implicit state shortcut

c) calling operation b while
d) an operation call nested

processing operation a
in a composite state

Figure 2: Port State Machines notation

1.4. Note on conventions used
In this paper, PSM stands for Protocol State Machines
(introduced by UML 2.0), while PoSM (pronounced
“possum”) stands for Port State Machines, proposed in
this paper. A sans-serif font is used to distinguish
identifiers in the UML metamodel (names of packages,
metaclasses, associations and attributes).

2. Port State Machines
Port State Machines build upon the UML 2.0 Protocol
State Machines. To model operation calls (inherently
non-atomic) with atomic events, PoSMs capture an
operation call with two events, request and response.
Moreover, in order to capture the interleaving of
operation calls sent and received (via different
interfaces of a Port), PoSMs explicitly distinguish
between sent and received events (calls). To hide such
technical details from the modeler, PoSM notation
defines convenient shortcuts.

2.1. PortStateMachine and PortTransition
metaclasses
Technically, a PoSM is captured in the model as the
PortStateMachine metaclass (subclassing
ProtocolStateMachine); a transition in a PoSM is a
PortTransition (subclassing ProtocolTransition). A
Port Transition features two attributes:
CommunicationDirection, capturing whether the
event specified by its trigger is received or sent and
OperationCallPart, capturing whether the transition
represents the request or response part of the operation
call. A Port Transition must have exactly one trigger;
the trigger must be a CallTrigger, referring to an
operation on an Interface of the Port the PoSM is
associated with. Figure 1 shows the relates the PoSMs
to the UML metamodel. 

Note that compared to Protocol State Machines, a
single PSM transition is represented with two
transitions in a PoSM; thus an intermediate state has to
be employed to join the transitions.

2.2. Port State Machine semantics
In order to provide a basis for a decidable compliance
relation, we impose additional constraints on the Port
State Machines and Port Transitions. The
deferrableTrigger association of each state in a PoSM

must be empty, so that no event deferring may occur.
Constraints are not supported in PoSMs. For
convenience, a constraint may be specified as the
guard of a transition; however, such a constraint
merely plays the role of a label or a comment and is
not considered in evaluating the set of traces of events
generated by the PoSM. (Technically, this can be
achieved by a special constraint language that
evaluates to true for any condition). Transitions other
than PortTransition are permitted in a PoSM;
however, such transitions may not specify any triggers,
i.e., they can only accept the completion event. 

2.3. Notation (and shortcuts)
The PoSM notation utilizes the notation of Behavior
Protocols [15, 14]. There, ?a stands for receiving event
a and !a for sending event a. A call of an operation a is
captured with atomic events, where the event name a
has either the suffix � for request or � for response.
E.g., sequence ?a�; !a�(receiving request a and
sending response a) models receiving call of operation
a; here a shortcut ?a can be employed. In a similar
vein, shortcut !a stands for !a� ; ?a�. Moreover, the
shortcut a{Prot} stands for ?a�; Prot ; !a�.

The notation for PoSMs employs these prefixes
(?/!) and suffixes (�/�) to express the attributes of
PortTransition in the event label. Due to the
limitations of the character set available, we represent
� with ^ and � with $ respectively. The notation is
demonstrated in Fig. 2.

Figure 2 a) shows the sequence ?a�; !a� with an
explicitly modeled (though anonymous) intermediate
state. For convenience, Fig. 2 b) employs a shortcut to
model the same sequence. The arrow actually
represents two transitions; the circle on the transition
indicates the existence of the implicit intermediate
state. Here, only “?a” is used; the shortcut is
semantically equivalent to the two transitions explicitly
modeled in Fig. 2 a). The communication direction of
the first (request) transition is equal to the symbol used
in the label, while the communication direction of the
second (response) transition is the opposite.
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?custtr.buyTicket { ����ValidateReservation ;
( !custtr.putAmount + �InvalidReservation ;
!custtr.reportFailure )

} ;
( ( ?custtr.payCreditCard + �SelectPayEFT ;

?custtr.payEFT + �InvalidReservation
 ) ;
?custtr.confirmPayment {

!agency.validatePayment ; 
( ����RecordPayment ;

!custtr.putPaymentConfirmationCode +
�InvalidPayment ) 

} + �AbortBuyTicket + �InvalidReservation
)

Figure 3: Pro-case “Pay for a ticket”

   TicketsToBuySelected   

 ?cust.buyTicket

ResValidate

ResValid

ResInvalid
 [Valid]

 [Invalid]

ResAbort

!cust.putAmount
!cust.reportFailure

 PaymentMethodSelected 

 ?cust.payCreditCard   ?cust.payEFT [Valid]

 ?cust.confirmPayment

PaymentValidation

PaymentValidated

!agency.Validate

!cust.putAuthCode

PaymentConfirmation

  [InvalidPayment]

Figure 4: Port State Machine acquired from the
Pro-case “Pay for a ticket”

Nested calls can be modeled with PoSMs; in Fig. 2 c),
operation b is called while the call of operation a is
being processed. This can be conveniently captured via
a shortcut employing a composite state (Fig. 2 d); the
composite state roughly corresponds to the
intermediate state used in Fig 2 b), only the label is
attached to the state instead to the transition. To reflect
that the composite state substitutes the intermediate
state, semicircles are attached to the connections of the
transitions representing parts of the operation call with
the state. Inside the composite state, call of operation
b is modeled employing the PoSM notation.

Note that throughout this example, we used for brevity
the symbols a and b to refer to an operation on an
interface. Clearly, an identifier of the interface and an
identifier of the operation are required to identify the
operation unambiguously; in the following section, the
character “.” (dot) will be used to join these identifiers.

3. Case Study: Applying PoSMs to Use
Case Modeling
In [11], we developed Generic UC View, a simple
formal model for use cases, identifying criteria for
suitable compliance relations. Evaluating that textual
use cases do not permit reasoning on behavior
compliance, we introduced Pro-cases, a notation for
use cases based on behavior protocols [15]. Figure 3
shows a Pro-case; a fully fledged example is available
in [12]. In Pro-cases, events use the same notation as
explained in Sect. 2.3; the � symbol indicates an
internal action, either an action to be performed
internally by the system (component), or it may
represent a condition. The operators used here ; and
+ represent sequencing (concatenation) and alternative,
respectively. In Fig. 3, bold font is used to show a
typical walk-through of the Pro-case.
Port State Machines, being able to capture the
communication of an entity (component) with entities
(components) it is connected with, can be employed as
a notation for use cases. The Pro-case demonstrated in
Fig. 3 can be conveniently transformed to a PoSM;
Figure 4 shows the same behavior modeled as a PoSM.
Omitting internal actions and transforming conditions
into guards, the transformation is straightfoward.
Sequencing (;) translates into sequenced states;
alternative (+) into multiple outgoing transitions,
operation call nesting (expressed via {}) is reflected
as nesting of composite states. Pro-cases also support
parallelism (not demonstrated here); this would be
modeled via (concurrent) orthogonal regions.



– 5 –

4. Evaluation and Related Work
Port State Machines permit to capture the interleaving
of events (representing operation calls) on a set of
provided and required interfaces associated with a
component Port. PoSMs support modeling nested
calls; theoretically, arbitrary fixed depth of recursion
can be modeled with a PoSM. Unlimited recursion
(inherently causing the generated language not to be
regular) is avoided.

Conveniently, the language generated by a PoSM
is regular (taking into account that there are no
constraints, no event deferring and (inherently to state
machine) no recursion). Thus, PoSMs form a good
basis for reasoning on behavior compliance;
establishing a compliance relation and implementing a
verifier tool is subject of future work.

Method State Machines (MSMs) introduced in [18]
extend state machines with the ability to model
recursion. Recognizing the obstacles of the run-to-
completion semantics, the authors model operation
calls with two events, corresponding to request and
response. A relation of compliance of a Protocol State
Machine with a set of MSMs is defined; however, as a
tradeoff for modeling recursion, the relation is not
decidable.

Moreover, the approach taken here is object-based,
focused on the graph of operation calls among
cooperating objects; it would not be possible to
capture external communication of a software
component with MSMs without a significant
modification.

UseCaseMaps [3,4] is a notation for expressing
how a scenario (a particular run of a task to be
completed by a system) traverses a component
hierarchy. Thus, for a component, use case maps
shows the nesting of calls in a scenario. However, as
use case maps are focused on scenarios, obtaining the
“whole picture” of behavior on the interfaces of a
component is not possible.

The Rigorous Software Development Approach
coined in [19] considers generating a state machine
from a sequence diagram; thus, contrary to our
approach, transforming an event-based model to a
state-based model.

An abstract state machine language is employed in
[7]; instead on reasoning on behavior compliance, the
authors aim to generate test scenarios from the abstract
state machine specification.

In [20], Message Sequence Charts (MSC) are
translated into a labeled transition system (LTS) in
order to facilitate model checking. A synthesis and
analysis algorithm is provided; however, as the
approach is focused on individual messages rather than
on operation calls, call nesting is not addressed here.

5. Future Work
In our future research, we aim to define relations and
operations on Port State Machines. A compliance
relation (possibly captured as ProtocolConformance
in UML) relating Protocol State Machines of interfaces
of the Port specified by a PoSM would be highly
desirable. Moreover, we aim to employ PoSMs to
model behavior of the (whole) component; then, goal
will be to establish a compliance relation between a
Port PoSM and the Component PoSM. A formal
specification (utilizing the OCL language) of the
compliance relations will be provided.

Moreover, we aim to propose a restricted constraint
language, that would not break the regularity of the
language generated by a PoSM, yet provide convenient
modeling power.

With the aim to employ PoSMs to model use cases,
our future goal is to define operations for assembling
behavior scattered in multiple PoSMs into a single
PoSM (assembling the “whole picture” behavior).
Moreover, a composition operation, yielding the
composed behavior of multiple connected components
(possibly forming together a component at a higher
level in the component containment hierarchy) would
be desired.

In order to provide a proof of the concept, we aim
to implement a UML profile extension supporting
PoSMs for a UML tool. After establishing a
compliance relation, a compliance verifier tool
(possibly reusing the behavior protocols tool [16]) will
be implemented.

6. Conclusion
In this paper, we proposed the Port State Machines
(PoSMs). Building on UML Protocol State Machines
and Behavior Protocols [15], Port State Machines
allow to capture the interleaving of operation calls on
a set of provided and required interfaces; thus PoSMs
can be used to specify the behavior of a Port of a
Component or possibly of the Component itself.
Important feature of PoSMs is that the state-based
behavior specification expressed with a PoSM
generates language as a set of traces of atomic events;
conveniently, this language is regular. Thus, a
compliance relation can be established; formally
specifying such a relation is subject of future research.
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