
A Comparison of eb3 and B for Information System Specification

Benôıt Fraikin, Marc Frappier Régine Laleau

GRIL
Département de mathématiques et d’informatique

Université de Sherbrooke
Sherbrooke, Québec, Canada J1K 2R1

+1 819 821-8000x2096
{Fraikin,Frappier}@dmi.usherb.ca

Laboratoire CEDRIC
Institut d’Informatique d’Entreprise

Conservatoire National des Arts et Métiers
18 allée Jean Rostand, 91025 Évry Cedex France

+33 1 69 36 73 47
laleau@iie.cnam.fr

July 4, 2003

1 Introduction

The goal of this paper is to compare state-based and event-based specification paradigms of information
systems (IS) for a number of view points. The first and most important one is the ease of describing
the functional behavior of IS. That includes expressing event ordering, data structures, modularity, and
enforcing integrity constraints. The second view point is specification validation, which includes checking
the specification against the user requirements by either review, inspection, walkthrough, animation, or
scenario analysis. The next view point is specification validation, which consists of checking the specification
against formal properties or refinement of the specification. Finally, we consider specification evolution, in
order to understand the ease with which a specification can evolve to meet new user requirements. For
each view point, we identify the relative strengths and the weaknesses of each paradigm. Ultimately, this
comparison leads us to determine an ideal specification process which includes the best of both paradigms.

Our comparison is domain specific and restricted to information systems. Their main characteristics
are complex event ordering constraints and several complex data structure with multiples relationships.
Concurrency, distribution and real-time constraints are usually not an issue for the formal definition of IS
user requirements; although they may be of concern at the design level, but we do not address design issues
in this paper.

In the past, the reliability requirements for information systems where not as strong, as they were
used in-house only. Faults did not usually have a significant impact on an organisation. With the rapid
deployment of the world wide web, organisations are developing web access to their information systems,
thereby increasing the need for high quality systems. Data integrity becomes a critical issue if ordinary
clients can use an organisation’s information systems.

To illustrate the state-based specification paradigm, we have chosen the B language [1]; for the event-
based paradigm, we have selected the eb3 language [13]. B has been shown to be appropriate for describing
IS [15, 16]. It supports the whole life cycle, from requirements specification to implementation; it is supported
by industrial-strength case tools which have been successfully used on large scale, safety critical industrial
applications [4]. eb3 has been defined for the purpose of specifying IS; it is based on entities, process algebra,
traces, and recursive functions defined on traces. It is chiefly event-driven, but it also includes some state-
oriented constructs, in order to facilitate IS specification. A purely event-based specification of IS (e.g., with
a classical process algebra like CSP) is not practical, because it is too cumbersome to express data structures
and complex ordering constraints.

Our comparison is illustrated by specifying a library management system in both B and eb3. Section 2
provides a textual description of the user requirements. Section 3 introduces eb3 while providing a complete
specification of the library system. Section 4 provides an equivalent specification in the B language. Note

1

that in order to highlight some features of each language, we have deliberately inserted some errors in both
specifications. The correction of these errors are addressed in Section 5, which compares the two specifications
from the view points of functional behavior description, validation, verification, and evolution. We conclude
in Section 6 by providing a summary of the relative strengths and weaknesses of each language, from which
an ideal specification process is derived. We also provide summary answers to the questions raised in the
workshop call for papers.
Warning: We have attempted to transform an extended abstract into a full paper, but we were short of
time to properly polish it. Hence, this paper is rather in a state of work in progress. We apologize for any
inconvenience it may cause to the reader.

2 The User Requirements of a Library Management System

In this section, we provide a textual description of the user requirements for a simple library management
system. Even though they are quite basic, the requirements are complex enough to illustrate the difference
in style between the event-based and the state-based paradigms. Requirements elements are numbered for
further reference in the sequel.

1. The library system has to manage loans and reservations of books by members.

2. A book is acquired by the library. It can be discarded, but only if it is not lent and not reserved.

3. A member must join the library in order to borrow a book.

4. A book can be reserved if and only if it is lent or already reserved by another member.

5. A member can borrow or renew a book loan unless the book is already reserved.

6. If many members reserved a book, the first one who reserved it is allowed to take it when it is returned,
unless this member decided to cancel his reservation.

7. Anyone who reserved a book can cancel the reservation at anytime before the reservation is used.

8. A member can leave the library membership only when all his loans are returned and all his reservations
are either used or canceled.

3 The eb3 Specification

3.1 An Overview of eb3

The eb3 language has been especially design to specify IS. The core of eb3 [13] includes a specification process
and a formal notation for progressing from use cases to a complete and precise specification of input-output
traces. Under eb3, the specifier performs various tasks summarized as follows:

1. Define a user requirements class diagram.

2. Declare actions for entity types and associations.

3. Define valid input traces using a process expression.

4. Write recursive functions on input traces that assign values to entity attributes.

5. Define an output for each input trace using input-output rules.

2

The eb3 language uses a process algebra similar to Lotos [5], CCS [17] or CSP [14]. It includes sequence
(.), choice (|), Kleene closure (^*), interleaving (|||), parallel composition (||, i.e., synchronization on
shared actions), guard (==>), process call, and quantification of choice (|x : T : ...) and interleaving
(|||x : T : ...). An action has input and output parameters; an input event is an action with its
input parameters. Input events are elementary process expressions. They can be freely combined using the
operators. A single state variable can be used in process expressions: the execution trace. It is usually
accessed through recursive functions that extract relevant information from it.

book

bId : BOOKID
currentBorrower : MEMBERID

Acquire
Discard
CurrentBorrower

member

mId : MEMBERID
numberOfLoans : NAT

Join
Leave
NumberOfLoans

reservation

Reserve
Take
Cancel

* *

* 0..1

loan

Lend
Renew
Return

Figure 1: User requirements class diagram of the library IS

An ongoing project at the University of Sherbrooke aims at automatically generating IS from eb3 spec-
ification. Details on this topic can be found in [10, 11]. The process algebra interpreter developed so far
can execute process expressions with reasonable performance, such that it can be used in many cases as a
substitute to a hand-written implementation of the specification.

3.2 The Library Specification

Figure 1 shows the user requirements class diagram used to construct the specification. By studying the
requirements, we quickly find four process definitions that will represent the two entity types, member and
book, and the two associations, reservation and loan. In [13], Frappier and St Denis describe a strategy to
correctly and efficiently design an eb3 specification. A more complete analysis of the specification creation
process can be found in Section 5.1.1. By convention action names have uppercase initials and process calls
and functions are all lowercase.

The Figure 2 describes the main process and the entity process definitions of member and book. The
process main gives the global behavior of the system. All actions have no output, except for CurrentBorro-
wer(bId) and NumberOfLoans(mId). These last two actions output the result of recursive functions current-
Borrower(bId) and numberOfLoans(mId), respectively, applied to the current execution trace. These two
functions are defined in Figure 3. The correspondance between actions and functions is defined by input-
output rules, which are omitted here for the sake of concision. The Figure 2 also describes the association
process definitions of loan and reservation. Expression isFirst(trace,mId,bId) is a function call re-
turning a Boolean value. Description of this function and the one needed to compute it are the last two
shown in Figure 3.

A complete description of the recursive functions and their uses can be found in [13]. A function is
described by its parameters in parenthesis and their types. The output type value is written after the colons.
The definition of a function is written in a caml1 style. We use a special symbol, trace, that denotes the

1caml is a functional language.

3

main = (||| bId : BOOKID : book(bId)^*)
||

(||| mId : MEMBERID : member(mId)^*)

book(bId : BOOKID) =
Acquire(bId) .
(

(| mId : MEMBERID : loan(mId,bId))^*
||
(||| mId : MEMBERID : reservation(mId,bId)^*)

||
CurrentBorrower(bId)^*

).
Discard(bId);

member(mId : MEMBERID) =
(Join(mId,_,_).
(

(||| bId : BOOKID : loan(mId,bId)^*)
||
(||| bId : BOOKID : reservation(mId,bId)^*)

||
NumberOfLoans(mId)^*

).
Leave(mId) ;

loan(mId : MEMBERID, bId : BOOKID) =
(Lend(mId,bId) | Take(mId,bId)).
(Renew(mId,bId)^*).
Return(mId,bId) ;

reservation(mId : MEMBERID, bId : BOOKID) =
Reserve(mId,bId) .
(

(isFirst(trace,mId,bId) ==> Take(mId,bId))
|
Cancel(mId,bId)

)

Figure 2: eb3 specification: process definitions

4

currentBorrower(trace : VALID_TRACE, bId : BOOKID): LIST of MEMBERID =
match last(trace) with

nil -> [] |
Return(mId, bId) -> [] |
Lend(mId, bId) -> [mId] |
Take(mId, bId) -> [mId] |
_ -> currentBorrower(front(trace),bId)

numberOfLoans(trace : VALID_TRACE, mId : MEMBERID): NAT =
match last(trace) with

nil -> 0 |
Lend(mId,_) -> numberOfLoans(front(trace),mId) + 1 |
Take(mId,_) -> numberOfLoans(front(trace),mId) + 1 |
Return(mId,_) -> numberOfLoans(front(trace),mId) - 1 |
_ -> numberOfLoans(front(trace),mId)

reservationQueue(trace : VALID_TRACE, bId : BOOKID): LIST of MEMBERID =
match last(trace) with

nil -> [] |
Reserve(mId,bId) -> mId :: reservationQueue(front(trace),bId) |
Cancel(mId,bId) -> reservationQueue(front(trace),bId) - {mId} |
Take(mId,bId) -> reservationQueue(front(trace),bId) - {mId} |
_ -> reservationQueue(front(trace),bId)

isFirst(trace : VALID_TRACE, mId : MEMBERID , bId : BOOKID): BOOLEAN =
match first(reservationQueue(trace, bId)) with mId -> true |

_ -> false

Figure 3: eb3 specification: function definitions

current execution trace; it is represented by a list. Operators last and first and front respectively return
the last element, the first element and all but the first element of a list; they return the special value nil
when the list is empty. Symbol [] denotes an empty list and symbol :: is the append of an element to a
list. Finally the symbol can match any value and is consequently used to provide default instructions.

The primary use of functions is to extract information from the execution trace. They are used to
provide a response to some input events like the function currentBorrower(bId) which returns its output
value when the action CurrentBorrower(bId) is executed. However they are also quite useful to handle
constraints in the specification with the use of guard as with isFirst in process reservation. In this way
the use of functions is quite similar to a precondition. More discussions about this subject are provided in
Section 5.1.1.

4 The B Specification

We choose the B language to specify the IS with a state-based approach. B is a formal method developed by
Abrial [1]. It is a complete method and supports a large segment of the development life cycle : specification,
refinement and implementation. It ensures, thanks to refinement steps and proofs, that the code satisfies its
specification. It has been used in significant industrial projects [4] and commercial case tools are available
in order to help the specifier during the development process. These are the main arguments to use B
rather than Z (type checking and tool assistance in proof, but limited tool support for refinement and no
automated proof), VDM (standard semantics, good tool support, but relatively primitive structuring of

5

MACHINE B Member

SETS MEMBER;

VARIABLES members

INVARIANT members ⊆MEMBER

INITIALISATION members := {}

OPERATIONS

Join(mId) ∆=
PRE mId ∈MEMBER−members ∧

members ⊂MEMBER
THEN

members := members ∪ {mId}
END;

B Leave(mId) ∆=
PRE mId ∈ members
THEN

members := members− {mId}
END

END

MACHINE B Book

SETS BOOK;

VARIABLES books

INVARIANT books ⊆ BOOK

INITIALISATION books := {}

OPERATIONS

Acquire(bId) ∆=
PRE bId ∈ BOOK − books ∧

books ⊂ BOOK
THEN

books := books ∪ {bId}
END;

B Discard(bId) ∆=
PRE bId ∈ books
THEN

books := books− {bId}
END

END

Figure 4: B specification: B Member and B Book machines

formal presentation). However, the approach described in this paper probably applies to these state-based
languages, and others of the same family (such as ASM).

Each entity and association will be specify in separate machines. Figures 4, 5 and 6 respectively describe
the B Member and B Book machines, B Reservation and B Loan machines. Figure 7 provides the top-
level machine (or global machine) that works as the user interface. Operations available to users are either
operations of this machine or promoted operations from included machines.

The Renew operation may look quite useless, since it only has a skip instruction in its body. A real IS
would probably update the limit date of return, which we do not take into account, for the sake of simplicity.
A more complete analysis of the specification creation process can be found in Section 5.1.1.

Note that we could have used the event B approach [1, 2, 3, 6], instead of eb3, to specify the IS with
an event-based style. However, event B doesn’t provide explicit mechanisms to express event ordering
constraints, which we want to model. Hence, an event B specification would be fairly similar to our B
specification.

5 A Comparison of the Two Specifications

5.1 Expression of Functional Behavior

In this section, we analyse how the elements of the user requirements have been translated into each speci-
fication. We concentrate on elements which were either particularly easy to specify or difficult to specify.

6

MACHINE B Reservation

USES B Member, B Book

VARIABLES reservations, numReserv;

INVARIANT
reservations ∈ books↔ members ∧
numReserv ∈ reservations→ INTEGER

INITIALISATION
reservations := {} ||
numReserv := {}

OPERATIONS

Reserve(mId, bId) ∆=
PRE mId ∈ members ∧ bId ∈ books ∧

(bId �→ mId) /∈ reservations
THEN

reservations := reservations ∪ {bId �→ mId} ||
numReserv := numReserv ∪ {(bId, mId) �→ (max(ran(numReserv) ∪ {0}) + 1)}

END;

Cancel(mId, bId) ∆=
PRE mId ∈ members ∧ bId ∈ books ∧

(bId �→ mId) ∈ reservations
THEN

reservations := reservations− {bId �→ mId} ||
numReserv := {(bId �→ mId)}✁−numReserv

END

END

Figure 5: B specification: B Reservation machine

5.1.1 The eb3 Specification

The structure of the eb3 specification is directly inspired from the entities and their associations. This
structure entails a nicely modularized specification. Simple ordering constraints (i.e., basic scenarios) can
be easily expressed using the process algebra operators. To do so, one can take each entity type from the
requirements class diagram (e.g., book and member) and express its ordering constraints on input events
by using a process expression. The interactions between entities (e.g., when a member borrows a book, or
reserves a book) are naturally expressed by composing entities in parallel using operator ‖. The behavior of
an association is also described by a process expression which is called by each entity. The multiplicity of an
association (e.g., 1..*,*) is expressed by selecting an appropriate quantification operator to encapsulate the
call to the association process expression (e.g., | x when an entity is related to at most one entity; � when
an entity is related to a number of entities). Several patterns have been defined to translate requirements
class diagram into process expressions (see [13]).

Following the structure of the class diagram allows for the elements 2, 3, 7, and 8 of the user requirements
to be taken into account, as well as implicit requirements. For instance, the fact that two members cannot

7

MACHINE B Loan

USES B Member,
B Book

VARIABLES
loans;

INVARIANT
loans ∈ books �→ members

INITIALISATION loans := {}

OPERATIONS

Lend(mId, bId) ∆=
PRE mId ∈ members ∧

bId ∈ books ∧
bId /∈ dom(loans)

THEN
loans(bId) := mId

END;

Return(mId, bId) ∆=
PRE mId ∈ members ∧

bId ∈ books ∧
(bId, mId) ∈ loans

THEN
loans := {bId}✁−loans

END;

mId ←− CurrentBorrower (bId) ∆=
PRE bId ∈ dom(loans)
THEN

mId := loans(bId)
END

END

Figure 6: B specification: B Loan machine

8

MACHINE B Library

INCLUDES B Member, B Book, B Loan, B Reservation

PROMOTES Join, Acquire, Cancel, Reserve, Lend, Return

OPERATIONS

Leave(mId) ∆=
PRE mId ∈ members ∧

mId /∈ ran(reservations) ∧
mId /∈ ran(loans)

THEN
B Leave(mId)

END;

Discard(bId) ∆=
PRE bId ∈ books ∧

bId /∈ dom(reservations) ∧
bId /∈ dom(loans)

THEN
B Discard(bId)

END;

Take(mId, bId) ∆=
PRE mId ∈ members ∧

bId ∈ books ∧
(bId, mId) ∈ reservations ∧
numReserv(bId, mId) = min(numReserv[{bId}✁dom(numReserv)]

THEN
Cancel(mId, bId) || Lend(mId, bId)

END;

Renew(mId, bId) ∆=
PRE mId ∈ members ∧

bId ∈ books ∧
(bId, mId) ∈ loans

THEN
skip

END

END

Figure 7: B specification: Global machine

9

borrow the same book at the same time is not stated in the requirements, but it is described in the process
expression by the synchronization between books and members over the input events of the loan association.

The constraints which are not easy to express in a pure process algebraic style (i.e., without using
recursive functions defined on the execution trace) arise from conditions involving input events from the
history of inputs and from a number of entities. For instance, to adress the user requirements element 6, one
must deal with a queue of active reservations of a book. The reservation process is a logical place to enforce
this constraint, but its definition in a pure process algebraic style is not as obvious as the basic scenarios are.
One has to define a controller process which is synchronized with the reservation process. This controller
process takes a queue as parameter, and this queue is updated by a recursive call to the process. Its definition
is the following.

reservationController(bId : BOOKID, q : QUEUE of BOOKID) =

(| mId : MEMBERID : Reserve(mId,bId) . reservationController(bId,enQueue(q,mId)))
|
(| mId : MEMBERID : Cancel(mId,bId) . reservationController(bId,remove(q,mId)))

|
(| mId : MEMBERID : first(q) = mId ==>

Take(mId,bId).
reservationController(bId,deQueue(q,mId)))

This process must be composed in parallel with the call to process reservation in process book. We have
chosen a different solution, by using a guard invoking recursive function isFirst, as illustrated in Figure 3.
Our motivations for such a choice will be more obvious when the issue of specification validation is discussed
in Section 5.2. In particular, it is especially tricky to derive a pure process algebraic style to express user
requirements elements 4 and 5.

Finally, each data attribute is defined by a recursive function on the execution trace. Since the execution
trace contains the history of input events, any data attribute can be defined, usually quite easily. In [13],
patterns are defined for attributes.

5.1.2 The B Specification

Our B specification is structured according to the style presented in [15], where a translation between UML
diagrams and B specifications is defined. This style enforces modularity, by proposing to create one basic
machine for each entity type and each association, and a top-level machine that defines one operation for
each input event. It also simplifies the discharging of proof obligations required by the B method. Closely
related styles have also been proposed [16, 18].

The key in writing a simple state-based specification of an IS is to define a proper state space. The
structure of this state space depends on the input event ordering constraints and on the data inquiry oper-
ations. A requirements class diagram (e.g., of the eb3 specification) is a good source to start with. Each
class is represented by a set of instances, and each class attribute is represented by a function from this set
to the attribute type. Each association is represented by a relation between entity sets. Each operation has
a precondition that determines when it can be invoked. Ordering constraints are therefore described in the
precondition. The substitution of an operation must properly update the state variables in order to enable
the precondition of the subsequent actions and to provide data for inquiries.

Complex ordering constraints can rapidly be expressed, by defining appropriate state variables, using
them in preconditions, and updating them in substitutions.

5.1.3 Comparison

The contrast between the two specifications is quite strong; they are quite orthogonal in structure. The eb3

specification is closer to a user scenario description. The ordering relation between input events is explicit,
except perhaps for expressions combined with ‖, which perform a synchronization on common input between
the operands without explicitly listing these input events.

10

The B specification is closer to a program, except that its state space is defined with more abstract
data types. The relationship between input events is not explicit; it is described via state variables, which
induces a more complex form of coupling between specification elements than in eb3. For instance, consider
the Discard operation in machine B Library. Its precondition must refer to state variables from B Book,
B Loan, and B Reservation. Hence, an operation which seems, at first hand, to involve a book only, is in
fact intimately related to state variables from other components. In the eb3 specification, it is sufficient to
say that event Discard occurs after the execution of loan and reservation; there is no reference to the
internal details of these processes.

In the eb3 specification, guards referring to functions defined the execution trace are very close to
preconditions of B operations. Hence, for input events subject to more complex ordering constraints, B and
eb3 are quite similar.

The same data attributes usually exist in both specifications, although the B specification may involve
more attributes, in order to express ordering constraints. For instance, imagine that a book can be acquired
only once, that is, it cannot be re-acquired after it has been discarded. In eb3, this change is made by simply
removing the Kleene closure operator ∗ on the call to process book in the main process, as follows.

main = (||| bId : BOOKID : book(bId))
...

In B, there are a number of ways of expressing this constraint. One of them, which involves a minimal number
of changes to the existing B specification, is to define a new state variable, allBooks, which contains the set
of all books acquired so far.

INVARIANT
allBooks ∈ BOOK ∧
books ⊆ allBooks

When a book is acquired, it is added both to books and allBooks; when a book is discarded, it is removed
from books, but it is kept in allBooks. The precondition of Acquire is changed so that a book can be
acquired when it doesn’t belong to set allBooks. This small example illustrates that expressing some simple
ordering constraints sometimes induces unexpected complexities in the state-based specification.

Modularity is also expressed very differently. In B, the state space is decomposed into a number of
machines; operations encapsulate the description of what happens to the state variables when a transition
occur. In eb3, behavior is encapsulated into process expressions and data values are encapsulated into a
function defining the value of an attribute (of an entity or an association). Hence, it is very easy in B to
determine what happens to state variables when an input event is processed; conversely, it is very difficult to
determine how a state variable evolves, because this information is scattered over all operations that modify
it. In eb3, it is exactly the opposite: it is difficult to determine what is the effect of an input event on
attributes, because this information is scattered over several function definitions, whereas it is immediate to
see how an attribute is influenced by input events.

Overall, the connexion between a B specification and an eb3 specification is the following. The precondi-
tions of B operations correspond to the process expressions of the eb3 specification. The basic substitutions
(i.e., :=) of B operations correspond to recursive functions on the execution trace and contribute to the
definition of ordering constraints.

These facts lead us to conclude that eb3 is closer to the user requirements. From a user’s point of view,
the value of an IS is in the information it provides and in the assurance that data integrity is preserved by
event processing. The issue of checking data integrity is addressed in the next two sections; for now, we
consider the issue of defining the data. In eb3, each data attribute is defined on its own, by a single function.
This specification style closely matches the view of a user. Because it is the data that matters, each data
attribute can be described independently, one by one. In B, the user is forced to consider altogether a partial
view of a number of attributes to describe what happens when an event is executed. For instance, it is easier
for a user to say that the current borrower of a book is the last one who executed a Lend or a Take, and
that it becomes undefined when a book is returned, than to describe all preconditions and all modifications
to attributes when a Lend occurs. Of course, there are cases where an event is naturally seen by the user as

11

a set of effects. For instance, a year closing transaction in an accounting system is easier to describe as a set
of effects on various accounts, journals and year end reports.

5.2 Validation of the Specification

We define validation as the activity of ensuring that the specification is an adequate formulation of the
(textual) user requirements. In other words, validation makes sure that the specification meets the client’s
expectations. Validation is usually conducted by human inspection, sometimes supported by specification
animation tools to execute some scenarios.

In the eb3 and B specifications of Sections 3 and 4, some parts of the user requirement from Section 2
are not satisfied. They both contain the following errors :

1. a member can borrow a book which is reserved by another member;

2. a member can renew a loan even if the book is reserved by another member;

3. the borrower can reserve the book he borrowed;

4. a book can also be reserved without being lent or reserved by someone else.

In this section, we want to analyze and rectify such errors both in eb3 and B. Moreover we will compare
again these languages and try to extract some mental scheme in which an analyst will find help in this task.

5.2.1 Error Correction in eb3

These four specification errors are ordering problems. They can be detected by an experimented eb3 specifier
with a simple review of the specification. The ordering constraints on Lend, Renew and Reserve are simply
expressed; the only potential difficulty lies in the synchronization between loan and reservation over action
Take, or in understanding the quantifications occurring in book or member.

The cause of these errors arise from the difficulty in a process algebra to express constraints involving
several entities at the same time. For instance, to prevent the borrowing of a reserved book, process expression
loan must be “aware” that a Reserve has been executed on the book. In a pure process algebraic style, a
process can only communicate with another through synchronization, which is not always easy to achieve.
To facilitate this task, eb3 allows for the use of a single state variable, the execution trace, in a process
expression.

The first two errors contradict requirement 5 of Section 2. The actions causing the errors are Lend and
Renew; Take is not a problem, since it is guarded with the function isFirst. We can provide two equivalent
solutions these two errors: one is in a pure process algebraic style; the other uses a guard and a function.
As we already mentioned, the use of guards and functions is more state oriented; we try to avoid it as much
as possible, to make ordering constraints more explicit. Figure 8 provides a state-oriented solution, while
Figure 9 provides a pure process algebraic solution.

loan(mId : MEMBERID, bId : BOOKID) =
(isNotReserved(trace,bId) ==> Lend(mId,bId)
|
isFirst(trace,mId,bId) ==> Take(mId,bId)

) .
(isNotReserved(trace,bId) ==> Renew(mId,bId))^* .
Return(mId,bId) ;

isNotReserved(trace : VALID_TRACE, bId : BOOKID): BOOLEAN =
(reservationQueue(trace,bId) = [])

Figure 8: State-oriented modification to process loan to correct errors 1 and 2

12

main = (||| bId : BOOKID : book(bId)^*)
||

(||| mId : MEMBERID : member(mId)^*)
||

Controller1()

Controller1() = ||| bId : BOOKID :
|[Reserve, Take, Cancel]| mId : MEMBERID :

(
(Lend(mId,bId) | Renew(mId,bId))^* .
(||| mId2 : MEMBERID : reservation(mId2,bId)^*)

)^*

Figure 9: Process-algebraic solution to errors 1 and 2

canBeReserved(trace : VALID_TRACE, bId : BOOKID, mId : MEMBERID): BOOLEAN =
(

(currentBorrower(trace,bId) /= [])
and

(currentBorrower(trace,bId) /= [mId])
)

or
(reservationQueue(trace,bId) /= [])

reservation(mId : MEMBERID , bId : BOOKID) =
canBeReserved(trace,bId,mId) ==> Reserve(mId,bId) .
(

(isFirst(trace,mId,bId) ==> Take(mId,bId))
|

Cancel(mId,bId)
)

Figure 10: State-oriented modification to process reservation to correct errors 3 and 4

It is interesting to analyze back our reflexion that has led to the creation of process controller1 in
Figure 9. The problem was to write a process expression to prevent the borrowing or renewal of a reserved
book. It seems natural to enunciate this assertion in the following terms: ”if a book is reserved, it cannot
be lent and a loan of this book cannot be renewed.” However, this formulation cannot be easily translated
into a pure process algebraic style. It is more suitable for the construction of a guard, which would simply
express the negation of this formulation. To proceed with a pure process algebraic style, one has to reason
in terms of what event sequences are allowed, not in terms of what is prohibited. So it is better to find a
positive formulation of the assertion: “a lend and a renew only occur before any reservation or after all
reservations are consumed”. Therefore, we can see the need to “spy” the other members’ action with the
last part of the sentence; this spying is achieved in process Controller1 by using an interleave quantification
||| mId2 for each member mId; these quantifications are all wrapped in a parameterized parallel composition
|[Reserve, Take, Cancel]| mId, which requires synchronization on Reserve, Take, and Cancel.

The last two errors (3 and 4) are both related to the Reserve action and contradict requirements element
4. If we correct them with a guard, the modification is quite straightforward. Figure 10 provides this function
and the modification in the process reservation. One may be surprised to see that we do not check if the
reservation queue already contains the member. The current specification already ensures that a member

13

cannot do two consecutive reserve, just by using the classic operators of process algebra to express a basic
reservation scenario.

It is also possible to correct these errors in a pure process algebraic style like we did with previous errors.
Again, we first need to formulate the requirements in terms of which event sequences are allowed. Therefore,
the following formulations of requirements element 4 is preferred:

• for the third error, “a reservation of a book always takes place between loans.”;

• and for the fourth, “A reservation of a book takes place during a loan cycle or a reservation cycle of
another member.”

Figure 11 provides Controller2 and Controller3 processes that respectively specify to these two assertions.
They must be inserted in the main process in parallel with other processes.

Controller2() = ||| bId : BOOKID : ||| mId : MEMBERID :
(loan(mId,bId)^* . Reserve(mId,bId)^*)^*

Controller3() = ||| bId : BOOKID :
|[Lend, Reserve, Take, Cancel, Return]| mId : MEMBERID :

||| mId2 : MEMBERID - {mId} :
((Lend(mId2,bId) | Take(mId2,bId)).
Reserve(mId,bId)^* .
Return(mId2,bId)

)^*
|||

||| mId3 : MEMBERID - {mId} :
(Reserve(mId3,bId) .
Reserve(mId,bId)^* .
(Take(mId3, bId) | Cancel(mId3, bId)

)^*
|||

(Lend(mId, bId) | Take(mId, bId) |
Return(mId, bId) | Cancel(mId, bId))^*

Figure 11: Process algebraic solution to correct errors 3 and 4

Clearly, these process expressions are quite hard to understand, even for experienced eb3 specifiers.
Indeed, if Controller2 is still understandable, Controller3 is clearly quite complex. It involves two
different spying processes (||| mId2 and ||| mId3). The first ensures that a book is reserved during a loan.
The second ensures that a reservation occurs when at least a reservation of another member is active. The
use of the interleave operators between these two processes, combined with the synchronization on the spied
actions (Lend, Reserve, Take, Cancel, Return), behaves like a choice. So a Reserve action can only
occur during a reservation or a loan cycle. The last interleaved process (last two lines) allows the member
mId to execute these actions without constraints.

Process Controller3 is very complex here (in comparison with Controller2 and even Controller1),
because the constraint involves the same action, Reserve, from different members, that can be initiated in
two cases: during a loan or a reservation of another member. The use of guard and functions seems definitely
wiser (and safer) here.

5.2.2 Error Correction in B

In B, errors are more difficult to find, since one has to check preconditions of the operations to determine
if they appropriately describe the desired ordering properties; it requires a good understanding of the state
variable. A good understanding of basic set theory, functions and relations is necessary in order to express

14

some constraints in preconditions and to compare them with the user requirements. It can be quite difficult
to get a clear view of the possible execution order of operations.

Once an error is located, the correction process is nearly the same as what has been done for eb3

with guards and functions. As we already mentioned, it is natural to write constraints as implications.
Therefore, they are easily translated into preconditions. Nonetheless, as it is shown in the comparison of
the Section 5.1.3, some constraints expressed with preconditions may seem quite artificial in B whenever it
is easy to express it in eb3.

Here is the new definition of the operation Renew with the correct precondition.

Renew(mId, bId) ∆=
PRE mid ∈ members ∧

bId ∈ books ∧
(bId, mId) ∈ loans ∧
bId /∈ dom(reservations) error 2

THEN
skip

END

Operations Reserve and Lend were promoted from B Reservation and B Loan in the previous specifi-
cation. To correct them, we must now refer to variables from each other; it would imply a circular USE
relationship between B Reservation and B Loan, which is not allowed in B; we must therefore create new
operations in B Library.

NewReserve(mId, bId) ∆=
PRE mid ∈ members ∧

bId ∈ books ∧
(bId, mId) /∈ reservations ∧(
bId ∈ dom(reservations) ∨
(bId ∈ dom(loans) ∧ loans(bId) �= mId)

)

THEN
Reserve(mId, bId)

END;

NewLend(mId, bId) ∆=
PRE mid ∈ members ∧ bId ∈ books ∧ bId /∈ dom(loans) ∧

bId ∈ dom(reservations)
THEN

Lend(mId, bId)
END;

5.2.3 Conclusion

It seems to us that the validation is easier to achieve in the event-oriented eb3 rather than with state-oriented
B. Moreover, the specification creation process is more natural with a process algebra since it streamlines the
specification of ordering constraints, at least when the constraints do not involve many entities or associations.

Preconditions in B can be useful but they lack readability for the validation process. The use of guards
to correct eb3 specification tends to blur the global readability of the specification as preconditions do in a B
specification. Unfortunately, the last error correction reminds us that some properties can be quite difficult
to express in eb3 without guards, and they are definitely less readable than an equivalent guard-oriented
solution. It seems that when an integrity constraint involves several properties of several entities (e.g., a
book being reserved, lent), the guard-oriented style is the most natural and easiest to write and understand.

15

eb3 has a slight advantage over B in this case, because a data attribute is completely defined by a single
function, which makes it easier to understand. Nevertheless, this study has shown that some constraints
look more natural in one paradigm whereas other constraints are more natural in the other.

5.3 Specification Verification

We define verification as the activity of checking that the specification satisfies some properties, which are
are usually stated in a precise language. A property can be checked either by proving it or by checking it on
a finite model of the specification.

5.3.1 Verification in eb3

Currently, there is no tool for conducting verification in eb3. Since it is similar to several process algebras,
we plan to develop bridges in order to use tools develop for these process algebras (e.g., FDR [9], CADP [7]).
These tools are based on state-space exploration, which quickly suffers from combinatorial explosion. Proving
properties about process expressions is not as common, and not very well supported by case tools. Hence,
verifying an eb3 specification is difficult.

5.3.2 Verification in B

Case tools like Atelier B [8] provide a prover to handle proofs obligations associated to machines and their
refinements. Among proof obligations, the preservation of the invariant by operations is quite important for
verifying properties. B is very nice for specifying static properties about the data structures. The Atelier B
prover was able to automatically discharged all proof obligations associated to our B specifications.

5.3.3 Conclusion

In our example, we did not provide errors where static data integrity constraints were violated. These
integrity constraints can be explicitly stated within the invariant of a B machine. A priori, it seems that
such errors are easier to find in a B specification. When it is difficult to discharge a proof obligation, it is
usually a good sign that the invariant is not preserved by an operation.

The same invariant property could be stated in eb3 using functions defining the entity attributes. Proving
that they are preserve by every operation consist in proving that they hold for any trace accepted by the
main process. These proofs are more difficult to achieve in eb3, because there is no explicit formulation of
the precondition of an event.

5.4 Specification Evolution

The error correction examples we have shown illustrate that changing the B specification and the eb3

specification were roughly equivalent in complexity. These changes did not require the definition of new
data attributes. The slight modification to the user requirements presented in Section 5.1.1 (to forbid the
re-acquisition of a book) showed that the B specification required more changes than the eb3 one.

Adding new data requirements, without changing the ordering constraints, usually involves more work in
B than in eb3. For instance, consider that we need to store the history of loans for a book, instead of only
the current loan. Both in B and eb3, a new attribute must be created. In eb3, it is quite straightforward; a
new definition has to be created; there is no change to the rest of the specification. In the B specification, one
must decide if the two attributes (current loan and history loans) are kept, or if the specification is rewritten
to use only the history of loans as a variable. If two attributes are kept, several modifications are avoided,
but this solution introduces some redundancy in the state space, and there is a risk that future modifications
to the specification introduce some inconsistency between them. Stating the relationship between the two
redundant attributes in an invariant avoids that, but it induces additional work for discharging invariant
preservation proof obligations.

16

6 Conclusion: the Ideal Specification Process

The ideal specification process would consist of the following steps.

1. Specify the system using eb3.

Justification: Ordering constraints are easier to specify. Incremental specification. Less coupling
between specification elements. Attributes are easier to understand. Specification is easier to validate
and modify.

2. Write an equivalent specification in B, and add static data integrity constraints.

Justification: Easier to prove the preservation of static data integrity constraints in B. Moreover, it
seems quite feasible to generate some parts of the B specification, i.e., the basic substitutions modifying
the state variables, from the definitions of the recursive functions in eb3.

3. Prove that the B specification is equivalent to the eb3 specification.

Justification: This ensures that all ordering constraints are taken into account in the B specification.
An approach to realize this proof is presented in [12].

This ideal process has the advantage of exploiting the orthogonality between eb3 and B in order to catch
(or avoid) as many errors as possible. In counterpart, it is probably very expensive to use, and it would need
to be supported by tools to automate the proof of equivalence between the two specifications.

Finally, here are short summary answers to the questions raised in the workshop call for papers, from an
information systems perspective.

1. What is the shape of your mental landscape, when you start conceiving a complex (concurrent, reactive,
distributed) system? Is it a structure of state variables (relations, functions), or a pattern of events in
time?

Response: Start with an event-oriented specification (i.e., eb3). Delay as much as possible the
introduction of state-oriented constructs. Refine into a state-oriented specification.

2. Is the choice between a state-oriented and an event-oriented approach dependent on the type of system
to be described? How?

Response: Simple ordering constraints are better described in an event-oriented style; complex or-
dering constraints are better described in a state-oriented style.

3. How does a system description in natural language affect the choice between state-oriented and event-
oriented formalisation? How does the requirements analysis process affect the choice?

Response: Basic scenarios are easy to translate into an event-oriented style; complex ordering con-
straints are often naturally stated in a state-oriented style (e.g., see the correction of errors in Sec-
tion 5.2.1).

4. The two approaches don’t have to be mutually exclusive. Is it easy/desirable to move from one to the
other? At which stage of development would one do that?

Response: Indeed, the two approaches are not mutually exclusive. We favor the use of both, starting
with event-oriented, and refining into state-oriented, in order to take full advantage of each paradigm.

5. Can one integrate the two approaches, keeping their individual advantages? If so, can one formally
refine a purely state-oriented or purely event-oriented description into a hybrid one?

Response: eb3 offers some integration of both paradigms, through the use of functions on traces and
guards. However, one should avoid abusing of the state-oriented style in eb3.

17

References

[1] Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge, UK, 1996.

[2] Abrial, J.-R.: Extending B without Changing it. In First Conference on the B Method, H. Habrias, ed.,
pp 169–190, November 1996.

[3] Abrial, J.-R., Mussat, L.: Introducing Dynamic Constraints in B. In Second International B Conference,
D. Bert, ed., Lecture Notes in Computer Science 1393, Springer-Verlag, 83–128, April 1998.

[4] P. Behm, P. Benoit, A. Faivre, and J.M. Meynadier. Météor: A Successful Application of B in a Large
Project. In FM99: World Congress on Formal Methods, Toulouse, France, Lecture Notes in Computer
Science 1708, Springer-Verlag, pp 369–387. Springer-Verlag, September 1999.

[5] Bolognesi, T. and Brinksma, E.: Introduction to the ISO Specification Language LOTOS. Computer
Networks and ISDN Systems, 14(1):25–59, 1987.

[6] Butler, M. J., Waldén, M.: Distributed System Development in B. In In First Conference on the B
Method, H. Habrias, ed., November 1996.

[7] INRIA Rhône-Alpes: CADP (Caesar/Aldebaran Development Package),
http://www.inrialpes.fr/vasy/cadp/

[8] CLEARSY System Engineering: Aix-en-Provence, France, http://www.clearsy.com/

[9] Formal Systems (Europe) Ltd.: Failures-Divergences Refinement: FDR2 User Man - ual (1997),
http://www.formal.demon.co.uk

[10] Fraikin, B., and Frappier, M.: eb3PAI: an interpreter for the eb3 specification language Proc. of
FM-TOOLS 2002, The 5th Workshop on Tools for System Design and Verification, 2002.

[11] Fraikin, B., and Frappier, M.: Optimizing memory space in the eb3 process algebra interpreter. Proc.
ICCSSEA 2002, Software and Systemes Engineering and their Applications, Volume I, Session 4, 2002.

[12] Frappier, M., Laleau, R.: Verifying Event Ordering Properties for Information Systems. The 3rd In-
ternational Conference of B and Z Users, Lecture Notes in Computer Science 2651, Springer-Verlag,
Turku, Finland, 4-6 June 2003, pp 421–436.

[13] Frappier, M., St-Denis, R.: eb3: an Entity-Based Black-Box Specification Method for Information
Systems, Software and System Modeling, to appear.

[14] Hoare, C. A. R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs, 1985.

[15] Laleau, R. Mammar, A.: An Overview of a Method and its Support Tool for Generating B Specifications
from UML Notations. In ASE: 15th IEEE Conference on Automated Software Engineering, Grenoble,
France, IEEE Computer Society Press, September 2000.

[16] Meyer, E., Souquières, J.: A Systematic approach to Transform OMT Diagrams to a B specification. In
Formal Methods (FM’99), J.M. Wing, J. Woodcook, J. Davies, eds., Lecture Notes in Computer Science
1708 vol. 1, Springer-Verlag, September 1999, pp 875–895.

[17] Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs, 1989.

[18] Snook, C., Butler, M.: Tool-Supported Use of UML for Constructing B Specifications, Declarative
Systems and Software Engineering Research Group, Department of Electronics and Computer Science,
University of Southampton, United Kingdom.
http://www.ecs.soton.ac.uk/ mjb/U2Bpaper2.pdf

18

