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Space: the final frontier




Introduction

Origins of Spatial Reasoning



, like , is one of the most categories of
human cognition.

It structures all our and with the external
world.

It also structures many of our . it serves as
the basis for many metaphors, including temporal, and gave rise to
mathematics itself, geometry being the first known."

(Laure Vieu, 1997)
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Collective Adaptive Systems

Examples of decentralised collective adaptive behaviour in nature:
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Designing CAS for a smart society

The development of a formal verification framework for smart urban
transport and smart grid.

The long term objective is to support fair and efficient management of
resources in large scale systems of heterogenous components that are
spatially distributed and have possibly competing goals.

quanticol

blog.inf.ed.ac.uk/quanticol/



A Bike Sharing System

Continuous or discrete space? Space and time? Images? Points or sets?
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Continuous space, discrete regular grid, graph of stations, street map

O'Brien’s map of bike sharing www.citylab.com
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Spatial-temporal Model Checking?

Q
Model checker
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Unified Framework for Spatial Model Checking?

@ Generalising some topological notions
@ Bridging the gap between continuous and discrete space

@ Spatial Logics for Model Checking

Bringing us to explore

following up on work by, a.o., A. Galton and M. B. Smyth et al.
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Hitchhikers Guide to the Galaxy
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Handbook of Spatial Logics

Handbook

of Spatial Logics

Handbook of Spatial Logics
Aiello, Pratt-Hartmann and van Benthem (Eds.), Springer, 2007
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PART |

Logics and Space



Topological Space

A pair (X, O) where

@ X #(is aset
e O is a collection of open sets O C P(X)

such that

e ), XeO
@ O is closed under arbitrary unions and finite intersections



Topological Space
A pair (X, O) where

@ X #(is aset
e O is a collection of open sets O C P(X)

such that

e ), XeO

@ O is closed under arbitrary unions and finite intersections

O is called the collection of of the topological space
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Example: Euclidian space (2D)

0

open set closed set



Example: Euclidian space (2D)

0

open set closed set

@ open balls (in R") are
open sets



Example: Euclidian space (2D)
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open set closed set

@ open balls (in R") are e T7(S) is the
open sets contained in S



Example: Euclidian space (2D)

0

open set closed set

@ open balls (in R") are e T7(S) is the
open sets contained in S
e CT(S) is the
containing S



Modal Logic

Su=p|T|L|-®|dAD| OV |OD]|Od



Modal LOgiC [McKinsey & Tarski]

Su=p|T|L|-®|dAD| OV |OD]|Od

A topological space (X, O) A model M = ((X, 0),V)
@ X a set of points e (X, O) a topological space
@ O the set of open sets of e V: P — P(X) a valuation
X function

V assigns to each atomic proposition the set of points that satisfy it.



Modal LOgiC [McKinsey & Tarski]

Su=p|T|L|-®|dAD| OV |OD]|Od

A topological space (X, O) A model M = ((X, 0),V)
@ X a set of points e (X, O) a topological space
@ O the set of open sets of e V: P — P(X) a valuation
X function

V assigns to each atomic proposition the set of points that satisfy it.

M, xET
M. xEp
M, x E -
M, xEdNY

rreony

true

x € V(p)

not M, x = ¢

M, x = ¢ and M, x =1



M,x=0¢p <= Fo€O.(x€o0andVyecoM,ykEoq)
M,x=0p <<= Voe O.(x€ o implies Jy € o.M,y = ¢)



p Up

M,x=0¢p <= Fo€O.(x€o0andVyecoM,ykEoq)
M,x=0p <<= Voe O.(x€ o implies Jy € o.M,y = ¢)



p Up Op

M,x=0¢p <= Fo€O.(x€o0andVyecoM,ykEoq)
M,x=0p <<= Voe O.(x€ o implies Jy € o.M,y = ¢)



p Op Op —Op A Op

M,x=0¢p <= Fo€O.(x€o0andVyecoM,ykEoq)
M,x=0p <<= Voe O.(x€ o implies Jy € o.M,y = ¢)



0

p —Up A Op

M,x=0¢p <= Fo€O.(x€o0andVyecoM,ykEoq)
M,xE=0¢p <<= Vo€ O.(x € o implies Jy € o.M,y = ¢)



P —Up A Op pA—OUp

M,x=0¢p <= Fo€O.(x€o0andVyecoM,ykEoq)
M,xE=0¢p <<= Vo€ O.(x € o implies Jy € o.M,y = ¢)
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Alternative characterisation of Topological Space
[Kuratowski]

A topological space is a pair (X,CT) with CT : 2X — 2X such that

for each A, B C X:
o CT(0)=10
o CT(AUB) =CT(A)UCT(B)
o ACCT(A)
o CT(CT(A) =CT(A)



Alternative characterisation of Topological Space
[Kuratowski]

A topological space is a pair (X,CT) with CT : 2X — 2X such that

for each A,B C X: Interior and closure are duals:
o CT(0) =0 o I7(A)=CT(A)
o CT(AUB) =CT(A)UCT(B) o CT(A)=TIT(A)
e ACCT(A)
o CT(CT(A) = CT(A)




What about Discrete Spatial Structures?




What about Discrete Spatial Structures?




What about Discrete Spatial Structures?

Unfortunately topological spaces work only
for discrete spaces that are not that much interesting

(e.g. empty or complete graphs)
We want to be able to deal also with
GENERIC GRAPHS

as models of space(s)



Cech Spaces or Closure Spaces

A is a pair (X,C) with C : 2X — 2% such that



Cech Spaces or Closure Spaces

A is a pair (X, C) with C : 2X — 2% such that
for each A,B C X: Define: -

o C(0) =0 o Z(A) = C(A)

e C(AUB)=C(A)UC(B) @ Ais iff A=Z(A)

e ACC(A) e Ais iff A=C(A)

o C(C{A)) = ClA) @ Aisa of

x € X iff x € Z(A)

Interior and closure are duals:
e C(A) = I(ﬁ)




Graphs as Closure Spaces

A graph is a set of nodes X and a binary relation R C X x X
Cr(A) =AU{x € X|Ja€ A.(a,x) € R}

The pair (X,Cg) is a closure space



Graphs as Closure Spaces

A graph is a set of nodes X and a binary relation R C X x X
Cr(A) =AU{x € X|Ja€ A.(a,x) € R}

The pair (X,Cg) is a closure space



Quasi-discrete Closure Spaces

A closure space (X,C) is if and only if either one of the
following holds:

@ each x € X has a minimal neighbourhood N,
e for each AC X, C(A) = U,caC({a})

A is a neighbourhood of x € X iff x € Z(A)



Quasi-discrete Closure Spaces

A closure space (X,C) is quasi-discrete if and only if either one of the
following holds:

@ each x € X has a minimal neighbourhood N,
e for each AC X, C(A) = U,caC({a})

A is a neighbourhood of x € X iff x € Z(A)

(X,C) is quasi-discrete iff there is R C X x X such that C = Cg




Quasi-discrete Closure Spaces

A closure space (X,C) is quasi-discrete if and only if either one of the
following holds:

@ each x € X has a minimal neighbourhood N,
e for each AC X, C(A) = U,caC({a})

A is a neighbourhood of x € X iff x € Z(A)

(X,C) is quasi-discrete iff there is R C X x X such that C = Cg

Cr is idempotent iff the reflexive closure R= of R is transitive




Graphs inducing Quasi Discrete Closure Spaces

o A={o, o}




Graphs inducing Quasi Discrete Closure Spaces

o A={o, o}
o Z(A) = {e} and
C(A) = {.7.7.}




Graphs inducing Quasi Discrete Closure Spaces

o A={o, o}
o I(A) = {o} and
C(A) = {.7.7.}

o B(A) = C(A)\Z(A) = {e,}




Graphs inducing Quasi Discrete Closure Spaces

o A={o, o}
o I(A) = {o} and
C(A) ={e,0,0}

B(A) = C(A) \ Z(A) = {e,}
° B7(A) = A\I(A) = {}




Graphs inducing Quasi Discrete Closure Spaces

o A={o, o}
o I(A) = {o} and
C(A) ={e,0,0}

( ) = C(A)\Z(A) = {e, ¢}
B7(A) = A\NZ(A) = {e}
° B*( ) =C(A)\ A= {e}




Graphs inducing Quasi Discrete Closure Spaces

o A={o, o}
OI(A):{O} and
C(A) = {e,0,0}
( ) =C(A)\Z(A) = {e, o}
B~ (A) = A\Z(A) = {e}
° B+( ) =C(A)\A={e}

But also graphs with an uncountable set of nodes/points such as (R, <)
are quasi-discrete closure spaces



Hierarchy of Closure Spaces
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PART Il

Spatial Logic for Closure Spaces



Spatial Logic for Closure Spaces (SLCS)




What if we interpret Temporal Logics operators (e.g. U) on
structures which represent space?

o, U P,



What if we interpret Temporal Logics operators (e.g. U) on
structures which represent space?

b, U b,
4

The points in space which
satisfy ®; and
are surrounded by points satisfying ®»



SLCS syntax

ATOMIC PROPOSITION]
TRUE]

NoT]

AND]

NEAR]

SURROUNDED]

——— — — —



Spatial operators: intuition

B3 sses:
I 1 I
= OO~ O-O-O-O-O

All red and yellow points satisfy N yellow



Spatial operators: intuition

I I
= =O-O-O-O-O-0-O

All red and yellow points satisfy N yellow
Green points satisfy greenS blue



Spatial operators: intuition

I I
= =O-O-O-O-O-0-O

All red and yellow points satisfy N yellow
Green points satisfy greenS blue
Yellow points satisfy yellow S red



Semantics of SLCS

Satisfaction M, x |= ¢ of formula ¢ at point x in quasi-discrete closure
model M = ((X,C), V) is defined, by induction on terms, as follows:

M,x = p <~ x€V(p)

M,x = T & true

M, x E —¢ < notM,x ¢

M,x E oNY <= M, xE¢and M,x v



Derived operators

I = —(N-9) [INTERIOR]

§¢ = (N¢)A(~Z¢) [BOUNDARY]

¢ = HA(-Ie) [INTERNAL/INTERIOR BOUNDARY]
§t¢ £ (N¢)A(—¢) [EXTERNAL/CLOSURE BOUNDARY]



Derived operators!

£ ¢S  [EVERYWHERE]
Fop = —-E(—$) [SOMEWHERE]

1[John H. Reif, A. Prasad Sistla, ICALP 1983]



Derived operators

dRY = —((-)S(—¢))  [REACHABILITY]
£ oA ((¢ V) RY) [FROM-TO]

¢ Ra: either 1) holds in x, or there exists a sequence of points after x, all
satisfying ¢ leading to a point satisfying both ¢ and ¥

(white V blue) Rblue satisfied by {e,,0, e}
white T blue satisfied by {o}



PART Il

Model Checking Spatial Logics



Spatial Model checking (finite models)

Model checking in quasi-discrete closure spaces is analysis of a graph
Efficient algorithm O(nodes + arcs) for checking ¢ S ¢

Implemented as a “flooding” algorithm



Efficient algorithm

The algorithm identifies “bad” areas, where —¢ can be reached
passing by points satisfying v

Implemented recursively as an operator that enlarges the set of “bad”
points at each application

Upon fixed point: the points where ¢ holds, that are not "bad”, satisfy
¢S



Sat(M, yellow S red)

Find points satisfying yellow S red



Sat(M, yellow S red)

1) Find points satisfying neither yellow nor red and make them black



Sat(M, yellow S red)

2) ldentify yellow points in C(black) . . .



Sat(M, yellow S red)

3) . . . and make them black



Sat(M, yellow S red)

4) ldentify yellow points in C(black) . . .



Sat(M, yellow S red)

SE3EeTes:
2906060¢
il eeeeee

5) . . . and make them black



Sat(M, yellow S red)

es80se
mm

- J#&&&&é

Fixed point reached, the yellow points satisfy yellow S red



Model Checking Algorithm

Function Sat(M, ¢)
Input: Finite, quasi-discrete closure model
M = ((X,C), V), formula ¢
Output: Set of points {x € X | M, x |= ¢}
Match ¢
case T : return X
case p : return V(p)
case "¢y
let P = Sat(M, ¢1)
return X \ P
case ¢1 A ¢ :
let P = Sat(M, ¢1)
let Q = Sat(M, ¢2)

return PN Q

case N ¢ :
let P = Sat(M, ¢1)
return

case 1 S ¢3¢

return CheckSurr (M, ¢1,¢2)

Function CheckSurr (M, ¢1,¢2)

Input: Finite, quasi-discrete closure model
M = ((X,C), V), formulas ¢1, ¢
Output: Set of points {x € X | M, x = ¢1 S ¢}
var V := sat(M, ¢1)
let Q = Sat(M, ¢7)

var T := (VuQ)
while T # () do
var T := 0
for x € T do
let N = pre(x) N V
Vi=V\N
T =T UN\Q)
T:=T;
return V



Correctness and Complexity

For any finite quasi-discrete closure model M = ((X,C),V) and SLCS
formula ¢, x € Sat(M, ¢) if and only if M, x = ¢

Proposition

For any finite quasi-discrete model M = ((X,Cgr), V) and SLCS formula ¢
of size k, function Sat(M, ¢) terminates in O(k - (|X| + |R|)) steps
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Some applications



Some Recent Results?

Theory, Algorithms and Tools:

. graphs, images (based on Galton's work)
new operators: reach, surrounded, touch, ...

. spatio-temporal & collective model checking
topochecker + MultiVeSTa: statistical spatio-temporal MC
topochecker.isti.cnr.it

: image analysis

github.com/vincenzoml/VoxLogicA
Applications:

@ smart transportation (bike sharing, buses, train control);
@ image analysis (medical domain)

[Ciancia, Latella, Loreti, Massink - LMCS 2016]

[Ciancia, Latella, Massink, Paskauskas, Vandin, ISoLA 2016]
[Ciancia, Gilmore, Grilletti, Latella, Loreti, Massink, STTT 2018]
[Banci Buonamici, Belmonte, Ciancia, Latella, Massink, STTT 2019]
[Ciancia, Belmonte, Latella, Massink, TACAS 2019]



Selected Applications

L — e

Smart buses GPS Medical Imaging

I
—
| —
m_

Turing patterns Embedding RCC8D

London bike sharing



Digital images

Any digital image can be treated as a finite, quasi discrete, closure space

Atomic propositions: white, green, black, blue

toExit = [white] T [green] {e}



Digital images

Any digital image can be treated as a finite, quasi discrete, closure space

Atomic propositions: white, green, black, blue

I,

L -
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toExit = [white]l T [green] {e}
fromStartToExit = toExit & ([white]l T [bluel) { }



Digital images

Any digital image can be treated as a finite, quasi discrete, closure space

Atomic propositions: white, green, black, blue

1 LI = L]

| T 1
et H

o I | 1

I,

| e

toExit = [white]l T [green] {e}
fromStartToExit = toExit & ([white]l T [bluel) { }

startCanExit = [blue] T fromStartToExit {e}



Digital images

Any digital image can be treated as a finite, quasi discrete, closure space

Atomic propositions: white, green, black, blue

I,

T

|

o1

JIIIIll 1

°|
=
¥

toExit = [white] T [green] {o}
fromStartToExit = toExit & ([white] T [bluel]) { }

startCanExit = [blue] T fromStartToExit {e}



Implausible data in GPS traces of Edinburgh buses

Spatial ordering of data points
“not on a main street”

“not on a street at all”

[Ciancia, Gilmore, Grilletti et al., STTT 2018]

Different shades of B

O < blue denote >
\ different times A o<—— Diverted position

" \ i e

spatial model model checking result



Medical Image Analysis: ImgQL

[Banci Buonamici, Belmonte, Ciancia, Latella, Massink, STTT 2019]
[Ciancia, Belmonte, Latella, Massink, TACAS 2019]

ImgQL variant of SLCS
¢:Z:p|ﬂ¢ | $; VvV O, |N¢' ’ ®; S o,

Derived:

@ Surrounded

@ Region Growing
Domain specific:

@ Distance Operator

o Statistical Texture
Similarity Operator

@ Percentiles

@ Tool: VoxLogicA

GTV for TCIA 471 patient from BraTS 2017 dataset

https://github.com/vincenzoml/VoxLogicA



Medical Image Analysis: ImgQL

[Banci Buonamici, Belmonte, Ciancia, Latella, Massink, STTT 2019]
[Ciancia, Belmonte, Latella, Massink, TACAS 2019]

ImgQL variant of SLCS
Gu=p | 20| bV Iy [ N | pdy[dy]

Derived:

@ Surrounded

@ Region Growing
Domain specific:

@ Distance Operator

o Statistical Texture
Similarity Operator

@ Percentiles

@ Tool: VoxLogicA

GTV for TCIA 471 patient from BraTS 2017 dataset

https://github.com/vincenzoml/VoxLogicA



Medical Image Analysis: ImgQL

[Banci Buonamici, Belmonte, Ciancia, Latella, Massink, STTT 2019]
[Ciancia, Belmonte, Latella, Massink, TACAS 2019]

ImgQL variant of SLCS
Pu=p|2® | bV Oy | NG| pby[dg] | D'

Derived:

@ Surrounded

@ Region Growing
Domain specific:

@ Distance Operator

@ Statistical Texture
Similarity Operator

@ Percentiles

@ Tool: VoxLogicA

GTV for TCIA 471 patient from BraTS 2017 dataset

https://github.com/vincenzoml/VoxLogicA



Medical Image Analysis: ImgQL

[Banci Buonamici, Belmonte, Ciancia, Latella, Massink, STTT 2019]
[Ciancia, Belmonte, Latella, Massink, TACAS 2019]

ImgQL variant of SLCS
Pu=p|2® | bV Oy | NG| pby[dg] | D'

Derived:
@ & S Py £ By A —p (—(P1 VD)D)
@ grow(dy, D) £ by V touch(dy, d1)
Domain specific:
@ Distance Operator

@ Statistical Texture
Similarity Operator

@ Percentiles

@ Tool: VoxLogicA

GTV for TCIA 471 patient from BraTS 2017 dataset

https://github.com/vincenzoml/VoxLogicA

back



Domain Specific Operators

Distance Operator
A point x satisfies D! ® iff the distance of x from the set of points
satisfying ® falls into interval /; (dist(x, 0) = oo, dist(x, A) = inf {dist(x, y)|y € A})

Statistical Texture Similarity Operator
A point x satisfies ZAMC[ moMok ]CD iff, letting h, be the histogram of
the sphere of radius r centred in x and hj that of the ®-area, we have

cross—correlation(h,, hp) > ¢

45 /69



Domain Specific Operators

Distance Operator
A point x satisfies D! ® iff the distance of x from the set of points
satisfying ® falls into interval /; (dist(x, 0) = oo, dist(x, A) = inf {dist(x, y)|y € A})

Statistical Texture Similarity Operator
A point x satisfies ZAMC[ moMok ]CD iff, letting h, be the histogram of

the sphere of radius r centred in x and hj that of the ®-area, we have
cross—correlation(h,, hp) > ¢

White matter:

=\

\

original MRI

3Original MRI: Pat04 from [Aubert-Broche et al. IEEE Trans. on Med. Im., 25(11), 2006]
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Domain Specific Operators

Distance Operator
A point x satisfies D! ® iff the distance of x from the set of points
satisfying ® falls into interval /; (dist(x, 0) = oo, dist(x, A) = inf {dist(x, y)|y € A})

Statistical Texture Similarity Operator
A point x satisfies ZAMC[ moMok ]CD iff, letting h, be the histogram of

the sphere of radius r centred in x and hj that of the ®-area, we have
cross—correlation(h,, hp) > ¢

White matter:

original MRI likely white

3Original MRI: Pat04 from [Aubert-Broche et al. IEEE Trans. on Med. Im., 25(11), 2006]
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Domain Specific Operators

Distance Operator
A point x satisfies D! ® iff the distance of x from the set of points
satisfying ® falls into interval /; (dist(x, 0) = oo, dist(x, A) = inf {dist(x, y)|y € A})

Statistical Texture Similarity Operator
A point x satisfies ZAMC[ moMok ]CD iff, letting h, be the histogram of

the sphere of radius r centred in x and hj that of the ®-area, we have
cross—correlation(h,, hp) > ¢

White matter:

original MRI likely white similarity score

3Original MRI: Pat04 from [Aubert-Broche et al. IEEE Trans. on Med. Im., 25(11), 2006]
45 /69



Domain Specific Operators

Distance Operator
A point x satisfies D! ® iff the distance of x from the set of points
satisfying ® falls into interval /; (dist(x, 0) = oo, dist(x, A) = inf {dist(x, y)|y € A})

Statistical Texture Similarity Operator
A point x satisfies ZAMC[ moMok ]CD iff, letting h, be the histogram of

the sphere of radius r centred in x and hj that of the ®-area, we have
cross—correlation(h,, hp) > ¢

White matter:

original MRI likely white similarity score highly similar

3Original MRI: Pat04 from [Aubert-Broche et al. IEEE Trans. on Med. Im., 25(11), 2006]
45 /69



3D Magnetic Resonance Tumour Segmentation

hyper intense very intense grow(hl,vl) similar texture  gtv=grow(c,d)
(h1) (vl) (c) (d) manual (blue)

4 [Belmonte, Ciancia,Latella, Massink, TACAS19]
[Banci Buonamici,Belmonte, Ciancia,Latella,Massink, STTT 2019 and ESMRBM19]

5Image: Brats17.2013.2_1 from BraTS 2017 database
46 /69



4.5

tic Resonance Tumour Segmentation

hyper intense very intense grow(hl,vl) similar texture gtv=grow(c,d)
(h1) (vl) (c) (d) manual (blue)

Brain Tumor Image Segmentation Benchmark (BraTS) 2017

Comparison of 18 BraTS17 techniques that analyse at least 100 cases:
Similarity score (Dice GTV): 0.88 (avg.) 0.64-0.96 (range)

Our score on 193 cases: (avg.) (std.)

4 [Belmonte, Ciancia, Latella, Massink, TACAS19]
[Banci Buonamici,Belmonte, Ciancia,Latella,Massink, STTT 2019 and ESMRBM19]

5Image: Brats17.2013.2_1 from BraTS 2017 database
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Brain Tumor Image Segmentation Benchmark (BraTS) 2017

Comparison of 18 BraTS17 techniques that analyse at least 100 cases:
Similarity score (Dice GTV): 0.88 (avg.) 0.64-0.96 (range)

Our score on 193 cases: (avg.) (std.)
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4.5

tic Resonance Tumour Segmentation

hyper intense very intense grow(hl,vl) similar texture gtv=grow(c,d)
(h1) (vl) (c) (d) manual (blue)

Brain Tumor Image Segmentation Benchmark (BraTS) 2017

Comparison of 18 BraTS17 techniques that analyse at least 100 cases:
Similarity score (Dice GTV): 0.88 (avg.) 0.64-0.96 (range)

Our score on 193 cases: (avg.) (std.)

4 [Belmonte, Ciancia, Latella, Massink, TACAS19]
[Banci Buonamici,Belmonte, Ciancia,Latella,Massink, STTT 2019 and ESMRBM19]

5Image: Brats17.2013.2_1 from BraTS 2017 database
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3D Magnetic Resonance Tumour Segmentation*®

hyper intense very intense grow(hl,vl) similar texture  gtv=grow(c,d)
(h1) (vl) (c) (d) manual (blue)

let background = touch(intensity <. 0.1,border) background removal

let brain = !background

let pflair = percentiles(intensity,brain)

let hI = pflair >. 0.95 .

let vI = pflair >. 0.86 threshholding
let hyperIntense = f£1t(5.0,hI)

let veryIntense = f1t(2.0,vI)

let growTum = grow(hyperIntense,veryIntense)
let tunSim = similarTo(growTum)

let tunStatCC = £16(2.0,tunSin >. 0.6) region growing and
let gtv = grow(grouTum,tunStatCC) texture Similarity

4 [Belmonte, Ciancia,Latella, Massink, TACAS19]
[Banci Buonamici,Belmonte, Ciancia,Latella,Massink, STTT 2019 and ESMRBM19]
5Image: Brats17.2013.2_1 from BraTS 2017 database
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Spatio-Temporal Logics (SLCS+CTL)

Syntax
¢ = T [TRUE]
P [ATOMIC PROPOSITION]
| =%  [Not] _
| ®ve [OR] Spatial
| N®  [NEAR]
| ®S® [SURROUNDED]
| Ap [ALL PATHS]
| Ep [EXIST PATH] Temporal
g = X0 [INEXT]
| UV [UnTIL Path formulas



Spatio-Temporal Logics (STLCS)

Semantics

Satisfaction M, x,s = ® of an STLCS formula ® at point x and state s in
model M = ((X,C), (S, R), Vscs) is defined as follows:

M., x,s = T

M,x,s &= p & x € Vs(p)

M,x,s E o & M,x,sEd

M,x,s E doVV & M x;sEPor M, x,sEV

M,x,s = No & xelC{yeX|M,y,s Eo})

M,x,s E ¢SV & JACXxeAAVy e AM,y,s E A

NVz € BY(A).M,z,s =V
E Ap & YoePs. M,x,0F¢
E Ep & JoePs M, x,0k=¢
M, x,0 E Xo & Mx,0(l) =
= oUV < dIn.M,x,0(n) =V and
V' € [0,n).M,x,o(n') =



Bike sharing: Clusters of full docking stations

[Ciancia et al, SEFMWS15],[Massink, Pagkauskas, ITSC15]

Key Value
Stations 742 ‘8 o
Capacity 19,000 f
Bike Fleet 11,500 || ¢ &
Trips-h~—* 101200 |1 V.
Area (km?) 90 . &
- o L8N f
°
Hamo il » ! '5;'
W h ":ﬂ s
. SEL LR AN

@ Rectangular map
@ Randomly distributed stations

@ Bird's flight itineraries

Background img.: http://bikes.oobrien.com/london

4 L) .



http://bikes.oobrien.com/london

trips PDF [% min-1]

8
"uniform" model 10 £ "uniform" model
7E "flow model" "flow" model
6 London BSS —— - London BSS ——
£
5 €
. g
w
3 2
a
: =
1
0 I I
0 10 20 30min 40 50 1h 1 10 30min 1h 100 3h
time (min) time (min)

Expected Trips(> 30)min= 0%

Uniform Multi-agent, uniform OD
@ Trips(> 30)min= 2%

hiring probabilities
Flow Multi-agent, non-uniform OD
@ Trips(> 30)min=7.7% Bingo!

Soft control: dissolve clusters returning probabilities




STLCS: Spatio-temporal MC

[Ciancia et al, SEFMWS15],[Massink, Pagkauskas, ITSC15]

Detecting the emergence of clusters of full stations

@ Define cluster: cluster = I(full)

@ Cluster boundary: ('EF cluster) & (N EF cluster)
folu'a's!

0
0 )0 0’0
@x ,9,8,600 ¢

8,90’

[topochecker,
www.github.com /vincenzoml /topochecker]

back
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Spatio-Temporal Logics (SLCS+CTL)

Syntax
¢ = T [TRUE]
P [ATOMIC PROPOSITION]
| =%  [Not] _
| ®ve [OR] Spatial
| N®  [NEAR]
| ®S® [SURROUNDED]
| Ap [ALL PATHS]
| Ep [EXIST PATH] Temporal
g = X0 [INEXT]
| UV [UnTIL Path formulas



Spatio-Temporal Logics (STLCS)

Semantics

Satisfaction M, x,s = ® of an STLCS formula ® at point x and state s in
model M = ((X,C), (S, R), Vscs) is defined as follows:

M., x,s = T

M,x,s &= p & x € Vs(p)

M,x,s E o & M,x,sEd

M,x,s E doVV & M x;sEPor M, x,sEV

M,x,s = No & xelC{yeX|M,y,s Eo})

M,x,s E ¢SV & JACXxeAAVy e AM,y,s E A

NVz € BY(A).M,z,s =V
E Ap & YoePs. M,x,0F¢
E Ep & JoePs M, x,0k=¢
M, x,0 E Xo & Mx,0(l) =
= oUV < dIn.M,x,0(n) =V and
V' € [0,n).M,x,o(n') =



Spatio-temporal analysis of Turing patterns (SSTL)

[Nenzi, Bortolussi, Latella, Loreti, Massink, RV15 + LMCS 2018]

Morphogenesis: Two chemical substances A and B in a K X K grid

A
dxf,j _

B
d’l —

— Rlx-A-xB»

R3x x "+ Ra + Dg(ufj — X,-BJ-)

w B

t=5 t=7 t=10

— x5+ R+ Di(pf —

x5




Spatio-temporal analysis of Turing patterns (SSTL)

[Nenzi, Bortolussi, Latella, Loreti, Massink, RV15 + LMCS 2018]

Morphogenesis: Two chemical substances A and B in a K X K grid

dx?,
"J — RlXAXB

B
d’l —

— x,-Aj + R + Dl(ﬂéj - Xff)
R3x X i+ Ra+ D2(:LLFJ - Xfo)

- Lr“ e

: - W
i - O
t=5 t=7 t=10

Ppattern = FiTpaseern: Tpattern +31910, Tenal (X < 1) Sty uo] (x* > h))



Spatio-temporal analysis of Turing patterns (SSTL)

[Nenzi, Bortolussi, Latella, Loreti, Massink, RV15 + LMCS 2018]

Morphogenesis: Two chemical substances A and B in a K X K grid

A
[y — A _B A A A
3 = Ruxpxi; — xij + Ro + Di(uiy — x{)

7 A _B B B
3 = Rex{jxij + Ra + Da(pi; — xi)

¥oEn 980

omn s O

6
4
2
o

Detecting emergent spots and their persistence in time, including their robustness to
small perturbations

back



Collective Spatial Logic®

model
The sets of points in blue can collectively reach an exit

6 [Ciancia, Latella, Loreti, Massink, LMCS 12(4:2), 2016]



Collective Spatial Logic

go

Syntax
p [ATOMIC PROPOSITION]
T [TRUE]
- [NoT]
® AP [AND]
N [NEAR]
®S® [SURROUNDED]
-~V [COLLECTIVE NOT]
Vi A Wy [COLLECTIVE AND]
® < ¥ [SHARE]

[

GROUP]



Collective Spatial Logic

Semantics

Satisfaction M, Y ¢ WV of a collective formula W at set Y C X in model
M = ((X,C),V) is defined by induction on the structure of formulas:

MY Ec -V < M, Y Ec V does not hold
MY ):C Vi AV, & MY ’:C VY, and M, Y ‘:C v,
MY [Ec ¢ <V & M{xeYMxEdEcV
MY Ec GO & there exists Z C X such that

YCZ and Z is and
for all z € Z we have: M,z =@



Collective Spatial Logic

Simple example

®: (black V white) S red

M, {yly is black} Ec G(®)



Collective Spatial Logic

Tr iy

H

B E

) [

1 L] -

LT -

Agimy -

il il 1

model result

The blue can reach an exit

M, {yl|y is blue} =¢ G(white V startCanExit) {e}



Embedding of Discrete Region Connection Calculus
(RCC8D)’

[Randell, Cui, Cohn, KR'92, 1992]

[T

11
[ 11

PO

EQ

TPP NTPP

7[Ciancia, Latella, Massink, LNCS 11665, 2019]

TPPi

NTPPi

more



Embedding RCC8D in CSLCS®

Verification with topochecker

TF
TPP( Green, Red) . : E)g
I ... TPP
—i mo ... NTPP
"B =~ .. PO
] . EQ

Produced using the spatio-temporal model-checker topochecker
http://topochecker.isti.cnr.it/

back

S[Ciancia, Latella, Massink, LNCS 11665, 2019]



Conclusions and Outlook

Future work:

@ Spatial Model Reduction

@ Spatial Monitoring and Spatial Computing
@ Medical Imaging

o Data and Topology

9Kurt Lewin, 1951



Thanks for listening!

Hope you enjoyed your travel through space!
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Surrounded versus Until

oy VvV (d)l S ¢2) = A(Cbl W¢)2)

where:

@ A is the path universal quantifier

@ W the weak-until operator

back
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Similarity indexes in Medical Imaging

Dice =2+ TP/(2+ TP + FN + FP)
with

TP = True Positive
FN = False Negative
FP = False Positive

Sensitivity is the fraction of True Positives:
Sens = TP/(TP + FP)
Specificity is the fraction of True Negatives:

Spec = TN/(TN + FN)

back
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Embedding RCC8D in CSLCS

Let (X,C) a closure space and M = ((X,C), V) a finite model.
Predicate py denotes the set Y C X s.t. V(py) =Y.
Encoding of standard set-theoretic and closure operators in CSLCS:

Y1l = py,forall Y C X [CONSTANT]

7] = -l [COMPLEMENT]
[viny] = [nulAbel [INTERSECTION]
[CNT = NI [CLOSURE]

where v, 71,72 range over expressions on sets built out of constants,
complement, intersection and closure



Embedding RCC8D in CSLCS

Tests on the empty set, on set-inclusion and set-equality:

[v=10]
[v1 € 72l
[v1 = 2]

] <g1 [EMPTY]
[(v1N72) = 0] [INCLUSION]
[vi € vl Al €] [EQuALITY]



Embedding RCC8D in CSLCS

[P(Y1,Y2)] = [Y1C Yo]JA-[Y1=0] [PARTHOOD]
[0(Y1, Y2)] = —[vinYz2=10] [OVERLAP]

PARTIAL OVERLAP:

[Po(Y1, Y2)] = [0(Y1, Y2)l A =[P(Y1, Y2)] A =[P(Y2, Y1)]

[N

11
L[]

For all RCC8D formulas F the following holds:



