
To appear in EPTCS.
c© J.T. Bradley

This work is licensed under the
Creative Commons Attribution License.

Mean field and fluid approaches to Markov chain analysis

Jeremy T. Bradley ∗

jb@doc.ic.ac.uk

Department of Computing, Imperial College London, UK

Representing the explicit state space of performance models has inherent difficulties. Just as the
state-space explosion effects functional correctness evaluation, so it can also be easily a problem in
performance models. In particular, classical Markov chain analysis of any variety requires explo-
ration of the global state space and, even for a simple system, this quickly becomes computationally
infeasible. Fluid and mean-field analysis techniques attempt to side-step the state-space explosion
and provide a computationally cheap way of analysing certain features of Markov chains.

1 Introduction

In recent years, there has been a substantial interest in the fluid or mean-field approach to analysing
stochastic problems in computing [1, 2, 3, 4, 5, 6, 7] and stochastic process algebra models in particu-
lar [8, 9, 10, 11, 12]. This style of analysis of the underlying Markov process offers an attractive com-
putational alternative to traditional explicit state space analysis techniques. However, there are certain
limitations which need to be kept in mind. Often fluid and mean-field analysis require the construction
of an aggregate state space that means that specific model features are abstracted away. Additionally, in
constructing a fluid model of a large Markov chain which incorporates synchronisation features, approx-
imations may need to be made and it is important that a modeller is made aware of those approximations
when analysing their model. If we are prepared to live with these aspects of the analysis, then the com-
putational benefits are such that huge analysis tasks can be carried out in a relatively short period of
time.

Quantitative analysis of Markov processes by means of the fluid or mean-field approach exploits sub-
stantial parallelism in the original model to construct a series of ordinary differential equations (ODEs)
which capture the transient evolution of the system. Analysis of substantial Markov models using va-
riety of fluid techniques [1, 13, 10, 8] is made possible and analyses of state spaces of 10100 states and
beyond are not uncommon. Explicit state-space performance techniques which analyse the underlying
continuous-time Markov chain directly (for example, [14, 15]) are typically limited to 1011 states for a
steady-state style of analysis. It is perhaps, slightly unfair to make this comparison directly, as fluid and
mean-field analyses do not scale with the number of global states in a model, but instead with the local
state space of the constituent Markov processes.

In discrete time, mean-field techniques have been well documented by Benaı̈m and Le Boudec [2].
McCaig et al. [12] developed a discrete-time mean-field framework around the synchronous process al-
gebra WSCCS, based on original work by Sumpter [16]. While Bakhshi et al. [4, 7] have developed some
discrete-time model-specific analysis techniques for gossip protocols using the mean-field technique. In
the continuous-time domain, Hillston developed fluid-flow analysis [1] to make first-order approxima-
tions of massively parallel PEPA models. Bortolussi [8] has presented a formulation for the stochastic
constraint programming language, sCCP and Cardelli has a first-order fluid analysis translation to ordi-
nary differential equations (ODEs) for the π-calculus [9].

∗The author is funded in part by the EPSRC on the AMPS project (reference EP/G011737/1).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Mean field and fluid approaches to Markov chain analysis

2 Fluid passage-time analysis

The key impact of fluid and mean-field analysis techniques has been that it allows the modeller to trial
many different system configurations and parameterisations easily whereas, as has been noted, a single
system instance might take many hours or days to analyse using classical techniques. Latterly, fluid
techniques have been used to extract useful passage-time measures [17, 18, 19] from Markov processes
specified using stochastic process algebra. This allows a modeller to focus on the duration of key trans-
actions in the higher-level system. With the rapid computation of fluid analysis, parameter sweeping
can be efficiently performed to find which model variables (exponential rates or scale parameters) have
greatest effect on a key passage-time measure. Often these passage times will take the form of require-
ments or service level objectives (SLOs) for the system, for example, 97.8% of search queries should be
responded to within 0.5 seconds. Understanding how a key passage time is sensitive to changes in model
parameters can help improve the design of the system. In particular how a passage time reacts to changes
in the scale of component deployment within the system, so-called scalability analysis, is critical to the
system engineering process.
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