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Confluence reduction and partial order reduction by means of ample sets are two different techniques
for state space reduction in both traditional and probabilistic model checking. This presentation pro-
vides an extensive comparison between these two methods, answering the long-standing question of
how they relate. We show that, while both preserve branching time properties, confluence reduc-
tion is strictly more powerful than partial order reduction: every reduction that can be obtained with
partial order reduction can also be obtained with confluence reduction, but the converse is not true.

A core problem in the comparison is that confluence reduction was defined in an action-based
setting, whereas partial order reduction was defined in a state-based setting. We therefore redefine
confluence reduction in the state-based setting of Markov decision processes, and discuss a nontrivial
proof of its correctness. Additionally, we pinpoint precisely in what way confluence reduction is more
general, and provide a restricted variant of confluence and relaxed variant of partial order reduction
that exactly coincide. The results we present also hold for non-probabilistic models, as they can just
as well be applied in a context where all transitions are non-probabilistic.

To show the practical applicability of our results, we adapt a state space generation technique
based on representative states, already known in combination with confluence reduction, so that it
can also be applied with partial order reduction.

1 Introduction

Probabilistic model checking has proved to be an effective way for improving the quality of communi-
cation protocols and encryption techniques, but also for studying biological systems or measuring the
performance of networks. The omnipresent state space explosion poses a serious threat to the efficiency
of model checking and similar methods; therefore, several reduction techniques have been introduced to
deal with large systems.

Recently, two powerful reduction techniques from non-probabilistic model checking were gener-
alised to the probabilistic setting: partial order reduction [8, 11, 16] and confluence reduction [4, 3].
Both use a notion of independence between transitions of a system, either explicitly or implicitly, and
try to reduce the state space by eliminating redundant paths through the system (and therefore often also
states). In the non-probabilistic setting, partial order reduction techniques have been defined for a large
range of property classes, most notably variants that preserve LTL\X and CTL∗\X [17, 12]. Most work
on confluence reduction has been designed such that the reduced system is branching bisimilar to the
original system; thus, these techniques preserve virtually all branching properties (in particular, CTL∗\X ).
There is not as much work on weaker variants of confluence, though in [10] a variant is explored that
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makes no distinction between visible and invisible actions and does not require acyclicity. This variant
preserves deadlocks much in the same way as weaker versions of ample and stubborn sets [17].

Partial order reduction, in the form of ample sets, was the first of these methods to be applied in the
probabilistic setting. In [2] and [6], the concept was lifted from labelled transition systems to Markov
decision processes (MDPs), providing reductions that preserve quantitative LTL\X . These techniques
were refined in [1] to also preserve probabilistic CTL∗\X , a branching logic. Later, a revision of partial
order reduction for distributed schedulers was introduced and implemented in PRISM [7]. Of the other
partial order reduction techniques, the so-called weak stubborn set method was also defined for a class
of safety properties of MDPs under fairness constraints in [9].

Recently, confluence reduction was lifted to the probabilistic realm as well. In [15, 14] a probabilistic
variant was introduced that, just like the ample set reduction of [1], preserves branching properties. It
was defined as a reduction technique for action-based probabilistic automata [13], but as we will show
in this presentation, it can also be used in the context of MDPs.

Ample sets and confluent transitions are defined and detected quite differently: ample sets are defined
by first giving an independence relation for the action labels, whereas confluence is a property of a set of
(invisible) transitions in the final state space. Even so, the underlying ideas are similar on the intuitive
level. Therefore, an obvious question is: to what extent do they indeed coincide? This presentation
addresses that question by comparing the notion of probabilistic ample sets from [1] to the notion of
strongly probabilistically confluent sets from [15].

2 Results

We will first redefine confluence for MDPs.1 This task is nontrivial, because confluence is originally
defined in a purely action-based formalism. Then, we show that confluence reduction is strictly more
powerful than ample set reduction, by proving that every nontrivial ample set can be mimicked by a
confluent set, while also providing examples where confluent transitions do not qualify as ample sets.
In such cases, confluence reduction is able to reduce more than ample set reduction. Additionally, we
pinpoint precisely in what way confluence is more general than ample sets, and restrict the definition of
confluence as well as relax the definition of ample sets, to make them coincide. Interestingly, this relaxed
definition of ample sets can be seen as a probabilistic generalisation of stubborn sets.

While revealing exactly where the extra reduction with confluence comes from, the results we present
support the idea that confluence reduction is a well-suited alternative to the thus far more often used
partial order reduction method. In particular, this is a major consideration in contexts where detection
of confluence using heuristics that make use of these more relaxed conditions is possible, or where the
conditions of confluence are just easier to check than their partial order reduction counterparts. This
seems to be the case for statistical model checking and when working with process-algebraic modelling
languages, respectively. Alternatively, the relaxed definition of ample sets might be used in settings
where the notion of partial order reduction is more natural. In addition to providing these practical
opportunities, our precise comparison of confluence and partial order reduction fills a significant gap in
the theoretical understanding of the two notions.

The theory is presented in such a way, that the results hold for non-probabilistic automata as well, as
they form a special case of the theory where all probability distributions are deterministic. Hence, as a

1This abstract is based on a paper with the same name, currently in submission at a journal, that can be downloaded from
http://wwwhome.cs.utwente.nl/~timmer/research.php. Due to the space limitations of this abstract we refer to the
paper for all the technical details. During the talk, the technicalities will be made intuitively clear by means of many pictures.
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side effect we also answered the long-standing question of how the non-probabilistic variants of partial
order reduction and confluence reduction relate.

Our findings imply that results and techniques applicable to confluence can be used in conjunction
with ample sets. As an example of such a technique, we show how a state space generation technique
based on representative states, already known in the context of confluence reduction [4], can also be
applied with partial order reduction. This is a very general technique for replacing a class of states
by a single representative, and a quite similar method has also been used in conjunction with the so-
called essential state abstraction in [5]. The technique makes explicit checking of the cycle condition of
ample sets redundant, in addition to further reducing the number of states and transitions. The latter is
important, especially if the MDP is to be subjected to further analysis.

3 Conclusions and discussion

We redefined probabilistic confluence reduction to an MDP-based setting, enabling a comparison to
probabilistic partial order reduction based on ample sets. We proved that every nontrivial ample set can
be mimicked by a confluent set, and that in some cases reductions are possible using confluence but
not using ample sets. Therefore, at least in theory confluence reduction is able to reduce more than
the ample set method. We also showed the exact way in which confluence has to be strengthened and
ample sets have to be relaxed for the two notions to coincide. These results hold for the non-probabilistic
variants of the two reduction techniques as well. Our observation that probabilistic ample set reduction
can be mimicked by probabilistic confluence reduction has additional implications, among which the
above-mentioned application of a representation map for partial order reduction.

As both ample sets and confluence are detected symbolically on the language level, the quality of
the heuristics applied there will decide which notion works best in practice. The results of this presenta-
tion already strengthen our theoretical understanding of the two methods, and this is independent of the
heuristics that are applied. Also, no matter how such heuristics might be improved, the results of this
presentation will remain valid. Even though a case study on probabilistic confluence reduction in [15]
seemed to outperform similar reductions based on ample sets, future work could focus more on the rela-
tive merits of the two notions in practice and potentially on the improvement of the syntactical heuristics,
if some “best of both worlds” approach is found.

A natural question is, whether there are similar results that could be proven for weaker semantics,
like reductions that preserve LTL\X . For most part, the answer is obvious: confluence reduction preserves
branching time properties, so it also preserves LTL\X . However, since confluence is designed to preserve
branching properties, it has the inherent restriction that confluent transitions must lead to bisimilar states.
This means that we must be able to take single confluent transitions, for if we couldn’t, we would lose
some state that is not bisimilar to the current state. Ample set, and similar methods, do not need such a
restriction when dealing with weaker semantics.

One class of open and interesting questions remains, however. When aiming to make confluence
reduction and partial order reduction coincide, we worked mostly by restricting confluence. It is sensible
to ask, if we could have proven the theorem by relaxing the ample set conditions more and restricting the
confluence conditions less, while maintaining a practical method that can make use of the extra reduction.
How would the less restrictive conditions of confluence be used in conjunction with ample sets or other
partial order reduction methods? Could similar conditions be used when partial order reduction preserves
weaker properties, like LTL\X ? Future work might focus on answering these questions.
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