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1. Introduction 
 
My activity, supported by the TLCNetGroup of University of Pisa, focuses on research and 
development of Network Processors. The laboratories of Telecommunication Networks of 
Department of Information Engineering dispose of four RadiSys ENP-2611 cards [1], provided 
by Intel [2] and equipped with the Network Processor Intel IXP2400 [3]. Therefore our activities 
pertain only to this architecture, even though we continue to analyze alternative solutions. The 
main ideas that lead the fundamental choices about algorithms and programming in our studies 
are common to Network Processors of different vendors.  

 
For the research activity, a test-bed (shown in fig. 1) is provided to test working and performance 
of programmed modules. In particular, the Spirent ADTech AX4000, a traffic generator and 
analyzer, allows us to create the suitable traffic flows for testing and to observe their short-range 
and long-range statistical properties. 
 

 
Fig. 1: Test-bed  
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2. Packet classification 
 

Nowadays packet classification is a fundamental task for network devices such as edge routers, 
firewalls and intrusion detection systems. Determining which flow packets belong to is important 
for many applications, and it is necessary, for example, to provide differentiated services, to 
detect anomalous traffic and to sort attack patterns. Therefore packet classification is becoming 
more and more complex, with more flexibility and higher performance requirements. Complexity, 
flexibility and performance are just the main targets for NPs, indeed a packet classifier has been 
chosen as the first application to be implemented on the IXP2400.  
The main target of my research is to propose a rigorous methodology for designing a network 
component, the packet classifier, which takes into account both the functional specifications of 
the component itself and the specific features of the candidate hardware for its actual 
implementation.  
 
Since multidimensional classification is a complex problem, many researchers have explored and 
proposed a wide variety of algorithms. In my research, all these solutions have been investigated 
to find the most suitable for our hardware platform. In the following, the main theoretical 
principles of these algorithms are illustrated (for details see references [5-13]), divided into four 
big categories [4]. 
The first category consists of the algorithms that use basic data structures. The simplest data 
structure is a linked-list of rules stored with decreasing priority: a packet is compared to each rule 
sequentially until a rule is found to match all fields; clearly, such a linear search exhibits poor 
scaling properties. An advanced data structure is a d-dimensional hierarchical trie, recursively 
constructed as follows: we first build a 1-dimensional trie according to the first dimension of 
rules. Then, for each prefix in the first trie, we recursively construct a (d-1)-dimensional 
hierarchical trie according to rules that specify exactly that prefix in the first dimension. Other 
advanced data structures proposed for packet classification are Set-Pruning trie [5] and Grid of 
Tries [6]. 
The second category is composed of Geometric Algorithms. Each field of a rule can be specified 
either through a prefix/length pair or in terms of an operator/number. From a geometric point of 
view, both these specifications could be interpreted as intervals on a line. Thus, a rule with d 
fields represents a d-dimensional hyper-rectangle and a classifier is a set of such hyper-rectangles 
with the associated priorities. In this context, a packet header (d-tuple) represents a point P in the 
d-dimensional space and the packet classification problem consists of finding the highest priority 
hyper-rectangle that encloses P (see fig. 2). This category includes the Cross-Producting 
algorithm [6], a solution for 2-D classifiers proposed by Lakshman et al. [7], the Area-Based 
Quadtree (AQT) structure [8] and the Fat Inverted Segment Tree (FIS-tree) [9]. 
The third category is that of Heuristic Algorithms. Such algorithms are based on the evidence 
that, due to the considerable redundancy of classification rules, the size of data structures of real 
classifiers is generally much smaller than that theoretically calculated in worst-cases. Recursive 
Flow Classification (RFC) [10], Hierarchical Intelligent Cuttings (HiCuts) [11], Tuple Space 
Search [12] are classification algorithms that, in different manners, perform a heuristic pre-
partitioning of the problem space first, and then rearrange the decision data structure in order to 
take advantage of the above mentioned redundancy. This way, they reduce considerably the time 
for packet classification while saving memory. 
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Rule F1 F2 
R1 00* 00* 
R2 0* 01* 
R3 1* 0* 
R4 00* 0* 
R5 0* 1* 
R6 * 1* 

 
Fig. 2: Packet classification in a geometric representation 

 
The last group is composed of Hardware-Based Algorithms, such as Bitmap Intersection [13] and 
Ternary Content-Addressable Memories (T-CAMs) (see fig. 3). These algorithms usually split the 
multidimensional classification problem into several one-dimensional searches to be performed 
by means of specific hardware-based solutions (for example, the use of T-CAMs allows 
achieving 100 million queries per second [14]).  

 
 

Fig. 3: An example of Ternary-CAM 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Classification Algorithm Selection 
 

As will be shown in the following, the classification algorithms of the first category prove to be 
well tailored for implementation into the network processor architecture. In particular, I select the 
very complex multidimensional multibit trie data structure because of its low search time and 
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small number of memory accesses. The reason of this choice is tightly related to the specific 
characteristics of the Intel® IXP2400 hardware architecture. 
To choose an algorithm that exploits the capabilities of the Radisys® ENP-2611 board, all the 
classification algorithms described in previous section have been compared. Classic performance 
metrics are analyzed, as well as specific parameters to investigate the compatibility with NPs. The 
classic parameters analyzed are:  
1) Search Speed: the increase of link speeds requires faster and faster classification; 
2) Memory requirements: small storage requirements determine high memory access speed and, 

in turn, low power consumption (both features are very relevant for NPs); 
3) Scalability in classifier table size: the size of a classification table depends on the 

applications; the capability of handling a large number of rules makes a classification 
algorithm appealing for many applications;   

4) Scalability in the number of header fields: the number of header fields to be processed 
increases with the number of services provided; 

5) Update time: the data structure needs to be updated upon insertion and removal of rules in the 
classifier; some applications require strictly short updating time; 

6) Flexibility in rule specification: the ability of an algorithm to handle a wide range of rule 
specifications, such as prefix/length, operator/number, and wildcards, makes it reusable for 
many applications.  

Performance metrics of classification algorithms belonging to the four categories (as described in 
section II-A) have been evaluated and compared. For the sake of conciseness, the table [4] in fig. 
4 shows the results for two specific metrics only, namely the worst case complexity of search 
time and storage requirements. The worst case is computed considering a classifier table filled 
with totally different rules, without overlapping in the values of the fields. In the table, we denote 
the number of entries in the classifier with N, the maximum prefix length (in bits) of a field with 
W, the number of fields with D, and the total number of data structure levels with L.   
 

 
 

Algorithm Worst-Case 
Search Time 

Worst-Case 
Storage 

Linear search O(N) O(N) 

Hierarchical Tries O(WD) O(NDW) 

Set-Pruning Trie O(WD) O(ND) 

Grid of Tries O(WD-1) O(NDW) 

Cross-Producting O(DW) O(ND) 

FIS-Tree O((L+1)W) O(LN1+1/L) 

AQT O(NW) O(W) 

HiCuts O(D) O(ND) 

RFC O(D) O(ND) 

Bitmap Intersection O(DW+N/W) O(DN2) 

Ternary CAMs O(1) O(N) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Comparison among different algorithms 
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In addiction to the above listed metrics, for a correct selection of the packet classification 
algorithm, all the possible bottlenecks of NPs have to be taken into account. In particular, the 
number of memory accesses, the amount of memory consumption, and the size of the instruction 
store have to be considered. In other words, the key challenge is designing a packet classification 
algorithm that requires both low memory space and low access overhead: this would provide a 
proper scaling with respect to high bandwidth networks and large databases of classification 
rules.  

 
 

4. The multidimensional multibit trie 
 

The analysis of results (especially the ones associated with search speed and number of accesses – 
not shown in the previous table) led to identify a classification algorithm based on a 
multidimensional multibit trie structure as the most appropriate for IXP2400. Such an algorithm 
has, in the worst-case, a research speed of the order of O(W/K), a fix number of memory accesses 
(L) and a storage complexity of the order of O(2(K-1)×N×W/K), where K is the average length of 
strides. 
In my implementation, the classifier processes the five main header fields, as typically adopted in 
the literature [14]: the IP Destination Address, IP Source Address, Layer 4 Destination Port, 
Layer 4 Source Port, and Layer 4 Protocol Type. Hence, we have a 5-dimensional classifier, 
which uses a 5-stage hierarchical search trie. In each stage, the classification algorithm processes 
a single packet header field; the analysis of each field is divided into several steps, performed by 
using a specific number of bits (named stride), instead of 1 bit at a time, to decrease the number 
of memory accesses (see fig. 5).  
The choice of the strides lengths is based on a theoretical method proposed by Srinivasan [17] 
and on the analysis of the actual distributions of rules in real classifiers [14]. Thus, according to 
the classic IP classful addressing structure (in [14], it has been shown that the most of 
classification rules ignore subnetting) 32 bits long IP addresses are divided into three strides of 
16-8-8 bits respectively, while the 16 bits long TCP/UDP ports are divided in two strides of 6-10 
(because most of the port numbers in use are usually below 1024). Finally, a single stride of 8 bits 
is used for the protocol field. A packet may match more than one rule, thus each rule in the 
database is associated with a field that identifies its priority. 

 
Fig. 5: Beginning of a multidimensional multibit trie 
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5. A modified version of the algorithm 
 
The main issue of classical multidimensional multibit trie is memory consumption. Indeed, to 
handle rules with non-specified parts (e.g. 121.132.*.*) and to have a single memory access in 
each stride of trie, 2s nodes for level are necessary (where s = stride length) though only a few of 
them correspond to actual existing rules and the remaining nodes are virtual. This requires large 
memory storage, and in our scenario would force to put the classification table in DRAM, the 
memory with the highest access latency.  
In order to decrease memory requirements, when there is a rule with non-specified parts (use of 
non-contiguous bit-masks is very frequent in real classifiers [10]), a level crossing is performed, 
which consists of jumping to the next level without need for nodes explosion. This operation, 
regardless to the specific sizes of available memories, drastically reduces memory consumption as 
required by NPs; this permits a feasible integration of different complex applications into the 
device.  
I developed an apposite simulator in C language to compute the number of memory accesses and 
the memory size of the classifier. In simulation runs, we used classification tables very similar to 
the ones used in some actual firewalls and edge routers; such tables contain both fully specified 
rules and partially specified rules (that is, several fields are not specified). Fig. 6 shows the 
comparison, in terms of storage requirements, between the original classification algorithm and 
our modified version. The results evidently justify our choices and modifications.  
 
 

 

 
           Fig. 6: Memory consumption for different versions of algorithm 

Research activity of Fabio Vitucci – TLC NetGroup – University of Pisa 
8 of 16 



Telecommunications Networks Research Group 
Dept. of Information Engineering 

University of Pisa 
Via Caruso – 56122 - Pisa 

Obviously, the introduction of level crossing increases the algorithm complexity, because of 
possible backtrackings: indeed, the use of direct crossing can create, during the matching search 
operation, cases of wrong paths and consequent needs for traversals (see fig. 7 for an example 
with one field only). 
This, in turn, makes the number of processing steps variable and raises the number of instructions 
necessary to implement packet processing (in spite of this, the instruction store of IXP2400 
microengines is large enough to easily handle the modified algorithm). This phenomenon is 
largely compensated by the possibility of locating the classifier table into the SRAM, a memory 
device with lower access delay than that of the DRAM, with the global effect of a reduction of the 
packet processing time.  
Another improvement to the original algorithm is derived from the analysis of many real rules 
databases, and deals with the process of handling ranges of TCP/UDP port fields. Indeed, for 
these fields, it is common to find value specifications such as “greater than 1024”, “between 100 
and 128”, and so on. Therefore, to cope with this issue, suitable objects are introduced in the 
structure of the trie nodes to identify lower and upper bounds of the range. Thus, when a packet 
header is processed to be classified, its port fields are no longer compared to a single value but 
rather to a range of them.  
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The microengines perform the real process of packet classification. They receive packets, retrieve 
the proper fields from packet headers (IP addresses, Layer 4 ports and Protocol field) and look for 
the exact rule according to the algorithm and using the data structure in SRAM. If a rule is 
matched, the TOS field is modified according to the matched rule. The functionalities of 
microengines are implemented in micro-code assembler, a specific assembler for the Intel 
microengines. 
Implementing these functionalities, the multithreaded programming is accurately investigated 
[16], which allows to hide memory accesses latency (see fig. 9). Microengines of the IXP2400 
support software-controlled multithreaded operations, by providing eight hardware-assisted 
threads of execution (i.e. zero-overhead context switch [16]).  
 

 
Fig. 8: A PHP interface for the rules insertion 

 
 
In order to obtain an optimized code, which allows each microengines to be always busy, some 
important features are analyzed, e.g. stalling and filling. The main reasons for the presence of idle 
time in our implementation are the number and the frequency of SRAM accesses. Indeed these 
accesses are reduced creating a very compressed data structure, to consolidate adjacent memory 
accesses. This target justifies the calculation of SRAM addresses by the XScale, which 
subsequently is able to use only the necessary memory space, allowing less memory accesses.   
Another fundamental phenomenon to be considered (and to be avoided) in the programming is 
stalling. The IXP2400 presents a finite queue of SRAM access requests: if a thread needs a 
memory reading but the queue is full, the thread continues to forward the request, without 
releasing the control of the processor and stalling the whole microengine. This clearly reduces the 
processing power of the microengine. In order to avoid microengine stalling, a first solution is the 
instructions filling, that is putting before a memory access request all the instructions independent 
by the reading, even thought they follow the memory access in the normal code flow. All these 
optimizations are manually performed, because the “code improvement” options provided by 
compilers aren’t enough efficient.     

Research activity of Fabio Vitucci – TLC NetGroup – University of Pisa 
10 of 16 



Telecommunications Networks Research Group 
Dept. of Information Engineering 

University of Pisa 
Via Caruso – 56122 - Pisa 

 
Fig. 9: A scheme of the multithreaded behaviour of a microengine  

 
 
The application of packet classifier goes upon the Intel IPv4-Forwarder, which implements packet 
reception, header reading and transmission. This code turns out from an arrangement, made by 
the School of Computer Science (University of Pittsburgh), of the Intel code, properly written for 
the IXDP2400 card (not for the RadiSys ENP-2611 card). Actually this arrangement was 
incomplete and not much documented, so we had to execute many reconfiguration to use the 
application. Fig. 10 shows the IPv4-Forwarder application at microengine level. 
 
 

 

Figura 10: IPv4 Forwarder architecture 
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The red circles represent the rings, which are on-chip circular memories. The more external 
rectangles represent the microengines, the more internal the microblocks (pieces of code that 
implement a specific function). The white microengines contain the driver-blocks, directly 
provided by the Intel, strictly dependent on hardware, dealing with low level functionalities, (e.g. 
transmission and reception mechanisms). The grey microengines contain the user-written 
microblocks, concerning the packet process functionalities and resulting the real target of 
developers. 
The classification module is inserted into the IPv4 forwarder (in the pipeline that processes 
packets), in order to obtain a layer 3-4 packet classification (see fig. 11).  
 

 

Fig. 11: IPv4 Forwarder with the classification module  

 
 

7. Measurements 
 
The last step of my research about the packet classifier was a series of measurements to test its 
working and performance. The classifier provides a maximum packet rate of 2.033.000 pkt/sec, 
without lost packets. Beyond, the lost packets are only the packets exceeding this threshold (see 
fig. 12) and the maximum supported packet rate notes only a little decrease (see fig. 13). Indeed, 
robustness in case of congestion is one of the most important characteristics of the classifier. 
The reason of packet loss is that the packet processing pipeline, with the additional cycles of 
classification block, is not able to sustain the packet arrival speed in the first reception ring. Table 
in fig. 13 presents the cycles for the different operations performed by the classification module. 
The first column represents the “plain” instruction cycles for each operation, the second one also 
contains the “theoretical” cycles for expected memory readings and the third one shows the 
experienced values (minimum and maximum values). The results remark the complexity of 
network processors programming, due to extreme variability of memory access latencies.   
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       Fig. 12: Loss rate 
 
 

 
                          
                          Fig. 13: Maximum supported packet rate 
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OPERATION CYCLES OF 
INSTRUCTIONS

+ MEMORY 
ACCESSES DELAY

MEASURED 
CYCLES 

Registers inizialization 23 23 23 
Reading first node 24 24 + 180 250:300 

Reading other nodes (7) 15 15 + 120 190:650 
Reading ports nodes (2) 19 19 + 120 194:654 

Writing TOS 18 18 + 30 60:400 
TOT. 208 1498 2051:6581 

 
           Fig. 14: Instruction cycles for the classification module 

 
 
Moreover, the classifier supports until 10000 rules. The bound is not given by intrinsic 
restrictions of the classifier module, but only by the size of the available memories in the RadiSys 
cards. Performance (in terms of throughput and processing delay) is fully independent of the 
number of rules: scalability towards number of rules is another fundamental feature of this 
classifier. 
Packet delay for the whole processing pipeline differs according to traffic load (see fig. 15). 
Before packet loss, delays increase from 35 to 110 µsec. In case of congestion, delays reach very 
high values (beyond 1 msec) and become extremely variable.  
 
 

    
        
                     Fig. 15: Packet delay for the whole classifier 
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8. Future work 
This research presents many open fields, which will be investigated in next mounts. The aim will 
be a classification module suitable for different applications and for different targets (access, edge 
and core network). In particular, next year the following features will be analyzed and developed:   

• use of different classification algorithms;  
• analysis of capabilities of Hash and CRC units, available in the IXP2400; 
• real-time update of rule table; 
• full flexibility in rules specification (prefix/length, operator/number, wildcards, non 

contiguous bit-mask, etc.). 
Another scheduled activity is implementing a fully different approach to packet classification 
process. A dedicated microengine must analyse the first packet of each traffic flow and perform 
the search for the matching rule, using the data structure generated by the XScale in SRAM. Once 
the matching rule is found, the microengine inserts an index in a proper table put in a memory 
shared by all the microengines. This index is composed of an hash value of the processed header 
fields and an identifier of the matched rule. Once one of the microengines dedicated to packet 
classification analyses a packet, at first it checks in this local table: if there is an entry 
corresponding to the packet, the microengine immediately modifies the TOS field according to 
the recorded rule and passes the packet to the next module; otherwise it passes the packet to the 
microengine dedicated to searching the exact rule for the first packets of the flows. This way, 
only a microengines must access to SRAM, and only for one packet per flow. A big increase of 
classifier performance is expected to this new assignment of tasks among the different processors. 
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