

Project Report
(January 2003 - December 2005)

VIDEO TRANSCODING TECHNIQUES

IN MOBILE SYSTEMS

 COORDINATOR:

Maurizio A. Bonuccelli����
Dipartimento di Informatica,

Università di Pisa, Via Buonarroti 2, Pisa, Italy

E-mail: bonucce@di.unipi.it

 PARTICIPANTS:

 Francesca Martelli
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”,

Consiglio Nazionale delle Ricerche, via Moruzzi 1, Pisa, Italy

E-mail: f.martelli@isti.cnr.it

Francesca Lonetti����
Dipartimento di Informatica,

Università di Pisa, Via Buonarroti 2, Pisa, Italy

E-mail: lonetti@di.unipi.it

� Also at Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, via Moruzzi 1,

Pisa, Italy.

 2

Contents

Chapter 1 ... 3

1.1 Executive summary .. 3

1.2 Scope & context ... 4

1.3 Structure ... 4

Chapter 2: Video coding features .. 5

2.1 Motion Estimation.. 8

2.2 Rate Control ... 9

Chapter 3: Video transcoding techniques... 11

3.1 Video transcoding architectures ... 12

3.2 Spatial Video Transcoding ... 15

3.3 Quality Video Transcoding .. 16

3.4 Temporal Video Transcoding... 16

Chapter 4: Temporal video transcoding features 18

4.1 Motion Vector Composition... 18

4.1.1 Bilinear Interpolation .. 20

4.1.2 Forward Dominant Vector Selection... 20

4.1.3 Telescopic Vector Composition .. 21

4.1.4 Activity Dominant Vector Selection ... 22

4.2 New prediction errors computation.. 23

4.2.1 Prediction errors in Pixel Domain... 23

4.2.2 Prediction errors in DCT Domain ... 23

Chapter 5: Main research results .. 27

5.1 Temporal transcoding in MPEG4 .. 27

5.1.1 DFS and FSC architectures ... 27

5.1.2 Motion based frame skipping policy... 29

5.1.3 Motion activity and Re-encoding errors in frame skipping 29

5.1.4 Comparison between temporal and quality transcoding ... 31

5.1.5 Buffer based frame skipping policy .. 31

5.1.6 Random based frame skipping policy ... 32

5.1.7 Weighted motion activity in frame skipping... 33

5.1.8 Consecutive frame skipping .. 34

Publications .. 37

5.2 Temporal transcoding in H.263.. 37

5.2.1 Size prediction policy.. 37

5.2.2 Rate control algorithms ... 40

Publications .. 42

5.3 Temporal transcoding in H.264.. 42

5.3.1 Coding standard optimization ... 43

5.3.2 Multi-level Motion Vector Composition... 43

5.3.3 New Motion Vector Composition Algorithm ... 44

Chapter 6: Future work... 47

Acknowledgements .. 50

References .. 51

Appendix A ... 56

 3

Chapter 1

1.1 Executive summary

The third generation telecommunication systems (UMTS) will provide more advanced types

of interactive and distribution services, and actually digital video is one of the most prominent

applications for multimedia communications. The key technology that enables many

applications such as Digital TV broadcasting, Distance Learning, Video on Demand, Video

Telephony and Videoconferencing, is digital video coding. In third generation

telecommunication systems, communication technologies are highly heterogeneous. Adapting

the media content to different network characteristics (communication links and access

terminals) in order to enable video delivery with acceptable service quality, is one of the most

important problems in this setting. Transcoding is the process of converting a video into

another one with different features, in order to adapt the video content to different network

features, like channel bandwidth, terminal capabilities and user preferences.

The goal of this project is to develop efficient solutions for achieving an optimal video quality

in real-time video transcoding. The project started in January 2003. The initial step has been

to study different video codec standards, first MPEG4 and H.263 and later the emergent

H.264. Different transcoding techniques were investigated, with particular focus on temporal

transcoding process. Temporal transcoding consists in dropping some frames from the video

sequence, and correctly reconstructing the non-dropped ones. The main issue has been to

reduce the computational complexity for performing temporal transcoding, by looking for a

trade-off between compression and computation time of block matching techniques.

However, real-time applications are delay sensitive, and so another goal of this project was to

look for a trade-off between transcoding performance (in terms of video quality and

computation time) and delay of data delivery. This was done by proposing different buffer-

based frame skipping policies. Temporal and quality transcoding were compared. The project

terminated in December 2005. The following publications have been produced during this

project:

M.A. Bonuccelli, F. Lonetti, F. Martelli, "Temporal Transcoding for Mobile Video

Communication", Proceedings of 2nd International Conference on Mobile and Ubiquitous

System: Networking and Services (MobiQuitous 2005), San Diego, CA, USA, July 17-21,

2005.

M.A. Bonuccelli, F. Lonetti, F. Martelli, "Video Transcoding Architectures for Multimedia

Real Time Services", ERCIM News No. 62, July 2005, p. 39-40.

 4

M.A. Bonuccelli, F. Lonetti, F. Martelli, "A fast skipping policy for H.263 video transcoder",

Proceedings of 12th International Workshop on Systems, Signals & Image Processing,

(IWSSIP '05), Chalkida, Greece, September 22-24, 2005.

1.2 Scope & context

Several video transcoding schemes have been developed in the last years, which provide

coding standard conversion, bit rate conversion (quality transcoding), resolution scaling

(spatial transcoding), and frame rate conversion (temporal transcoding).

We are interested in temporal transcoding schemes. We developed two temporal transcoding

architectures called DFS (Dynamic Frame Skipping) and FSC (Frame Skipping Control). We

evaluated them realizing that DFS architecture is better than FSC architecture. We evaluated

DFS architecture with different motion vector composition algorithms, realizing that their

performances are very similar. We compared our temporal transcoding with a quality one for

different video sequences concluding that temporal transcoding is better for video sequences

with little motion, while quality transcoding is better for video sequences with a lot of motion.

To consider this motion information in transcoding process, we developed motion based

frame skipping policies. An important issue in development of skipping policies, is output

transcoder buffer occupancy, that determinates the delay of data delivery. We proposed five

buffer-based skipping policies. Among them, the “consecutive” frame skipping policy is used

in hard transcoding conditions, that is when an high variation between input and output bit

rate occurs.

We evaluated the performances of different frame skipping policies with MPEG4 and H.263

codecs. We implemented our temporal transcoding architecture with H.264 codec. For the

variable partition of H.264 macroblocks, we needed to develop a new motion vector

composition scheme. We implemented also a new rate control algorithm to improve the video

quality of encoded frames, which influences that one of the transcoded video sequence.

1.3 Structure

This report is organized as follows. In Chapter 2, we give a brief overview of video coding

features. In Chapter 3, we discuss video transcoding techniques. In Chapter 4, we focus on

temporal video transcoding issues presented in literature. We present our research results in

Chapter 5, and future work in Chapter 6. In Appendix A, there is a schematic presentation of

this report.

 5

Chapter 2: Video coding features

In the last years, many video coding standards have been proposed for various video

applications, such as H.263 for low-bit rate video communications, MPEG-1 for storage

media applications, MPEG-2 for broadcasting and general high quality video application,

MPEG-4 for streaming video and interactive multimedia applications, H.264 for high

compression request. They are all based on the same framework: hybrid DCT (Discrete

Cosine Transform) and MCP (Motion Compensated Prediction) coding. The video sequences

are composed by frames or images captured at regular time intervals. Each image is a two-

dimensional matrix of points, named pixels. Images usually are stored in the 24-bit RGB

(Red, Green and Blue) format with 24 bits for each pixel, 8 bits for each colour channel. A

more efficient format is 24-bit YCbCr: 8 bits for the luminance signal (Y) representing the

black and white image, and 8 bits for each of the two chrominance signals (Cb and Cr), that

represent colour information. The chrominance signals can be sub-sampled with a 2:1

compression in both horizontal and vertical dimensions, reducing the 24 bits per pixel to

12-bits per pixel. This sub-sampling does not affect the perceived video quality since the

human eye is less sensitive to colour variations than to luminance variations [36]. Each video

frame to be coded is divided into non-overlapping macroblocks. The number of blocks

composing a macroblock depends on the given format. In many coding formats, each

macroblock consists of four 8*8 luminance blocks and two corresponding 8*8 chrominance

blocks (one Cb block and one Cr block).

There are three types of video coding: intra-frame coding (I-frame), forward predicted frame

coding (P-frame), and bi-directional predicted frame coding (B-frame).

An I-frame is encoded independently without referring to other frames. Each block in an I-

frame is first DCT-transformed into the frequency domain. Typically, the low frequency

coefficients reside on the top left corner, while the high frequency coefficients reside on the

bottom right corner. This fact is very useful because it is simple to characterize the

information that can be eliminated: in fact, the human eye is more sensitive to low spatial

frequencies than to high spatial ones. Then, a little distortion introduced on the high

frequencies coding does not change the perception of the image. After DCT, the coefficient

values are quantized. The quantization, that is the division by an integer positive value with

rounding, introduces the largest and non recoverable error. By varying the quantization

parameters, it is possible to set the compression factor, and consequently the video quality.

The resulting quantized DCT coefficients are then entropy coded.

 6

The entropic coding is developed in three steps: a zig-zag scan of the block’s coefficients in

order to obtain a sequence with long subsequences of zeros; the run length coding, which

codes the consecutive repetitions of the same symbol with a single occurrence, followed by a

counter indicating the number of repetitions; finally, the variable length coding (VLC),

assigning to the most statistically frequent symbol a shortest representation.

A P-frame is encoded relatively to its past reference frame. A reference frame can be a

P-frame or an I-frame. A macroblock in a P-frame may be encoded as an intra-macroblock or

an inter-macroblock. An intra-macroblock is encoded like a macroblock in an I-frame. An

inter-macroblock is encoded as a motion vector to 16*16 area in the past reference frame, plus

the corresponding differences (prediction errors) between the area and the current

macroblock. Such differences are coded with intraframe coding.

The search of the motion vector, giving the smallest prediction errors, is named Motion

Estimation procedure (ME) and it is the most computationally intensive part of the video

coding process.

A B-frame is encoded relative to its past reference frame and future reference frame. The

encoding of a B-frame is equal to a P-frame, except that the motion vectors may refer to areas

in the future reference frame.

A typical coded video sequence includes all three types of frames and a fixed frame type

mixing pattern is repeated throughout the entire video stream. An example of MPEG video

frame type mixing pattern, named GOP (Group of Pictures) is shown in Figure 1, where the

arrows indicate the prediction directions.

Figure 1. GOP (Group of Pictures)

A block diagram of a typical hybrid DCT/MCP video codec is shown in Figure 2. The encoder on

the left in the figure generates a variable bit-rate bit stream. The encoder buffer is needed to buffer

the bit-stream when the instantaneous output bit-rate is higher than the channel capacity. The

control of the output bit rate according to the channel bandwidth is the subject of video rate control.

The decoder on the right in the figure performs simply a reverse process of the encoding. In Figure

 7

2, we note that the encoder contains a so-called local decoder, which is identical to the remote

decoder. This local decoder produces an exact replica of the video frame at the remote decoder’s

output. This local decoding operation is necessary, since the previous original frame is not available

at the remote decoder that uses the reconstructed version of the previous frame, in order to produce

the current frame. This measure ensures that the decoder uses the same reconstructed frame as the

one used by the encoder to make the motion compensation.

Figure 2. A hybrid MCP/DCT video codec

Different coding standard present advanced coding features. H.263 presents half-pixel motion

compensation and improved VLC coding. MPEG-4 is similar to H.263 but supports several

profiles to address different applications. The Simple Profile (SP) is targeted at low-bit rate,

low delay video communications. The Advanced Simple Profile (ASP) includes 1/4 pixel

motion compensation and Bidirectional Frames. The latest video coding standard is MPEG-4

AVC/H.264 and it reflects the latest advances of video coding techniques. The major

improvements over H.263 and previous MPEG-4 video coding profiles are: multiple reference

frames, variable block-sizes, 4*4 integer DCT-like transform, improved intra prediction,

arithmetic coding, 1/8 pixel interpolation. All these video coding standards only standardize

the decoder, not the encoder. This allows the encoder performance to be further improved by

technology advancements without affecting the interoperability. The technologies making the

most difference in the encoder performance include the motion estimation and the rate

control.

 8

2.1 Motion Estimation

Motion estimation is the technique to estimate the motion vectors in a video sequence. In

most existing video coding standards, the motion estimation is block based. Given a reference

frame and an M*N block in the current frame, the objective of motion estimation is to find the

best-matched M*N block in the reference frame within a search region relative to the position

of current block, as illustrated in Figure 3.

The minimum SAD (Sum of Absolute Difference) is the most commonly used matching

criterion for this choice. The SAD is defined as:

SAD (i,j) =∑ ∑
−

=

−

=
++++−++

1

0

1

0
),Pr(),(

M

K

N

l
ljykixlykxPc (2.1)

where Pc(x+k, y+1) is the luminance pixel of the block in the current frame, Pr(x+i+k, y+j+l)

is the luminance pixel in the reference frame, -p<= i <= p, -p<=j <= p, and p determines the

search range.

Figure 3. Block Motion Estimation

The exhaustive search (full-search) algorithm that searches every possible candidate block in

the search range, gives the best performance. However, it is not suitable for many practical

applications due to its high computational complexity. Various fast motion-estimation

algorithms have been developed, which trade off estimation accuracy to reduce the

 9

computation. Three-Step Search [22] is one of the most popular fast motion-estimation

algorithms. As shown in Figure 4, in each step, nine search-points are checked. After each

step, the step-size is reduced by half, and the search ends with a step-size of one pixel. At

each new step, the search centre is moved to the best matching point from the previous step.

Figure 4. Three-step search method

2.2 Rate Control

The rate control scheme operating on quantization parameters determines the video quality.

Video quality is a subjective measure. The metric adopted in literature to compute the video

quality is PSNR (Peak Signal to Noise Ratio) measure. The most commonly used formula for

computing the PSNR is:

PSNR = 10 log 10

MSE

255
2

(2.2)

The formula to compute MSE (Mean Square Error) is:

MSE =

()[]
HW

H

i

W

j
kk II

×

∑∑
−

=

−

=

−

1

0

1

0
ji,ji,

2
ˆ

 (2.3)

 10

where W and H are the horizontal and vertical dimensions of the frame,

 ji,kI and

 ji,k̂I

are the luminance intensity of the (i,j) pixel of frame k in the original and in the reconstructed

frame, respectively.

In order to transmit the video over a constant-bit-rate channel, such as the PSTN (Public

Switched Telephone Network) or DSL lines, the encoder buffer is used to buffer the bit-

stream when the instantaneous output bit-rate is higher than the channel capacity. To prevent

the encoder buffer from overflow or underflow, a rate-control algorithm is used to adjust the

quantization parameter in order to control the produced bit-rate. A variable quantization

parameter causes a variable Peak-Signal-to-Noise-Ratio (PSNR) and a constant output

encoder buffer bit rate that is the same rate as the communication channel.

The challenge of rate-control in video encoding is to determine the quantization parameter for

video frames in order to achieve the best video quality given the application constraints

(channel bandwidth, delay, etc.). Currently, rate-control is still an active research area.

Figure 5. Variable bit-rate vs. constant bit-rate

 11

Chapter 3: Video transcoding techniques

In 3G communication systems, the amount of multimedia content that is transmitted over

optical, wireless and wired networks is growing. Furthermore, in each of these networks,

there are a variety of multimedia terminals that support different formats. This scenario is

often referred to as Universal Multimedia Access (UMA) and is illustrated in Figure 6. The

involved networks are often characterized by different network bandwidth constraints, and the

terminals themselves vary in display capabilities, processing power and memory capacity.

The goal of video transcoding is to represent and deliver the content according to the current

network and terminal characteristics. Input and output of a video transcoder are typically

compressed video streams that conform to certain compression standards. The decoder

decodes the input video into the pixel-domain, and then the encoder encodes the decoded

frames into the desired compressed video formats. Different from conventional video coding,

video transcoding knows not only the decoded video frames, but also the coding statistics of

the input compressed video. This information can be exploited to perform the video

transcoding process.

Figure 6. Universal Multimedia Access (UMA): conversion of multimedia content

 transcoding

 12

3.1 Video transcoding architectures

Several typical transcoding architectures have been proposed in the literature. They are

grouped into three categories: Pixel Domain Transcoder, DCT Domain Transcoder and Open-

Loop Transcoder. The most straightforward structure for video transcoding is a cascaded pixel

domain video transcoder (CPDT), which connects a standard decoder with a standard encoder

together as illustrated in Figure 7. However, the computational complexity of this approach is

very high since it requires performing both encoding and decoding.

Figure 7. Cascaded Pixel Domain Transcoder

The challenge in the transcoding research is how to achieve the optimal trade-off between

computational complexity and video quality.

In CPDT, decoded motion vectors can be reused so that the motion estimation can be avoided.

A simplified architecture, named Fast Pixel Domain Transcoder (FPDT), is derived and

showed in Figure 8.

Figure 8. Fast Pixel Domain Transcoder

 13

In this simplified architecture, the whole transcoding process is performed in the DCT domain

except the motion compensation loop. The most time-consuming parts are in the DCT and

IDCT modules. These two modules can be removed from the architecture performing the

motion compensation in the DCT domain, by several DCT domain interpolation algorithms

[23][24]. This transcoding architecture is showed in Figure 9.

Figure 9. DCT Domain Transcoder

For fast scaling video bit rates, some open-loop transcoding architectures have been proposed

in the literature [25][26]. A typical open-loop transcoder is illustrated in Figure 10. In this

architecture, the incoming video stream is variable-length decoded and dequantized without

further decoding. Two approaches are used for bit rate scaling in the open-loop transcoder:

cutting the high frequency DCT coefficients and increasing the quantization step. In both

approaches, the motion vectors, coding mode and other syntax elements from the incoming

video stream are reused by the transcoder.

Figure 10. Open Loop Transcoder

 14

From the above introduction of transcoding architectures, we can easily see that the pixel

domain transcoder is the most complicated one in terms of overall structure, while the open

loop transcoder is the simplest one. However, in open loop transcoding, the visual quality

degrades for dropping high frequency coefficients and for the requantization error. At the

same time, a drift error is caused by the loss of high frequency data, which creates a mismatch

between the actual reference frame used for prediction in the transcoder and decoder. Since

the current reconstructed picture is also used for future predictions, the drift error propagates

to future frames, and thus the distortion of video quality increases. Pixel domain transcoder

architectures (CPDT) usually have better visual quality than DCT domain transcoders and

Open Loop transcoders. However, if the motion vectors from the incoming video stream are

reused for transcoding in the Fast Pixel domain transcoder, a significant part of computation

is reduced because more than 70% of the total computation of an encoder is due to the motion

estimation module. From this point of view, reusing motion vectors is the most significant

step to reduce transcoder complexity. There are some other methods which have been

proposed in literature to reduce the complexity of different modules, such as DCT/IDCT,

motion compensation, etc., in different transcoding architectures. However, compared to

motion estimation, these modules are not computationally expensive. In addition, there is

always a trade-off between visual quality and complexity. In most cases, the visual quality

will be degraded by simplifying some modules in the transcoder. Some other related research

work about transcoding architectures can be found in [27]. Therefore, the choice of

architecture and type of transcoding depends on the dedicated application’s and user’s

requirements. The main goal is to avoid cascaded decoding/re-encoding processes,

maintaining the quality of service (QoS), reducing the processing power and most

significantly the time delay associated with the conventional cascaded decoding/re-encoding

processes, most important in delay sensitive applications such as two-way video

communications.

A type of transcoding is the format conversion that is needed in order to achieve the

interoperability among different coding standards in heterogeneous multimedia networks.

This format conversion process operates a syntax change from one video coding standard to

another one. In [2], an efficient MPEG-4/H.263 video transcoder is presented. The other types

of transcoding are presented in the next sections.

 15

3.2 Spatial Video Transcoding

Video spatial resolution downscaling is important since most mobile devices are characterized

by limited screen sizes. For transcoding a compressed video stream with M*N spatial

resolution into a stream with smaller spatial resolution, such as M/2*N/2 or M/4*N/4, motion

vectors from the incoming video can not be reused directly, but they have to be resampled and

downscaled. Based on the new motion vectors, prediction errors are recomputed and

compressed.

The most typical sample case is the 2:1 downscaling, where four 8*8 DCT blocks are

downscaled into one 8*8 DCT block. A simple method that masks the high-frequency DCT

coefficients and retains the lowest 4*4 DCT coefficients may be used. However, more

sophisticated filtering methods that transform a 16*16 DCT block directly to an 8*8 DCT

block have been proposed in [28] .

Several strategies have been proposed to compose the motion vector of the target macroblock

using the motion vectors of the input macroblocks, such as random selection, the median, the

average and weighted average [10][11][12]. The median method achieves the best

performance.

Figure 11. Arbitrary down-sampling spatial transcoding

Recent works extend the previous strategies to the spatial transcoding with arbitrary down-

sampling ratio (Figure 11). In this case, due to the non-integer-factor spatial down-sampling,

the important issue is how to combine the motion vectors with different contributions in order

to choose the motion vector of the target macroblock [13][14].

 MB

 16

3.3 Quality Video Transcoding

In order to distribute the same encoded video sequence to several users through channels with

different capabilities, the compressed video sequence has to be converted into specific bit

rates for each outgoing channel. In most bit adaptation cases, pre-encoded video with high bit

rate and fine visual quality needs to be converted into low bit rate video with gracefully

degraded visual quality. The ideal result is to achieve visual quality as good as the quality of a

video stream that is compressed by an encoder at the low bit rate. All video coding standards

assume that the compressed video will be transmitted over a Constant Bit Rate (CBR) channel

and the rate control scheme of these standards is based on such assumption. However, this is

not true in the real case, since the channel bit-rate is influenced by network congestion, packet

loss, high Bit Error Rate (BER) and channel fading effects in wireless links. Many techniques

of error recovery and error resilience are proposed in order to solve these problems. Rate

control for transcoding differs from encoder rate control in the following ways: the video

transcoder reuses the picture types of the incoming video, future picture types of each GOP

are, in general, unknown and so they are not used to set the target number of bits for each

frame, the relationship between quantizer step-size and bit rate of the incoming video is

known, this information is used for setting the target bit rate and quantizer step-size of a

frame or macroblock.

Many quality transcoding algorithms achieve the target bit rate reduction by operating on the

bit allocation for each frame (Frame-Layer bit allocation) and on the quantization parameters

of every macroblock of the frame (Macroblock-Layer rate control), according to the target bit-

rate. The Frame-Layer bit allocation strategies are based on the input video sequence

complexity, on the type of the frames and on the image distortion [3][4]. The Macroblock

Layer rate control techniques determine the quantization parameters for every macroblock of

the frame according to the allocated number of bits for each frame. These techniques are

based on Lagrangian optimisation [5][6][7], Dynamic Programming [8], or on the relationship

between the number of VLC code words in a frame and the produced bits for encoding these

VLC code words [9].

3.4 Temporal Video Transcoding

In order to transcode an incoming compressed video bitstream for a low bandwidth outgoing

channel, such as a wireless network, a high transcoding ratio is often required. However, high

transcoding ratios may result in unacceptable video quality when the incoming bitstream is

 17

transcoded with the full frame rate as the incoming bitstream. For example, in a wireless

network which normally has a less than 20 kbps bandwidth, the quality degradation due to the

low bit-rate is significant with 25 or 30 frames per second.

Temporal transcoding is a process that skips some frames in order to change the frame rate of

the video sequence and to allocate more bits to remaining frames without decreasing the video

quality for not skipped frames. In addition, frame-rate conversion is also needed when the end

system supports only a lower frame-rate. In temporal transcoding, the main issues are:

• to recompute the motion vectors not still valid, because they point to discarded

frames;

• to recompute the prediction errors according to the new motion vectors;

• to choose the frames to be skipped (frame skipping policy).

This technique is the main one for our work, and will be described in greater detail in the next

sections.

 18

Chapter 4: Temporal video transcoding features

In video transcoding, the compressed video bitstream is often converted to a reduced frame-

rate video bitstream in order to decrease the bit rate. One way to perform this is to decompress

the compressed video bitstream, drop several specific frames and compress the non skipped

frames to another compressed video bitstream. This method has high computational

complexity, since when some frames are skipped, the incoming motion vectors are no more

valid because they point to dropped frames and a motion estimation process is needed in order

to compute the new motion vectors of the non-skipped frames. These new motion vectors can

be found by the “Motion Vector Composition” algorithms. After that, a “Refined Motion

Estimation” can be applied to the composed motion vectors. These techniques, illustrated in

Section 4.1, permit to reduce the computational complexity of the motion estimation process

and to achieve a good video quality of the transcoded frames. According to the new motion

vectors, computing the new prediction errors of the non skipped frames is needed, as showed

in Section 4.2.

4.1 Motion Vector Composition

A situation where one frame is dropped is illustrated in Figure 12. Since frame Rt-1 is dropped,

we need to find a motion vector for MBt macroblock pointing to the best prediction for MBt in

frame Rt-2. One possible way to generate such a motion vector without performing motion

estimation is to add vector (ut,vt) to vector (ut-1,vt-1) in order to compose (ut
s
, vt

s
).

Figure 12. Motion Vector Composition: case motion vector null

In case the motion vector (ut, vt) is equal to (0, 0) (Figure 12), it points to macroblock MBt-1,

so the vectors (ut, vt) and (ut-1, vt-1) are both available in the incoming bitstream and the MBt

 19

macroblock is named macroblock non-Motion Compensated (MC). In general MBt-1 is not a

macroblock, but a reference area of 16*16 pixels that overlaps four macroblocks in the

skipped frames (Figure 13), so (ut-1, vt-1) is not available in the incoming bitstream.

Figure 13. Motion Vector Composition: case motion vector non null

It is possible to use four algorithms named Bilinear Interpolation (BI), Forward Dominant

Vector Selection (FDVS), Telescopic Vector Composition (TVC), and Activity Dominant

Vector Selection (ADVS) for computing an approximation of (ut-1, vt-1). If the frame Rt-2 also

is skipped, the vector (ut
s
, vt

s
) is no more valid. By the Motion Vector Composition, it is

possible to find a new motion vector (ut-2, vt-2) for MBt-2 reference area. The vector (ut-2, vt-2) is

added to (ut
s
, vt

s
) in order to obtain a new motion vector for MBt pointing to the last

transcoded frame. In general, if k consecutive frames from t-k to t-1 are dropped during

transcoding, the motion vector of the macroblock of the current frame can be composed

repeatedly applying the Motion Vector Composition. The resultant motion vector will be

)(tyx, = () () () ()

 +∑ = −
+∑ = − tyI

kd dtyV,txI
kd dtxV 11 (4.1)

where)(
dtyVxV

−
, is the motion vector selected by the Motion Vector Composition at the

frame (n-d), and ()
t

yIxI , is the incoming motion vector of the frame (t).

The motion vector obtained by the Motion Vector Composition is an approximated value of

the optimal motion vector. The application of a motion estimation is needed to obtain the

refined motion vector. The full search motion estimation can be applied to exhaustively

compute all checking points in a new small search window, but this has a high computational

complexity. Several schemes for motion estimation in transcoders are discussed in [30],

 20

where it is showed that by using refined motion estimation (RME) in a much reduced search

area, it is possible to achieve near optimal outgoing motion vectors with a quality close to the

full scale motion estimation. In [16][18], two refined motion estimation schemes are proposed

that reduce the computational complexity of the full motion estimation and achieve similar

performance results to the fast motion-estimation algorithm in term of PSNR.

4.1.1 Bilinear Interpolation

The bilinear interpolation is defined as [15]:

MVint = (1–α)(1–β) 1

1

−nMV + (α)(1–β) 1

2

−nMV + (1–α)(β) 1

3

−n
MV + (α)(β) 1

4

−nMV (4.2)

where 1

1

−nMV , 1

2

−nMV , 1

3

−n
MV and 1

4

−nMV are the motion vectors of the four macroblocks

that overlap the reference area in the skipped frame pointed by the incoming motion vector, α

and β are determined by the horizontal and vertical pixel distance of this reference area from

the 1

1

−nMV (Figure 14). The selected motion vector is MVint.

Figure 14. Bilinear Interpolation

4.1.2 Forward Dominant Vector Selection

In [16], the Forward Dominant Vector Selection algorithm is proposed. This algorithm selects

one dominant motion vector among the vectors of the four macroblocks that overlap the

reference area in the skipped frame. This dominant vector (MVfdvs) is defined as the motion

vector of the dominant macroblock. The dominant macroblock is a macroblock that has the

largest overlapping area with the reference area pointed by the incoming motion vector.

For example, MVfdvs = 1

2

−nMV in Figure 15.

 21

Figure 15. Forward Dominant Vector Selection

This algorithm presents a lower computational complexity than the bilinear interpolation. The

approximation of MVfdvs is more accurate when the overlapping area of the dominant

macroblock with the reference area is larger. However, when the overlapping areas among the

four near macroblocks are very close, the motion vector decided by FDVS may not be

meaningful.

In [35], the conventional FDVS method is improved to reflect the effect of the macroblock

types in the skipped frames.

In [29], the Bi-direction Dominant Vector Selection (BDVS) is presented. It is based on

FDVS algorithm but it is designed to re-estimate the dominant motion vectors in popular I-B-

P frame structure video sequences that are not considered in FDVS.

4.1.3 Telescopic Vector Composition

A simple algorithm is Telescopic Vector Composition [17], that selects, in the skipped frame,

the motion vector (MVtvc) of the macroblock corresponding to the macroblock in the current

frame. For example, MVtvc = 1

1

−nMV in Figure 16.

Figure 16. Telescopic Vector Composition

 22

The basic idea is that in videos with small motion, the motion vectors are very small, so the

reference area pointed by the incoming motion vector will always overlap most with the

corresponding macrobloclock in the skipped frame. For this reason, the results obtained by

TVC and FDVS can be very close.

4.1.4 Activity Dominant Vector Selection

The Activity Dominant Vector Selection algorithm presented in [18] is based on the activity

of the macroblocks for the choice of the motion vector. The activity of a macroblock is

represented by the number of nonzero quantized DCT coefficients (NZ) of the prediction

errors of the blocks that belong to that macroblock. The ADVS algorithm selects the motion

vector (MVadvs) of the macroblock with the biggest activity among those that overlap the

reference area pointed by the incoming motion vector. Other statistics can also be used, such

as the sum of the absolute values of DCT coefficients. For the case shown in Figure 17,

FDVS chooses the motion vector of I4
n-1

 macroblock as the dominant vector

(MVadvs =
1

4

−nMV), since NZ(I4
n-1) is larger than NZ(I2

n-1), although NZ(I4
n-1) only covers two

blocks, which are smaller than the four blocks covered by NZ(I2
n-1).

Figure 17. Activity Dominant Vector Selection

The idea of this algorithm is to select the motion vector of the macroblock with maximum

activity (NZ) that corresponds to larger prediction errors. The bigger is the activity of the

macroblock, the more significant is the motion of the macroblock. Since the quantized DCT

coefficients of prediction errors are available in the incoming bitstream of transcoder, the

computation for counting the nonzero coefficients is very low.

 23

4.2 New prediction errors computation

In temporal transcoding, after skipping some frames, according to the new motion vectors, it

is needed to compute also the new prediction errors. There are two architectures in literature

that perform this and they are presented in the next sections. The skipped frames must be

decompressed completely, since are used as reference frames for the decoding of successive

non-skipped frames.

4.2.1 Prediction errors in Pixel Domain

In pixel-domain transcoder architectures, a frame Rt is decoded with Rt-1 frame reference as:

Rt(i,j) = Rt-1(i+ut, j+vt) + et(i,j) + ∆t (i,j) (4.3)

where et represents the prediction errors (residuals) between the current frame Rt and the

motion-compensated frame Rt-1, ∆t represents the reconstruction errors due to quantization in

the remote encoder and (ut, vt) represents the motion vectors of the current frame related to the

reference frame. If Rt-1 is dropped, by Motion Vector Composition and Refined Motion

Estimation it is possible to find a new motion vector (ut
s
 vt

s
) for Rt that points to previous non

skipped frame Rt-2. Regard to this new motion vector, the new prediction errors et
s
(i,j) are

computed and coded by DCT and quantization. The remote decoder reconstructs the frame Rt

as:

Rt
s
(i,j) = Rt-2

s
(i+ ut

s
, j+ vt

s
) + et

s
(i,j) + ∆t

s
 (i,j) (4.4)

where ∆t
s
 represents the re-quantization errors due to re-encoding in the transcoder. These re-

encoding errors affect the video quality of the non skipped frames, with a degradation of the

PSNR of about 3.5 dB on average, compared to that of the same pictures directly decoded

without the transcoding process [19].

4.2.2 Prediction errors in DCT Domain

In order to reduce the complexity of the transcoding process, and to avoid re-encoding errors

Fung proposed in [31][32] a new frame skipping transcoder architecture based on the direct

addition of DCT coefficients of the prediction errors.

 24

We show in Figure 18, a situation where the frame Rt-1 is dropped, and the macroblock MBt is

non-Motion Compensated. We assume that MBt-1 represents the best matching macroblock for

the current macroblock MBt, Q[DCT(êt)] and Q[DCT(êt-1)] are the prediction errors of MBt.

and MBt-1 respectively.

Figure 18 New prediction errors computation for non-MC macroblocks

In this proposed architecture, the new quantized DCT coefficients of prediction errors

Q[DCT(êt
s
)] are computed directly in DCT domain and are given by:

Q[DCT(êt
s
)] = Q[DCT(êt)] + Q[DCT(êt-1)] (4.5)

Since in this case MBt is non-Motion Compensated, the quantized DCT coefficients

Q[DCT(êt)] and Q[DCT(êt-1)] are available in the input bitstream to the transcoder. The

transcoding complexity is reduced since it is not necessary to perform motion compensation,

DCT, quantization, inverse DCT and inverse quantization. Furthermore, since requantization

is not necessary for non-Motion Compensated macroblocks, re-encoding errors ∆t
s
mentioned

in (4.4) are also avoided.

Many real-world image sequences have a smooth motion that varies slowly, so over 70% of

the macroblocks are non-Motion Compensated. By using a direct addition of the DCT

coefficients in the frame-skipping transcoder, the sequences containing more non-Motion

Compensated macroblocks can reduce the computational complexity and the re-encoding

errors more significantly.

In Figure 19, we show the case of a Motion Compensated macroblock MBt. In this case, direct

addition of the prediction errors cannot be employed since MBt-1 is not a macroblock and so

Q[DCT(êt-1)] is not available from the incoming bitstream.

 25

Figure 19 New prediction errors computation for MC macroblocks

It is possible to use the incoming quantized DCT coefficients of the macroblocks MBt-1
1,

MBt-1
2, MBt-1

3, MBt-1
4 that overlap MBt-1 for computing êt-1 First, inverse quantization and

inverse DCT of coefficients of the blocks that overlap MBt-1 are performed, to obtain their

corresponding prediction errors in the pixel-domain. These prediction errors are added to the

motion compensated segments of the previous non skipped frame to obtain all pixel in MBt-1.

It is possible to use the motion vector composition to compute the motion vector (ut-1, vt-1) of

MBt-1 pointing to a reference area in Rt-2. The prediction errors êt-1 are obtained by subtracting

MBt-1 from the corresponding motion compensated reference area MBt-2 in the previous not

skipped frame. DCT and quantization are applied to êt-1 to obtain Q[DCT(êt-1)]. The new

quantized DCT coefficients Q[DCT(êt
s
)] of a Motion Compensated macroblock can then be

computed by adding Q[DCT(êt-1)] to the incoming Q[DCT(êt)]. The requantization introduced

for computing Q[DCT(êt-1)] brings additional re-encoding errors ∆t-1
s
.

These errors degrade the quality of the reconstructed frame. Since each non skipped P-frame

is used as a reference frame for the following non skipped P-frame, quality degradation

propagates to later frames in a cumulative manner. Figure 20 shows how re-encoding errors

can lead to accumulated errors. In this figure, ∆2
s
 is introduced for the quantization of

Q[DCT(ê2)] and such errors have the effect of degrading the quality of the reconstructed area

MB3. When pixels in MB3 are used as reference for the next non skipped frame (for example

R5
s
), ∆2

s
 affects the formation of Q[DCT(ê4)] and this error is accumulated in the

reconstruction of MB5. These accumulated errors become significant in the sequence

containing a large amount of Motion Compensated macroblocks.

 26

Figure 20. Effect of re-encoding error with error compensation

A technique introduced to minimizing the visual degradation caused by this phenomenon is

the error compensation. The re-encoding errors are computed by:

∆t-1
s
 = DCT

-1
(DCT(êt-1) /q *q) - êt-1 (4.6)

where q is the quantization parameter.

These re-encoding errors are stored and added to the prediction errors of Motion

Compensated macroblocks in the successive P frames. For example as show in Figure 20,

during the computation of MB3, re-encoding error ∆2
s
 is stored. During the computation of

MB5, ∆2
s
 is added to ê4 computed by MB3 which is affected by the re-encoding error ∆2

s
.

This technique cannot entirely avoid the propagation of re-encoding errors, but it reduces their

effect on the visual quality of the transcoded frames.

skipped skipped

 27

Chapter 5: Main research results

In this section we present our main research results.

5.1 Temporal transcoding in MPEG4

The first coding standard that we studied has been MPEG4. We chosen the MoMuSys-

FPDAM1-1.0-021202_nctu version of this coding standard [42] and we implemented two

different temporal transcoding architectures that we show below.

5.1.1 DFS and FSC architectures

The first temporal transcoding architecture that we developed is called DFS (Dynamic Frame

Skipping). This architecture reduces the input bit rate IR of the incoming video sequence, by

eliminating some frames, so that the output bit rate R turns out to be constant. Notice that the

frame rate of the output video sequence is not constant, and we assumed that the skipped

frames are replaced by the previous ones (freezing) at displaying time in the final decoder.

In this architecture, the motion vectors are computed by one of the four MVC algorithms, and

RME procedure previously mentioned in Section 4.1. The prediction errors are computed in

the pixel domain. This architecture is shown in Figure 21. The behaviour of the transcoder is

different according to the reference frame. In other words, at each frame, the transcoder

performs some operations if the previous frame has been skipped, and some other operations

if the previous frame has been transcoded. The switching between the two behaviours is

represented in Figure 21 by the switch “PS/PT”. In addition, also transcoding or skipping of

the current frame determines a different behaviour (switch “CS/CT”). The left part of Figure

21 depicts the “local decoder” which has to decode every incoming frame in_frame by means

of motion compensation with the previous decoded frame prev_dec_frame. When the

reference frame has been transcoded, the only function performed is to store in

prev_tran_frame, the pixels of the current frame in case that the Frame Rate Control (FRC)

module decides to transcode it. Otherwise, if the FRC module decides to skip the current

frame, only the motion vectors of the current frame are stored in skipped_mv, for being used

at the next incoming frame.

 28

In case of skipped reference frame, it is needed to recompute the motion vectors and the

prediction errors. The motion vectors are computed by means of motion vector composition

(MVC module) and, eventually, restricted motion estimation (RME module). The MVC

module adds to the vectors of the incoming frame in_mv, the motion vectors chosen among

skipped_mv, by one of the motion vector composition algorithms, described in Section 2. The

RME module performs a resctricted motion estimation around the vectors given by MVC, in

order to produce the best possible motion vectors. Then, the motion compensation is applied

to the last not skipped frame prev_tran_frame to produce the moto-compensated frame comp

which is then subtracted from the current decoded frame to produce the prediction errors for

the current frame. Finally, if the FRC module decides to transcode the current frame, the

prediction errors out_pred_err will be added to comp in order to store the current frame in

prev_tran_frame. After the DCT and Q modules, the prediction errors form the current frame

together with the motion vectors out_mv. Otherwise, if the frame will be skipped out_mv will

be store in skipped_mv. Reconstructed frames are then skipped or placed in the buffer for

being transmitted. An important issue in temporal transcoding is the choice of frames to be

skipped. The frame rate control developed in DFS architecture, dynamically adjusts the

number of skipped frames according to the motion activity. The motion activity gives a

measure of the motion in a frame and frames with a lot of motion are not skipped. We are

going to better explain the motion activity measure below. A different temporal transcoding

architecture, called Frame Skipping Control (FSC) consists in computing the prediction errors

Figure 21. Temporal transcoder architecture

 29

in the DCT domain as presented in Section 4.2.2. This way of computing prediction errors

produces re-encoding errors, then in FSC architecture the frames are skipped taking into

account re-encoding errors effect and the motion activity.

5.1.2 Motion based frame skipping policy

In [15], a frame rate control scheme, which can dynamically adjust the number of skipped

frames according to the motion activity, is presented. The motion activity of the current

frame t, (MA t), is the sum of the motion activities of all the macroblocks (MA)m of the frame,

and is defined as:

MA t = ∑ m(MA)m (5.1)

where (MA)m is the sum of the vertical and horizontal components of the motion vector of

macroblock m, namely:

(MA)m = (|xi| + |yi|) (5.2)

This motion activity is compared with a dynamic threshold value, computed according to the

motion activity of the previous frames and the number of transcoded frames. When a frame is

skipped, the remote decoder replaces the missing frame with the previous transcoded frame.

The basic idea of this scheme is that if the motion activity is larger than the threshold, the

frame can not be skipped since it has considerable motion, and it is not possible to have a

good approximation of this frame by using the previous transcoded frame only. We

implemented this motion-based skipping policy in DFS architecture. Simulation results show

that by using this approach presented above the video displayed at the receiver site is

smoother.

5.1.3 Motion activity and Re-encoding errors in frame skipping

When more frames are dropped, re-encoding errors in motion compensated macroblocks

cannot be avoided entirely, even if error compensation schemes are applied (as mentioned in

the Section 4.2.2). In [19], a frame skipping strategy which takes in account the effect of the

re-encoding errors is proposed. The goal of this strategy is to minimize the re-encoding errors

 30

as well as to preserve motion smoothness. A frame skipping metric based on the motion

activity and re-encoding errors is defined as:

∑

∑

=

==
M

m

mt

M

m

mt

ttt

RE

MA

REMAFSC

1

1

)(

)(

),((5.3)

where M is the total number of macroblocks in the current frame t, ()
mtMA is the motion

activity of the mth macroblock defined in (5.2), and mtRE)(are the re-encoding errors of the

mth macroblock defined as:

∑∑
−

=

−

=

−∆=
1

0

1

0

1),()(
N

i

N

j

s

tmt jiRE (5.4)

where N is the size of macroblocks of the current frame and ∆t-1
s
 are defined by (4.6). If the

value of),(ttt REMAFSC for a not skipped frame exceeds a predefined threshold TFSC, the

frame is not skipped since it has considerable motion, and the previous not skipped frame is

not sufficient to represent the current frame. A large value of ∑ =

M

m mtRE
1

)(implies more re-

encoding errors, and reduces the value of),(ttt REMAFSC . So, if this value is smaller than

the threshold, the frame can be skipped since it contains many re-encoding errors. The

threshold TFSC, is set initially to a value Tinit, and can be dynamically updated with a

granularity of Tstep in order to stabilize the outgoing frame rate fo according to the target frame

rate fT of the transcoder in this way:

• if fo > fT, increase TFSC by Tstep;

• if fo < fT, decrease TFSC by Tstep;

• otherwise, keep the current value of TFSC.

We implemented this strategy in FSC architecture. Simulation results show that it minimizes

the re-encoding errors and preserves the motion smoothness of the transcoded frames.

 31

5.1.4 Comparison between temporal and quality transcoding

We implemented a simple quality transcoder which decodes the incoming video sequence at

bit rate IR, and re-encodes it with bit rate R, by using the same rate control algorithm of the

front encoder. We compared this transcoder with our temporal transcoder realized with the

DFS and FSC architectures, over several benchmark videos. The results, in terms of PSNR (a

measure indicating the quality of the transcoded sequence) show that a better performance is

achieved by quality transcoder (QT) for videos with a lot of motion and by temporal

transcoderng (DFS and FSC) for videos with little motion. Moreover, we observed that DFS

architecture achieves a better performance than FSC one, since in the latter, many frames are

skipped because of re-encoding errors. We had similar results considering different MVC

algorithms (Bilinear Interpolation (BI), Telescopic Vector Composition (TVC), Forward

Dominant Vector Selection (FDVS), Activity Dominant Vector Selection (ADVS)). These

results are presented in Figure 22.

Figure 22. MPEG4 transcoding architectures evaluation

5.1.5 Buffer based frame skipping policy

In order to guarantee a fixed communication delay, considering the buffer occupancy in frame

skipping is needed. We present a buffer-based frame skipping policy where two buffer

thresholds, Blower and Bupper, are established for avoiding buffer underflow and overflow.

Underflow occurs when the buffer occupancy is zero, and so the final decoder receives data of

DFS FSC

BI

TVC

FDVS
ADVS

19,4

19,6

19,8

20

20,2

20,4

20,6

20,8

21

average

 PSNR

mobile

DFS
FSC

BI

TVC

FDVS

ADVS

31,5

32

32,5

33

33,5

34

34,5

35

35,5

average

PSNR

akiyo

Q2 ME FS

Q2 ME MVFAST

 32

a frame after it is scheduled to be displayed, causing the stop of the video sequence (besides

the non utilization of the communication bandwidth). Buffer overflow occurs when the buffer

occupancy exceeds the buffer size, and it increases the assumed delay τ. This is equivalent to

a frame loss at the decoder, since at displaying time some bits of the corresponding frame are

still in the transcoder output buffer waiting to be transmitted. Blower and Bupper are dynamically

set according to the ratio IR/R. We observed experimentally that the best values for Blower and

Bupper are respectively 20% and 80% of the buffer size when IR/R =2. If IR/R>2, it is needed

to decrease Bupper so that the free buffer space is always (in average) sufficient to

accommodate at least one frame. For instance, when IR/R = 4, a good value for Bupper is 60%.

A frame is skipped if the buffer occupancy is greater than Bupper S and it is always transcoded

if the buffer occupancy is lower than BlowerS. Independently from the value of the threshold, in

our buffer-based policy, we avoid the buffer overflow by testing that the size of the

transcoded frame does not exceed the free buffer space. The only exception is for the first

frame, which is an intra frame, and it is always transcoded. If the size of the first frame

exceeds the buffer size, we have an additional delay equal to τ0 for those bits which do not fit

in the buffer, and after an initial delay of τ + τ0, this frame skipping policy guarantees a

constant delay τ for the whole transmission. If the output bit rate is equal to R, and a constant

frame rate ρ is used, we assume that the buffer occupancy decreases at a constant rate of R/ρ

bits every 1/ ρ seconds. The whole procedure is described by the following pseudo-code.

Basic Policy (frame f):
if (f = first frame) transcode f
else

if ((L<= BlowerS)&(L+L(f)<=S) transcode f
else

if ((L>= Bupper S) skip f
else

if(L + L(f)>=S) skip f
else transcode f OR apply one of the next policies

In the next sections, we describe three policies that can be applied at the last step of the above

procedure, in order to improve the quality of the transcoded video sequence.

5.1.6 Random based frame skipping policy

Randomization is used for studying the behaviour of a system when input data do not follow

any known law. In our setting, the sizes of incoming frames are variable and it is not possible

to assume a certain distribution. This motivated us to try managing the frame skipping in a

 33

randomized way. In real time setting, the temporal transcoder choices firstly depend on the

buffer occupancy. We design a simple random strategy based on the buffer occupancy, in

order to decide what frames are to be skipped. We uniformly generate a random number in the

range [0…S]. If this number is larger than the buffer occupancy L, the current frame is

transcoded, otherwise it is skipped. We observe that the greater is the buffer occupancy, the

smaller is the probability that the random number is larger than occupancy, so the smaller is

the probability of transcoding the frame. In this way, we try to transcode more frames when

the free buffer level is high, and to skip more frames when the buffer occupancy is high. We

show below the pseudo-code of this strategy.

Random Policy(frame f):

randomNumber = random() % S;

if (randomNumber >=L) transcode f

else skip f.

5.1.7 Weighted motion activity in frame skipping

In Section 5.1.3, we reported a motion based frame skipping policy proposed in literature that

we have implemented and tested. We present here a new motion based frame skipping policy

that is applied when the buffer constraints are met. The goal of this policy is to transcode the

frames with high motion. To perform this, a new motion activity (MA) measure is introduced.

We slightly modified the definition given in 5.2, and proposed the following one:

mm
y

m

x
kkMA += ∑

 (5.5)

where m is a macroblock, k is a properly tuned constant and xm and ym are the motion vector

components of macroblock m. In this way, the motion activity measure assumes large values

both in case of frame with many but small motion vectors and in case of frames with few but

large motion vectors. These two cases correspond to different kind of motion: the first one

occurs when there are little movements of many objects; the second occurs when there are

few objects with great motion. Moreover, since an intra macroblock is produced when there

are many prediction errors (namely, the macroblock is largely different from the reference

area in the previous frame), we assign to intra macroblocks the maximum motion activity

value, equal to the maximum size of the motion vectors, which corresponds to the search

range used by the Motion Estimation procedure. In this way, we take into account of intra

macroblocks also in the motion activity computation. If a frame has a small value of motion

 34

activity, it can be skipped since it is well replaced by the previous frame. Otherwise, it has

considerable motion, and it should be transcoded. In our motion-based frame skipping policy,

the motion activity of a frame is compared with a threshold Thr. The threshold Thr(f) is

dynamically set to take into account (with equal weight) the motion activity of the previous

transcoded frame MA (f-1) and the motion activity of all earlier frames Thr(f-1). The motion-

based frame skipping policy is shown in the following pseudo-code.

Motion-based Policy (frame f):

if(f = first frame) Thr(f)=0;

else Thr(f)= (Thr(f-1)+ MA (f-1))/2;

if MA(f)<= Thr(f) skip f

else transcode f

This policy can lead to an high number of skipped frames, since it skips many consecutive

frames having a low value of motion activity.

5.1.8 Consecutive frame skipping

This policy has been developed for attempting to overcome an harmful problem arising in

hard transcoding conditions, that is when an high variation between the input and the output

bit rate occurs (from 128 Kbit/s to 32 Kbit/s, for instance). Given that the input bit rate is

much greater than the output one, it is unavoidable to consecutively skip many frames, since

their size is large with respect to the output channel bandwidth. By skipping many

consecutive frames, the size of the transcoded ones increases, since their motion vectors and

prediction errors are obtained by adding those ones of the skipped frames. So, it can happen

that the size of a transcoded frame exceeds the free buffer space. Thus, if that frame is

transcoded, buffer overflow occurs, but if it is skipped, the size of the next transcoded frame

will be larger. Even if, in the meanwhile, the free buffer space increases, it could not be

sufficient to accommodate the transcoded frame. So, it is possible to reach an irreversible

situation, in which if the frame is transcoded, buffer overflow occurs, but if it is skipped,

buffer underflow occurs. We propose a solution for this problem, by trying to minimize the

number of consecutive skipped frames. This is done by forcing the transcoder to drop a frame

(even if its transcoding does not cause buffer overflow), in order to prevent that many frames

are dropped later. We define Γ=IR/R representing the ratio between the input and the output

bit rate. Ideally, if all transcoded frames keep their original size and have the same size, the

number of transcoded frames should be equal to 1/ Γ. Let N be the total number of frames in

 35

the sequence. The temporal transcoder should transcode N(1/ Γ) frames and skip N(1-1/ Γ)

frames. Every Γ successive frames, one of them should be transcoded, and Γ-1 should be

skipped for distributing uniformly the skipped frames. This strategy forces the transcoder to

skip Γ-1 consecutive frames, in order to prevent the number of consecutive skipped frames to

become larger than Γ-1. We show below the pseudo-code of the whole strategy.

MaxConsecutiveSkipping Policy(frame f):

if (numConsecutiveSkippedFrames < Γ)

skip f;

numConsecutiveSkippedFrames++;

else

transcode f;

numConsecutiveSkippedFrames=0;

However, this policy does not guarantee that the above critical situation never happens, but it

is very unlikely.

In table 1 we show the performance of our frame skipping policies. We considered two

metrics: the number of transcoded frames (indicating the video sequence smoothness), and the

PSNR. We compute the PSNR between the transcoded video sequence and the video

sequence decoded after the front encoder. Two kinds of PSNR measures are considered: the

first one, that we call PSNR1, takes into account of transcoded and skipped frames, by

replacing these last with their previous ones (freezing). In the second, that we call PSNR2,

only transcoded frames are considered. Given that our transcoder is a purely temporal (and

not a quality) one, quality degradation is due to frame dropping only. So, the first way to

compute PSNR allows us to measure the actual visual quality perceived by the final user. The

second way indicates the quality of single transcoded frames, without capturing the

degradation introduced by frame dropping. We consider several video sequences in QCIF

format and frame rate of 30 fps. We show only the most significant experimental results about

different benchmark video sequences of 300 frames: “mobile”, which is a video sequence

with a lot of motion, “foreman”, which is a video sequence with scene changes, and

“coastguard” where there are moving objects. We evaluated our frame skipping strategies

both for “standard” and “hard” transcoding conditions. We report in Figures 23 and 24 the

PSNR1 of the first 50 frames for “mobile” sequence. In order to have a real-time

communication, buffer occupancy is the dominant factor, that is why it is considered in all the

frame skipping strategies. Consequently, from our experimental results we deduce that there

are not large differences on the PSNR achieved by different frame skipping strategies. By

 36

looking at the top of Table 1 we observe that all strategies reduce to about one half the

number of frames, so achieving the same ratio between R and IR for “mobile” sequence,

while for other sequences the number of transcoded frames is lower. In the bottom of Table 1

we report the results for hard transcoding: we note that “consecutive” skipping policy behaves

similarly to the “buffer based” policy, in terms of average PSNR, but by looking at Figure 24,

we observe that, in hard transcoding conditions, the “consecutive” policy is better than the

others, since the PSNR is smoother. This happens because the frames are dropped more

uniformly.

Figure 23. Mobile video sequence IR=128, R=64 kbps

34.26 24.11 34 33.84 24.36 50 27.95 22.52 59 random

33.97 23.95 34 33.92 24.21 47 28.02 22.80 57 consecutive

34.25 23.95 32 33.71 23.57 50 27.77 21.38 60 MA-based

35.32 24.06 35 35.00 24.21 45 28.02 22.84 59 buffer

Hard transcoding conditions(IR=128, R=32 kbps)

34.13 28.13 106 33.13 28.43 132 28.72 25.95 148 random

34.01 28.47 96 33.97 29.81 134 28.52 26.58 149 consecutive

33.70 27.66 106 33.73 28.08 127 28.34 25.73 145 MA-based

34.36 28.72 105 34.01 30.08 144 29.21 27.09 155 buffer

Standard transcoding conditions (IR=128, R=64 kbps)

PSNR2 PSNR1 Frames PSNR2 PSNR1 Frames PSNR2 PSNR1 Frames

coastguard foreman mobile

Table 1. Frame skipping policies evaluation

13

17

21

25

29

33

37

41

45

1 100
Frame Number

P
S

N
R

 (
d

B
)

Buffer Motion-based Consecutive Random

 37

Figure 24. Mobile video sequence IR=128, R=32 kbps

Publications

M.A. Bonuccelli, F. Lonetti, F. Martelli, "Temporal Transcoding for Mobile Video

Communication", Proc. 2th International Conference on Mobile and Ubiquitous System:

Networking and Services, MobiQuitous 2005, San Diego, CA, USA, July 17-21, 2005.

M.A. Bonuccelli, F. Lonetti, F. Martelli, "Video Transcoding Architectures for Multimedia

Real Time Services", ERCIM News No. 62, July 2005, p. 39-40.

5.2 Temporal transcoding in H.263

We studied the H.263 coding standard [43] in accordance with [44], and we implemented a

temporal transcoder with DFS architecture explained in Section 5.1.1 that had showed the

better performance results compared with FSC architecture. We tested this temporal

transcoder with buffer based frame skipping policy, motion-activity based frame skipping

policy and consecutive skipping policy. Moreover we focused on time constraints of our

temporal transcoding in order to apply it in a real-time context. We proposed a new frame

skipping policy that we called size-prediction policy. It greatly reduces the computation time

of transcoding process and it is presented below.

5.2.1 Size prediction policy

In temporal transcoding, the size of a transcoded frame increases if many previous frames are

skipped, that is when the motion vectors and prediction errors of the transcoded frame are

obtained by adding those ones of the skipped frames. We observed experimentally that the

12

16

20

24

28

32

1 150

Frame Number

P
S

N
R

 (
d

B
)

Buffer Motion-based Consecutive Random

 38

size of a frame grows according to the logarithm of the number of the previously skipped

frame by this law:

)1ln()(+= ffl α (5.6)

where l(f) is the size of the frame transcoded after skipping f consecutive frames, and α is a

constant proportional to the size of the first skipped frame. The size-prediction policy is

applied when a frame is skipped. This policy predicts according to (5.6), the size of the next

frame, in order to avoid buffer overflow, if this size is higher than the free buffer space, the

frame is skipped. We note that, in our assumptions, buffer occupancy decreases at a constant

rate of R/ρ bits every 1/ρ seconds. The frame is transcoded only when its predicted size is

lower than the free buffer space. However, as in the buffer-based policy in order to avoid

buffer underflow a frame is transcoded if the buffer occupancy is lower than a properly tuned

threshold. Compared with the buffer-based policy mentioned in Section 5.1.5 this one has the

advantage of predicting the size of a frame avoiding the computation needed to transcode it,

and greatly reducing the time of the total transcoding process when many consecutive frames

are skipped. The performance of this policy is compared to that of the buffer-based one. The

main performance results are presented in table 2. We considered three metrics: number of

transcoded frames (indicating the video sequence smoothness), PSNR and total processing

time.

We computed the PSNR in this way: we considered as original video sequence, that one

decoded after the front encoder. As reconstructed sequence, we used that obtained after the

transcoding, where skipped frames are replaced with their previous ones (freezing). This way

(that here we call PSNR1) of computing the PSNR allows us to measure the actual visual

quality perceived by the final user. Another way (that we call PSNR2) is to consider only

transcoded frames, so measuring the quality of single frames, without capturing the

degradation introduced by frame dropping. Notice that the two policies have almost the same

performance in terms of number of transcoded frames and PSNR values, but the computation

time of size-prediction policy is much lower (with a decrease of 30-45%). The pseudo-code of

size-prediction policy is shown below.

Size-Prediction Policy (frame f):
If (f = first frame) then transcode f
Else

If ((L ≤ Blower(S)) & (L + l(f) ≤ S)) then transcode f

Else If (L + l(f) > S)
Do
 skip frame f

 39

 predict the size of frame f + 1
 f = f + 1
 L = L - R/ρ
 while ((L > Blower(S)) & (L + l(f) ≥ S))
transcode f

We implemented also a H.263 quality transcoder which decodes the incoming video sequence

at bit rate IR, and re-encodes it with bit rate R, by using the same rate control algorithm of the

front encoder (TMN8). As shown in Table 3, our temporal transcoder has a comparable

computation time than the quality one, but obviously skips more frames, so it produces a

sequence with lower smoothness. On the other hand, temporal transcoded frames have an

higher quality, which it is the same of the front encoder. As shown in Table 3, the average

PSNR1 values are greater than those of quality transcoder in most cases, especially at low bit-

rates, where it is more evident the degradation of quality transcoder.

Table 2. Buffer-based vs. Size-prediction frame skipping policy

4.4 34.93 30.60 129 7.1 34.82 31.36 144 coastgua

4.6 36.45 29.29 109 7.7 36.10 29.88 112 forema

4.1 27.79 25.75 127 6.6 27.81 26.60 142 mobile

4.1 44.30 39.64 102 7.2 44.62 40.10 104 akiyo

IR=64, R=32 kbps

6.1 41.57 31.82 113 9.5 41.69 32.39 118 coastgu

6.5 44.29 32.23 110 9.4 44.49 32.38 110 forema

5.3 34.39 29.29 154 8.2 34.30 30.18 161 mobile

6.1 52.22 43.02 94 9.1 52.56 43.48 96 akiyo

IR=256, R=128 kbps

Time PSNR2 PSNR1 frames Time PSNR2 PSNR1 frames

Size prediction Buffer-based

 40

5.2.2 Rate control algorithms

In our simulations, we observed that in temporal transcoding the quality of transcoded frames

is also influenced by the rate control algorithm of the front encoder, especially at low bit-

rates, where it is more evident the quality degradation introduced by a non efficient rate

control algorithm. The rate control scheme is not defined in the standard, thus different

strategies can be implemented in each encoder design. Our objective was to develop a new

rate control technique able to give stable quality, with reasonable computation complexity for

practical applications. Many rate control schemes have been proposed in literature. In general,

they operate at frame layer or macroblock layer. A frame-layer rate control assigns a target

number of bits to each video frame and, at a given frame, the block-layer rate control selects

the block quantization parameters to achieve the assigned target. Some frame-layer rate

control approaches use simple formulas, but these simple methods generally do not achieve

the target number of bits accurately. Other approaches use various rate-distortion strategies to

assign a target number of bits to each frame [45]. However, since they usually use either an

iteration method for optimal bit allocation or a pre-analysis method on a group of frames

before encoding, they produce time delay or high computational complexity. The TMN8 rate

control for the H.263 standard, uses a frame-layer rate control to select a target number of bits

7.828.792857.131.36144coastguard

7.128.762187.729.88112foreman

6.925.971566.626.60142mobile

7.335.572917.240.10104akiyo

IR=64, R=32 kbps

9.332.473009.532.39118coastguard

9.732.772999.432.38110foreman

9.927.022988.230.18161mobile

9.639.643009.143.4896akiyo

IR=256, R=128 kbps

Time(sec)PSNR1framesTime(sec)PSNR1frames

Quality transcoderTemporal transcoder

7.828.792857.131.36144coastguard

7.128.762187.729.88112foreman

6.925.971566.626.60142mobile

7.335.572917.240.10104akiyo

IR=64, R=32 kbps

9.332.473009.532.39118coastguard

9.732.772999.432.38110foreman

9.927.022988.230.18161mobile

9.639.643009.143.4896akiyo

IR=256, R=128 kbps

Time(sec)PSNR1framesTime(sec)PSNR1frames

Quality transcoderTemporal transcoder

Table 3. Temporal vs quality H.263 transcoder

 41

for the current frame, and a macroblock layer rate control to select the values of the

quantization step sizes for the macroblocks. We evaluated TMN5 and TMN8 rate control

algorithms proposed in encoder standard [46]. We implemented two new approaches for the

rate control proposed in literature: the ρ domain, based on the number of quantized

coefficients called ρ [47], and the Perceptual rate control, based on the different perception of

different parts of the image by the human eyesight [48]. Moreover, we proposed a new rate

control scheme that we called Multiple zone (Activity) operating at frame and macroblock

layers. At frame layer, it determinates a bit-budget called Si ,considering a sliding window of

5 frames. Initially, the bit-budget is Si= Nw(R/F), where Nw is the size of the sliding window,

R and F are the bit and frame rates respectively. The bit-budget for the current frame is

)(
i

currref

i

t

i
SADSum

ffSAD
SR

,
×= (5.7)

where reff and currf are respectively the reference frame and the current frame, iSADSum is

the sum of computed SAD until instant i in the sliding window. In order to prevent buffer

underflow and overflow we set the bit-budget of the current frame as

{{ () () } () () }
prevprev

t

i

t

i WFRFRWFRFRRR −+×−+×= βα ,,minmax
~

 (5.8)

where α and β are respectively equal to 0.9 and 0.05.

In the sliding window we have that

FRRSS
t

iii +−=+

~
1 (5.9)

where iSADSum is updated after Nw frames.

At macroblock layer the frame is divided in multiple zones, each one composed by a set of

macroblocks. The goal is to encode with greater quality and then with lower quantization

parameters, the central zone that most attracts the human eyesight. This is possible by

properly tuning the quantization parameters as in [48]. Another version of this algorithm

assumes lower quantization parameters for macroblocks in zones of the frame that present a

greater motion activity compared with the total motion activity of the frame. By simulation

we can see that our algorithm achieves a good performance mostly in video sequence with

little motion and low bit-rate. By our tests we observed also that for each type of video

 42

sequence a good approach is that one based on ρ-domain while a lower performance is

achieved by the perceptual algorithms.

Publications

M.A. Bonuccelli, F. Lonetti, F. Martelli, "A fast skipping policy for H.263 video transcoder",

Proc. 12th International Workshop on Systems, Signals & Image Processing, IWSSIP '05,

Chalkida, Greece, September 22-24, 2005.

5.3 Temporal transcoding in H.264

H.264/AVC is the newest international video coding standard [36]. In 1998, the Video Coding

Experts Group (VCEG) issued a call for proposal on a project called H.26L, with the target to

double the coding efficiency. In 2001, VCEG and MPEG formed a Joint Video Team (JVT).

In March 2003, the first draft of H.264 standard was released. The main characteristic of this

standard with respect to previous standards is a greater bit-rate reduction to the detriment of

an higher complexity. The new standard is designed for technical solutions including different

application areas: wire-line and wireless real-time conversational services, streaming media,

video-on-demand services over ISDN, LAN, wireless networks, multimedia messaging

services (MMS). To address this need for flexibility and customizability, the H.264/AVC

design covers a Video Coding Layer (VCL), which is designed to efficiently represent the

video content, and a Network Abstraction Layer (NAL), which formats the VCL

representation of the video and provides header information in a manner appropriate for

conveyance by a variety of transport layers or storage media. Relative to prior video coding

methods, there are some features of the design that enable enhanced coding efficiency [51]:

variable block-size motion compensation with small block sizes (4×4), quarter-sample-

accurate motion compensation, motion vectors over picture boundaries, multiple reference

picture motion compensation, deblocking filtering, arithmetic entropy coding (CABAC) and

context-adaptive entropy coding (CAVLC). Our goal was to implement a temporal transcoder

by using H.264 reference software. We chose the JM Reference Software version 9.7 [49],

that was the most complete, in accordance to [50]. The main problem with H.264 reference

software has been that it was very slow. By profiling the H.264 encoder, we realized the large

times spent in each encoding function. As expected, the encoding time is greatly dominated in

partitioning the macroblocks. We operated some modifications to the reference software in

order to obtain acceptable encoding times that we explain in the next section.

 43

5.3.1 Coding standard optimization

In order to optimize the reference software, we first operated purely software modifications.

In particular, instead of computing all half and quarter pixels in two rounds, we compute them

in only one round. Then, we made more important changes about the computation of

partitioning of the coded frame. Instead of using the SAD (Sum of Absolute Differences)

measure as decision parameter for the optimal partitioning of the coded frame, we used other

metrics: the number of differences in terms of pixels, the maximum difference value, the

average difference value. These metrics are compared with proper self-adjusting thresholds.

These metrics resulted faster in determining the optimal frame partitioning. By simulations

we observed that both our optimizations gave an important reduction of encoding time with a

loss of few dB in PSNR.

After optimizing the reference software, we developed a temporal transcoder, we adopted the

same architecture used for MPEG4/H.263 temporal transcoders explained in Section 5.1.1.

About the frame partitioning, we assumed that the transcoder keeps the same partitions of the

remote encoder: this is the most efficient solution in term of computation time. Due to

variable macroblock partition (16 motion vectors for each macroblock), the motion vector

composition was not trivial, and we adapted the MVC algorithms present in literature to be

used in variable partitioning, as shown in Section 5.3.2. We present a new motion vector

composition algorithm for H.264 transcoder in Section 5.3.3.

5.3.2 Multi-level Motion Vector Composition

In order to consider the variable partition of H.264 reference frame, we adopted a new scheme

of motion vector composition, operating at multiple levels. The goal is to find a motion vector

in the last skipped frame, to be composed with the motion vector of the current frame, in

order to obtain a motion vector for the current frame that points to the last skipped frame as

we illustrated in Section 4.1. The problem in H.264 is that, for each macroblock of the

skipped frame, there are many motion vectors corresponding to different partitions of such

macroblock. We adopted a multi-level scheme illustrated in Figure 25. At first level, we

consider the reference frame, and the macroblocks overlapping the reference area pointed by

the current motion vector. For each of these macroblocks, we go down at lower levels until all

partitions and sub-partitions overlapping the reference area are considered. At each level,

beginning from the lowest one, and for each partition overlapping the reference area, we

choose a motion vector. This motion vector is that one of the partition overlapping the

 44

reference area or a composition of the motion vectors of sub-partition overlapping the

reference area. The composition is performed according to one of the motion vector

composition algorithms presented in Section 4.1. At the end, we obtain four motion vectors at

level 0, that are composed according to one of the motion vector composition algorithms

presented in Section 4.1. The result of this composition is added to the current motion vector

in order to obtain the new motion vector pointing to the last non skipped frame. We

implemented this multi-level motion vector composition scheme by considering the Bilinear

Interpolation (BI) and the Telescopic Vector Composition (TVC) algorithms presented

respectively in Section 4.1.1 and 4.1.3.

Figure 25. Multi-level motion vector composition scheme

5.3.3 New Motion Vector Composition Algorithm

We proposed a new motion vector composition algorithm for H.264. The basic idea of this

algorithm is looking for a reference area, the most similar one to the macroblock of the

current motion vector that is no more valid. For each partition overlapping the reference area,

we consider its motion vector and we consider, in the previous non-skipped frame, an area

Mv_MB4=

f(mv_B1,mv_B2

)

MB MB

MB MB

LIV0

Mv_MVC=

f(mv_MB1,mv_B2, mv_B3,

mv_B4)

MB

B1 B2

MB

B1 B2

B3 B4

MB

B1

B2

LIV

MB

B1

B3 B4

B2

Mv_B4

LIV

Mv_B2 Mv_B2 Mv_B1=

f(sb1,sb2)
Mv_B2

Mv_MB3=

f(mv_B2,mv_B

4)

Mv_MB2=

f(mv_B1,mv_B

2)

Mv_MB1=

mv_B2

B1

sb1

B2
B2

B2 B4 B2

LIV

B1

sb2

Mv_B2

 45

pointed by this motion vector with a size equal to that of the current macroblock. We compute

the differences between this area and the current macroblock and we choose the area that

minimizes this difference according to the law:

)(2
1minarg,minarg iSiiSif AANMAAMSEmv −×== ∈∈ (5.9)

where A is the current macrblock, iA is the reference area pointed by the motion vector mvi , S

is the set of macroblock partitions overlapping the reference area, and fmv is the chosen

motion vector. We can see the behaviour of this algorithm in Figure 26.

Figure 26. New motion vector composition algorithm

Simulation results show that our algorithm achieves a PSNR comparable to that of total

Motion Estimation (ME) process with a great reduction of the computation time (50%), as we

show in Figure 27.

new_mv

F(n)

A

MB

N

M

F(n-2)

mv

F(n-1)

MB4 MB3

MB MB2
b1 b2

b3 b4

b
b2

b1

b1

(skipped)

mv2

A2

A4

mv4

A3

mv3

A6

mv6

mv8

A8

mv7

A7

mv5

A5

mv1

A1

 46

Figure 27. H.264 MVC evaluation

akiyo
foreman

Carphone
coastguard

TVC

BI

New Algorithm

ME

0

5000

10000

15000

20000

25000

TVC

BI

New Algorithm

ME

 47

Chapter 6: Future work

The previous survey on frame skipping has shown that many problems are still open, and

need to be investigated. We worked on the design of an efficient temporal transcoder for real-

time applications in mobile networks. We studied the performance of some frame skipping

strategies and Motion Vector Composition algorithms, presented in this report. We observe

that, in literature, the frame skipping problem is defined mainly by motion information in an

experimental way [39]. It would be interesting to investigate this problem by an analytical

approach, by techniques such as randomization and dynamic programming, to design new

frame skipping strategies.

The crucial rule that an accurate estimation of the real-time has in many multimedia

applications, suggests the importance of investigating on real-time constraints of the

transcoding process. We studied the real-time issue in temporal transcoding, and we designed

new frame skipping policies able to guarantee a minimum transmission delay. In our

performed policies this delay is assumed to be equal to 500 ms, but it is possible to reduce

such delay, avoiding also the initial delay due to the first intra frame coding. It would be

interesting to perform this by an analytical study of the buffer, validated by an extensive

simulation phase. Currently, our policies are tested on MPEG-4 and H.263 temporal

transcoders. Extensive results have been obtained in both cases. It is possible to apply our

frame skipping policies on temporal transcoder based on the H.264 codec.

In mobile systems, temporal transcoding is a very promising approach to transcode the video

sequence with low output bit rate. A problem in temporal transcoding, mentioned in the

previous section, is skipping of consecutive frames. It would be interesting to investigate new

strategies that minimise the number of consecutive skipped frames, but we think that when a

high reduction of the bandwidth occurs (hard transcoding conditions), skipping of consecutive

frames at the transcoder is often unavoidable. However, these hard transcoding conditions

require a great bit rate reduction, so only traditional methods based on requantisation are not

sufficient to produce acceptable image distortion. A potential solution at this problem, is the

design of a trade off between temporal and quality transcoding. The goal is to apply

requantisation in order to reduce the size of transcoded frame, avoiding consecutive frame

skipping in hard transcoding conditions. The motion of the frame could be another important

issue to investigate in the combined temporal and quality transcoding approach.

As introduced in the previous sections, most existing transcoding researches are focused on

the transcoding algorithm itself, while the transcoded video is always assumed to be

 48

transmitted over a simplified Constant Bit Rate (CBR) channel. An interesting research topic

is video transmission over wireless links involving a time-varying channel. In a wireless

channel, there is a variable effective channel rate (VBR), due to the burst errors during the

channel fading periods. It is possible to use available channel information to modify the

transcoder’s behaviour according to the channel changes. The main intuition is that the

transcoder should reduce the frame rate and/or the frame quality when the effective channel

bandwidth is lower. Clearly, the success of these approaches will depend on the existence of

channel information control schemes, models of the channel and/or some online observation

of its current state.

Beyond the limited available bit-rate, wireless multimedia transmission presents a number of

other technical challenges. One of the more difficult issues is the fact that a wireless network

cannot provide a guaranteed quality of service, since high bit error rate occurs. Moreover, the

temporal and spatial prediction used in video coding standards makes the coded video stream

more vulnerable to channel errors. Error-free delivery of data packets can only be achieved by

allowing retransmission of lost or damaged packets, through mechanisms such as Automatic

Repeat Request (ARQ) protocols [41]. Such retransmission, however, may incur in delays

that are unacceptable for some real-time applications. To mitigate the effects of channel errors

on the decoded video quality, error-handling schemes must be efficiently applied to the video

stream. The video transcoding process can be used to insert error resilient features into the

compressed video stream for increasing its robustness. Most error resilient features consist in

inserting extra overhead bits into the video stream, which decreases the compression

efficiency and requires the allocation of greater bandwidth. At the same time, given the

limited computing capability of the mobile devices at the decoding end, some error resilient

features, which demand more computation when decoding the video stream, should be

avoided. It would be interesting to design an error resilient transcoding solution to increase

the robustness of the video stream without sacrificing the video quality and increasing

decoder’s complexity.

Recently, content aware transcoding techniques have been developed [40]. In some specific

video application systems, such as videoconferencing and video surveillance, most of the

time, some video objects only are active at any given time, and attract the user attention. The

transcoding techniques used in these applications, first identify the area of interest in the

incoming video frame by some simple segmentation techniques, and then allocate more bits

and more error resilience features to this area. It would be interesting to investigate the impact

of these techniques on the efficiency of transcoding process in mobile systems.

 49

An other important issue would be to apply transcoding to a specific network environment,

such as vehicular Ad-hoc Networks (VANET), that is an emerging field of MANETs.

 50

Acknowledgements

We thank all ERI people, in particular Roberto Sabella and Emilia Peciola, who introduced us

in this research area, Giovanni Iacovoni and Salvatore Morsa for helpful discussions and

advices. We thank all Pisatel Lab people, in particular Ing. Antonia Bertolino. Finally, we

thank all students who worked with us in this project.

 51

References

[1] S. Dogan, S. Eminsoy, A. H. Sadka and A. M. Kondoz. Video Content Adaptation

Using Transcoding for Enabling UMA over UMTS. Workshop on Image Analysis for

Multimedia Interactive Services (WIAMIS '2004), Portugal, April 2004.

[2] S. Dogan, A. H. Sadka and A.M. Kondoz. Efficient MPEG-4/H.263 video transcoder

for interoperability of heterogeneous multimedia networks. IEEE Electronics Letters,

Vol. 35 (11), pp. 863-864, May 1999.

[3] P. Assunção and M. Ghanbari. Optimal Transcoding of Compressed Video. Proc. IEEE

International Conference on Image Processing, Vol. 1, pp.739-742, October 1997.

[4] P. Assunção and M. Ghanbari. A frequency-domain video transcoder for dynamic bit-

rate reduction of MPEG-2 bitstreams. IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 8 (8), pp. 953-967, December 1998.

[5] S.W. Wu and A. Gersho. Rate-Constrained Optimal Block-adaptive Coding for Digital

Tape Recording of HDTV. IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 1 (1), pp. 100-112, March 1991.

[6] J. Choi and D. Park. A Stable Feedback Control of the Buffer State Using the

Controlled Langrange Multiplier Method. IEEE Transaction on Circuits and Systems

for Video Technology, Vol. 3, pp. 546-558, September 1994.

[7] I. M. Pao, M.T Sun and S.M. Lei. Encoding DCT Coefficients Based on Rate-Distortion

Measurement. Journal of Visual Communication and Image Representation,

Vol. 12 (1), pp. 29-43, March 2001.

[8] Y. Yang and S. S. Hemami. Generalized Rate-Distortion Optimization for Motion-

Compensated Video Coders. IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 10 (6), pp. 942-955, September 2000.

[9] Z. Lei and N. D. Georganas. Rate Adaptation Transcoding for Precoded Video Streams.

Proceedings of the tenth ACM international conference on Multimedia, pp. 127-136,

December 2002.

 52

[10] N. Bjork and C. Christopoulos. Transcoder Architectures for Video Coding. IEEE

Transactions on Consumer Electronics, Vol. 44 (1), pp. 88-98, February 1998.

[11] B. Shen, I. K. Sethi and B. Vasudev. Adaptive motion-vector resampling for

compressed video downscaling. IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 9 (6), pp. 929-936, September 1999.

[12] T. Shanableh and M. Ghanbari. Heterogeneous Video Transcoding to Lower Spatio-

Temporal Resolutions and Different Encoding Formats. IEEE Transactions on

Multimedia, Vol. 2 (2), pp. 101-109, June 2000.

[13] G. Shen, B. Zeng, Y.Q. Zhang and M. L. Liou. Transcoder with arbitrarily resizing

capability. IEEE International Symposium on Circuits and Systems, Vol. 5, pp. 25-28,

May 2001.

[14] J. Xin, M. T. Sun, K. Chun and B. S. Choi. Motion Re-estimation for HDTV to SDTV

Transcoding. IEEE International Symposium on Circuits and Systems, Vol. 4,

pp. 715-718, May 2002.

[15] J. N. Hwang, T. D. Wu and C. W. Lin. Dynamic Frame-Skipping in Video Transcoding.

IEEE Transactions on Consumer Electronics, Vol. 44, pp. 88-98, February 1998.

[16] J. Youn, M. T. Sun and C. W. Lin. Motion Vector Refinement for High-Performance

Transcoding. IEEE Transactions on Multimedia, Vol. 1 (1), pp. 30-40, March 1999.

[17] T. Shanableh and M. Ghanbari. Heterogeneous Video Transcoding to Lower

Spatio-Temporal Resolutions and Different Encoding Formats. IEEE Transactions on

Multimedia, Vol. 2 (2), pp. 101-110, June 2000.

[18] M. J. Chen, M. C. Chu and C. W. Pan. Efficient Motion-Estimation Algorithm for

Reduced Frame-Rate Video Transcoder. IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 12 (4), pp. 269-275, April 2002.

[19] K. T. Fung, Y. L. Chan and W. C. Siu. New Architecture for Dynamic Frame-Skipping

Transcoder. IEEE Transactions on Image Processing, Vol. 11 (8), pp. 886-900,

August 2002.

 53

[20] H. Shu and L.P. Chau. Frame-Skipping Transcoding with Motion Change

Consideration. IEEE International Symposium on Circuits and Systems (ISCAS 2004),

Canada, May 2004.

[21] P. F. Correia, V. M. Silva and P. A. Assunção. A Method for Improving the Quality of

Mobile Video under Hard Transcoding Conditions. Proc. of IEEE International

Conference on Communications, Vol. 26 (1), pp. 928 - 932, May 2003.

[22] T. Koga, A. Iinuma, Y. Iijma, and T. Ishiguro. Motion-compensated interframe coding

for video conferencing. Proc. of National Telecommunications Conference,

pp. G5.3.1–G5.3.5, November 1981.

[23] S. F. Chang and D. G. Messerschmitt. A New Approach to Decoding and Compositing

Motion compensated DCT-Based Images. IEEE International Conference on Acoustics,

Speech, and Signal Processing, Vol. 5, pp. 421-424, April 1993.

[24] P. Assunção and M. Ghanbari. Transcoding of MPEG-2 Video in the Frequency

Domain. IEEE International Conference on Acoustics, Speech, and Signal Processing,

Vol. 4, pp. 2633-2636, April 1997.

[25] H. Sun, W. Kwok and J. W. Zdepski. Architectures for MPEG Compressed Bitstream

Scaling. IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6 (2),

pp. 191-199, April 1996.

[26] Y. Nakajima, H. Hori and T. Kanoh. Rate Conversion of MPEG Coded Video by Re-

quantization Process. IEEE International Conference on Image Processing, Vol. 3,

pp. 408-411, October 1995.

[27] K. S. Kan, K. C. Fan and Y. H. Huang. Low-Complexity and Low-Delay Video

Transcoding for Compressed MPEG-2 Bitstream. IEEE International Symposium on

Consumer Electronics, Vol. 2 (4), pp. 99-102, December 1997.

[28] N. Merhav and V. Bhaskaran. A Transform Domain Approach to Spatial Domain Image

Scaling. HP Labs Technical Report, HPL 94-116, December 1994.

[29] W. J. Lee and W. J. Ho. Adaptive frame-skipping for video transcoding. Proc. of

International Conference on Image Processing, Vol. 1, pp.165-168, September 2003.

 54

[30] J. Youn, M. T. Sun and C. W. Lin. Motion estimation for high performance transcoding.

IEEE Transactions on Consumer Electronics, Vol. 44 (3), pp. 649-658, August 1998.

[31] K. T. Fung, Y.L. Chan and W. C. Siu. Low-complexity and high-quality frame-skipping

transcoder. IEEE International Symposium on Circuits and Systems, Vol. 5,

pp. 29-32, May 2001.

[32] K. T. Fung, Y.L. Chan and W. C. Siu. Low-complexity and high-quality frame-skipping

transcoder for continuous presence multipoint video conferencing. IEEE Transactions

on Multimedia, Vol. 6 (1), pp.31- 46, February 2004.

[33] P. F. Correia, V. M. Silva and P. A. Assunção. Rate Prediction Model for Video

Transcoding Applications. IEEE International Symposium on Telecommunications,

Vol. 1, pp. 641-644, September 2002.

[34] H. Lee, T. Chiang and Y. Zhang. Scalable Rate Control for MPEG-4 Video. IEEE

Transactions on Circuits and Systems for Video Tecnology, Vol. 10 (6), pp. 878-894,

September 2000.

[35] K. Seo, S. Kwon, S. K. Hong and J. Kim. Dynamic Bit-rate reduction Based on Frame

skipping and Requantization for MPEG-1 to MPEG-4 Transcoder. Proc. of IEEE

International Symposium on Circuits and Systems, Vol. 2, pp. 372-375, May 2003.

[36] I. E.G Richardson. H.264 and MPEG-4 Video Compression, Video Coding for Next-

generation Multimedia. Wiley 2003.

[37] Telenor Research (TR). Video Codec Test Model: TMN5. ITU Telecommunication

Standardization Sector LBC - 95, Study Group 15, Working Party 15/1, January 1995.

[38] P. Assunçao and M. Ghanbari. Congestion control of video traffic with transcoders.

IEEE International Conference on Communications, Vol. 1, pp. 523-527, June 1997.

[39] F. Pan, Z. P. Lin, X. Lin, S. Rahardja, W. Juwono and F. Slamer. Content adaptive

Frame skipping for low bit rate video coding. Proc. of IEEE International Conference

on Multimedia Information, Communications and Signal Processing, Vol. 1,

pp. 230-234, December 2003.

 55

[40] J. I. Khan, Z. Guo and W. Oh. Motion based Object Tracking in MPEG-2 Stream for

Perceptual Region Discriminating Rate Transcoding. Proc. of the ninth ACM

International Conference on Multimedia, Vol. 9, pp. 572-576, June 2001.

[41] J. Kurose and K. Ross. Computer Networking: A Top Down Approach Featuring the

Internet. Addison-Wesley, July 2002.

[42] http://megaera.ee.nctu.edu.tw/mpeg/Optimized_Ref_Software/

[43] TMN encode-decode, Version 3.0, May 27, 1997 (C) Department of Electrical

Engineering University of British Columbia CANADA. Michael Gallant,Guy

Cote,Berna Erol,Faouzi Kossentini (Based on Telenor's tmn version 2.0).

[44] VIDEO CODING FOR LOW BIT RATE COMUNICATION, ITU-T Recommendation

Draft H.263, version 20, 16 Sept. 1997.

[45] K. Ramchandran, A. Ortega, and M. Vetterli. Bit allocation for dependent quantization

with applications to multiresolution and MPEG video coders, IEEE Transactions on

Image Processing, vol. 3, pp. 533-545, Sept. 1994.

[46] VIDEO CODEC TEST MODEL, NEAR-TERM, VERSION 5 E 8 (TMN5, TMN8)

RELEASE 0 ITU - Telecommunications Standardization Sector – Video Coding

Experts Group, Portland 24-27 June 1997.

[47] Z. He, S. K. Mitra. Optimum bit allocation and accurate rate control for video coding

via ρ-domain source modelling. IEEE Transactions on circuits and systems for video

technology, vol.12 no. 10, Oct. 2002.

[48] C.W. Wong, O. C. Au, B. Meng, H. K. Lam. Perceptual rate control for low-delay video

communications. IEEE Multimedia and Expo, ICME vol.3, Jul. 2003.

[49] http://iphome.hhi.de/suehring/tml/download/

[50] STUDY OF FINAL COMMITTEE DRAFT OF JOINT VIDEO SPECIFICATION

(ITU-T REC.H.264—ISO/IEC 14496-10 AVC), Draft 2.

[51] T. Wiegand, G.J Sullivan, G. Bjntegaard, A. Luthra. A Overview of the H.264/AVC

video coding standard. IEEE Transactions on circuits and systems for video technology,

vol. 13 no. 7, July 2003.

VIDEO TRANSCODING TECHNIQUES

IN MOBILE SYSTEMS

Prof. Maurizio Bonuccelli

Francesca Martelli

Francesca Lonetti

PISATEL

2

PISATEL

Overview

Video coding features

Transcoding in third generation mobile communication systems

Temporal transcoding

Motion Vector Composition Algorithms

Frame Skipping Policies

Quality vs Temporal transcoding

H.264 coding and transcoding

Conclusion

3

PISATEL

Coding a Video Sequence

4

PISATEL

Video Coding

16

slice

frame

macroblok

16

Input video

I frames (intra-frames)

P frames (forward predicted frames)

B frames (bi-directional predicted frames)

5

PISATEL

Video Compression

Most coding video standards are based on the same
hybrid framework (DCT/MCP)

�Intraframe coding: spatial redundancy within a frame

is removed by DCT (Discrete Cosine Transform)

�Interframe coding: temporal redundancy among

frames is removed by MCP (Motion Compensated

Prediction)

6

PISATEL

Intraframe Coding

It consists of the following steps:

1. DCT

2. Quantization

3. Entropic coding:

 Zig-Zag Scan

 Run Length Coding

 Variable Length Coding

7

PISATEL

Interframe Coding

It consists of coding only the differences with a reference frame:

� Motion Vector: indicates the reference frame area most similar

to the macroblock to code

� Prediction Errors: the differences between the best match area and the

macroblock are coded in the same manner of the intraframe coding

MBt-1

MBt

MB1
t-1

MB2
t-1

MB4
t-1

MB3
t-1

Rt
Rt-1

(ut vt)

Q[DCT(et)]

8

PISATEL

Motion Estimation

It searches the best match of a macroblock in the
reference frame within a search region

The best match is that one having the minimum SAD
(Sum of Absolute Differences) value

9

PISATEL

Motion Estimation Algorithms

The Full Search algorithm computes the SAD values of
all possible matching areas in the search region

It is the most computational complex motion estimation

algorithm (it requires about 60-70% of video

compression total time)

There are other faster algorithms (Three-Step Search)

10

PISATEL

Rate Control

By using fixed quantization parameters, the compressed

video sequence has a variable bit rate; this may cause

buffer underflow or overflow

The rate control concerns about the computation of

quantization parameters in order to adapt the video

streaming bit rate with the channel bandwidth

It computes the complexity estimation of the current

frame by using that one of previous frame

11

PISATEL

Standard DCT/MCP Video Codec

12

PISATEL

Video Transcoding

Transcoding converts a coded video sequence into another one with:

� Different format

� Different frame resolution (spatial transcoding)

� Different video quality (quality transcoding)

� Different frame rate (temporal transcoding)

Advantages:

� Interoperability of heterogeneous mutimedia networks

32 Kbits

96 Kbits
64Kbits

128 Kbits 128 Kbits

3G Network
Core Network

video source

server
adaptation

gateway

13

PISATEL

Video Transcoding Architectures

� Pixel Domain Transcoder

� DCT Domain Transcoder

� Open-Loop Transcoder

There are essentially three types of video

transcoding architectures:

14

PISATEL

General Transcoder Architecture

15

PISATEL

Cascaded Pixel Domain Transcoder

16

PISATEL

Fast Pixel Domain Transcoder

17

PISATEL

DCT Domain Transcoder

18

PISATEL

Open-Loop Transcoder

19

PISATEL

Spatial Transcoding

It consists of reducing the frame resolution of the
input video stream

There are two types of spatial transconding:
�Subsampling 2:1

�Arbitrary sampling

In both approaches it is necessary to recompute
the motion vectors and the prediction errors by
combining and scaling the original ones

20

PISATEL

Quality Transcoding

It consists of decreasing the video stream bit
rate by reducing the video quality without
changing the frame rate or the frame resolution

It can be performed by a specific Rate Control
function, where the complexity of the current
frame, instead of being estimated, can be
directly extracted from the input video

21

PISATEL

Skipping frames to reduce the output bit-rate

Input bit-rate 64 Kb
Transcoder Output bit-rate 32 Kb

123 13
123

Then it is needed:

� to recompute the motion vectors not still valid, because they point to
discarded frames (Motion Vector Composition)

� to recompute the prediction errors

� to choose the frames to be skipped (frame skipping policy)

Temporal Transcoding

22

PISATEL

Motion Vector Computation

The motion vectors are computed by

� Motion Vector Composition Algorithms (BI, TVC, FDVS, ADVS)

� Restricted Motion Estimation (RME)

MVC
F(n-2)

mvn-1

F(n)F(n-1)

mvn

skipped

23

PISATEL

Bilinear Interpolation

MVint=(1-α)(1-β)MV1+α(1-β)MV2+(1-α)βMV3+αβMV4

24

PISATEL

Telescopic Vector Composition

1−= n

t

n

tvc MVMV

25

PISATEL

Forward Dominant Vector Selection

Select the motion vector of the macroblock having

the largest intersection area

26

PISATEL

Activity Dominant Vector Selection

Select the motion vector of the macroblock with the

highest number of non-zero quantized DCT coefficients

27

PISATEL

Dynamic Frame Skipping (DFS)

Prediction errors: according to the new motion vectors difference between current

macroblock and reference area in the not skipped frame is computed, coded with usual

DCT and quantization

Frame skipping policy:

� > Threshold ⇒⇒⇒⇒ frame should not be skipped

� Threshold = MA of the previous frames/Number of transcoded frames

∑=
m

mt MAMA

28

PISATEL

Frame Skipping Control (FSC)

Prediction errors: Q[DCT(et
s)] = Q[DCT(et)]+Q[DCT(et-1)]

It is needed to recompute Q[DCT(et-1)] ⇒⇒⇒⇒ additional error of re-
encoding (RE)

Frame skipping policy:

> Threshold ⇒⇒⇒⇒ frame should not be skipped

Threshold = MA of the previous frames/Number of transcoded frames

∑

∑

=

==
M

m

mt

M

m

mt

ttt

RE

MA

REMAFSC

1

1

)(

)(

),(

29

PISATEL

MVC Algorithms Evaluation

mobile DFS rsr=3

0

2

4

6

8

291 frames

T
im

e
(s

e
c

)
BI

TVC

FDVS

ADVS

ME

akiyo DFS rsr=3

35

35,2

35,4

35,6

35,8

36

296 frames

P
S

N
R

(d
B

)

BI

TVC

FDVS

ADVS

ME

mobile DFS rsr=3

20

20,2

20,4

20,6

20,8

21

291 frames

P
S

N
R

(d
B

)

BI

TVC

FDVS

ADVS

ME

akiyo DFS rsr=3

0

0,5

1

1,5

2

296 frames

T
im

e
(s

e
c

)

BI

TVC

FDVS

ADVS

ME

PSNR Time

30

PISATEL

Quality vs Temporal Transcodig (MPEG4)

DFS FSC

BI

TVC

FDVS

ADVS

19,4

19,6

19,8

20

20,2

20,4

20,6

20,8

21

average

 PSNR

mobile

DFS
FSC

BI

TVC

FDVS

ADVS

31,5

32

32,5

33

33,5

34

34,5

35

35,5

average

PSNR

akiyo

Q2 ME FS

Q2 ME MVFAST

DFS is better!

31

PISATEL

Our Temporal Transcoding Architecture

The motion vectors are computed by

� Motion Vector Composition Algorithms (BI, TVC, FDVS, ADVS)

� Restricted Motion Estimation (RME)

The prediction errors are computed in the pixel domain

A transcoder output buffer is introduced for facing the

real-time problem

� A basic buffer-based frame skipping policy is developed

� Other frame skipping policies are developed to improve the

video quality

32

PISATEL

Our goals

Appliyng frame skipping to reduce output bit-rate

Guarantee real-time constraints avoiding:

� Buffer underflow (stop of video sequence)

� Buffer overflow (increase of delaly, frame loss)

We define:

� IR = input bit rate

� R = output bit-rate

� S = buffer size

� L= buffer occupancy

� ρ = frame rate

Two buffer thresholds (Blower and Bupper) are defined

33

PISATEL

Basic skipping policy

A frame is transcoded if

– It is the first frame

– Buffer occupancy <= Blower*S

A frame is skipped if

– Buffer occupancy > = Bupper*S

– The size of the transcoded frame

exceeds the free buffer space

the delay τ is determined by L/R

If the buffer size is half of the

output bit rate the maximum

admitted delay is 500 ms

τ + τ0 if the first frame > S

Blower and Bupper are dynamically set

according to the ratio IR/R

Basic Policy(frame f)

if (f=first frame) transcode f

else

if ((L<= Blower(S))&(L+ l(f)<=S)) transcode f

else

if ((L>= Bupper(S)) skip f

else

if (L+l(f)>=S) skip f

else transcode f OR apply another policy

L
R/ρ

output (1/ρ sec)

Bupper*S Blower*SS
0

34

PISATEL

Motion activity based Frame Skipping

A frame is transcoded if

– It has large value of MA

A frame is skipped if

– It has small value of MA

A new motion activity (MA)

measure is introduced considering

different types of motion

Intra macroblocks have the

maximum motion activity value

The thresholdThr(f) is dynamically
set to take into account MA of the
previous transcoded frame and MA
of all earlier frames

Motion-based Policy (frame f)

if (f=first frame) Thr(f) =0

else Thr(f) = (Thr(f-1)+MA(f-1))/2

if (MA(f) <=Thr(f)) skip f

else transcode f

∑ +=
m

yx mm kkMA

35

PISATEL

Random based Frame Skipping

A random number r is uniformly

generated in the range [0…S]

The frame is transcoded when

the random number is larger

than the buffer occupancy

Greater is the buffer occupancy,

smaller is the probability of

transoding the frame

Random Policy (frame f)

randomNumber = random() % S

if (randomNumber >=L) transcode f

else skip f

LBupper*S Blower*SS
0

r

36

PISATEL

Consecutive Frame Skipping

Hard transcoding conditions

– If the ratio IR/R is high many
consecutive frames are skipped

By skipping many consecutive
frames, the size of the
transcoded ones increases until
to reach an irreversible situation

goal: distributing uniformly
skipped frames

Forcing trascoder to skip a
frame to prevent that many
frames are dropped later

Consecutive skipping policy (frame f)

if (numConsecutiveSkipppedFrames < Γ) skip f
numConsecutiveSkipppedFrames++
else transcode f
numConsecutiveSkipppedFrames=0

Γ=IR/R N=number of frames

N*1/ Γ ideal number of transcoded frames

N*(1-1/ Γ) ideal number of skipped framesHow many frames ?

Skipping Γ-1 consecutive
frames

37

PISATEL

Frame Skipping policies evaluation

(MPEG4)

13

17

21

25

29

33

37

41

45

1 100
Frame Number

P
S
N

R
 (
d
B

)

Buffer Motion-based Consecutive Random

Mobile video sequence IR=128, R=64

Mobile video sequence IR=128, R=32

12

16

20

24

28

32

1 150

Frame Number

P
S
N
R
 (
d
B
)

Buffer Motion-based Consecutive Random

38

PISATEL

Frame Skipping policies evaluation

(MPEG4)

34.2624.113433.8424.365027.9522.5259random

33.9723.953433.9224.214728.0222.8057consecutive

34.2523.953233.7123.575027.7721.3860MA-based

35.3224.063535.0024.214528.0222.8459buffer

Hard transcoding conditions(IR=128, R=32 kbps)

34.1328.1310633.1328.4313228.7225.95148random

34.0128.479633.9729.8113428.5226.58149consecutive

33.7027.6610633.7328.0812728.3425.73145MA-based

34.3628.7210534.0130.0814429.2127.09155buffer

Standard transcoding conditions (IR=128, R=64 kbps)

PSNR2PSNR1FramesPSNR2PSNR1FramesPSNR2PSNR1Frames

coastguardforemanmobile

39

PISATEL

Frame-Size Prediction

The size of a transcoded frame increases according to
the logarithm of the number of the previously skipped

frame by this law

where

� l(f) is the size of the frame transcoded after skipping f consecutive
frames

� αααα is a constant proportional to the size of the first skipped frame

)1ln()(+= ffl α

40

PISATEL

Size-Prediction Skipping Policy

Predicts the size of the next frame if the current one is skipped

The frame is transcoded only when its predicted size is lower

than the free buffer space

Advantage: avoids the computation needed to transcode the

frames that will be skipped

Size-Prediction Policy (frame f):

if (f = first frame) then transcode f
else
if ((L ≤ Blower(S)) & (L + l(f) ≤ S)) then transcode f
Else If (L + l(f) > S)
Do

skip frame f
predict the size of frame f + 1
f = f + 1
L = L - R/ρ
while ((L > Blower(S)) & (L + l(f) ≥ S) transcode f

41

PISATEL

Size-prediction policy evaluation (H.263)

15

20

25

30

35

40

50 60 70 80 90 100 110 120 130

Frame Number

P
S
N
R
(d
B
)

buffer log

Foreman video sequence, IR=256, R=128

4.434.9330.601297.134.8231.36144coastguard

4.636.4529.291097.736.1029.88112foreman

4.127.7925.751276.627.8126.60142mobile

4.144.3039.641027.244.6240.10104akiyo

IR=64, R=32 kbps

6.141.5731.821139.541.6932.39118coastguard

6.544.2932.231109.444.4932.38110foreman

5.334.3929.291548.234.3030.18161mobile

6.152.2243.02949.152.5643.4896akiyo

IR=256, R=128 kbps

Time (sec)PSNR2PSNR1framesTime (sec)PSNR2PSNR1frames

Size predictionBuffer-based

42

PISATEL

Temporal vs Quality transcoding (H.263)

temporal

quality

10

20

30

40

50

0 49 98 147 196 245 294

Frame Number

P
S
N
R
(d

B
) temporal quality

Foreman video sequence, IR=256, R=128

7.828.792857.131.36144coastguard

7.128.762187.729.88112foreman

6.925.971566.626.60142mobile

7.335.572917.240.10104akiyo

IR=64, R=32 kbps

9.332.473009.532.39118coastguard

9.732.772999.432.38110foreman

9.927.022988.230.18161mobile

9.639.643009.143.4896akiyo

IR=256, R=128 kbps

Time(sec)PSNR1framesTime(sec)PSNR1Frames

Quality transcoderTemporal transcoder

43

PISATEL

H.264/ MPEG 4 Part 10: Advanced Video Coding

In 1998, the Video Coding Experts Group

(VCEG) issued a call for proposal on a project

called H.26L, with the target to double the

coding efficiency

In 2001, VCEG and MPEG formed a Joint

VideoTeam (JVT)

In March 2003, the first draft of H.264 standard

has been released

44

PISATEL

H.264 Scope

It aims to achieve
�Good quality at very low bit rate, by reaching very

high compression rate

�real-time

�low end-to-end delay

No great changes with respect to previous video
coding standards, but a set of small
improvements

Many features, optional in previous coding
standards, are mandatory in H.264 standard

45

PISATEL

H.264 Coding Layers
Video Coding Layer:

– designed to efficiently represent the video content

Network Abstraction Layer:

– formats the VCL representation of the video by
adapting the coded bitstream to different transport
protocols or storage media

Video Coding Layer

Data Partitioning

Network Abstraction Layer

Coded Macroblock

Coded Slice/Partition

C
o
n
tr

o
l
D

a
ta

H.320 H.323/IP etc.

46

PISATEL

H.264/AVC Encoder

Fn = current frame

Fn’ = previous frame

ME=Motion Estimation

MC=Motion Compensation

T = Transform

Q = Quantization

T-1 = Inverse Transform

Q-1 =Inverse Quantization

Dn = residual macroblock

Dn’ = distorted residual

macroblock

uFn’ = reconstructed

macroblock

X = transformed+quantized

block of coefficients

47

PISATEL

H.264/AVC Decoder

X = transformed+quantized

block of coefficients

Q-1 =Inverse Quantization

T-1 = Inverse Transform

Dn’ = distorted residual

macroblock

uFn’ = reconstructed

macroblock

MC=Motion Compensation

Fn’ = reconstructed frame

48

PISATEL

H.264 improvements

Variable and small block sizes (4×4)

Quarter-pixel resolution

Motion vectors beyond picture edges (optional in

H.263)

Moto compensation with multiple reference

pictures

Moto skipped inference

Deblocking filter

49

PISATEL

H.264 other improvements
Entropic coding:

�Transform on small size blocks

�Transform with reduced word length (16 bit)

�Arithmetic entropic coding

�Adaptive entropic coding

Robustness:

�Flexible Slice/Macroblock Order

� Redundant pictures

�Data partitioning

�Synchronization pictures (SI/SP)

50

PISATEL

H.264 coding

H.264 mean features:

Variable and small block sizes (4×4)

Quarter-pixel resolution

NAL units

New entropic coding algorithms
(CABAC)

Deblocking filter

Moto compensation with multiple
reference pictures

Average bit rate

reduction!

High complexity!

51

PISATEL

H.264 features

New in H.264: variable macroblock partition (16 motion vectors for each macroblock)

Transcoder keeps the same partitions of the remote encoder (most efficient solution)

How to apply MVC in H.264?

– BI and TVC adaptation

– New MVC algorithm

?

H.264

?

Previous standards

52

PISATEL

H.264 vs H.263 at high bit rate

35.4835.48185 (150)300
H.264 (all partitions + 5

reference frames)

32.4732.4543299
H.263 (all optionals

enabled)

35.4035.40137 (19)300
H.264 (all partitions + fast

RD optimiz.)

35.4135.41156 (23)300
H.264 (all partitions + rate

distortion optimiz.)

35.0135.0146 (26)300
H.264 (16×16,16×8,

8×16,8×8,8×4, 4×8, 4×4)

34.8434.8431 (12)300
H.264 (16×16,16×8,

8×16,8×8)

33.9733.9727 (5)300H.264 (16×16)

PSNR2 (dB)PSNR (dB)Time (sec)# frames
FOREMAN

128 kbps

53

PISATEL

…and visually

H.263

H.264 (16x16 only)

H.264 (16x16, 16×8, 8×16, 8×8,
4×8, 8×4, 4×4)

H.264 (all partitions+rd)

54

PISATEL

H.264 vs H.263 at low bit rate

27.7127.71210 (177)300
H.264 (all partitions + 5

reference frames)

27.0025.2334203
H.263 (all optionals

enabled)

28.3928.39116 (21)300
H.264 (all partitions + fast

RD optimiz.)

28.4128.41166 (29)300
H.264 (all partitions + rate

distortion optimiz.)

27.7327.7344 (27)300
H.264 (16×16,16×8,

8×16,8×8,8×4, 4×8, 4×4)

27.6527.6535 (16)300
H.264 (16×16,16×8,

8×16,8×8)

27.1127.1133 (8)300H.264 (16×16)

PSNR2 (dB)PSNR (dB)Time (sec)#frames
FOREMAN

32 kbps

55

PISATEL

… but visually

H.263

H.264 (16x16 only)

H.264 (16x16, 16×8, 8×16, 8×8,
4×8, 8×4, 4×4)

H.264 (all partitions+rd)

56

PISATEL

H.264 Profiles

Baseline

�Videotelephony

�Videoconferencing

�Wireless communications

Main

�Television broadcasting

�Video storage

Extended

�Streaming media applications

57

PISATEL

H.264 Baseline Profile

I and P picture types (not B)

1/4-sample motion compensation

Tree-structured motion segmentation down to 4x4 block
size

Intra-prediction

VLC-based entropy coding

In-loop deblocking filter

Flexible macroblock ordering/arbitrary slice ordering

Some enhanced error resilience features

58

PISATEL

Optimizing H.264 encoder

We operated some modifications to the reference software in order
to obtain acceptable encoding times:

� instead of computing all half and quarter pixels in two rounds, we
compute them in only one round

� fast way for choosing the optimal partitioning: instead of using
the SAD (Sum of Absolute Differences) measure as decision
parameter, we use other metrics:

• the number of differences in terms of pixels

• the maximum difference value

• the average difference value

• the most popular difference value

compared with proper self-adjusting thresholds

59

PISATEL

H.264 rate control

Finally, we are implementing the TMN8 rate

control algorithm to be used in the front encoder

We think that, with a rate control algorithm able

to skip frame in encoding phase, the transcoding

process may be improved both in terms of

quality and computation time

60

PISATEL

H.264 Transcoder

We adopted the same architecture as we used
for MPEG4/H.263 temporal transcoders
�Motion Vector Composition (MVC)

�Standard way of computing prediction errors

Problems arose in MVC
�Due to the variable partioning of frames, the motion

vector composition is not trivial

�We adapted 4 MVC algorithms present in literature to
be used in variable partitioning

�MVC follows the same tree-structured mechanism as
in motion compensation

61

PISATEL

MVC in H.264

MB1 MB2

MB3 MB4

LIV.0

Mv_MVC=

f(mv_MB1,mv_B2, mv_B3, mv_B4)

MB1

B1 B2

MB3

B1 B2

B3 B4

MB4

B1

B2

LIV.1

MB2

B1

B3 B4

B2

Mv_B4

LIV.3

Mv_B2 Mv_B2 Mv_B2Mv_B1 Mv_B1=

f(sb1,sb2)

Mv_B2

Mv_MB4=

f(mv_B1,mv_B2)

Mv_MB3=

f(mv_B2,mv_B4)
Mv_MB2=

f(mv_B1,mv_B2)

Mv_MB1=

mv_B2

B1

sb1

B2
B2

B2 B4
B2

LIV.

2

B1

sb2

62

PISATEL

New MVC algorithm: example

F(n)

A

MB

N

M

Vf=argmin i Є SMSE(A, Ai) = argmin i Є S (1/NxM |A-Ai|
2)

mv

F(n-1)

MB4MB3

MB1 MB2

b1 b2

b3 b4

b2
b2

b1

b1

(skipped)

F(n-2)
mv2

A2

A4

mv4

A3

mv3

A6

mv6

mv8

A8

mv7

A7

mv5

A5

mv1

A1

new_mv

63

PISATEL

H.264 MVC evaluation

akiyo
foreman

Carphone
coastguard

TVC

BI

New Algorithm

ME

0

5000

10000

15000

20000

25000

TVC

BI

New Algorithm

ME

64

PISATEL

MVC performance
P

S
N

R
(d

B
)

Frames

Akiyo

Motion
Estimation

New MVC
Algorithm

65

PISATEL

MVC performance

Akiyo

P
S

N
R

(d
B

)

New MVC
Algorithm

BI Algorithm TVC Algorithm

Frames

66

PISATEL

MVC performance

Motion
Estimation

New MVC
Algorithm

P
S

N
R

(d
B

)

Frames

Coastguard

67

PISATEL

MVC performance
P

S
N

R
(d

B
)

Frames

Coastguard

New MVC
Algorithm

BI Algorithm TVC Algorithm

68

PISATEL

Conclusions

We studied the video transcoding problem in

real-time communications

We developed temporal transcoders with

MPEG4, H.263 and H.264 codecs

We developed some skipping policies to be

used in each transcoder

We developed three MVC algorithms to be used

in the H.264 transcoder

69

PISATEL

Future Work

Develop an hybrid temporal/quality
transcoding architecture

Apply Frame Skipping Policies to H.264
Transcoder

H.264 video transmission on MANET

Error resilient features in transcoding

70

PISATEL

Pubblications

M. A. Bonuccelli, F. Lonetti, F. Martelli. Video Transcoding
Architectures for Multimedia Real Time Services, ERCIM News No.
62, pp. 39-40, July 2005.

M. A. Bonuccelli, F. Lonetti, F. Martelli. Temporal Transcoding for
Mobile Video Communication. In Proceedings of 2nd Annual
International Conference on Mobile and Ubiquitous Systems:
Networking and Services (Mobiquitous 2005), pp.502-506, July 17-
21, 2005, San Diego, CA.

M. A. Bonuccelli, F. Lonetti, F. Martelli. A Fast Skipping Policy for
H.263 Video Transcoder. In Proceedings of 12th International
Workshop on Systems, Signals and Image Processing (IWSSIP'05).
September 22-24, 2005, Chalkida, Greece.

71

PISATEL

Master Theses

Luigi D’Amaro. Algoritmi per la transcodifica video.

Gianni Rosa. Transcodifica video per
comunicazione mobile: studio di rate control.

Luca Leonardi. Transcodifica video temporale:
politiche di frame skipping.

Marina Paletta. Realizzazione di un
transcodificatore video temporale H.264 per video
comunicazione mobile.

Riccardo Vagli. Implementazione di un transcoder
video basato sullo standard H.264/AVC.

Alsona Dema. Rate Control in H.264.

72

PISATEL

Acknowledgements

We thank all ERI people who introduced
us in this research area, for the helpful
discussions and advices

We thank PisaTel Lab people

We thank all students who worked with us
in this project

	newReportEricsson8.pdf
	presentazionefinale.pdf

