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Chapter 1 

1.1 Executive summary 

The third generation telecommunication systems (UMTS) will provide more advanced types 

of interactive and distribution services, and actually digital video is one of the most prominent 

applications for multimedia communications. The key technology that enables many 

applications such as Digital TV broadcasting, Distance Learning, Video on Demand, Video 

Telephony and Videoconferencing, is digital video coding. In third generation 

telecommunication systems, communication technologies are highly heterogeneous. Adapting 

the media content to different network characteristics (communication links and access 

terminals) in order to enable video delivery with acceptable service quality, is one of the most 

important problems in this setting. Transcoding is the process of converting a video into 

another one with different features, in order to adapt the video content to different network 

features, like channel bandwidth, terminal capabilities and user preferences. 

The goal of this project is to develop efficient solutions for achieving an optimal video quality 

in real-time video transcoding. The project started in January 2003. The initial step has been 

to study different video codec standards, first MPEG4 and H.263 and later the emergent 

H.264. Different transcoding techniques were investigated, with particular focus on temporal 

transcoding process. Temporal transcoding consists in dropping some frames from the video 

sequence, and correctly reconstructing the non-dropped ones. The main issue has been to 

reduce the computational complexity for performing temporal transcoding, by looking for a 

trade-off between compression and computation time of block matching techniques. 

However, real-time applications are delay sensitive, and so another goal of this project was to 

look for a trade-off between transcoding performance (in terms of video quality and 

computation time) and delay of data delivery. This was done by proposing different buffer-

based frame skipping policies. Temporal and quality transcoding were compared. The project 

terminated in December 2005. The following publications have been produced during this 

project: 

 

M.A. Bonuccelli, F. Lonetti, F. Martelli, "Temporal Transcoding for Mobile Video 

Communication", Proceedings of 2nd International Conference on Mobile and Ubiquitous 

System: Networking and Services (MobiQuitous 2005), San Diego, CA, USA, July 17-21, 

2005. 

 

M.A. Bonuccelli, F. Lonetti, F. Martelli, "Video Transcoding Architectures for Multimedia 

Real Time Services", ERCIM News No. 62, July 2005, p. 39-40. 
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M.A. Bonuccelli, F. Lonetti, F. Martelli, "A fast skipping policy for H.263 video transcoder", 

Proceedings of 12th International Workshop on Systems, Signals & Image Processing, 

(IWSSIP '05), Chalkida, Greece, September 22-24, 2005. 

 

 

1.2 Scope & context 

Several video transcoding schemes have been developed in the last years, which provide 

coding standard conversion, bit rate conversion (quality transcoding), resolution scaling 

(spatial transcoding), and frame rate conversion (temporal transcoding). 

We are interested in temporal transcoding schemes. We developed two temporal transcoding 

architectures called DFS (Dynamic Frame Skipping) and FSC (Frame Skipping Control). We 

evaluated them realizing that DFS architecture is better than FSC architecture. We evaluated 

DFS architecture with different motion vector composition algorithms, realizing that their 

performances are very similar. We compared our temporal transcoding with a quality one for 

different video sequences concluding that temporal transcoding is better for video sequences 

with little motion, while quality transcoding is better for video sequences with a lot of motion. 

To consider this motion information in transcoding process, we developed motion based 

frame skipping policies. An important issue in development of skipping policies, is output 

transcoder buffer occupancy, that determinates the delay of data delivery. We proposed five 

buffer-based skipping policies. Among them, the “consecutive” frame skipping policy is used 

in hard transcoding conditions, that is when an high variation between input and output bit 

rate occurs.   

We evaluated the performances of different frame skipping policies with MPEG4 and H.263 

codecs. We implemented our temporal transcoding architecture with H.264 codec. For the 

variable partition of H.264 macroblocks, we needed to develop a new motion vector 

composition scheme. We implemented also a new rate control algorithm to improve the video 

quality of encoded frames, which influences that one of the transcoded video sequence. 

 

1.3 Structure 

This report is organized as follows. In Chapter 2, we give a brief overview of video coding 

features. In Chapter 3, we discuss video transcoding techniques. In Chapter 4, we focus on 

temporal video transcoding issues presented in literature. We present our research results in 

Chapter 5, and future work in Chapter 6. In Appendix A, there is a schematic presentation of 

this report. 
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Chapter 2: Video coding features 
 

In the last years, many video coding standards have been proposed for various video 

applications, such as H.263 for low-bit rate video communications, MPEG-1 for storage 

media applications, MPEG-2 for broadcasting and general high quality video application, 

MPEG-4 for streaming video and interactive multimedia applications, H.264 for high 

compression request. They are all based on the same framework: hybrid DCT (Discrete 

Cosine Transform) and MCP (Motion Compensated Prediction) coding. The video sequences 

are composed by frames or images captured at regular time intervals. Each image is a two-

dimensional matrix of points, named pixels. Images usually are stored in the 24-bit RGB 

(Red, Green and Blue) format with 24 bits for each pixel, 8 bits for each colour channel.  A 

more efficient format is 24-bit YCbCr: 8 bits for the luminance signal (Y) representing the 

black and white image, and 8 bits for each of the two chrominance signals (Cb and Cr), that 

represent colour information. The chrominance signals can be sub-sampled with a 2:1 

compression in both horizontal and vertical dimensions, reducing the 24 bits per pixel to  

12-bits per pixel. This sub-sampling does not affect the perceived video quality since the 

human eye is less sensitive to colour variations than to luminance variations [36]. Each video 

frame to be coded is divided into non-overlapping macroblocks. The number of blocks 

composing a macroblock depends on the given format. In many coding formats, each 

macroblock consists of four 8*8 luminance blocks and two corresponding 8*8 chrominance 

blocks (one Cb block and one Cr block). 

There are three types of video coding: intra-frame coding (I-frame), forward predicted frame 

coding (P-frame), and bi-directional predicted frame coding (B-frame).  

An I-frame is encoded independently without referring to other frames. Each block in an I-

frame is first DCT-transformed into the frequency domain. Typically, the low frequency 

coefficients reside on the top left corner, while the high frequency coefficients reside on the 

bottom right corner. This fact is very useful because it is simple to characterize the 

information that can be eliminated: in fact, the human eye is more sensitive to low spatial 

frequencies than to high spatial ones. Then, a little distortion introduced on the high 

frequencies coding does not change the perception of the image. After DCT, the coefficient 

values are quantized. The quantization, that is the division by an integer positive value with 

rounding, introduces the largest and non recoverable error. By varying the quantization 

parameters, it is possible to set the compression factor, and consequently the video quality. 

The resulting quantized DCT coefficients are then entropy coded. 
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The entropic coding is developed in three steps: a zig-zag scan of the block’s coefficients in 

order to obtain a sequence with long subsequences of zeros; the run length coding, which 

codes the consecutive repetitions of the same symbol with a single occurrence, followed by a 

counter indicating the number of repetitions; finally, the variable length coding (VLC), 

assigning to the most statistically frequent symbol a shortest representation.  

A P-frame is encoded relatively to its past reference frame. A reference frame can be a  

P-frame or an I-frame. A macroblock in a P-frame may be encoded as an intra-macroblock or 

an inter-macroblock. An intra-macroblock is encoded like a macroblock in an I-frame. An 

inter-macroblock is encoded as a motion vector to 16*16 area in the past reference frame, plus 

the corresponding differences (prediction errors) between the area and the current 

macroblock.  Such differences are coded with intraframe coding. 

The search of the motion vector, giving the smallest prediction errors, is named Motion 

Estimation procedure (ME) and it is the most computationally intensive part of the video 

coding process. 

A B-frame is encoded relative to its past reference frame and future reference frame. The 

encoding of a B-frame is equal to a P-frame, except that the motion vectors may refer to areas 

in the future reference frame. 

A typical coded video sequence includes all three types of frames and a fixed frame type 

mixing pattern is repeated throughout the entire video stream. An example of MPEG video 

frame type mixing pattern, named GOP (Group of Pictures) is shown in Figure 1, where the 

arrows indicate the prediction directions. 

 

 

 

 

 

Figure 1. GOP (Group of Pictures)  

 

 

A block diagram of a typical hybrid DCT/MCP video codec is shown in Figure 2. The encoder on 

the left in the figure generates a variable bit-rate bit stream. The encoder buffer is needed to buffer 

the bit-stream when the instantaneous output bit-rate is higher than the channel capacity. The 

control of the output bit rate according to the channel bandwidth is the subject of video rate control. 

The decoder on the right in the figure performs simply a reverse process of the encoding. In Figure 
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2, we note that the encoder contains a so-called local decoder, which is identical to the remote 

decoder. This local decoder produces an exact replica of the video frame at the remote decoder’s 

output. This local decoding operation is necessary, since the previous original frame is not available 

at the remote decoder that uses the reconstructed version of the previous frame, in order to produce 

the current frame. This measure ensures that the decoder uses the same reconstructed frame as the 

one used by the encoder to make the motion compensation.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A hybrid MCP/DCT video codec 

 

 

Different coding standard present advanced coding features. H.263 presents half-pixel motion 

compensation and improved VLC coding. MPEG-4 is similar to H.263 but supports several 

profiles to address different applications. The Simple Profile (SP) is targeted at low-bit rate, 

low delay video communications. The Advanced Simple Profile (ASP) includes 1/4 pixel 

motion compensation and Bidirectional Frames. The latest video coding standard is MPEG-4 

AVC/H.264 and it reflects the latest advances of video coding techniques. The major 

improvements over H.263 and previous MPEG-4 video coding profiles are: multiple reference 

frames, variable block-sizes, 4*4 integer DCT-like transform, improved intra prediction, 

arithmetic coding, 1/8 pixel interpolation. All these video coding standards only standardize 

the decoder, not the encoder. This allows the encoder performance to be further improved by 

technology advancements without affecting the interoperability. The technologies making the 

most difference in the encoder performance include the motion estimation and the rate 

control. 
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2.1 Motion Estimation 

Motion estimation is the technique to estimate the motion vectors in a video sequence. In 

most existing video coding standards, the motion estimation is block based. Given a reference 

frame and an M*N block in the current frame, the objective of motion estimation is to find the 

best-matched M*N block in the reference frame within a search region relative to the position 

of current block, as illustrated in Figure 3. 

The minimum SAD (Sum of Absolute Difference) is the most commonly used matching 

criterion for this choice. The SAD is defined as:  
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where Pc(x+k, y+1) is the luminance pixel of the block in the current frame, Pr(x+i+k, y+j+l) 

is the luminance pixel in the reference frame, -p<= i <= p, -p<=j <= p, and p determines the 

search range. 

 

 

 

Figure 3. Block Motion Estimation 

 

The exhaustive search (full-search) algorithm that searches every possible candidate block in 

the search range, gives the best performance. However, it is not suitable for many practical 

applications due to its high computational complexity. Various fast motion-estimation 

algorithms have been developed, which trade off estimation accuracy to reduce the 
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computation. Three-Step Search [22] is one of the most popular fast motion-estimation 

algorithms. As shown in Figure 4, in each step, nine search-points are checked. After each 

step, the step-size is reduced by half, and the search ends with a step-size of one pixel. At 

each new step, the search centre is moved to the best matching point from the previous step.  

 

 

 

Figure 4. Three-step search method 

 

2.2 Rate Control 

The rate control scheme operating on quantization parameters determines the video quality. 

Video quality is a subjective measure. The metric adopted in literature to compute the video 

quality is PSNR (Peak Signal to Noise Ratio) measure. The most commonly used formula for 

computing the PSNR is: 

 

PSNR = 10 log 10
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where W and H are the horizontal and vertical dimensions of the frame, 




 ji,kI  and 





 ji,k̂I  

are the luminance intensity of the (i,j) pixel of frame k in the original and in the  reconstructed 

frame, respectively.  

In order to transmit the video over a constant-bit-rate channel, such as the PSTN (Public 

Switched Telephone Network) or DSL lines, the encoder buffer is used to buffer the bit-

stream when the instantaneous output bit-rate is higher than the channel capacity. To prevent 

the encoder buffer from overflow or underflow, a rate-control algorithm is used to adjust the 

quantization parameter in order to control the produced bit-rate. A variable quantization 

parameter causes a variable Peak-Signal-to-Noise-Ratio (PSNR) and a constant output 

encoder buffer bit rate that is the same rate as the communication channel.  

The challenge of rate-control in video encoding is to determine the quantization parameter for 

video frames in order to achieve the best video quality given the application constraints 

(channel bandwidth, delay, etc.). Currently, rate-control is still an active research area.  

 

 

 

Figure 5. Variable bit-rate vs. constant bit-rate  
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Chapter 3: Video transcoding techniques 
 

In 3G communication systems, the amount of multimedia content that is transmitted over 

optical, wireless and wired networks is growing. Furthermore, in each of these networks, 

there are a variety of multimedia terminals that support different formats. This scenario is 

often referred to as Universal Multimedia Access (UMA) and is illustrated in Figure 6. The 

involved networks are often characterized by different network bandwidth constraints, and the 

terminals themselves vary in display capabilities, processing power and memory capacity. 

The goal of video transcoding is to represent and deliver the content according to the current 

network and terminal characteristics. Input and output of a video transcoder are typically 

compressed video streams that conform to certain compression standards. The decoder 

decodes the input video into the pixel-domain, and then the encoder encodes the decoded 

frames into the desired compressed video formats. Different from conventional video coding, 

video transcoding knows not only the decoded video frames, but also the coding statistics of 

the input compressed video. This information can be exploited to perform the video 

transcoding process.  

 

 

 

 

 

 

 

Figure 6. Universal Multimedia Access (UMA): conversion of multimedia content 

 

  transcoding 
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3.1 Video transcoding architectures 

Several typical transcoding architectures have been proposed in the literature. They are 

grouped into three categories: Pixel Domain Transcoder, DCT Domain Transcoder and Open-

Loop Transcoder. The most straightforward structure for video transcoding is a cascaded pixel 

domain video transcoder (CPDT), which connects a standard decoder with a standard encoder 

together as illustrated in Figure 7. However, the computational complexity of this approach is 

very high since it requires performing both encoding and decoding. 

 

 

 

 

 

 

 

 

 

Figure 7. Cascaded Pixel Domain Transcoder 

 

 

The challenge in the transcoding research is how to achieve the optimal trade-off between 

computational complexity and video quality. 

In CPDT, decoded motion vectors can be reused so that the motion estimation can be avoided. 

A simplified architecture, named Fast Pixel Domain Transcoder (FPDT), is derived and 

showed in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Fast Pixel Domain Transcoder 
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In this simplified architecture, the whole transcoding process is performed in the DCT domain 

except the motion compensation loop. The most time-consuming parts are in the DCT and 

IDCT modules. These two modules can be removed from the architecture performing the 

motion compensation in the DCT domain, by several DCT domain interpolation algorithms 

[23][24]. This transcoding architecture is showed in Figure 9. 

 

 

 

 

 

 

 

 

 

 

Figure 9. DCT Domain Transcoder 

 

 

For fast scaling video bit rates, some open-loop transcoding architectures have been proposed 

in the literature [25][26]. A typical open-loop transcoder is illustrated in Figure 10. In this 

architecture, the incoming video stream is variable-length decoded and dequantized without 

further decoding. Two approaches are used for bit rate scaling in the open-loop transcoder: 

cutting the high frequency DCT coefficients and increasing the quantization step. In both 

approaches, the motion vectors, coding mode and other syntax elements from the incoming 

video stream are reused by the transcoder.  

 

 

 

 

 

 

 

 

 

Figure 10. Open Loop Transcoder 
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From the above introduction of transcoding architectures, we can easily see that the pixel 

domain transcoder is the most complicated one in terms of overall structure, while the open 

loop transcoder is the simplest one. However, in open loop transcoding, the visual quality 

degrades for dropping high frequency coefficients and for the requantization error. At the 

same time, a drift error is caused by the loss of high frequency data, which creates a mismatch 

between the actual reference frame used for prediction in the transcoder and decoder. Since 

the current reconstructed picture is also used for future predictions, the drift error propagates 

to future frames, and thus the distortion of video quality increases. Pixel domain transcoder 

architectures (CPDT) usually have better visual quality than DCT domain transcoders and 

Open Loop transcoders. However, if the motion vectors from the incoming video stream are 

reused for transcoding in the Fast Pixel domain transcoder, a significant part of computation 

is reduced because more than 70% of the total computation of an encoder is due to the motion 

estimation module. From this point of view, reusing motion vectors is the most significant 

step to reduce transcoder complexity. There are some other methods which have been 

proposed in literature to reduce the complexity of different modules, such as DCT/IDCT, 

motion compensation, etc., in different transcoding architectures. However, compared to 

motion estimation, these modules are not computationally expensive. In addition, there is 

always a trade-off between visual quality and complexity. In most cases, the visual quality 

will be degraded by simplifying some modules in the transcoder. Some other related research 

work about transcoding architectures can be found in [27]. Therefore, the choice of 

architecture and type of transcoding depends on the dedicated application’s and user’s 

requirements. The main goal is to avoid cascaded decoding/re-encoding processes, 

maintaining the quality of service (QoS), reducing the processing power and most 

significantly the time delay associated with the conventional cascaded decoding/re-encoding 

processes, most important in delay sensitive applications such as two-way video 

communications. 

A type of transcoding is the format conversion that is needed in order to achieve the 

interoperability among different coding standards in heterogeneous multimedia networks. 

This format conversion process operates a syntax change from one video coding standard to 

another one. In [2], an efficient MPEG-4/H.263 video transcoder is presented. The other types 

of transcoding are presented in the next sections. 
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3.2 Spatial Video Transcoding 

Video spatial resolution downscaling is important since most mobile devices are characterized 

by limited screen sizes. For transcoding a compressed video stream with M*N spatial 

resolution into a stream with smaller spatial resolution, such as M/2*N/2 or M/4*N/4, motion 

vectors from the incoming video can not be reused directly, but they have to be resampled and 

downscaled. Based on the new motion vectors, prediction errors are recomputed and 

compressed.  

The most typical sample case is the 2:1 downscaling, where four 8*8 DCT blocks are 

downscaled into one 8*8 DCT block. A simple method that masks the high-frequency DCT 

coefficients and retains the lowest 4*4 DCT coefficients may be used. However, more 

sophisticated filtering methods that transform a 16*16 DCT block directly to an 8*8 DCT 

block have been proposed in [28] .  

Several strategies have been proposed to compose the motion vector of the target macroblock 

using the motion vectors of the input macroblocks, such as random selection, the median, the 

average and weighted average [10][11][12]. The median method achieves the best 

performance. 

 

 

 

 

 

 

 

 

Figure 11. Arbitrary down-sampling spatial transcoding 

 

 

Recent works extend the previous strategies to the spatial transcoding with arbitrary down-

sampling ratio (Figure 11). In this case, due to the non-integer-factor spatial down-sampling, 

the important issue is how to combine the motion vectors with different contributions in order 

to choose the motion vector of the target macroblock [13][14].  

 

 

 MB 
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3.3 Quality Video Transcoding 

In order to distribute the same encoded video sequence to several users through channels with 

different capabilities, the compressed video sequence has to be converted into specific bit 

rates for each outgoing channel. In most bit adaptation cases, pre-encoded video with high bit 

rate and fine visual quality needs to be converted into low bit rate video with gracefully 

degraded visual quality. The ideal result is to achieve visual quality as good as the quality of a 

video stream that is compressed by an encoder at the low bit rate. All video coding standards 

assume that the compressed video will be transmitted over a Constant Bit Rate (CBR) channel 

and the rate control scheme of these standards is based on such assumption. However, this is 

not true in the real case, since the channel bit-rate is influenced by network congestion, packet 

loss, high Bit Error Rate (BER) and channel fading effects in wireless links. Many techniques 

of error recovery and error resilience are proposed in order to solve these problems. Rate 

control for transcoding differs from encoder rate control in the following ways: the video 

transcoder reuses the picture types of the incoming video, future picture types of each GOP 

are, in general, unknown and so they are not used to set the target number of bits for each 

frame, the relationship between quantizer step-size and bit rate of the incoming video is 

known, this information is used for setting the target bit rate and quantizer step-size of a 

frame or macroblock.  

Many quality transcoding algorithms achieve the target bit rate reduction by operating on the 

bit allocation for each frame (Frame-Layer bit allocation) and on the quantization parameters 

of every macroblock of the frame (Macroblock-Layer rate control), according to the target bit-

rate. The Frame-Layer bit allocation strategies are based on the input video sequence 

complexity, on the type of the frames and on the image distortion [3][4]. The Macroblock 

Layer rate control techniques determine the quantization parameters for every macroblock of 

the frame according to the allocated number of bits for each frame. These techniques are 

based on Lagrangian optimisation [5][6][7], Dynamic Programming [8], or on the relationship 

between the number of VLC code words in a frame and the produced bits for encoding these 

VLC code words [9].  

 

3.4 Temporal Video Transcoding 

In order to transcode an incoming compressed video bitstream for a low bandwidth outgoing 

channel, such as a wireless network, a high transcoding ratio is often required. However, high 

transcoding ratios may result in unacceptable video quality when the incoming bitstream is 
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transcoded with the full frame rate as the incoming bitstream. For example, in a wireless 

network which normally has a less than 20 kbps bandwidth, the quality degradation due to the 

low bit-rate is significant with 25 or 30 frames per second.  

Temporal transcoding is a process that skips some frames in order to change the frame rate of 

the video sequence and to allocate more bits to remaining frames without decreasing the video 

quality for not skipped frames. In addition, frame-rate conversion is also needed when the end 

system supports only a lower frame-rate. In temporal transcoding, the main issues are: 

 

• to recompute the motion vectors not still valid, because they point to discarded      

frames; 

• to recompute the prediction errors according to the new motion vectors; 

• to choose the frames to be skipped (frame skipping policy). 

 

This technique is the main one for our work, and will be described in greater detail in the next 

sections. 
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Chapter 4: Temporal video transcoding features 
 

In video transcoding, the compressed video bitstream is often converted to a reduced frame-

rate video bitstream in order to decrease the bit rate. One way to perform this is to decompress 

the compressed video bitstream, drop several specific frames and compress the non skipped 

frames to another compressed video bitstream. This method has high computational 

complexity, since when some frames are skipped, the incoming motion vectors are no more 

valid because they point to dropped frames and a motion estimation process is needed in order 

to compute the new motion vectors of the non-skipped frames. These new motion vectors can 

be found by the “Motion Vector Composition” algorithms. After that, a “Refined Motion 

Estimation” can be applied to the composed motion vectors. These techniques, illustrated in 

Section 4.1, permit to reduce the computational complexity of the motion estimation process 

and to achieve a good video quality of the transcoded frames. According to the new motion 

vectors, computing the new prediction errors of the non skipped frames is needed, as showed 

in Section 4.2. 

 

4.1 Motion Vector Composition 

A situation where one frame is dropped is illustrated in Figure 12. Since frame Rt-1 is dropped, 

we need to find a motion vector for MBt macroblock pointing to the best prediction for MBt in 

frame Rt-2. One possible way to generate such a motion vector without performing motion 

estimation is to add vector (ut,vt) to vector (ut-1,vt-1) in order to compose (ut
s
, vt

s
).  

 

 

 

 

Figure 12. Motion Vector Composition: case motion vector null 

 

In case the motion vector (ut, vt) is equal to (0, 0) (Figure 12), it points to macroblock MBt-1, 

so the vectors (ut, vt) and (ut-1, vt-1) are both available in the incoming bitstream and the MBt 
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macroblock is named macroblock non-Motion Compensated (MC). In general MBt-1 is not a 

macroblock, but a reference area of 16*16 pixels that overlaps four macroblocks in the 

skipped frames (Figure 13), so (ut-1, vt-1) is not available in the incoming bitstream.  

 

 

Figure 13. Motion Vector Composition: case motion vector non null 

 

 

It is possible to use four algorithms named Bilinear Interpolation (BI), Forward Dominant 

Vector Selection (FDVS), Telescopic Vector Composition (TVC), and Activity Dominant 

Vector Selection (ADVS) for computing an approximation of (ut-1, vt-1). If the frame Rt-2 also 

is skipped, the vector (ut
s
, vt

s
) is no more valid. By the Motion Vector Composition, it is 

possible to find a new motion vector (ut-2, vt-2) for MBt-2 reference area. The vector (ut-2, vt-2) is 

added to (ut
s
, vt

s
) in order to obtain a new motion vector for MBt pointing to the last 

transcoded frame. In general, if k consecutive frames from t-k to t-1 are dropped during 

transcoding, the motion vector of the macroblock of the current frame can be composed 

repeatedly applying the Motion Vector Composition. The resultant motion vector will be  

 

)( tyx, = ( ) ( ) ( ) ( ) 






 +∑ = −
+∑ = − tyI

kd dtyV,txI
kd dtxV 11 (4.1) 

 

where )(
dtyVxV

−
,  is the motion vector selected by the Motion Vector Composition at the 

frame (n-d), and ( )
t

yIxI ,  is the incoming motion vector of the frame (t). 

The motion vector obtained by the Motion Vector Composition is an approximated value of 

the optimal motion vector. The application of a motion estimation is needed to obtain the 

refined motion vector. The full search motion estimation can be applied to exhaustively 

compute all checking points in a new small search window, but this has a high computational 

complexity. Several schemes for motion estimation in transcoders are discussed in [30], 
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where it is showed that by using refined motion estimation (RME) in a much reduced search 

area, it is possible to achieve near optimal outgoing motion vectors with a quality close to the 

full scale motion estimation. In [16][18], two refined motion estimation schemes are proposed 

that reduce the computational complexity of the full motion estimation and achieve similar 

performance results to the fast motion-estimation algorithm in term of PSNR. 

 

4.1.1 Bilinear Interpolation  

The bilinear interpolation is defined as [15]: 

MVint = (1–α)(1–β) 1

1

−nMV  + (α)(1–β) 1

2

−nMV  + (1–α)(β) 1

3

−n
MV  + (α)(β) 1

4

−nMV   (4.2) 

where  1

1

−nMV , 1

2

−nMV , 1

3

−n
MV  and 1

4

−nMV  are the motion vectors of the four macroblocks 

that overlap the reference area in the skipped frame pointed by the incoming motion vector, α 

and β are determined by the horizontal and vertical  pixel distance of this reference area from 

the 1

1

−nMV  (Figure 14). The selected motion vector is MVint.  

 

 

 
 

 

Figure 14. Bilinear Interpolation 

 

4.1.2 Forward Dominant Vector Selection 

In [16], the Forward Dominant Vector Selection algorithm is proposed. This algorithm selects 

one dominant motion vector among the vectors of the four macroblocks that overlap the 

reference area in the skipped frame. This dominant vector (MVfdvs) is defined as the motion 

vector of the dominant macroblock. The dominant macroblock is a macroblock that has the 

largest overlapping area with the reference area pointed by the incoming motion vector.   

For example, MVfdvs = 1

2

−nMV  in Figure 15.  
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Figure 15. Forward Dominant Vector Selection 

 

This algorithm presents a lower computational complexity than the bilinear interpolation. The 

approximation of MVfdvs is more accurate when the overlapping area of the dominant 

macroblock with the reference area is larger. However, when the overlapping areas among the 

four near macroblocks are very close, the motion vector decided by FDVS may not be 

meaningful.  

In [35], the conventional FDVS method is improved to reflect the effect of the macroblock 

types in the skipped frames. 

In [29], the Bi-direction Dominant Vector Selection (BDVS) is presented. It is based on 

FDVS algorithm but it is designed to re-estimate the dominant motion vectors in popular I-B-

P frame structure video sequences that are not considered in FDVS. 

 

4.1.3 Telescopic Vector Composition 

A simple algorithm is Telescopic Vector Composition [17], that selects, in the skipped frame, 

the motion vector (MVtvc) of the macroblock corresponding to the macroblock in the current 

frame. For example, MVtvc = 1

1

−nMV  in Figure 16. 

 

 
 

Figure 16. Telescopic Vector Composition  

 

 



 22 

The basic idea is that in videos with small motion, the motion vectors are very small, so the 

reference area pointed by the incoming motion vector will always overlap most with the 

corresponding macrobloclock in the skipped frame. For this reason, the results obtained by 

TVC and FDVS can be very close. 

 

4.1.4 Activity Dominant Vector Selection 

The Activity Dominant Vector Selection algorithm presented in [18]  is based on the activity 

of the macroblocks for the choice of the motion vector. The activity of a macroblock is 

represented by the number of nonzero quantized DCT coefficients (NZ) of the prediction 

errors of the blocks that belong to that macroblock. The ADVS algorithm selects the motion 

vector (MVadvs) of the macroblock with the biggest activity among those that overlap the 

reference area pointed by the incoming motion vector. Other statistics can also be used, such 

as the sum of the absolute values of DCT coefficients. For the case shown in Figure 17, 

FDVS chooses the motion vector of I4
n-1

 macroblock as the dominant vector  

(MVadvs =
1

4

−nMV ), since NZ(I4 
n-1)  is larger than NZ(I2 

n-1), although NZ(I4 
n-1) only covers two 

blocks, which are smaller than the four blocks covered by NZ(I2 
n-1).  

 

 

 

Figure 17. Activity Dominant Vector Selection 

 

The idea of this algorithm is to select the motion vector of the macroblock with maximum 

activity (NZ) that corresponds to larger prediction errors. The bigger is the activity of the 

macroblock, the more significant is the motion of the macroblock. Since the quantized DCT 

coefficients of prediction errors are available in the incoming bitstream of transcoder, the 

computation for counting the nonzero coefficients is very low.     
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4.2 New prediction errors computation 

In temporal transcoding, after skipping some frames, according to the new motion vectors, it 

is needed to compute also the new prediction errors. There are two architectures in literature 

that perform this and they are presented in the next sections. The skipped frames must be 

decompressed completely, since are used as reference frames for the decoding of successive 

non-skipped frames.  

 

 

4.2.1 Prediction errors in Pixel Domain 

In pixel-domain transcoder architectures, a frame Rt is decoded with Rt-1 frame reference as:  

 

Rt(i,j) = Rt-1(i+ut, j+vt) + et(i,j) + ∆t (i,j)   (4.3) 

 

where et represents the prediction errors (residuals) between the current frame Rt and the 

motion-compensated frame Rt-1, ∆t represents the reconstruction errors due to quantization in 

the remote encoder and (ut, vt) represents the motion vectors of the current frame related to the 

reference frame. If Rt-1 is dropped, by Motion Vector Composition and Refined Motion 

Estimation it is possible to find a new motion vector (ut
s
 vt

s
) for Rt that points to previous non 

skipped frame Rt-2. Regard to this new motion vector, the new prediction errors et
s
(i,j) are 

computed and coded by DCT and quantization. The remote decoder reconstructs the frame Rt 

as: 

 

Rt
s
(i,j) = Rt-2 

s
(i+ ut

s
, j+ vt

s
) + et

s
(i,j) + ∆t

s
 (i,j)   (4.4) 

 

where ∆t
s
 represents the re-quantization errors due to re-encoding in the transcoder. These re-

encoding errors affect the video quality of the non skipped frames, with a degradation of the 

PSNR of about 3.5 dB on average, compared to that of the same pictures directly decoded 

without the transcoding process [19]. 

 

4.2.2 Prediction errors in DCT Domain 

In order to reduce the complexity of the transcoding process, and to avoid re-encoding errors 

Fung proposed in [31][32] a new frame skipping transcoder architecture based on the direct 

addition of DCT coefficients of the prediction errors.  
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We show in Figure 18, a situation where the frame Rt-1 is dropped, and the macroblock MBt is 

non-Motion Compensated. We assume that MBt-1 represents the best matching macroblock for 

the current macroblock MBt, Q[DCT(êt)] and Q[DCT(êt-1)] are the prediction errors of MBt. 

and MBt-1 respectively.  

 

 

 

Figure 18 New prediction errors computation for non-MC macroblocks 

 

 

In this proposed architecture, the new quantized DCT coefficients of prediction errors 

Q[DCT(êt
s
)] are computed directly in DCT domain and are given by: 

 

Q[DCT(êt
s
)] = Q[DCT(êt)] + Q[DCT(êt-1)]    (4.5) 

 

Since in this case MBt is non-Motion Compensated, the quantized DCT coefficients 

Q[DCT(êt)] and Q[DCT(êt-1)] are available in the input bitstream to the transcoder. The 

transcoding complexity is reduced since it is not necessary to perform motion compensation, 

DCT, quantization, inverse DCT and inverse quantization. Furthermore, since requantization 

is not necessary for non-Motion Compensated macroblocks, re-encoding errors ∆t
s 
mentioned 

in (4.4) are also avoided. 

Many real-world image sequences have a smooth motion that varies slowly, so over 70% of 

the macroblocks are non-Motion Compensated. By using a direct addition of the DCT 

coefficients in the frame-skipping transcoder, the sequences containing more non-Motion 

Compensated macroblocks can reduce the computational complexity and the re-encoding 

errors more significantly.  

In Figure 19, we show the case of a Motion Compensated macroblock MBt. In this case, direct 

addition of the prediction errors cannot be employed since MBt-1 is not a macroblock and so 

Q[DCT(êt-1)] is not available from the incoming bitstream.  
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Figure 19 New prediction errors computation for MC macroblocks 

 

 

It is possible to use the incoming quantized DCT coefficients of the macroblocks MBt-1
1, 

MBt-1
2, MBt-1

3, MBt-1
4 that overlap MBt-1 for computing êt-1 First, inverse quantization and 

inverse DCT of coefficients of the blocks that overlap MBt-1 are performed, to obtain their 

corresponding prediction errors in the pixel-domain. These prediction errors are added to the 

motion compensated segments of the previous non skipped frame to obtain all pixel in MBt-1. 

It is possible to use the motion vector composition to compute the motion vector (ut-1, vt-1) of 

MBt-1 pointing to a reference area in Rt-2. The prediction errors êt-1 are obtained by subtracting 

MBt-1 from the corresponding motion compensated reference area MBt-2 in the previous not 

skipped frame. DCT and quantization are applied to êt-1 to obtain Q[DCT(êt-1)]. The new 

quantized DCT coefficients Q[DCT(êt
s
)] of a Motion Compensated macroblock can then be 

computed by adding Q[DCT(êt-1)] to the incoming Q[DCT(êt)]. The requantization introduced 

for computing Q[DCT(êt-1)] brings additional re-encoding errors ∆t-1
s
. 

These errors degrade the quality of the reconstructed frame. Since each non skipped P-frame 

is used as a reference frame for the following non skipped P-frame, quality degradation 

propagates to later frames in a cumulative manner. Figure 20 shows how re-encoding errors 

can lead to accumulated errors. In this figure, ∆2
s
 is introduced for the quantization of 

Q[DCT(ê2)] and such errors have the effect of degrading the quality of the reconstructed area 

MB3. When pixels in MB3 are used as reference for the next non skipped frame (for example 

R5
s
), ∆2

s
 affects the formation of Q[DCT(ê4)] and this error is accumulated in the 

reconstruction of MB5. These accumulated errors become significant in the sequence 

containing a large amount of Motion Compensated macroblocks. 
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Figure 20. Effect of re-encoding error with error compensation 

 

A technique introduced to minimizing the visual degradation caused by this phenomenon is 

the error compensation. The re-encoding errors are computed by: 

 

∆t-1
s
 = DCT

-1 
(DCT(êt-1) /q *q) - êt-1   (4.6) 

 

where q is the quantization parameter. 

These re-encoding errors are stored and added to the prediction errors of Motion 

Compensated macroblocks in the successive P frames. For example as show in Figure 20, 

during the computation of MB3, re-encoding error ∆2
s
 is stored. During the computation of 

MB5, ∆2
s
 is added to ê4 computed by MB3 which is affected by the re-encoding error ∆2

s
.  

This technique cannot entirely avoid the propagation of re-encoding errors, but it reduces their 

effect on the visual quality of the transcoded frames.  

 

skipped skipped 
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Chapter 5: Main research results 
 

In this section we present our main research results. 

  

5.1 Temporal transcoding in MPEG4 

The first coding standard that we studied has been MPEG4. We chosen the MoMuSys-

FPDAM1-1.0-021202_nctu version of this coding standard [42] and we implemented two 

different temporal transcoding architectures that we show below. 

 

5.1.1 DFS and FSC architectures 

The first temporal transcoding architecture that we developed is called DFS (Dynamic Frame 

Skipping). This architecture reduces the input bit rate IR of the incoming video sequence, by 

eliminating some frames, so that the output bit rate R turns out to be constant. Notice that the 

frame rate of the output video sequence is not constant, and we assumed that the skipped 

frames are replaced by the previous ones (freezing) at displaying time in the final decoder. 

In this architecture, the motion vectors are computed by one of the four MVC algorithms, and 

RME procedure previously mentioned in Section 4.1. The prediction errors are computed in 

the pixel domain. This architecture is shown in Figure 21. The behaviour of the transcoder is 

different according to the reference frame. In other words, at each frame, the transcoder 

performs some operations if the previous frame has been skipped, and some other operations 

if the previous frame has been transcoded. The switching between the two behaviours is 

represented in Figure 21 by the switch “PS/PT”. In addition, also transcoding or skipping of 

the current frame determines a different behaviour (switch “CS/CT”). The left part of Figure 

21 depicts the “local decoder” which has to decode every incoming frame in_frame by means 

of motion compensation with the previous decoded frame prev_dec_frame. When the 

reference frame has been transcoded, the only function performed is to store in 

prev_tran_frame, the pixels of the current frame in case that the Frame Rate Control (FRC) 

module decides to transcode it. Otherwise, if the FRC module decides to skip the current 

frame, only the motion vectors of the current frame are stored in skipped_mv, for being used 

at the next incoming frame. 
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In case of skipped reference frame, it is needed to recompute the motion vectors and the 

prediction errors. The motion vectors are computed by means of motion vector composition 

(MVC module) and, eventually, restricted motion estimation (RME module). The MVC 

module adds to the vectors of the incoming frame in_mv, the motion vectors chosen among 

skipped_mv, by one of the motion vector composition algorithms, described in Section 2. The 

RME module performs a resctricted motion estimation around the vectors given by MVC, in 

order to produce the best possible motion vectors. Then, the motion compensation is applied 

to the last not skipped frame prev_tran_frame to produce the  moto-compensated frame comp 

which is then subtracted from the current decoded frame to produce the prediction errors for 

the current frame. Finally, if the FRC module decides to transcode the current frame, the 

prediction errors out_pred_err will be added to comp in order to store the current frame in 

prev_tran_frame. After the DCT and Q modules, the prediction errors form the current frame 

together with the motion vectors out_mv. Otherwise, if the frame will be skipped out_mv will 

be store in skipped_mv. Reconstructed frames are then skipped or placed in the buffer for 

being transmitted. An important issue in temporal transcoding is the choice of frames to be 

skipped. The frame rate control developed in DFS architecture, dynamically adjusts the 

number of skipped frames according to the motion activity. The motion activity gives a 

measure of the motion in a frame and frames with a lot of motion are not skipped. We are 

going to better explain the motion activity measure below. A different temporal transcoding 

architecture, called Frame Skipping Control (FSC) consists in computing the prediction errors 

Figure 21. Temporal transcoder architecture 
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in the DCT domain as presented in Section 4.2.2. This way of computing prediction errors 

produces re-encoding errors, then in FSC architecture the frames are skipped taking into 

account re-encoding errors effect and the motion activity.  

 

5.1.2 Motion based frame skipping policy 

In [15], a frame rate control scheme, which can dynamically adjust the number of skipped 

frames according to the motion activity, is presented. The motion activity of the current  

frame t, (MA t), is the sum of the motion activities of all the macroblocks (MA)m of the frame, 

and is defined as: 

 

MA t = ∑ m(MA)m        (5.1) 

 

where (MA)m is the sum of the vertical and horizontal components of the motion vector of 

macroblock m, namely:  

 

(MA)m = ( |xi| + |yi| )    (5.2) 

 

This motion activity is compared with a dynamic threshold value, computed according to the 

motion activity of the previous frames and the number of transcoded frames. When a frame is 

skipped, the remote decoder replaces the missing frame with the previous transcoded frame. 

The basic idea of this scheme is that if the motion activity is larger than the threshold, the 

frame can not be skipped since it has considerable motion, and it is not possible to have a 

good approximation of this frame by using the previous transcoded frame only. We 

implemented this motion-based skipping policy in DFS architecture. Simulation results show 

that by using this approach presented above the video displayed at the receiver site is 

smoother.  

 

5.1.3 Motion activity and Re-encoding errors in frame skipping 

When more frames are dropped, re-encoding errors in motion compensated macroblocks 

cannot be avoided entirely, even if error compensation schemes are applied (as mentioned in 

the Section 4.2.2). In [19], a frame skipping strategy which takes in account the effect of the 

re-encoding errors is proposed. The goal of this strategy is to minimize the re-encoding errors 
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as well as to preserve motion smoothness. A frame skipping metric based on the motion 

activity and re-encoding errors is defined as:  

∑
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where M is the total number of macroblocks in the current frame t, ( )
mtMA  is the motion 

activity of the mth macroblock defined in (5.2), and mtRE )(  are the re-encoding errors of the 

mth macroblock defined as:  

 

∑∑
−

=

−

=

−∆=
1

0

1

0

1 ),()(
N

i

N

j

s

tmt jiRE            (5.4) 

 

where N is the size of macroblocks of the current frame and ∆t-1
s
 are defined by (4.6). If the 

value of ),( ttt REMAFSC for a not skipped frame exceeds a predefined threshold TFSC, the 

frame is not skipped since it has considerable motion, and the previous not skipped frame is 

not sufficient to represent the current frame. A large value of ∑ =

M

m mtRE
1

)( implies more re-

encoding errors, and reduces the value of ),( ttt REMAFSC . So, if this value is smaller than 

the threshold, the frame can be skipped since it contains many re-encoding errors. The 

threshold TFSC, is set initially to a value Tinit, and can be dynamically updated with a 

granularity of Tstep in order to stabilize the outgoing frame rate fo according to the target frame 

rate fT of the transcoder in this way:  

 

• if fo > fT, increase TFSC by Tstep; 

• if fo < fT, decrease TFSC by Tstep; 

• otherwise, keep the current value of TFSC. 

We implemented this strategy in FSC architecture. Simulation results show that it minimizes 

the re-encoding errors and preserves the motion smoothness of the transcoded frames. 
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5.1.4 Comparison between temporal and quality transcoding 

We implemented a simple quality transcoder which decodes the incoming video sequence at 

bit rate IR, and re-encodes it with bit rate R, by using the same rate control algorithm of the 

front encoder. We compared this transcoder with our temporal transcoder realized with the 

DFS and FSC architectures, over several benchmark videos. The results, in terms of PSNR (a 

measure indicating the quality of the transcoded sequence) show that a better performance is 

achieved by quality transcoder (QT) for videos with a lot of motion and by temporal 

transcoderng (DFS and FSC) for videos with little motion. Moreover, we observed that DFS 

architecture achieves a better performance than FSC one, since in the latter, many frames are 

skipped because of re-encoding errors. We had similar results considering different MVC 

algorithms (Bilinear Interpolation (BI), Telescopic Vector Composition (TVC), Forward 

Dominant Vector Selection (FDVS), Activity Dominant Vector Selection (ADVS)). These 

results are presented in Figure 22. 

 

 

 

 

 

 

 

 

 

 

Figure 22. MPEG4 transcoding architectures evaluation 

 

5.1.5 Buffer based frame skipping policy 

In order to guarantee a fixed communication delay, considering the buffer occupancy in frame 

skipping is needed. We present a buffer-based frame skipping policy where two buffer 

thresholds, Blower and Bupper, are established for avoiding buffer underflow and overflow. 

Underflow occurs when the buffer occupancy is zero, and so the final decoder receives data of 

DFS FSC

BI

TVC

FDVS
ADVS

19,4

19,6

19,8

20

20,2

20,4

20,6

20,8

21

average

 PSNR

mobile

DFS
FSC

BI

TVC

FDVS

ADVS

31,5

32

32,5

33

33,5

34

34,5

35

35,5

average 

PSNR

akiyo

 
 

Q2 ME FS 

Q2 ME MVFAST 



 32 

a frame after it is scheduled to be displayed, causing the stop of the video sequence (besides 

the non utilization of the communication bandwidth). Buffer overflow occurs when the buffer 

occupancy exceeds the buffer size, and it increases the assumed delay τ. This is equivalent to 

a frame loss at the decoder, since at displaying time some bits of the corresponding frame are 

still in the transcoder output buffer waiting to be transmitted. Blower and Bupper are dynamically 

set according to the ratio IR/R. We observed experimentally that the best values for Blower and 

Bupper are respectively 20% and 80% of the buffer size when IR/R =2. If IR/R>2,  it is needed 

to decrease Bupper so that the free buffer space is always (in average) sufficient to 

accommodate at least one frame. For instance, when IR/R = 4, a good value for Bupper  is 60%. 

A frame is skipped if the buffer occupancy is greater than Bupper S and it is always transcoded 

if the buffer occupancy is lower than BlowerS. Independently from the value of the threshold, in 

our buffer-based policy, we avoid the buffer overflow by testing that the size of the 

transcoded frame does not exceed the free buffer space. The only exception is for the first 

frame, which is an intra frame, and it is always transcoded. If the size of the first frame 

exceeds the buffer size, we have an additional delay equal to τ0 for those bits which do not fit 

in the buffer, and after an initial delay of τ + τ0, this frame skipping policy guarantees a 

constant delay τ for the whole transmission. If the output bit rate is equal to R, and a constant 

frame rate ρ is used, we assume that the buffer occupancy decreases at a constant rate of R/ρ 

bits every 1/ ρ seconds. The whole procedure is described by the following pseudo-code. 

Basic Policy (frame f): 
if (f = first frame) transcode f 
else 

if ((L<= BlowerS)&(L+L(f)<=S) transcode f 
else 

if ((L>= Bupper S) skip f 
else 

if(L + L(f)>=S) skip f  
else transcode f OR apply one of the next policies 
 

 

In the next sections, we describe three policies that can be applied at the last step of the above 

procedure, in order to improve the quality of the transcoded video sequence. 

 

5.1.6 Random based frame skipping policy 

Randomization is used for studying the behaviour of a system when input data do not follow 

any known law. In our setting, the sizes of incoming frames are variable and it is not possible 

to assume a certain distribution. This motivated us to try managing the frame skipping in a 
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randomized way. In real time setting, the temporal transcoder choices firstly depend on the 

buffer occupancy. We design a simple random strategy based on the buffer occupancy, in 

order to decide what frames are to be skipped. We uniformly generate a random number in the 

range [0…S]. If this number is larger than the buffer occupancy L, the current frame is 

transcoded, otherwise it is skipped. We observe that the greater is the buffer occupancy, the 

smaller is the probability that the random number is larger than occupancy, so the smaller is 

the probability of transcoding the frame. In this way, we try to transcode more frames when 

the free buffer level is high, and to skip more frames when the buffer occupancy is high. We 

show below the pseudo-code of this strategy. 

 

Random Policy(frame f): 

randomNumber = random() % S; 

if (randomNumber >=L) transcode f 

else skip f. 

 

 

5.1.7 Weighted motion activity in frame skipping 

In Section 5.1.3, we reported a motion based frame skipping policy proposed in literature that 

we have implemented and tested. We present here a new motion based frame skipping policy 

that is applied when the buffer constraints are met. The goal of this policy is to transcode the 

frames with high motion. To perform this, a new motion activity (MA) measure is introduced. 

We slightly modified the definition given in 5.2, and proposed the following one: 

mm
y

m

x
kkMA += ∑

    (5.5) 

 

where m is a macroblock, k is a properly tuned constant and xm and ym are the motion vector 

components of macroblock m. In this way, the motion activity measure assumes large values 

both in case of frame with many but small motion vectors and in case of frames with few but 

large motion vectors. These two cases correspond to different kind of motion: the first one 

occurs when there are little movements of many objects; the second occurs when there are 

few objects with great motion. Moreover, since an intra macroblock is produced when there 

are many prediction errors (namely, the macroblock is largely different from the reference 

area in the previous frame), we assign to intra macroblocks the maximum motion activity 

value, equal to the maximum size of the motion vectors, which corresponds to the search 

range used by the Motion Estimation procedure. In this way, we take into account of intra 

macroblocks also in the motion activity computation. If a frame has a small value of motion 
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activity, it can be skipped since it is well replaced by the previous frame. Otherwise, it has 

considerable motion, and it should be transcoded. In our motion-based frame skipping policy, 

the motion activity of a frame is compared with a threshold Thr. The threshold Thr(f) is 

dynamically set to take into account (with equal weight) the motion activity of the previous 

transcoded frame MA (f-1) and the motion activity of all earlier frames Thr(f-1). The motion-

based frame skipping policy is shown in the following pseudo-code. 

 
Motion-based Policy (frame f): 

if(f = first frame) Thr(f)=0; 

else Thr(f)= (Thr(f-1)+ MA (f-1))/2; 

if MA(f)<= Thr(f) skip f 

else transcode f 

 

This policy can lead to an high number of skipped frames, since it skips many consecutive 

frames having a low value of motion activity. 

 

5.1.8 Consecutive frame skipping 

This policy has been developed for attempting to overcome an harmful problem arising in 

hard transcoding conditions, that is when an high variation between the input and the output 

bit rate occurs (from 128 Kbit/s to 32 Kbit/s, for instance). Given that the input bit rate is 

much greater than the output one, it is unavoidable to consecutively skip many frames, since 

their size is large with respect to the output channel bandwidth. By skipping many 

consecutive frames, the size of the transcoded ones increases, since their motion vectors and 

prediction errors are obtained by adding those ones of the skipped frames. So, it can happen 

that the size of a transcoded frame exceeds the free buffer space. Thus, if that frame is 

transcoded, buffer overflow occurs, but if it is skipped, the size of the next transcoded frame 

will be larger. Even if, in the meanwhile, the free buffer space increases, it could not be 

sufficient to accommodate the transcoded frame. So, it is possible to reach an irreversible 

situation, in which if the frame is transcoded, buffer overflow occurs, but if it is skipped, 

buffer underflow occurs. We propose a solution for this problem, by trying to minimize the 

number of consecutive skipped frames. This is done by forcing the transcoder to drop a frame 

(even if its transcoding does not cause buffer overflow), in order to prevent that many frames 

are dropped later. We define Γ=IR/R representing the ratio between the input and the output 

bit rate. Ideally, if all transcoded frames keep their original size and have the same size, the 

number of transcoded frames should be equal to 1/ Γ.  Let N be the total number of frames in 
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the sequence. The temporal transcoder should transcode  N(1/ Γ) frames and skip N(1-1/ Γ) 

frames. Every Γ successive frames, one of them should be transcoded, and Γ-1 should be 

skipped for distributing uniformly the skipped frames. This strategy forces the transcoder to 

skip Γ-1 consecutive frames, in order to prevent the number of consecutive skipped frames to 

become larger than Γ-1. We show below the pseudo-code of the whole strategy. 

 

MaxConsecutiveSkipping Policy(frame f): 

if (numConsecutiveSkippedFrames < Γ) 

skip f; 

numConsecutiveSkippedFrames++; 

else 

transcode f; 

numConsecutiveSkippedFrames=0; 

 

However, this policy does not guarantee that the above critical situation never happens, but it 

is very unlikely.  

In table 1 we show the performance of our frame skipping policies. We considered two 

metrics: the number of transcoded frames (indicating the video sequence smoothness), and the 

PSNR. We compute the PSNR between the transcoded video sequence and the video 

sequence decoded after the front encoder. Two kinds of PSNR measures are considered: the 

first one, that we call PSNR1, takes into account of transcoded and skipped frames, by 

replacing these last with their previous ones (freezing). In the second, that we call PSNR2, 

only transcoded frames are considered. Given that our transcoder is a purely temporal (and 

not a quality) one, quality degradation is due to frame dropping only. So, the first way to 

compute PSNR allows us to measure the actual visual quality perceived by the final user. The 

second way indicates the quality of single transcoded frames, without capturing the 

degradation introduced by frame dropping. We consider several video sequences in QCIF 

format and frame rate of 30 fps. We show only the most significant experimental results about 

different benchmark video sequences of 300 frames: “mobile”, which is a video sequence 

with a lot of motion, “foreman”, which is a video sequence with scene changes, and 

“coastguard” where there are moving objects. We evaluated our frame skipping strategies 

both for “standard” and “hard” transcoding conditions. We report in Figures 23 and 24 the 

PSNR1 of the first 50 frames for “mobile” sequence. In order to have a real-time 

communication, buffer occupancy is the dominant factor, that is why it is considered in all the 

frame skipping strategies. Consequently, from our experimental results we deduce that there 

are not large differences on the PSNR achieved by different frame skipping strategies. By 
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looking at the top of Table 1 we observe that all strategies reduce to about one half the 

number of frames, so achieving the same ratio between R and IR for “mobile” sequence, 

while for other sequences the number of transcoded frames is lower. In the bottom of Table 1 

we report the results for hard transcoding: we note that “consecutive” skipping policy behaves 

similarly to the “buffer based” policy, in terms of average PSNR, but by looking at Figure 24, 

we observe that, in hard transcoding conditions, the “consecutive” policy is better than the 

others, since the PSNR is smoother. This happens because the frames are dropped more 

uniformly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Mobile video sequence IR=128, R=64 kbps 

34.26 24.11 34 33.84 24.36 50 27.95 22.52 59 random 

33.97 23.95 34 33.92 24.21 47 28.02 22.80 57 consecutive 

34.25 23.95 32 33.71 23.57 50 27.77 21.38 60 MA-based 

35.32 24.06 35 35.00 24.21 45 28.02 22.84 59 buffer 

Hard transcoding conditions(IR=128, R=32 kbps) 

34.13 28.13 106 33.13 28.43 132 28.72 25.95 148 random 

34.01 28.47 96 33.97 29.81 134 28.52 26.58 149 consecutive 

33.70 27.66 106 33.73 28.08 127 28.34 25.73 145 MA-based 

34.36 28.72 105 34.01 30.08 144 29.21 27.09 155 buffer 

Standard transcoding conditions (IR=128, R=64 kbps) 

PSNR2 PSNR1 Frames PSNR2 PSNR1 Frames PSNR2 PSNR1 Frames  

coastguard foreman mobile 

Table 1. Frame skipping policies evaluation 
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Figure 24. Mobile video sequence IR=128, R=32 kbps 
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5.2 Temporal transcoding in H.263 

We studied the H.263 coding standard [43] in accordance with [44], and we implemented a 

temporal transcoder with DFS architecture explained in Section 5.1.1 that had showed the 

better performance results compared with FSC architecture. We tested this temporal 

transcoder with buffer based frame skipping policy, motion-activity based frame skipping 

policy and consecutive skipping policy. Moreover we focused on time constraints of our 

temporal transcoding in order to apply it in a real-time context. We proposed a new frame 

skipping policy that we called size-prediction policy. It greatly reduces the computation time 

of transcoding process and it is presented below.    

 

5.2.1 Size prediction policy    

In temporal transcoding, the size of a transcoded frame increases if many previous frames are 

skipped, that is when the motion vectors and prediction errors of the transcoded frame are 

obtained by adding those ones of the skipped frames. We observed experimentally that the 
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size of a frame grows according to the logarithm of the number of the previously skipped 

frame by this law:  

)1ln()( += ffl α                                     (5.6) 

                    

where l(f) is the size of the frame transcoded after skipping f consecutive frames, and α is a 

constant proportional to the size of the first skipped frame. The size-prediction policy is 

applied when a frame is skipped. This policy predicts according to (5.6),  the size of the next 

frame, in order to avoid buffer overflow, if this size is higher than the free buffer space, the 

frame is skipped. We note that, in our assumptions, buffer occupancy decreases at a constant 

rate of R/ρ bits every 1/ρ seconds. The frame is transcoded only when its predicted size is 

lower than the free buffer space. However, as in the buffer-based policy in order to avoid 

buffer underflow a frame is transcoded if the buffer occupancy is lower than a properly tuned 

threshold. Compared with the buffer-based policy mentioned in Section 5.1.5 this one has the 

advantage of predicting the size of a frame avoiding the computation needed to transcode it, 

and greatly reducing the time of the total transcoding process when many consecutive frames 

are skipped. The performance of this policy is compared to that of the buffer-based one. The 

main performance results are presented in table 2. We considered three metrics: number of 

transcoded frames (indicating the video sequence smoothness), PSNR and total processing 

time. 

We computed the PSNR in this way: we considered as original video sequence, that one 

decoded after the front encoder. As reconstructed sequence, we used that obtained after the 

transcoding, where skipped frames are replaced with their previous ones (freezing). This way 

(that here we call PSNR1) of computing the PSNR allows us to measure the actual visual 

quality perceived by the final user. Another way (that we call PSNR2) is to consider only 

transcoded frames, so measuring the quality of single frames, without capturing the 

degradation introduced by frame dropping. Notice that the two policies have almost the same 

performance in terms of number of transcoded frames and PSNR values, but the computation 

time of size-prediction policy is much lower (with a decrease of 30-45%). The pseudo-code of 

size-prediction policy is shown below. 

Size-Prediction Policy (frame f): 
If (f = first frame) then transcode f 
Else  

If ((L ≤ Blower(S)) & (L + l(f) ≤ S)) then transcode f 

Else If (L + l(f) > S)  
Do  
 skip frame f  
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 predict the size of frame f + 1 
 f = f + 1 
 L = L - R/ρ 
 while ((L > Blower(S)) & (L + l(f) ≥ S)) 
transcode f 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We implemented also a H.263 quality transcoder which decodes the incoming video sequence  

at bit rate IR, and re-encodes it with bit rate R, by using the same rate control algorithm of the 

front encoder (TMN8). As shown in Table 3, our temporal transcoder has a comparable 

computation time than the quality one, but obviously skips more frames, so it produces a 

sequence with lower smoothness. On the other hand, temporal transcoded frames have an 

higher quality, which it is the same of the front encoder. As shown in Table 3, the average 

PSNR1 values are greater than those of quality transcoder in most cases, especially at low bit-

rates, where it is more evident the degradation of quality transcoder. 

 

 

 

 

 

 

 

 

Table 2.   Buffer-based vs. Size-prediction frame skipping policy 

4.4 34.93 30.60 129 7.1 34.82 31.36 144 coastgua

4.6 36.45 29.29 109 7.7 36.10 29.88 112 forema

4.1 27.79 25.75 127 6.6 27.81 26.60 142 mobile 

4.1 44.30 39.64 102 7.2 44.62 40.10 104 akiyo 

IR=64, R=32 kbps 

6.1 41.57 31.82 113 9.5 41.69 32.39 118 coastgu

6.5 44.29 32.23 110 9.4 44.49 32.38 110 forema

5.3 34.39 29.29 154 8.2 34.30 30.18 161 mobile 

6.1 52.22 43.02 94 9.1 52.56 43.48 96 akiyo 

IR=256, R=128 kbps 

Time PSNR2 PSNR1 frames Time PSNR2 PSNR1 frames  

Size prediction Buffer-based  
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5.2.2 Rate control algorithms 

In our simulations, we observed that in temporal transcoding the quality of transcoded frames 

is also influenced by the rate control algorithm of the front encoder, especially at low bit-

rates, where it is more evident the quality degradation introduced by a non efficient rate 

control algorithm. The rate control scheme is not defined in the standard, thus different 

strategies can be implemented in each encoder design. Our objective was to develop a new 

rate control technique able to give stable quality, with reasonable computation complexity for 

practical applications. Many rate control schemes have been proposed in literature. In general, 

they operate at frame layer or macroblock layer. A frame-layer rate control assigns a target 

number of bits to each video frame and, at a given frame, the block-layer rate control selects 

the block quantization parameters to achieve the assigned target. Some frame-layer rate 

control approaches use simple formulas, but these simple methods generally do not achieve 

the target number of bits accurately. Other approaches use various rate-distortion strategies to 

assign a target number of bits to each frame [45]. However, since they usually use either an 

iteration method for optimal bit allocation or a pre-analysis method on a group of frames 

before encoding, they produce time delay or high computational complexity. The TMN8 rate 

control for the H.263 standard, uses a frame-layer rate control to select a target number of bits 

7.828.792857.131.36144coastguard

7.128.762187.729.88112foreman

6.925.971566.626.60142mobile

7.335.572917.240.10104akiyo

IR=64, R=32 kbps

9.332.473009.532.39118coastguard

9.732.772999.432.38110foreman

9.927.022988.230.18161mobile

9.639.643009.143.4896akiyo

IR=256, R=128 kbps

Time(sec)PSNR1framesTime(sec)PSNR1frames

Quality transcoderTemporal transcoder

7.828.792857.131.36144coastguard

7.128.762187.729.88112foreman

6.925.971566.626.60142mobile

7.335.572917.240.10104akiyo

IR=64, R=32 kbps

9.332.473009.532.39118coastguard

9.732.772999.432.38110foreman

9.927.022988.230.18161mobile

9.639.643009.143.4896akiyo

IR=256, R=128 kbps

Time(sec)PSNR1framesTime(sec)PSNR1frames

Quality transcoderTemporal transcoder

Table 3. Temporal vs quality H.263 transcoder 
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for the current frame, and a macroblock layer rate control to select the values of the 

quantization step sizes for the macroblocks. We evaluated TMN5 and TMN8 rate control 

algorithms proposed in encoder standard [46]. We implemented two new approaches for the 

rate control proposed in literature: the ρ domain, based on the number of quantized 

coefficients called ρ [47], and the Perceptual rate control, based on the different perception of 

different parts of the image by the human eyesight [48]. Moreover, we proposed a new rate 

control scheme that we called Multiple zone (Activity) operating at frame and macroblock 

layers. At frame layer, it determinates a bit-budget called Si ,considering a sliding window of 

5 frames. Initially, the bit-budget is  Si= Nw(R/F), where Nw is the size of the sliding window, 

R and F are the bit and frame rates respectively. The bit-budget for the current frame is  

 

)(
i

currref

i

t

i
SADSum

ffSAD
SR

,
×=      (5.7) 

where reff and currf  are respectively the reference frame and the current frame, iSADSum is 

the sum of computed SAD until instant i in the sliding window. In order to prevent buffer 

underflow and overflow we set the bit-budget of the current frame as 
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t
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where α and β are respectively equal to 0.9 and 0.05. 

In the sliding window we have that 

 

FRRSS
t

iii +−=+

~
1  (5.9) 

 

where iSADSum  is updated after Nw frames. 

At macroblock layer the frame is divided in multiple zones, each one composed by a set of 

macroblocks. The goal is to encode with greater quality and then with lower quantization 

parameters, the central zone that most attracts the human eyesight. This is possible by 

properly tuning the quantization parameters as in [48]. Another version of this algorithm 

assumes lower quantization parameters for macroblocks in zones of the frame that present a 

greater motion activity compared with the total motion activity of the frame. By simulation 

we can see that our algorithm achieves a good performance mostly in video sequence with 

little motion and low bit-rate. By our tests we observed also that for each type of video 
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sequence a good approach is that one based on ρ-domain while a lower performance is 

achieved by the perceptual algorithms. 

Publications 

 

M.A. Bonuccelli, F. Lonetti, F. Martelli, "A fast skipping policy for H.263 video transcoder", 

Proc. 12th International Workshop on Systems, Signals & Image Processing, IWSSIP '05, 

Chalkida, Greece, September 22-24, 2005. 

 

 

5.3 Temporal transcoding in H.264 

H.264/AVC is the newest international video coding standard [36]. In 1998, the Video Coding 

Experts Group (VCEG) issued a call for proposal on a project called H.26L, with the target to 

double the coding efficiency. In 2001, VCEG and MPEG formed a Joint Video Team (JVT). 

In March 2003, the first draft of H.264 standard was released. The main characteristic of this 

standard with respect to previous standards is a greater bit-rate reduction to the detriment of 

an higher complexity. The new standard is designed for technical solutions including different 

application areas: wire-line and wireless real-time conversational services, streaming media, 

video-on-demand services over ISDN, LAN, wireless networks, multimedia messaging 

services (MMS). To address this need for flexibility and customizability, the H.264/AVC 

design covers a Video Coding Layer (VCL), which is designed to efficiently represent the 

video content, and a Network Abstraction Layer (NAL), which formats the VCL 

representation of the video and provides header information in a manner appropriate for 

conveyance by a variety of transport layers or storage media. Relative to prior video coding 

methods, there are some features of the design that enable enhanced coding efficiency [51]: 

variable block-size motion compensation with small block sizes (4×4), quarter-sample-

accurate motion compensation, motion vectors over picture boundaries, multiple reference 

picture motion compensation, deblocking filtering, arithmetic entropy coding (CABAC) and 

context-adaptive entropy coding (CAVLC). Our goal was to implement a temporal transcoder 

by using H.264 reference software. We chose the JM Reference Software version 9.7 [49], 

that was the most complete, in accordance to [50]. The main problem with H.264 reference 

software has been that it was very slow. By profiling the H.264 encoder, we realized the large 

times spent in each encoding function. As expected, the encoding time is greatly dominated in 

partitioning the macroblocks. We operated some modifications to the reference software in 

order to obtain acceptable encoding times that we explain in the next section. 
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5.3.1 Coding standard optimization 

In order to optimize the reference software, we first operated purely software modifications. 

In particular, instead of computing all half and quarter pixels in two rounds, we compute them 

in only one round. Then, we made more important changes about the computation of 

partitioning of the coded frame. Instead of using the SAD (Sum of Absolute Differences) 

measure as decision parameter for the optimal partitioning of the coded frame, we used other 

metrics: the number of differences in terms of pixels, the maximum difference value, the 

average difference value. These metrics are compared with proper self-adjusting thresholds. 

These metrics resulted faster in determining the optimal frame partitioning. By simulations 

we observed that both our optimizations gave an important reduction of encoding time with a 

loss of few dB in PSNR.  

After optimizing the reference software, we developed a temporal transcoder, we adopted the 

same architecture used for MPEG4/H.263 temporal transcoders explained in Section 5.1.1. 

About the frame partitioning, we assumed that the transcoder keeps the same partitions of the 

remote encoder: this is the most efficient solution in term of computation time. Due to 

variable macroblock partition (16 motion vectors for each macroblock), the motion vector 

composition was not trivial, and we adapted the MVC algorithms present in literature to be 

used in variable partitioning, as shown in Section 5.3.2. We present a new motion vector 

composition algorithm for H.264 transcoder in Section 5.3.3. 

 

 

5.3.2 Multi-level Motion Vector Composition  

In order to consider the variable partition of H.264 reference frame, we adopted a new scheme 

of motion vector composition, operating at multiple levels. The goal is to find a motion vector 

in the last skipped frame, to be composed with the motion vector of the current frame, in 

order to obtain a motion vector for the current frame that points to the last skipped frame as 

we illustrated in Section 4.1. The problem in H.264 is that, for each macroblock of the 

skipped frame, there are many motion vectors corresponding to different partitions of such 

macroblock. We adopted a multi-level scheme illustrated in Figure 25. At first level, we 

consider the reference frame, and the macroblocks overlapping the reference area pointed by 

the current motion vector. For each of these macroblocks, we go down at lower levels until all 

partitions and sub-partitions overlapping the reference area are considered. At each level, 

beginning from the lowest one, and for each partition overlapping the reference area, we 

choose a motion vector. This motion vector is that one of the partition overlapping the 
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reference area or a composition of the motion vectors of sub-partition overlapping the 

reference area. The composition is performed according to one of the motion vector 

composition algorithms presented in Section  4.1. At the end, we obtain four motion vectors at 

level 0, that are composed according to one of the motion vector composition algorithms 

presented in Section 4.1. The result of this composition is added to the current motion vector 

in order to obtain the new motion vector pointing to the last non skipped frame. We 

implemented this multi-level motion vector composition scheme by considering the Bilinear 

Interpolation (BI) and the Telescopic Vector Composition (TVC) algorithms presented 

respectively in Section 4.1.1 and 4.1.3.  

 

 

 

 

Figure 25. Multi-level motion vector composition scheme 

 

 

 

5.3.3 New Motion Vector Composition Algorithm  

We proposed a new motion vector composition algorithm for H.264. The basic idea of this 

algorithm is looking for a reference area, the most similar one to the macroblock of the 

current motion vector that is no more valid. For each partition overlapping the reference area, 

we consider its motion vector and we consider, in the previous non-skipped frame, an area 
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pointed by this motion vector with a size equal to that of the current macroblock. We compute 

the differences between this area and the current macroblock and we choose the area that 

minimizes this difference according to the law:  

 

)( 2
1minarg,minarg iSiiSif AANMAAMSEmv −×== ∈∈  (5.9) 

 

where A  is the current macrblock, iA is the reference area pointed by the motion vector mvi , S 

is the set of macroblock partitions overlapping the reference area, and fmv  is the chosen 

motion vector. We can see the behaviour of this algorithm in Figure 26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 26. New motion vector composition algorithm 

 

 

Simulation results show that our algorithm achieves a PSNR comparable to that of total 

Motion Estimation (ME) process with a great reduction of the computation time (50%), as we 

show in Figure 27. 
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Figure 27. H.264 MVC evaluation 
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Chapter 6: Future work 

 

The previous survey on frame skipping has shown that many problems are still open, and 

need to be investigated. We worked on the design of an efficient temporal transcoder for real-

time applications in mobile networks. We studied the performance of some frame skipping 

strategies and Motion Vector Composition algorithms, presented in this report. We observe 

that, in literature, the frame skipping problem is defined mainly by motion information in an 

experimental way [39]. It would be interesting to investigate this problem by an analytical 

approach, by techniques such as randomization and dynamic programming, to design new 

frame skipping strategies. 

The crucial rule that an accurate estimation of the real-time has in many multimedia 

applications, suggests the importance of investigating on real-time constraints of the 

transcoding process. We studied the real-time issue in temporal transcoding, and we designed 

new frame skipping policies able to guarantee a minimum transmission delay. In our 

performed policies this delay is assumed to be equal to 500 ms, but it is possible to reduce 

such delay, avoiding also the initial delay due to the first intra frame coding. It would be 

interesting to perform this by an analytical study of the buffer, validated by an extensive 

simulation phase. Currently, our policies are tested on MPEG-4 and H.263 temporal 

transcoders. Extensive results have been obtained in both cases. It is possible to apply our 

frame skipping policies on temporal transcoder based on the H.264 codec. 

In mobile systems, temporal transcoding is a very promising approach to transcode the video 

sequence with low output bit rate. A problem in temporal transcoding, mentioned in the 

previous section, is skipping of consecutive frames. It would be interesting to investigate new 

strategies that minimise the number of consecutive skipped frames, but we think that when a 

high reduction of the bandwidth occurs (hard transcoding conditions), skipping of consecutive 

frames at the transcoder is often unavoidable. However, these hard transcoding conditions 

require a great bit rate reduction, so only traditional methods based on requantisation are not 

sufficient to produce acceptable image distortion. A potential solution at this problem, is the 

design of a trade off between temporal and quality transcoding.  The goal is to apply 

requantisation in order to reduce the size of transcoded frame, avoiding consecutive frame 

skipping in hard transcoding conditions. The motion of the frame could be another important 

issue to investigate in the combined temporal and quality transcoding approach. 

As introduced in the previous sections, most existing transcoding researches are focused on 

the transcoding algorithm itself, while the transcoded video is always assumed to be 
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transmitted over a simplified Constant Bit Rate (CBR) channel. An interesting research topic 

is video transmission over wireless links involving a time-varying channel. In a wireless 

channel, there is a variable effective channel rate (VBR), due to the burst errors during the 

channel fading periods. It is possible to use available channel information to modify the 

transcoder’s behaviour according to the channel changes. The main intuition is that the 

transcoder should reduce the frame rate and/or the frame quality when the effective channel 

bandwidth is lower. Clearly, the success of these approaches will depend on the existence of 

channel information control schemes, models of the channel and/or some online observation 

of its current state. 

Beyond the limited available bit-rate, wireless multimedia transmission presents a number of 

other technical challenges. One of the more difficult issues is the fact that a wireless network 

cannot provide a guaranteed quality of service, since high bit error rate occurs. Moreover, the 

temporal and spatial prediction used in video coding standards makes the coded video stream 

more vulnerable to channel errors. Error-free delivery of data packets can only be achieved by 

allowing retransmission of lost or damaged packets, through mechanisms such as Automatic 

Repeat Request (ARQ) protocols [41]. Such retransmission, however, may incur in delays 

that are unacceptable for some real-time applications. To mitigate the effects of channel errors 

on the decoded video quality, error-handling schemes must be efficiently applied to the video 

stream. The video transcoding process can be used to insert error resilient features into the 

compressed video stream for increasing its robustness. Most error resilient features consist in 

inserting extra overhead bits into the video stream, which decreases the compression 

efficiency and requires the allocation of greater bandwidth. At the same time, given the 

limited computing capability of the mobile devices at the decoding end, some error resilient 

features, which demand more computation when decoding the video stream, should be 

avoided. It would be interesting to design an error resilient transcoding solution to increase 

the robustness of the video stream without sacrificing the video quality and increasing 

decoder’s complexity. 

Recently, content aware transcoding techniques have been developed [40]. In some specific 

video application systems, such as videoconferencing and video surveillance, most of the 

time, some video objects only are active at any given time, and attract the user attention. The 

transcoding techniques used in these applications, first identify the area of interest in the 

incoming video frame by some simple segmentation techniques, and then allocate more bits 

and more error resilience features to this area. It would be interesting to investigate the impact 

of these techniques on the efficiency of transcoding process in mobile systems. 
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An other important issue would be to apply transcoding to a specific network environment, 

such as vehicular Ad-hoc Networks (VANET), that is an emerging field of MANETs. 
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Coding a Video Sequence
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Video Coding
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slice

frame

macroblok

16

Input video 

I frames (intra-frames)

P frames (forward predicted frames)

B frames (bi-directional predicted frames)
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Video Compression

Most coding video standards are based on the same 
hybrid framework (DCT/MCP)

�Intraframe coding: spatial redundancy within a frame 

is removed by DCT (Discrete Cosine Transform)

�Interframe coding: temporal redundancy among 

frames is removed by MCP (Motion Compensated 

Prediction)
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Intraframe Coding

It consists of the following steps:

1. DCT

2. Quantization

3. Entropic coding:

 Zig-Zag Scan

 Run Length Coding

 Variable Length Coding
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Interframe Coding

It consists of coding only the differences with a reference frame:

� Motion Vector: indicates the reference frame area most similar 

to the macroblock to code

� Prediction Errors: the differences between the best match area and the 

macroblock are coded in the same manner of the intraframe coding

MBt-1

MBt

MB1
t-1

MB2
t-1

MB4
t-1

MB3
t-1

Rt
Rt-1

(ut vt )

Q[DCT(et )]
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Motion Estimation

It searches the best match of a macroblock in the 
reference frame within a search region

The best match is that one having the minimum SAD 
(Sum of Absolute Differences) value
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Motion Estimation Algorithms

The Full Search algorithm computes the SAD values of 
all possible matching areas in the search region

It is the most computational complex motion estimation 

algorithm (it requires about 60-70% of video 

compression total time)

There are other faster algorithms (Three-Step Search) 
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Rate Control

By using fixed quantization parameters, the compressed 

video sequence has a variable bit rate; this may cause 

buffer underflow or overflow

The rate control concerns about the computation of 

quantization parameters in order to adapt the video 

streaming bit rate with the channel bandwidth

It computes the complexity estimation of the current 

frame by using that one of previous frame
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Standard DCT/MCP Video Codec
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Video Transcoding

Transcoding converts a coded video sequence into another one with:

� Different format

� Different frame resolution (spatial transcoding)

� Different video quality (quality transcoding)

� Different frame rate (temporal transcoding)

Advantages:

� Interoperability of heterogeneous mutimedia networks 

32 Kbits

96 Kbits
64Kbits

128 Kbits 128 Kbits

3G Network
Core Network

video source

server
adaptation 

gateway
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Video Transcoding Architectures

� Pixel Domain Transcoder

� DCT Domain Transcoder

� Open-Loop Transcoder

There are essentially three types of  video

transcoding architectures:
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General Transcoder Architecture
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Cascaded Pixel Domain Transcoder
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Fast Pixel Domain Transcoder
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DCT Domain Transcoder
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Open-Loop Transcoder
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Spatial Transcoding

It consists of reducing the frame resolution of the 
input video stream

There are two types of spatial transconding:
�Subsampling 2:1

�Arbitrary sampling

In both approaches it is necessary to recompute
the motion vectors and the prediction errors by 
combining and scaling the original ones
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Quality Transcoding

It consists of decreasing the video stream bit 
rate by reducing the video quality without 
changing the frame rate or the frame resolution

It can be performed by a specific Rate Control 
function, where the complexity of the current 
frame, instead of being estimated, can be 
directly extracted from the input video
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Skipping frames to reduce the output bit-rate

Input bit-rate 64 Kb
Transcoder Output bit-rate 32 Kb

123 13
123

Then it is needed:

� to recompute the motion vectors not still valid, because they point to 
discarded frames (Motion Vector Composition)

� to recompute the prediction errors

� to choose the frames to be skipped (frame skipping policy)

Temporal Transcoding
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Motion Vector Computation

The motion vectors are computed by

� Motion Vector Composition Algorithms (BI, TVC, FDVS, ADVS) 

� Restricted Motion Estimation (RME)

MVC
F(n-2)

mvn-1

F(n)F(n-1)

mvn

skipped
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Bilinear Interpolation

MVint=(1-α)(1-β)MV1+α(1-β)MV2+(1-α)βMV3+αβMV4
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Telescopic Vector Composition

1−= n

t

n

tvc MVMV
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Forward Dominant Vector Selection

Select the motion vector of the macroblock having

the largest intersection area
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Activity Dominant Vector Selection

Select the motion vector of the macroblock with the

highest number of non-zero quantized DCT coefficients
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Dynamic Frame Skipping (DFS)

Prediction errors: according to the new motion vectors difference between current 

macroblock and reference area in the not skipped frame is computed, coded with usual

DCT and quantization

Frame skipping policy:  

� > Threshold ⇒⇒⇒⇒ frame should not be skipped

� Threshold = MA of the previous frames/Number of transcoded frames

∑=
m

mt MAMA
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Frame Skipping Control (FSC)

Prediction errors: Q[DCT(et
s)] = Q[DCT(et)]+Q[DCT(et-1)]

It is needed to recompute Q[DCT(et-1)] ⇒⇒⇒⇒ additional error of re-
encoding (RE) 

Frame skipping policy:

> Threshold ⇒⇒⇒⇒ frame should not be skipped

Threshold = MA of the previous frames/Number of transcoded frames

∑

∑

=

==
M

m

mt

M

m

mt

ttt

RE

MA

REMAFSC

1
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MVC Algorithms Evaluation
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Quality vs Temporal Transcodig (MPEG4)

DFS FSC
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Our Temporal Transcoding Architecture

The motion vectors are computed by 

� Motion Vector Composition Algorithms (BI, TVC, FDVS, ADVS)

� Restricted Motion Estimation (RME)

The prediction errors are computed in the pixel domain

A transcoder output buffer is introduced for facing the 

real-time problem

� A basic buffer-based frame skipping policy is developed

� Other frame skipping policies are developed to improve the 

video quality
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Our goals

Appliyng frame skipping to reduce output bit-rate

Guarantee real-time constraints avoiding:

� Buffer underflow (stop of video sequence)

� Buffer overflow (increase of delaly, frame loss)

We define:

� IR = input bit rate

� R = output bit-rate

� S = buffer size

� L= buffer occupancy

� ρ = frame rate

Two buffer thresholds (Blower and Bupper) are defined
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Basic skipping policy

A frame is transcoded if 

– It is the first frame

– Buffer occupancy <= Blower*S 

A frame is skipped if 

– Buffer occupancy > = Bupper*S

– The size of the transcoded frame

exceeds the free buffer space

the delay τ is determined by L/R

If the buffer size is half of the 

output bit rate the maximum

admitted delay is 500 ms

τ + τ0 if the first frame > S

Blower and Bupper are dynamically set 

according to the ratio IR/R

Basic Policy(frame f)

if (f=first frame) transcode f

else

if ((L<= Blower(S))&(L+ l(f)<=S)) transcode f

else

if ((L>= Bupper(S)) skip f

else

if (L+l(f)>=S) skip f

else transcode f  OR apply another policy

L
R/ρ

output (1/ρ sec)

Bupper*S Blower*SS
0
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Motion activity based Frame Skipping

A frame is transcoded if 

– It has large value of MA

A frame is skipped if

– It has small value of MA

A new motion activity (MA)

measure is introduced considering

different types of motion

Intra macroblocks have the 

maximum motion activity value

The thresholdThr(f) is dynamically
set to take into account MA of the 
previous transcoded frame and MA
of all earlier frames  

Motion-based Policy (frame f)

if (f=first frame) Thr(f) =0

else Thr(f) = (Thr(f-1)+MA(f-1))/2

if (MA(f) <=Thr(f)) skip f

else transcode f

∑ +=
m

yx mm kkMA
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Random based Frame Skipping

A random number r is uniformly 

generated in the range [0…S]

The frame is transcoded when 

the random number is larger 

than the buffer occupancy

Greater is the buffer occupancy, 

smaller is the probability of 

transoding the frame  

Random Policy (frame f)

randomNumber = random() % S

if (randomNumber >=L) transcode f

else skip f

LBupper*S Blower*SS
0

r
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Consecutive Frame Skipping

Hard transcoding conditions

– If the ratio IR/R is high many
consecutive frames are skipped

By skipping many consecutive 
frames, the size of the 
transcoded ones increases until 
to reach an irreversible situation 

goal: distributing uniformly 
skipped frames

Forcing trascoder to skip a 
frame to prevent that many 
frames are dropped later

Consecutive skipping policy (frame f)

if (numConsecutiveSkipppedFrames < Γ) skip f
numConsecutiveSkipppedFrames++
else transcode f
numConsecutiveSkipppedFrames=0 

Γ=IR/R  N=number of frames

N*1/ Γ ideal number of transcoded frames

N*(1-1/ Γ) ideal number of skipped framesHow many frames ?

Skipping Γ-1 consecutive    
frames
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Frame Skipping policies evaluation 

(MPEG4)
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Frame Skipping policies evaluation 

(MPEG4)

34.2624.113433.8424.365027.9522.5259random

33.9723.953433.9224.214728.0222.8057consecutive

34.2523.953233.7123.575027.7721.3860MA-based

35.3224.063535.0024.214528.0222.8459buffer

Hard transcoding conditions(IR=128, R=32 kbps)

34.1328.1310633.1328.4313228.7225.95148random

34.0128.479633.9729.8113428.5226.58149consecutive

33.7027.6610633.7328.0812728.3425.73145MA-based

34.3628.7210534.0130.0814429.2127.09155buffer

Standard transcoding conditions (IR=128, R=64 kbps)

PSNR2PSNR1FramesPSNR2PSNR1FramesPSNR2PSNR1Frames

coastguardforemanmobile
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Frame-Size Prediction

The size of a transcoded frame increases according to 
the logarithm of the number of the previously skipped 

frame by this law

where

� l(f) is the size of the frame transcoded after skipping f consecutive 
frames

� αααα is a constant proportional to the size of the first skipped frame

)1ln()( += ffl α
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Size-Prediction Skipping Policy

Predicts the size of the next frame if the current one is skipped 

The frame is transcoded only when its predicted size is lower

than the free buffer space

Advantage: avoids the computation needed to transcode the 

frames that will be skipped

Size-Prediction Policy (frame f):

if (f = first frame) then transcode f
else
if ((L ≤ Blower(S)) & (L + l(f) ≤ S)) then transcode f
Else If (L + l(f) > S)
Do 

skip frame f 
predict the size of frame f + 1
f = f + 1 
L = L - R/ρ
while ((L > Blower(S)) & (L + l(f) ≥ S)  transcode f
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Size-prediction policy evaluation (H.263)

15

20
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Frame Number
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R
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buffer log

Foreman video sequence, IR=256, R=128

4.434.9330.601297.134.8231.36144coastguard

4.636.4529.291097.736.1029.88112foreman

4.127.7925.751276.627.8126.60142mobile

4.144.3039.641027.244.6240.10104akiyo

IR=64, R=32 kbps

6.141.5731.821139.541.6932.39118coastguard

6.544.2932.231109.444.4932.38110foreman

5.334.3929.291548.234.3030.18161mobile

6.152.2243.02949.152.5643.4896akiyo

IR=256, R=128 kbps

Time (sec)PSNR2PSNR1framesTime (sec)PSNR2PSNR1frames

Size predictionBuffer-based
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Temporal vs Quality transcoding (H.263)

temporal

quality
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) temporal quality

Foreman video sequence, IR=256, R=128

7.828.792857.131.36144coastguard

7.128.762187.729.88112foreman

6.925.971566.626.60142mobile

7.335.572917.240.10104akiyo

IR=64, R=32 kbps
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9.927.022988.230.18161mobile
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IR=256, R=128 kbps

Time(sec)PSNR1framesTime(sec)PSNR1Frames

Quality transcoderTemporal transcoder
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H.264/ MPEG 4 Part 10: Advanced Video Coding

In 1998, the Video Coding Experts Group

(VCEG) issued a call for proposal on a project

called H.26L, with the target to double the

coding efficiency

In 2001, VCEG and MPEG formed a Joint 

VideoTeam (JVT)

In March 2003, the first draft of H.264 standard 

has been released
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H.264 Scope

It aims to achieve
�Good quality at very low bit rate, by reaching very 

high compression rate

�real-time

�low end-to-end delay

No great changes with respect to previous video 
coding standards, but a set of small 
improvements

Many features, optional in previous coding 
standards, are mandatory in H.264 standard
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H.264 Coding Layers
Video Coding Layer: 

– designed to efficiently represent the video content

Network Abstraction Layer: 

– formats the VCL representation of the video by
adapting the coded bitstream to different transport 
protocols or storage media

Video Coding Layer

Data Partitioning

Network Abstraction Layer

Coded Macroblock

Coded Slice/Partition

C
o
n
tr

o
l 
D

a
ta

H.320 H.323/IP etc.
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H.264/AVC Encoder

Fn = current frame

Fn’ = previous frame

ME=Motion Estimation

MC=Motion Compensation

T = Transform

Q = Quantization

T-1 = Inverse Transform

Q-1 =Inverse Quantization

Dn = residual macroblock

Dn’ = distorted residual

macroblock

uFn’ = reconstructed

macroblock

X = transformed+quantized

block of coefficients
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H.264/AVC Decoder

X = transformed+quantized

block of coefficients

Q-1 =Inverse Quantization

T-1 = Inverse Transform

Dn’ = distorted residual

macroblock

uFn’ = reconstructed

macroblock

MC=Motion Compensation

Fn’ = reconstructed frame
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H.264 improvements

Variable and small block sizes (4×4)

Quarter-pixel resolution

Motion vectors beyond picture edges (optional in 

H.263)

Moto compensation with multiple reference 

pictures

Moto skipped inference

Deblocking filter
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H.264 other improvements
Entropic coding:

�Transform on small size blocks

�Transform with reduced word length (16 bit)

�Arithmetic entropic coding

�Adaptive entropic coding

Robustness:

�Flexible Slice/Macroblock Order

� Redundant pictures

�Data partitioning

�Synchronization pictures (SI/SP)
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H.264 coding

H.264 mean features:

Variable and small block sizes (4×4)

Quarter-pixel resolution

NAL units

New entropic coding algorithms
(CABAC)

Deblocking filter

Moto compensation with multiple 
reference pictures

Average bit rate 

reduction!

High complexity!
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H.264 features 

New in H.264: variable macroblock partition (16 motion vectors for each macroblock)

Transcoder keeps the same partitions of the remote encoder (most efficient solution)

How to apply MVC in H.264?

– BI and TVC adaptation

– New MVC algorithm

?

H.264

?

Previous standards



52

PISATEL

H.264 vs H.263 at high bit rate

35.4835.48185 (150)300
H.264 (all partitions + 5 

reference frames)

32.4732.4543299
H.263 (all optionals 

enabled)

35.4035.40137 (19)300
H.264 (all partitions + fast 

RD optimiz.)

35.4135.41156 (23)300
H.264 (all partitions + rate 

distortion optimiz.)

35.0135.0146 (26)300
H.264 (16×16,16×8, 

8×16,8×8,8×4, 4×8, 4×4)

34.8434.8431 (12)300
H.264 (16×16,16×8, 

8×16,8×8)

33.9733.9727 (5)300H.264 (16×16)

PSNR2 (dB)PSNR (dB)Time (sec)# frames
FOREMAN                  

128 kbps
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…and visually

H.263

H.264 (16x16 only)

H.264 (16x16, 16×8, 8×16, 8×8,
4×8, 8×4, 4×4)

H.264 (all partitions+rd)
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H.264 vs H.263 at low bit rate

27.7127.71210 (177)300
H.264 (all partitions + 5 

reference frames)

27.0025.2334203
H.263 (all optionals 

enabled)

28.3928.39116 (21)300
H.264 (all partitions + fast 

RD optimiz.)

28.4128.41166 (29)300
H.264 (all partitions + rate 

distortion optimiz.)

27.7327.7344 (27)300
H.264 (16×16,16×8, 

8×16,8×8,8×4, 4×8, 4×4)

27.6527.6535 (16)300
H.264 (16×16,16×8, 

8×16,8×8)

27.1127.1133 (8)300H.264 (16×16)

PSNR2 (dB)PSNR (dB)Time (sec)#frames
FOREMAN                       

32 kbps
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… but visually

H.263

H.264 (16x16 only)

H.264 (16x16, 16×8, 8×16, 8×8,
4×8, 8×4, 4×4)

H.264 (all partitions+rd)
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H.264 Profiles

Baseline

�Videotelephony

�Videoconferencing

�Wireless communications

Main

�Television broadcasting

�Video storage

Extended

�Streaming media applications
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H.264 Baseline Profile

I and P picture types (not B)

1/4-sample motion compensation

Tree-structured motion segmentation down to 4x4 block 
size

Intra-prediction

VLC-based entropy coding

In-loop deblocking filter

Flexible macroblock ordering/arbitrary slice ordering

Some enhanced error resilience features
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Optimizing H.264 encoder

We operated some modifications to the reference software in order 
to obtain acceptable encoding times:

� instead of computing all half and quarter pixels in two rounds, we 
compute them in only one round

� fast way for choosing the optimal partitioning: instead of using
the SAD (Sum of Absolute Differences) measure as decision 
parameter, we use other metrics:

• the number of differences in terms of pixels 

• the maximum difference value

• the average difference value

• the most popular difference value

compared with proper self-adjusting thresholds
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H.264 rate control

Finally, we are implementing the TMN8 rate 

control algorithm to be used in the front encoder

We think that, with a rate control algorithm able 

to skip frame in encoding phase, the transcoding

process may be improved both in terms of 

quality and computation time
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H.264 Transcoder

We adopted the same architecture as we used 
for MPEG4/H.263 temporal transcoders
�Motion Vector Composition (MVC)

�Standard way of computing prediction errors

Problems arose in MVC
�Due to the variable partioning of frames, the motion 

vector composition is not trivial

�We adapted 4 MVC algorithms present in literature to 
be used in variable partitioning

�MVC follows the same tree-structured mechanism as
in motion compensation
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MVC in H.264

MB1 MB2

MB3 MB4

LIV.0

Mv_MVC=

f(mv_MB1,mv_B2, mv_B3, mv_B4)

MB1

B1 B2

MB3

B1 B2

B3 B4

MB4

B1

B2

LIV.1

MB2

B1

B3 B4

B2

Mv_B4

LIV.3

Mv_B2 Mv_B2 Mv_B2Mv_B1 Mv_B1=

f(sb1,sb2)

Mv_B2

Mv_MB4=

f(mv_B1,mv_B2)

Mv_MB3=

f(mv_B2,mv_B4)
Mv_MB2=

f(mv_B1,mv_B2)

Mv_MB1=

mv_B2

B1

sb1

B2
B2

B2 B4
B2

LIV.

2

B1

sb2
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New MVC algorithm: example

F(n)

A

MB

N

M

Vf=argmin i Є SMSE(A, Ai) = argmin i Є S (1/NxM |A-Ai|
2)

mv

F(n-1)

MB4MB3

MB1 MB2

b1 b2

b3 b4

b2
b2

b1

b1

(skipped)

F(n-2)
mv2

A2

A4

mv4

A3

mv3

A6

mv6

mv8

A8

mv7

A7

mv5

A5

mv1

A1

new_mv



63

PISATEL

H.264 MVC evaluation

akiyo
foreman

Carphone
coastguard

TVC

BI

New Algorithm

ME

0

5000

10000

15000

20000

25000

TVC

BI

New Algorithm

ME
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MVC performance
P

S
N

R
(d

B
)

Frames

Akiyo

Motion 
Estimation

New MVC 
Algorithm
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MVC performance

Akiyo

P
S

N
R

(d
B

)

New MVC 
Algorithm

BI Algorithm TVC Algorithm

Frames



66

PISATEL

MVC performance

Motion 
Estimation

New MVC 
Algorithm

P
S

N
R

(d
B

)

Frames

Coastguard
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MVC performance
P

S
N

R
(d

B
)

Frames

Coastguard

New MVC 
Algorithm

BI Algorithm TVC Algorithm



68

PISATEL

Conclusions

We studied the video transcoding problem in 

real-time communications

We developed temporal transcoders with 

MPEG4, H.263 and H.264 codecs

We developed some skipping policies to be 

used in each transcoder

We developed three MVC algorithms to be used 

in the H.264 transcoder
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Future Work

Develop an hybrid temporal/quality 
transcoding architecture

Apply Frame Skipping Policies to H.264 
Transcoder

H.264 video transmission on MANET

Error resilient features in transcoding
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