
1

A methodology for mapping functional blocks
into earliest deadline scheduled threads

Cesare Bartolini

I. INTRODUCTION

A. Executive summary

Increasing complexity and short time to market
demand for higher productivity and reduced error
rates in the production of reactive embedded soft-
ware. Formal techniques for verification of func-
tional and non-functional properties and a number
of design and modeling methodologies as well as
formal languages have been proposed in the last
decades in order to provide support for formal or
simulation-based verification of a least a subset
of the requirements. Automatic generation of the
code implementation of the model is also advocated
as necessary for reducing the probability of fault
injection in the manual coding phase.

Collectively, these practices go under the name
of model-based design and development. Unfor-
tunately, an encompassing methodology that can
support all phases of the design stage and provide
formal verification of all system properties is still
out of reach for most systems of practical interest
and most designers must necessarily settle for lower
expectations.

The most common assumption is the separa-
tion of the two main concerns of functional and
architectural specification. Layering of functional
and architectural-level design is among the found-
ing principles that inspired the Ptolemy framework
[14], the Metropolis methodology and tool set [3],
emerging standards and recommendations, such as
the UML Profile for Schedulability, Performance,
and Time from the Object Management Group, [1]
and industry best practices, such as the V-cycle of
software development common in the automotive
industry [5] (Figure 1).

Functional design is concerned with the devel-
opment of logically correct software. Models and
languages apt at representing the abstractions used
by application domain experts are often used and
formal verification or simulation of system proper-

ties is performed. In order to reduce programming
errors, tools for automatic generation of functional
code can also be used at this stage. For example, in
the automotive domain the Simulink toolkit (based
on a synchronous reactive semantics) supports the
design and simulation of control algorithms and the
Stateflow plug-in (and the associated statecharts-like
semantics) captures the evolution of the systems
state with the arrival of external events and the
possibly subsequent mode changes (Control algo-
rithms design and sign-off stages of Figure 1). UML
and the object-oriented paradigm are other very
popular choices (albeit often in different application
domains) and, more recently, the real-time UML
profile (implemented by commercial products such
as Rational Rose Real-Time) and a subset of the
2.0 revision of the language assume a (transitional)
model where active and passive components coop-
erate in the implementation of the system behavior
and each call action upon a component’s method
results in the transition of the statechart automata
describing the object behavior.

Requirements for logical-level resources, timing
constraints and timing assumptions may be formally
defined at this level, but timing analysis, when
and if performed at this stage, only deals with
abstract specification entities, typically assuming
infinite availability of physical resources (such as
memory or CPU speed).

At the Architecturelevel, the designer defines the
concrete model on which the functional abstractions
must be mapped and constrains the generic specifi-
cation by defining an implementation on an architec-
tural platform. At this level, design choices define
(among others) the levels of concurrency and the
resource management policies. The definition of the
architecture of the software threads and the selection
of the resource management policies is a non-
trivial task, with possible implementations ranging
from single thread implementations to networks of
concurrent processes (Software design stage in the

2

Software design

Functional

Specifications

Control algorithms
design

Control design
sign−off

Software design

sign−off

testing

Fig. 1. Software development in the V-cycle methodology.

v-cycle of Figure 1).
Single thread implementations are quite common

(see the related work section) and simple: the entire
functional specification is executed in the context of
a single task, which performs a never ending cycle
where it serves events in a non-interruptable fashion
according to the run-to-completion paradigm. The
thread waits for an event (either external, like an
interrupt from an I/O interface, or internal, like a call
from one object to another); fetches the event and
the associated parameters and, finally, it executes
the corresponding code. On the other extreme, we
could define one software task for every functional
block. Each task can be assigned its own priority,
depending on the criticality and on the deadline
of the corresponding activity. At run time, the
operating system scheduler properly synchronizes
and sequentializes the tasks so that the order of
execution respects the functional specification.

Both approaches may easily prove inefficient.
The single thread implementation suffers from large
priority inversion due to the need of completing the
processing of each event before fetching the next
event in the global queue. The one-to-one mapping
of functions or actions to threads suffers from
excessive scheduler overhead caused by the need
for a context switch at each reaction. Considering
that the action specified in a functional block can
be very short and that the number of functional
blocks is usually quite high (in most application
it is in the order of hundreds), the overhead of
the operating system could easily prove unbearable.
Furthermore, standard Rate Monotonic analysis of
this model is only possible when cooperation among
active objects is restricted to purely asynchronous
communication or interaction through semaphore-
protected mailboxes [9].

The designer essentially tries to achieve a com-
promise between these two extreme, balancing re-
sponsiveness with schedulability, flexibility of the
implementation and performance overhead.

The lack of a tool to support this development
process is also an issue we try to address. At the
current state of the art, no commercial tool is able
to support a developer through all stages of system
design. While there is a lot of available tools to
describe a system, the mapping process currently
lacks support.

To solve this type of problems, from many sides,
several attempts are being made to incorporate al-
ready at the modeling stage appropriate notations
for expressing the desired non-functional properties,
in a way that can be subsequently analysed and
transformed, via successive refinements, into a con-
forming implementation. The idea of using and an-
notating models as a first class element in software
development is the philosophy behind the emerging
Model Driven Engineering (MDE) approach [7],
[8], [23].

MDE is a breach in software engineering con-
cerning application modeling and implementation.
In this paradigm, models provide abstractions of
a physical system that allow engineers to reason
about that system by ignoring extraneous details
while focusing on the relevant ones [8]. This is not
actually different from traditionally recommended
practice in any software development process since
the earliest days of programming. The main differ-
ence between usual practice and the MDE stays in
the fact that in the new vision models are not only
used for documentation purposes, but they become
well defined input/output elements for computer-
based tools that implement precise operations [7].

Hence, models used for reasoning and analysis

3

are then directly transformed into the desired im-
plementation. This usage of models as a baseline
for implementation permits to rise the abstraction
level at which solutions are described, and opens a
realm of novel possibilities for creating, analyzing,
and manipulating systems through various types of
tools [23]. However, not to deceive these expecta-
tions, the customary attitude to system development
based on the usage of individual tools that tend
to only operate on specific models conforming to
their own internal format has to change in favour of
standard techniques and languages [23].

Currently, the standardization process of the
MDE is strongly oriented towards the Unified Mod-
eling Language (UML) as the primary modeling
notation [8]. UML provides a variety of instruments
to describe the characteristics of a generic system in
corresponding models. However, it is not complete,
in the sense that the basic elements of the lan-
guage cannot cover all potential needs for describing
specific systems from any domain. Hence in some
cases the definition of domain-specific variants of
the UML may be required. The UML however has
already been conceived for extensibility, for which
purpose it provides a built-inprofiling mechanism
to extend the language with elements and constructs
apt to describe specialized features, though remain-
ing compliant with its standard definition.

B. Scope and context

The goals of this research are centered around the
design of real-time systems, particularly focusing
on the mapping phase. The main goal is to provide
a complete methodology for generating an optimal
or sub-optimal task set ready for execution on a
real-time scheduler. To achieve this goal, we have
provided two algorithms, called LA and JLA re-
spectively, which analyze the functional design and
generate the task set. We have proven that the task
set thus generated is optimal from a feasibility point
of view, thanks to the use of a dynamic priority
scheduling algorithm.

This methodology, though efficient and easily
flexible and adaptable to specific requirements,
needed to be supported by a universal language
instead of being based on an ad-hoc model. For this
reason, the work has been extended to be UML-
compliant. In particular, an extension of the SPT-
profile has been developed to include the concepts

needed to apply the proposed methodology. With
this extension, the task generation algorithms could
be easily applied to a UML design. While it would
be interesting to see an actual implementation of
this methodology in a UML design support tool,
the lack of such a tool featuring all the novelties
introduced in the recent UML 2.0 specification
currently prohibits a similar development. However,
the methodology can nonetheless be used by first
describing the system according to the notation and
structure introduced later.

C. Related work

The number of works devoted to the specification
of real-time systems at the logical level is simply
too high to try even a short survey of the existing
methodologies and languages. We will divide them
into the two broad categories of (strictly) syn-
chronous models and languages and asynchronous
(or general) models.

Synchronous reactive languages, such as Esterel,
Lustre or Signal [6] define the system as a netlist
(graph) of processing blocks and assume the compu-
tation of the response or reaction to events by each
block takes zero time. External events are sampled
and computation proceeds according to the discrete
time model. A formal semantics and mathematical
results allow verification of logical properties such
as liveness or correctness with respect to constraints
or invariants. In systems developed according to this
model, the scheduling problem is solved statically
at compile time (equivalently, the operating system
level components are automatically synthesized) and
the aim of the timing analysis is making sure that the
longest chain of reactions or computations initiated
by any event fits in the time interval between
any two ticks. Unfortunately, these systems suffer
from multiple inefficiencies, arising from two main
sources: the quality of the code generated by the
compiler and the priority inversions and limited flex-
ibility of the scheduling strategy. However, in those
cases where a discrete time model is applicable and
concerns for safety overcome the additional costs
caused by compiler and scheduling overheads, these
models provide a satisfactory solution encompass-
ing both stages of the development. A synchronous
reactive model (although based on a looser, semi-
formal semantics) is also at the base of the widely
used commercial tool Simulink from Mathworks.

4

In this case, the accompanying code generation
tools (such as Embedded coder) generally offer the
designer three options for generating the thread
architecture. The first option simply consists in a
single thread implementation, with the associated
drawbacks. In the multi-thread option (available
only for discrete time models where the rates of
external and internal events are strictly harmonic)
all the functions activated with the same rate are
grouped in one single task and executed in lexico-
graphic order. Threads are then simply scheduled
according to the Rate Monotonic rule. Possible race
conditions when accessing variables shared among
blocks with different rates can be solved according
to a deterministic (fixed delay) or nondetermin-
istic (semaphore-protected) synchronization model.
Unfortunately, in both cases, the semantics of the
implementation differs from the semantics of the
simulated model [15].

In the case of asynchronous models and generic
languages, such as UML (similar reasoning ap-
plies to SDL), a mapping or synthesis procedure
including formal verification of logical and timing
properties is currently not available and the logical
and architecture models are developed in stages.
In UML, the logical and architecture designs are
both drawn using objects (at different levels of
granularity).

The recent development of the OMG UML pro-
file for schedulability, performance and time pro-
vided modeling constructs for specifying logical
and physical resources, concurrent active objects
(threads), binding of logical objects into architecture
objects and representation of timing attributes and
constraints, thus paving the way for schedulability
analysis of UML architecture models.

Application of schedulability analysis techniques
to the design problem can provably reduce the total
composition time and the round implementation
time when tuning the design of the architecture level
by as much as 50% [22].

In the context of this work, a survey of the
existing scheduling methodologies is clearly impos-
sible for space constraints, however, an exception is
necessary for previous work done in the context of
architectural model synthesis, which bears a strong
connection to our research.

An early attempt at task synthesis, mainly aimed
at solving the problem of synthesizing a graph of
cooperating tasks where architecture-level proper-

ties are expressed in a fundamental way, such as
rates of execution and relative deadlines has been
presented in [13]. As a further example, in [16] the
authors proposed the synthesis of a cyclic executive
scheduling starting from a Modechart specification
of the system.

Finally, the problem of matching the logical level
to the software architecture level and the corre-
sponding synthesis of the task model has been
discussed in length in the UML case by Saksena and
others [20]. In their work, the authors assume a more
general model of active objects freely interacting
by exchanging events resulting in (asynchronous)
signals or (synchronous) method calls. Each active
object executes according to the base server model:
awaits messages in the input queue and processes
them. Incoming messages to each object are queued.
The mapping and scheduling problem needs to
account for multiple constraints and design options.
First, object methods need to be executed according
to a run-to-completion paradigm in order not to
compromise the consistency of the object’s state.
Second, the scheduling problem becomes a dual
problem: scheduling the messages in the input queue
of each object and scheduling the threads on the
processor. Furthermore, a method for mapping the
execution of active object methods (actions) into
threads is needed.

Based on this assumption, the authors discuss a
single threaded solution, where all actions are im-
plemented by a single thread and events are queued
by priority (only the message scheduling problem
needs to be considered) and a multi-threaded so-
lution where threads inherit their dynamic priori-
ties from the priorities of the messages that acti-
vate them. A mechanism based on priority ceilings
protects against multiple priority inversions when
mutual exclusion on objects needs to be guaranteed.

Unfortunately, while the single threaded imple-
mentation is analyzable and practically applicable
(although with some restrictions and overheads), the
multi-threaded implementations are either almost
impossible to analyze for the worst case timing
scenario (when thread priorities are static, as im-
plemented by most commercial tools) or analyzable
for worst case behavior but inapplicable to the code
generated by existing tools.

5

II. FUNCTIONAL MODEL

Most real-time embedded systems have a simple
structure: some event (generated for example by a
sensor) or user input triggers the system’s execution,
the system does some operations, it processes the
input signal, updates the internal state and then
generates the outputs.

One natural model for this kind of structures is
the dataflow model. Of course, since this model
identifies a particular structure, not all systems
(especially not general-purpose systems) can be
adequately represented using dataflow.

A dataflow model can be represented with a
directed graph. Such a graph will have inputs from
the environment, which represent the external events
that can trigger the execution. At the other end of the
graph the outputs mark the end of the execution of
the dataflow. In the middle, the collection of edges
and vertexes represents the system’s functionality.

In this research, we use a restriction: no cycles
must exist inside the structure of the graph. This is
a common restriction in the dataflow model, since it
largely reduces the complexity of the analysis while
still leaving enough expressive power to define the
behavior of most embedded systems [6].

Our model of execution can be represented
through aDirected Acyclic Graph(DAG). Formally
speaking, thefunctional modelused in this research
is a t-uple{V, E ,R}, whereV is the set of vertices,
E the set of edges, andR is a set of mutually
exclusive (logical) resources, representing shared
data.

• V = {F1, . . . , Fn} is the set of functional
blocks. They represent the basic operations of
the system. A functional blockFi is character-
ized by a maximum computation timeγi and a
set of used resourcesRi,1, . . . , Ri,n(i). A block
Fi has oneinput port and oneoutput port.
An input port is abuffer of infinite sizethat
may containactivation tokens. When at least
one activation tokenis present on the input
port, the functional block is active. A functional
block can execute only if it is active and all
resources in the resource set are available. Each
functional block is executed once for each
activation token; therefore, if multiple tokens
are input to a block, the activation semantics
is of OR type. AND type activation semantics,
as allowed by other modeling languages, is not

considered at the current stage of this research
and will be the subject of future extensions.
If the block is scheduled to execute, it first
acquires all the needed resources; then, it ex-
ecutes consuming exactly one token. The du-
ration of the execution is a random variable
comprised between0 and γi. At the end of
the execution, it first releases all resources, and
then fires its output port. If no other token is
present on the input port, the block becomes
inactive. Otherwise it remains active.

• E = {l1, . . . , lm} is the set offunctional links.
A functional link li = (Fh, Fk) connects the
output port of functional blockFh (the source
block) to the input port of blockFk (the sink).
One functional block can be the source or
sink of many links. When a functional block
completes execution, it fires its output port:
this means that tokens are sent on all the links
starting from that output port. When fired, a
token is instantaneously received on the input
port of the sink.
In the following, the source and the sink of link
li will also be denoted bysrc(li) and snk(li),
respectively.
In our model, we focus on the flow of control
among blocks. Although our tokens are pure
activation signals (i.e. they do not carry data),
an extension to typed signals is possible.

• R = {R1, . . . , Rz} is the set of logical re-
sources that can be used by the functional
blocks to carry out their computations. They
are used to model shared data structures that
can contain state information or shared data
and that need to be executed in mutual exclu-
sion.

An external eventresults from the execution of
a special functional blockei with no input links,
representing one entity in the external environ-
ment. Since external events are produced by the
environment, we assume a minimum interarrival
time between successive activations, denoted byTi.
Therefore, an external event can beperiodic (i.e.
with a constant interval of time between events) or
sporadic.

An output oj is a special functional block with
no output link. It represents a consumption by the
environment of the data produced by the system and
sent to some actuator. For our purposes, an output
is merely a stub where execution ends.

6

It is important to make some considerations on
the execution time of a block. In practice, execution
times strongly depend on the hardware platform on
which the application is implemented. Therefore,
we assume that the hardware architecture is known
and that computation times can be estimated before
actually deploying the system. In reality, the devel-
opment process will follow a spiral model in which,
at each incremental step, the execution time of each
functional block can be more accurately estimated.

A functional chainfrom Fi to Fj , or P (i, j), is
an ordered sequenceP = [l1, . . . , ln] of links that,
starting from Fi = src(l1), reach Fj = snk(ln)
crossingn+1 functional blocks such thatsnk(lk) =
src(lk+1). Fi will be the chain’s source andFj its
sink. Clearly, a sequence of functional links is in
strict relation with a unique sequence of functional
blocks. Thus a functional chain also (and most
importantly) denotes a sequence of blocks.

There can be more than one functional chain
between two blocksi and j. The k-th functional
chain betweenFi and Fj is denoted withPk(i, j).
If a block Fs ∈ Pk(i, j) is activated beforeFp ∈
P (i, j), the former is apredecessorin respect to
the latter, which issuccessor; the notation used is
Fp ≺ Fs. To simplify the notation, without loss of
generality, a chain fromFi to Fj will be simply
denoted byP (i, j).

A path Pk(ei, oj) is a chain withei as source
andoj as sink. Substantially, a path is a chain from
one end of theDAG to the other. A path represents
one end-to-end execution of the system, from the
triggering of the external event to the generation of
the output. More than one path can be originated by
one external event.

Being the application described with aDAG, no
chain must exist which has the same block as
both source and sink; i.e., no cycles must exist in
the graph. Clearly, this limitation does not exclude
programming constructs like conditional loops from
our modeling; simply, any loop must be entirely
contained inside a functional block.

The path deadlinefor Pi, denoted by∆i, is the
end-to-end constraint for the computation performed
in the path. The implementation and the run-time
mechanisms must ensure that all the functional
blocks in the path must be completed at most∆i

time units since the arrival of the event.
ei,j is thej-th activation instanceof eventei, and

Pi,j is the j-th activation of pathPi, since every

TABLE I

PARAMETERS OF THE EXAMPLE.

e1 T1 = 200 F1 γ1 = 10
e2 T2 = 300 F2 γ2 = 20
e3 T3 = 700 F3 γ3 = 15
e4 T4 = 1500 F4 γ4 = 25
P (e1, F6) ∆ = 125 F5 γ5 = 25
P (e2, F8) ∆ = 200 F6 γ6 = 5
P (e3, F9) ∆ = 700 F7 γ7 = 90
P (e3, F10) ∆ = 700 F8 γ8 = 25
P (e4, F12) ∆ = 1500 F9 γ9 = 90

F10 γ10 = 25
F11 γ11 = 25
F12 γ12 = 50

Fig. 2. Graphical representation of the example of Section II-A.

instance of a given event triggers a new instance of
the path. The activation time for eventei,j is denoted
with Ai,j.

While the path deadline is a relative time con-
straint, independent of the actual path instance, each
path instance will have its absolute deadline:δi,j =
Ai,j + ∆i.

A. Example of a functional model

The expressiveness of the proposed functional
model is demonstrated through a simple example
equivalent to the sample (UML) object model in
[20]. The DAG is shown in Figure 2. The example
consists of4 external events that activate5 different
paths. A total of12 functional blocks are defined.
The periods of the events, the computation times of
the functional blocks and the deadlines of the paths
are summarized in Table I.

One main difference between our model and the
model in [20] is the possibility to set deadlines for
paths. In the model presented in [20], deadlines are
assigned to the external events. This means that all
paths starting from the event must be completed
before the same deadline.

7

However, in many cases, the functional blocks ac-
tivated by an external event can have very different
criticalities. As an example, consider the external
evente3 that activates two paths, one consisting of
blocksF3 andF9, the other one consisting of blocks
F3 and F10. Suppose that blockF9 is critical and
must be completed before the next instance ofe3 is
triggered. Therefore, the deadline for pathP (e3, F9)
is 700. Now, suppose that blockF10 is used to log
some data on a secondary storage. This activity is
not critical, so we could set a long relative deadline
for path P (e3, F10). Expressing these constraints
with the model proposed in [20], is not easy (if
possible), while we can naturally do it in our model.

Another difference is that in our model we do not
need to associate apriority to each event. In [20],
a customized scheduler, based on fixed priority, is
assumed. Therefore, it is necessary to specify the
priority of every event, introducing one more (un-
necessary) design parameter. Instead, our scheduling
model is based onEDF, as will be described in
Section IV-A. Therefore, we do not need to specify
any additional priority.

III. EXTENDED UML PROFILE

The functional model described in II is very prac-
tical and simple, suiting perfcetly the methodology
for generating task sets developed in our research.
However, since it is a custom model, it has several
defects. Such a model cannot be designed using a
widely known formalism such as UML, and the de-
scription of a system would need a custom tool. For
this reason, an effort has been made in this research
to extend the UML Profile for SPT; this extension
would allow a developer to design a system using
a UML notation while still being able to create the
task set using the proposed methodology.

The usual structure in the UML community fol-
lowed for presenting a profile is to introduce first
the basic abstractions we need and their semantics
(which is called the “Domain Viewpoint") and then
to define how these abstractions can be modeled in
UML (which is called the “UML Viewpoint").

The Domain Viewpoint has been broadly dis-
cussed in Section II. The main abstractions we
need to model focus on the notions ofresources,
functional blocks, external eventsand paths. Even
though something quite similar to the concepts of
resources, functional blocks and external events are

present and expressed in a very detailed way in
the UML extensions proposed in [18], there are no
references to the notion of a path as intended here.

The rest of this section focuses on the UML
viewpoint, i.e., we explains how to model the above
notions into a UML-compliant notation. In particu-
lar, as explained below, we have identified a specific
type of diagram, the Activity Diagram, as the central
element of our profile. Activity Diagrams [12] were
introduced in UML to model the procedural flow
of actions that are part of a larger activity. Since
the concepts and the scheduling algorithm we refer
in this research are based on adataflow model(in
particular on aDirect Acyclic Graphrepresentation),
we note a natural correspondence with these kind of
diagrams.
Resource.To model the resources, in principle we

would inherit the whole set of characteristics pro-
posed in the SPT-Profile within the≪SAresource≫
stereotype definition. In particular, this stereotype
identifies a kind of resource that can be contended
by multiple concurrent actions and whose access
is protected by some mechanism. Several tagged
values are associated with the definition of resource,
but these are too detailed for our purposes, so they
will be not considered at this stage. Unfortunately,
such stereotype cannot be applied directly to the
ObjectNodes of an Activity Diagrams [17], since
this concept does not specialize any element of the
stereotype base class list [18]. In order to exploit
the definition of resource as we utilize it in our
profile, without infringing the semantics of SPT-
Profile elements, we introduce a new stereotype
(≪Resource≫), which is defined in identical way
as ≪SAresource≫, but can be applied also to Ob-
jectNodes.
Functional block. A functional block is basically

a unit of work with a defined execution pattern,
which contends the use of some resources with
other functional blocks. Such definition corresponds
to the specification of≪SAaction≫ used for the
scheduling domain description in the SPT [18]. The
SPT Profile again introduces a lot of characteristics
in order to clarify the role of an action, but in
our case only theSAworstCase tagged value will be
considered at the present stage. Such value refers to
the maximum computation timeγ of the functional
block as defined in Section II. This stereotype can be
directly applied to an Action element of an Activity
Diagram, since it specializes the concept of an

8

Stereotype Base Class Parent Used Tags
≪Resource≫ ObjectNodes ≪SAresource≫
≪SAction≫ Action SAworstCase
≪ExtEvent≫ InitialNode ≪SAtrigger≫ SAoccurrence
≪Path≫ ActivityPartition Deadline

TABLE II

STEREOTYPESDEFINITION

Action from BasicActions [17], which are allowed
as base classes for the stereotype≪SAaction≫ [18].

The execution model in Section II allows a func-
tional block to have a set of input or output ports.
Such ports can manage tokens to transfer control,
step by step, between functional blocks through the
defined dataflow. In the UML Activity Diagram, the
actions already provide this concept by means of
the notion of pins. Since we have represented a
functional block by means of an extension of the
action of an Activity Diagram, hence the ports can
be rightly represented using the pins.
External event.As usual, in the case of embedded

systems there appears quite often the notion of some
event, generated for example by a sensor, which
triggers system execution. Activity Diagrams can
model the starting point for executing an activity
by means of their InitialNodes [17], but in its usual
definition no real-time annotations are possible. The
SPT-Profile, on the otehr side, provides the instru-
ment to model events of this kind by means of the
≪SAtrigger≫ stereotype. However, this stereotype
cannot be applied to an InitialNode, since neither
the latter, nor any of its generalization, appears in
the base class list of≪SAtrigger≫ [18]. There-
fore for this case we introduce a new stereotype
(≪ExtEvent≫) defined as≪SAtrigger≫, which can
be applied to the InitialNode modeling concept.
At the moment, the only tagged value that we
associate to this new stereotype is theSAoccurrence
one, which defines the pattern of inter-arrival times
between consecutive occurrences of the trigger, as
specified in [18]. Referring to the notation adopted
in Section II, this tagged value corresponds to the
characteristic of an external event denoted asT .
Path. In their classical formulation, Activity Di-

agrams allow to group flows of actions by means
of activity partitions (these are also sometime re-
ferred to asswimlanes). The grouping is made with
respect to the role of some entity or process who
is responsible for carrying on those actions. In our

case we want to force somehow this concept and
model the notion of paths as introduced in Section
II. A path is an ordered sequence of steps that the
system has to execute following up an input by an
external event: we can then see an activity partition
as a container of a set of related actions triggered
by an external event and whose execution has to
be performed in accord to some timing constraints.
Figure 3 depicts the notion of path into the SPT-
Profile domain viewpoint. The stereotype≪Path≫,
applicable to the ActivityPartition UML modeling
element, defines its end-to-end constraint for the
computation by means of aDeadline tagged value.
In the execution model of Section II the latter
represents the maximum reaction time expected for
a computation denoted as∆.

In some cases an action could belong to more
paths; in these cases the usual graphical and textual
notations of Activity Diagrams can be adopted. In
particular, the classical UML Activity Diagram tex-
tual notation entails to annotate each node with the
activity partition or partitions to which it belongs,
enclosed within round brackets.

A resume of the definitions and uses of the
previously described stereotypes is given in Table II.
Each row specifies: the name of the stereotype; the
classes of the UML metamodel to which it can be
applied (Base Class); the name, if it exists, of the
extended SPT-Profile stereotype (Parent), and the
tagged values defined or required (Used Tags).

IV. SOFTWARE ARCHITECTURE

According to our methodology, a functional
model must bemappedon a set of real-time tasks.

A task is denoted withτi and itsj-th instance is
τi,j, activated at a timeai,j . Relative task deadlines
are denoted byDi,j, while absolute ones aredi,j

(referring to thej-th instance of taskτi).
Task τi starts its execution for thej-th instance

at timesi,j, and the execution is terminated at time
fi,j. The deadline is respected iffi,j ≤ di,j.

9

Fig. 3. The extension on SPT-Profile with thePath

The response timefor the j-th instance of taskτi

is the time difference between its finishing time and
its activation:ri,j = fi,j − ai,j.

The computation timeci,j for the j-th instance
of task τi is the time it would take executing if
there were no other concurrent tasks (ci,j ≤ ri,j).
The worst case execution time of a taskτi, denoted
as Ci, is given by the sum of theWCETs γk of
all functional blocks contained in the task. Since
a task is strictly sequential, the only approximation
introduced is neglecting the overhead resulting from
signal latency on the bus, scheduling overheads, and
so on.

The base deadlineof a task instanceτk,l is the
time difference between its absolute deadline and
the arrival of the external event which caused such
instance to execute:Db

k,l = dk,l −Ai,j, whereei,j is
responsible for activatingτk,l.

A task can use resources in mutual exclusion. The
use of such resources derive from the functional
blocks that the task executes. Therefore, if a func-
tional block Fj is implemented by taskτi and the
functional block uses resourceRr, we say that task
τi usesRr with a critical section of duration equal
to the WCET of Fj . We denote byξi,r the longest
critical section among all critical sections of taskτi

on resourceRr.

We assume that the underlying scheduling policy
implements a synchronization protocol like Priority
Ceiling [21] or Stack Resource Policy [2]. There-
fore, we define a preemption levelπi for task τi

TABLE III

SUMMARY OF NOTATIONS AND DEFINITIONS.

F Functional block
l Functional link
e External event
o Output
P Functional chain or path
τ Task
γ Functional blockWCET

C Task WCET

c Task computation time (actual)
A Event activation time
a Task activation time
s Task start time
f Task finishing time

r = f − a Response time
w = s − a Waiting time

∆ Path relative deadline
δ Path absolute deadline
D Task relative deadline
d Task absolute deadline

Db Base deadline
ξ Duration of critical section
π Preemption level

ceil(R) Ceiling of resourceR

inversely proportional to its base deadline:

πi =
1

Db
i

.

For each resourceR, we define aceiling:

ceil(R) = max
i

{πi | τi usesR}.

Table III summarizes the symbols defined in our
mathematical model.

10

A. Execution platform

We assume that the application is implemented
on a single processor architecture, with a real-
time operating system. We assume earliest deadline
first (EDF) as the scheduling algorithm, but the
task model is not the usual periodic/sporadic model
and tasks are not assigned periods or minimum
interarrival times. While a task activated by an event
is considered to be periodic or sporadic (having the
same period or minimum interarrival time as the
event), a task that is activated by another task cannot
be assigned a period (analysis based on the min-
imum interarrival time would be too pessimistic).
A task is assigned an absolute deadlined upon
activation.

V. GENERATION OF THE TASK SET

In this section we present the methodology for
mapping functional blocks to real-time tasks, and
to generate the task real-time scheduling parameters.
The general problem is quite difficult because there
is a high number of possible mappings. Rather than
exhaustively searching among all possibilities, we
propose two different algorithms that derive the
task set with complexity linear in the number of
functional blocks, according to their topology. We
will prove in Section VIII that such algorithms are
optimal for the single processor case and assuming
EDF as scheduling policy.

The basic ideas underlying the two algorithms are
the following:

• each functional block is mapped onto only one
task (this assumption can be removed in future
work);

• if two blocks belong to the same paths and
one is the successor of the other, then the two
blocks are candidates for placement in the same
task;

• if there is no path between two given blocks,
these cannot be assigned to the same task;

• once a task starts executing, it never blocks
waiting the completion of another task; in other
words, the only synchronization mechanisms
used in our model are the activation of a task
and mutual exclusion semaphores for shared
resource;

• once a task starts executing, it can be pre-
empted before completion only when an exter-
nal event results in the activation of a higher

Fig. 4. Sample application graph.

priority task. In other words, a task never
activates higher priority tasks. This provides
an upper bound to the maximum number of
preemptions;

• the generation of the task set must not depend
on the computation times of the blocks;

• the parameters of the tasks (deadlines or prior-
ities) depend on the end-to-end path deadlines;

The two algorithms presented in this research
are called Late Activation (LA) and Joined Late
Activation (JLA). To show the differences between
them, the sample application shown in Figure 4 will
be used. TheWCETs of the functional blocks are
shown below:

Block F1 F2 F3 F4 F5 F6 F7

γ 6 3 3 1 4 2 3

The DAG has three paths with the following
characteristics:

• P1 = [e1, F1, F2, F4] has a relative deadline of
∆1 = 18;

• P2 = [e1, F1, F3, F5] has a relative deadline of
∆2 = 22;

• P3 = [e2, F6, F7, F5] has a relative deadline of
∆3 = 25.

A. Late Activation

The algorithm analyzes theDAG and creates the
task set in two steps: in the first step, the tasks are
created, and the functional blocks are assigned to
the tasks; in the second step, it assigns the real-time
parameters to the tasks.

The algorithm for creating the tasks is shown in
Figure 5.

• Lines 1-3: every event activates at least a block
which must be processed by the algorithm.
After all successors of an event have been
considered (and the queueQ emptied), the
analysis proceeds to the next event.

11

Algorithm LA

Variables: a queue Q of blocks,
initially empty;
1:For every event ei {
2: insert the successor of ei in the queue Q;
3: while (the queue is not empty) {
4: extract block Fk from Q;
5: if (Fk is not an output) {
6: create a new task τj;
7: condition = true;
8: while (condition) {
9: insert Fk in τj;
10: if (Fk has only one successor Fh

11: and Fh has only Fk as predecessor)
12: insert Fh in τj;
13: continue the cycle with Fk = Fh;
14: } else condition = false;
15: }
16: all successors of Fk that are not
17: already part of a task are inserted
18: in Q
19: }
20: }
21:}

Fig. 5. Pseudo-code for AlgorithmLA .

• Lines 4-17: this cycle represents the processing
of an event and all its successors.

• Line 5: if an output has been reached, then
there is no other block in the path. The algo-
rithm moves to the next element in the queue.

• Lines 6-9: a new task must be created, and
blocks will be inserted into it. At least one
block will be used; the presence of other blocks
depends on theDAG topology.

• Lines 10-14: ifFk has only one successorFh,
and is its only predecessor, then all paths con-
tainingFk also containFh. When this happens,
the two blocks will belong to the same task.
Otherwise, the current task is finished, and we
leave the cycle.

• Lines 16-18: at this point,Fk will have some
successors; these might have been processed
earlier in the algorithm. If this is not the case,
then they will be queued for later iterations.

Notice that the precedence relations over theDAG

imply precedence relations over the tasks. As a
consequence, we obtain a set of precedence related
tasks, a model similar to the one by Chetto and
Chetto [11]. All tasks will have the same following
cyclic structure:

• wait for next activation;
• execute the assigned functional blocks;

• activate the successor tasks.

Notice that all successors are activated just before
completion of the task instance. Also, the activations
are buffered; therefore, it can be that while a task
executes, it is activated again by some other external
event or by some other task. In this case, the
activation remains pending and is buffered until the
task completes the currently executing instance.

Among all pending activations, the one corre-
sponding to the path with the shortest deadline must
be served first. Therefore, each activation carries
information about the corresponding path deadline,
and the incoming activations are inserted in a queue
ordered by deadline.

Once the set of functional blocks has been par-
titioned into tasks, we must assign the scheduling
parameters to the tasks. Each instance of an external
event may result in multiple activations of internal
tasks, but only one for the first task in the path. The
rules for assigning the deadlines are listed below:

• every time a task is activated by an external
event or by a functional link, it is assigned
an absolute deadline equal to the minimum
absolute deadline of all sub-paths originating
from the activation event.

• a task activated by an external event, let it be

12

τ1 τ2

τ3

τ4τ5

Fig. 6. The precedence relations among the tasks generated by LA .

τ1, has an absolute deadline of

d1 = min
i
{δi | τ1 ∈ Pi};

• the absolute deadline of a taskτi,l ∈ P , which
is activated byτi−1,h ∈ P at timefi−1,h, is

di,l = min
j
{δj | τi,l ∈ Pj}.

Notice that knowledge of theWCETs of the
functional blocks is not required for computing the
deadlines.

It is important to underline that, when activating a
task, we must specify its current absolute deadline.
Also, activations must carry information about the
absolute deadline, computed according to the pre-
vious equations. Unfortunately, this is not usually
available in commercial implementations of theEDF

scheduler. We will discuss the implications of this
characteristic of the algorithm in Section IX.

Finally, in the classicalEDF scheduler, deadline
ties can broken arbitrarily. In this research, we
assume that ourEDF scheduler does not allow
preemption between tasks with the same deadline.

B. Example withLA

To demonstrate howLA works, we show the
results of the partitioning on the example of Figure
4. The task set and its parameters are listed below:

Task τ1 τ2 τ3 τ4 τ5

Components F1 F2, F4 F3 F5 F6, F7

C 6 4 3 4 5

The precedence relations among tasks are de-
picted in Figure 6.

Fig. 7. Schedule produced byLA .

The first interval of the schedule obtained when
all events are activated at time0, is shown in Figure
7. One important property of this algorithm is that a
task can only be preempted by the activation of an
external event. In other words, the tasks in a path
going from one external event to an output have
increasing absolute deadlines: therefore, every task
has always priority over its successors.

Another important observation regards the way
the algorithm generates the tasks. Basically, every
time one functional block has more than one suc-
cessor, we create one new task for every succes-
sor. Also, every time a functional block has more
than one incoming link, we create a new task that
starts from this block. This second rule makes the
schedulability analysis more difficult: in fact, such a
task cannot be considered a periodic because it can
be activated by two different external events that
can have different periods or minimum interarrival
times. Also, every time this task is activated, it can
be assigned a different base deadline, depending on
which event the activation comes from.

In the example, taskτ4 can be activated by taskτ3

and by taskτ5: when activated byτ3, it is assigned
a base deadline equal to the deadline of pathP2 =
[e1, F1, F3, F5], which is equal to∆2 = 22; when
it is activated by taskτ5, it is assigned the base
deadline of pathP3 = [e2, F6, F7, F5], which is
∆3 = 25. Notice also, thatτ4 is not a periodic task,
since it can be activated by evente1 and by event
e2.

13

As we will see in Section V-E, a schedulability
analysis can still be carried out: one possible so-
lution is to analyze each different activation sepa-
rately.

C. Joined Late Activation

Algorithm JLA is an improvement overLA that
tries to reduce the number of generated tasks. The
pseudo-code for the algorithm is shown in Figure
8. The differences from the one shown in Figure 5
are displayed inboldface.

• Lines 10-12: ifFk is assigned to taskτj , it is
likely that one of its successors will be assigned
to the same task.Fk belongs to a set of paths
P = {P1, . . . , Pm}; each one of its successors
belongs to a subset ofP. The minimum path
deadline will be∆ = min{∆l | Pl ∈ P}. There
will be at least one successor ofPk contained
in a path with deadline∆; this will be the
candidate successor. In case there is more than
one they will all be candidates, and failing the
first another one may be tested. If the candidate
has only one input link, then it will be included
in task τj . The task cannot contain a block
which does not belong to the path with the
minimum deadline, otherwiseτj would activate
a task which would immediately preempt it.

• Lines 14-15: all successors except the one
which was included in the task, unless they
have already been assigned to other tasks, must
be queued for later processing.

The main difference is that, if a functional block
has more than one successor, the one belonging to
the path with the shortest base deadline is selected
and inserted in the same task. Notice that, as before,
the precedence relations in theDAG imply prece-
dence relations among the generated tasks.

D. Example withJLA

When partitioned withJLA, the example shown
in Figure 4 produces a set of four tasks, as shown
in following table:

Task τ1 τ2 τ3 τ4

Components F1, F2, F4 F3 F5 F6, F7

C 10 3 4 5

The precedence relations between the tasks are
depicted in Figure 9.

τ1

τ2

τ3τ4

Fig. 9. The precedence relations among the tasks generated by JLA.

Fig. 10. Schedule produced byJLA.

It is important to point out that, since these tasks
strictly follow the blocks’ properties,τ1 will execute
for at most 6 (which will actually be 4 in our
example) time units, then activatesτ2 before going
on with its execution. The resulting schedule is
charted in figure 10.

E. Schedulability test

In this section, we propose a schedulability anal-
ysis test for the generated task set. Let us start to
analyze the schedulability of the task sets produced
by Algorithm LA . We will then show that the same
analysis can be applied to the task sets generated
by JLA.

As anticipated in the previous section, the main
problem is that when a task can be activated by
more than one task, belonging to different events, it
cannot be modeled as a periodic or sporadic task.
In fact, each time this task is activated, it can be
assigned a different task deadline. The basic idea

14

Algorithm JLA

Variables: a queue Q of blocks, initially empty;
1:For every event ei {
2: insert the successor of ei in the queue Q;
3: while (the queue is not empty) {
4: extract block Fk from Q;
5: if (Fk is not an output) {
6: create a new task τj;
7: condition = true;
8: while (condition) {
9: insert Fk in τj;
10: select Fh as the successor of Fh that belongs to
11: the path with the minimum relative deadline ∆
12: if (Fh has only one predecessor) {
13: insert Fh in τj;
14: all successors of Fk not already assigned
15: to a task, except Fh, are inserted in Q
16: continue the cycle with Fk = Fh;
17: } else condition = false;
18: }
19: all successors of Fk that are not already
20: part of a task are inserted in Q;
21: }
22: }
23:}

Fig. 8. Pseudo-code for AlgorithmJLA.

τ1 τ2

τ3 τ 1
4

τ 2
4τ5

Fig. 11. Splitting taskτ4.

underlying our analysis is tosplit such tasks (and all
the successors) in many tasks, one for each different
activation.

Let us clarify the idea with an example. Consider
again the precedence graph of Figure 6. We split
taskτ4 into two different tasks,τ 1

4 andτ 2
4 , activated

by tasksτ2 andτ5, respectively. The resulting graph
is shown in Figure 11.

As you can see, in this case, the original prece-
dence graph has been separated into a “forest” of
trees. Each tree has an event as root. Now, task
τ 1
4 can only be activated by taskτ2 and hence by

evente1. Therefore, all tasks in the tree withe1 as a

root can be associated the same periodT1 and each
task is always assigned the same base deadline. The
same thing happens with tasksτ5 and τ 2

4 .
However, we also have to take into account an

additional constraint: sinceτ 1
4 and τ 2

4 are actually
the same task,τ 1

4 is not allowed to preemptτ 2
4

and vice versa. To account for this non-preemption
constraint, we introduce apseudo-resourcefor each
split task. In the example, a resourceRτ4 is created,
and every timeτ 1

4 or τ 2
4 are activated, they must first

lock resourceRτ4 before starting to execute.
Generalizing, we transform a precedence graph

in a set of trees, according to the following rules:
• every external event becomes the root of a tree;
• the tree contains all the tasks activated by the

corresponding root event;
• suppose that a taskτi is activated by many

events or tasks; we split the task into many
identical “pseudo-tasks”, one for every differ-
ent incoming activation:τ 1

i , . . . , τm
i , wherem

is the number of different incoming activations.
All of them will have the sameWCET; each
one has a different base deadline, depending on
the corresponding path. Moreover, since a task
cannot interrupt itself, we create a “pseudo-
resource” Rτi

, shared between all the split
tasks originated byτi, to prevent them from

15

preempting one another. Each split taskτk
i is

assigned a critical sectionξk
i,τi

with duration
equal to theWCET of τi. In addition, when a
task is split, all its successors must be split too
with the same method.

At this point, each task (both normal and pseudo-
task) can be associated a periodTi equal to the
period (or minimum interarrival time) of the root
event. We have then transformed our set of com-
plex tasks into a set of sporadic tasks, for which
schedulability analysis techniques are well-known.

To test the schedulability of the generated task
set, we use the processor demand criterion, first
proposed by Baruah et al. [4]. According to this
criterion, the worst case condition is when all events
are activated at the same time, that by convention we
denote with time0. Then, we must test the processor
demand in all time intervals starting from time0
until the first idle time. The two conditions to check
are the following:

U =

N
∑

i=1

Ci

Ti

< 1

∀L ≤ L∗,

N
∑

i=1

[(⌊

L − Db
i

Ti

⌋

+ 1

)

0

Ci

]

+B(L) ≤ L,

(1)
where N is the number of tasks, including the
pseudo-tasks generated by the transformation de-
scribed above, andU =

∑N

i=1
Ci

Ti
< 1 is the total

system load. The termB(L) is the blocking time in
interval L and it is defined as follows [19]:

B(L) = max
k,r

{

ξk,r | Db
k > L ∧ ceil(Rr) ≥

1

L

}

.

Finally, L∗ is an upper bound to the end of the
busy period. It is defined by a recursive equation:

L∗(0) =
N

∑

1=1

Ci

L∗(k) =
N

∑

i=1

⌈

L∗(k − 1)

Ti

⌉

Ci

The recursion ends whenL∗(k) = L∗(k − 1), and
convergence is guaranteed whenU < 1. In the
special case in which all deadlines are less than the

period, an alternative formula forL∗ is the following
[4]:

L∗ =
U maxi(Ti − Db

i)

1 − U
.

Theorem 1: Given a task set generated by algo-
rithm LA , and the corresponding precedence graph,
consider the task set obtained by transforming the
precedence graph in a forest of trees according to
the above methodology. The task set is schedulable
if Equation (1) is verified.

Proof: The proof simply descends from the
processor demand analysis. Proofs of correctness for
Equation (1) can be found in [4], [10] and [19].

Finally, it is straightforward that the above
schedulability test is valid both for the task sets gen-
erated byLA and byJLA. In fact, the transformation
method can be applied to bothJLA and LA .

VI. EXAMPLE

This section exposes an illustrative example on
the complete use of the proposed methodology, from
the description of the system using the extended
profile, to the application of theJLA algorithm for
generating the task set from the functional blocks,
to the execution of that task set on a scheduler. In
particular this example shows a scenario where a
system collects informations form the environment
by means of a sensor, filters them and update the
its control subsystem. At the same time the filtered
informations capturer, can be transformed in a hu-
man readable form and stored in a log repository.
Periodically a user can query such repository in
order to monitor the whole system.

Fig. 12. The Scenario in the Example

Figure 13 depicts the use of the extended notions
of UML Activity Diagrams in order to model the
informal scenario in Figure 12.

16

The model is composed by three paths (Data-
Control, SignalRecord, UserLog). Each of them is
represented by an Activity Partition stereotyped as
≪Path≫ and their deadline is represented by the
tagged valueDeadline set to 18, 40, 200 respectively.
DataControl and SignalRecord share the same exter-
nal event (e1) and the first two functional blocks
(Sampler, Filter). e1 produces the stimulus for the
system with a constant interval of time and in
particular each 40 msec. On the other hand,UserLog
has its own periodic initial node (e2), but share its
last action node withSignalRecord (Logger). At last,
each functional block was modeled by an action
stereotype as≪SAction≫ and the duration of the
their execution is represented by the tagged value
SAworstCase.

From this formalization of the system, by means
of a transformation engine the UML scenario can
be provided as input to the algorithms described in
Section V in order to obtain an activity schedul-
ing if it is possible. For the motivations argued
in Section I-B, at the moment the engine is not
already implemented, although theoretically such
transformation is possible.

The table below shows in a compact form the
path structure of the example:

Path Functional blocks ∆
DataControl Sampler, Filter, Ctrl 18
SignalRecord Samp., Filter, Transf., Log 40

UserLog UserInput, Logger 200

We can now apply our partitioning methodology,
as explained in Section V. We first userule 1, which
states that every task must be included in a path.
One possible resulting task set is shown below:

Task Functional blocks
τ1 Sampler, Filter, Transform, Logger
τ2 Ctrl
τ3 UserInput

This partitioning is not in accordance withrule 2,
because theLogger block has more than one input
link. By applying the second rule, we obtain the
following:

Task Functional blocks
τ1 Sampler, Filter, Transform
τ2 Ctrl
τ3 UserInput
τ4 Logger

Last, we applyrule 3. It specifies thatτ1 should
not include theTransform block, but rather theCtrl
block; this is because theDataControl path has a
stricter deadline than theSignalRecord path. If the
partitioning used were the one described above, the
Transform function would be executed before theCtrl
block, resulting in a priority inversion. The final task
set is as follows:

Task Functional blocks Deadline Period
τ1 Sampler, Filter, Ctrl 18 40
τ2 Transform 40 -
τ3 Logger 40/200 -
τ4 UserInput 200 100

Deadlines have also been assigned according to
the rules described in Section V. These are the
absolute deadlines relative to the first instance of
the tasks; subsequent instances will have greater
deadlines. It is possible to assign relative values
for deadline; these would be the base deadlines;
however, they are not in the scope of this article.

τ1 and τ4 are activated by external events, there-
fore they can be assigned a period equal to that
of the event. On the other hand,τ2 and τ3 do not
have an explicit period, since they are activated at
non-periodic intervals after the execution of their
predecessors.

The reason whyτ3 is assigned two different
deadlines is because it is activated twice, once by
τ2 and the other byτ4. When activated byτ2, its
deadline is that of theSignalRecord path, i.e.40;
when activated byτ4, it has the deadline of the
UserLog path, which is200.

This task set is ready for execution on anEDF

scheduler. The Gantt chart produced by a simulation
of the schedule is shown in Figure 14. In the chart,
up-pointed arrows represent task activation times,
while a task deadline is depicted with an arrow
pointing down. Rectangular blocks (independently
of their color) show the task running on theCPU.

Starting from anXML representation of theDAG,
the whole methodology, from the task partitioning
and the deadline assignment to the simulation, has
been executed with a tool we have developed.

VII. PREEMPTION BOUNDS

In this section, we provide worst-case bounds for
estimating the number of preemptions in the system.
The following theorems are based on the concept of

17

Fig. 13. A DAG representation by means of the UML Activity Diagram extension.

10 20 30 40 50 60 70 80 90 100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

τ1

τ2

τ3

τ4

Fig. 14. Schedule chart example.

transaction. A transactionΓ is the complete, worst-
case set of functional blocks executed upon arrival
of an external event with a minimum interarrival
time equal to that of its source event. The number
of transactions in the system is clearly equal to the
number of external events and each transaction is
a tree of functional blocks (Section V-E).Γi(k)
refers to thek-th instance of transactionΓi. For
practical reasons, we denote an event, its minimum
interarrival time and its transaction with the same
index.

A transaction contains a number of paths and
the path sets of different transactions have a null
intersection. Among all paths inΓ, the minimum
and maximum deadlines are labeled, respectively as
∆min = min{∆i | Pi ∈ Γ} and∆max = max{∆i |
Pi ∈ Γ}.

Theorem 2: The execution of a taskτ in the
transaction instanceΓi(k) cannot be preempted by
another task in the same transaction instance.

Proof: In LA , a task can only activate other
tasks in the same transaction instance at its comple-
tion time, hence no preemption can possibly occur.
In JLA, it is possible for a task to activate another
task in the same transaction before it completes,
but the newly activated task always has a deadline
higher than, or equal to the deadline of the activating
task τ . This is because the set of paths to which
τ belongs is a superset of the path sets of its
successors, and the minimum path deadline forτ
will always be less than or equal to the minimum
path deadline for its successors. Since preemption
among same priority tasks is disallowed, then proof
follows.

Theorem 3: If a transactionΓ has a minimum
interarrival time T such thatT + ∆min > ∆max,
then a job in the k-th instanceΓ(k) will never
be preempted by a job belonging to the following
instancesΓ(k′) with k′ > k.

Proof: Assume the triggering event of instance

18

Γ(k) arrives at timeA. Then, the least possible time
for the activation of the next instanceΓi(k+1) will
beA+T . The maximum deadline for a task instance
τi in Γ(k) is di = A + ∆max and the minimum
possible deadline for a taskτj in Γ(k + 1) is dj =
A+T +∆min. From our hypothesis onT it is clearly
dj > di. Therefore, every job deadline inΓ(k) is
lower than any job deadline inΓ(k +1) and also in
Γ(k′) with k′ > k.

Corollary 1: In a system withn external events,
if ∀i, Ti+∆min

i > ∆max
i , then the maximum possible

number of preemptions at any given time isn− 1.
Proof: Given Theorems 2 and 3, if the above

property is true a task can never be interrupted by
another task in the same transaction (regardless of
the instance). The only possible preemptions are
between different transactions, and since there are
n in total, there can be a maximum ofn − 1
preemptions andn active tasks at any time.

Please note, if deadlines are not assigned to paths,
but to transactions (as in [20]), then∆min = ∆max

and the limit on the number of preemptions holds
regardless of the interarrival times of the transac-
tions.

The above results can be generalized to find the
maximum number of active tasks in the system
when the condition on event interarrival times and
transaction deadlines of Theorem 3 cannot be guar-
anteed. In this case, it is possible to bound the
number of future instances of a transaction that can
possibly preempt a transaction instance.

Theorem 4: An instance of a transaction,Γ(i),
can be preempted by a maximum ofkM future
instances of the same transaction, i.e., the last
instance that can preemptΓ(i) is Γ(i + kM), where

kM =

⌊

∆max − ∆min

T

⌋

(2)

Proof: If we assume periodic transactions,
which is the worst-case assumption, thenΓ(i) will
be activated at timeiT . Its longest deadline will
be iT + ∆max. The i + k-th instance of the same
transaction will be activated at time(i+k)T , and the
shortest deadline of its tasks will be(i+k)T +∆min.
The preemption is possible if(i + k)T + ∆min <
iT + ∆max, which is true if k < ∆max

−∆min

T
. In

addition,k must be an integer; hence Equation 2.

The bound on the number of preemptions occur-
ring at any given time can be used to bound the

number of task frames that are active and need to
be stored in the system stack at any given time. This
bound can be used to provide a better estimate of
the amount of RAM memory that is required for the
execution of the system.

VIII. PROOF OF OPTIMALITY FORLA AND JLA

In this section, we demonstrate that the task
synthesis algorithms of bothLA and JLA are opti-
mal underEDF scheduling. The following theorems
prove that task sets generated byLA and JLA are
EDF schedulable if and only if the task set produced
by one-to-one mapping of tasks to functions is
schedulable underEDF. Given thatEDF scheduling
is optimal in the case of independent tasks, then both
JLA and LA are also optimal scheduling algorithms
in the case of independent function trees.

If scheduling overheads are considered, thenJLA

produces less context switches and it is clearly to
be preferred over the other methods.

In the following, the termFull Deadlinesrefers
to the deadline assignment policy giving a task a
deadline equal to its minimum path deadline.

We first show that, in case of independent trees
and functions, a one-to-one mapping (one task per
function) using theFull Deadlines assignment is
optimal. Then, we prove that the grouping of func-
tions into tasks performed by theLA and theJLA

algorithms do not compromise schedulability.

A. Full Deadlines optimality

Theorem 5: If a genericDAG systemS is mapped
into a task setT by assigning a unique taskτi

for each functional blockFi, and if every task
τi is assigned a deadlinedi equal to the lowest
path deadlineδ among all paths to which blockFi

belongs to, then a necessary and sufficient condition
for feasibility ofS is that T be EDF feasible.

Proof: S is feasible ⇒ T is EDFfeasible. If
S is feasible, then a scheduleσ exists such that
every pathPj finishes its computation within its
path deadlineδj. Every functional blockFi, conse-
quently, must have ended before the path deadline of
all paths to which it belongs:∀j | Fi ∈ Pj, fi ≤ δj ,
where fi is the finishing time forFi. If di =
minj{δj | Fi ∈ Pj} is the minimum path deadline
for Fi, we havefi ≤ di. According to theFull
Deadlinesassignment,di is also the deadline for
taskτi (implementing blockFi). It follows, that the

19

τ

2

δ1

δ3

δ2 δ3δ1

LA tasks

< <

Π

F

F

F

F

k,1

k,2

k,3

k,4

k

δ

Fig. 15. LA grouping of functional blocks.

feasible schedule forS is also a feasible schedule
for T SinceEDF is optimal and a feasible schedule
for T exists, then the task setT is EDF schedulable.

T is EDFfeasible ⇒ S is feasible. If T is EDF

feasible, then every taskτi completes before its
deadline and so does the corresponding functional
blockFi: fi ≤ di. But di = mini{δj | Fi ∈ Pj}, then
fi ≤ di ⇒ ∀j | Fi ∈ Pj , fi ≤ δj . This means that
every functional block executes before the deadlines
of all paths it belongs to. Then,S is feasible.

B. LA optimality

The second step is to prove that theLA grouping
does not compromise the optimal schedulability of
the Full Deadlinesalgorithm.

Theorem 6: If a task setT is a one-to-one as-
signment of functional blocks from a feasibleDAG

systemS using the Full Deadlines assignment, and
T ′ is the task set created by applying theLA

grouping toS, thenT is EDF feasible⇔ T ′ is EDF

feasible.
Proof: T isEDFfeasible ⇒ T ′ isEDFfeasible.

Let Fk = {Fk,1, Fk,2, Fk,n} be the set of func-
tional blocks assigned to the same taskτk in T ′

whereFk,j ≺ Fk,j+1 (Figure 15). They belong to the
same set of pathsΠk. This means that taskτk ∈ T
and all tasks implementing the functional blocks
{Fk,1, Fk,2, Fk,n} in T have the same deadlinedk,1 =
dk,2 = . . . = dk,n = dk = minl{δl | Pl ∈ Πk} .
According to theEDF scheduling rules, tasks with
the same deadline can be scheduled in any order.
Hence, if T is EDF feasible, then there exists a
feasible schedule where all the functional blocks
sets belonging to the setsFk for all k, are executed
consecutively, fromsk,1 to fk,n. A feasible EDF

JLA tasks

2

δ3

δ1

δ4

δ2 δ3 δ4δ1 << <

LA tasks

δ

Fig. 16. JLA grouping ofLA tasks.

schedule forT ′ can now simply be constructed by
scheduling taskτk on the CPU at timesk,1. τk will
finish in fk,n, since it executes for the sum of the
computation times of the functional blocks mapped
into it. The task schedule forT ′ is guaranteed to be
EDF because the task deadlines match the deadlines
of the functional sets they are replacing.

T ′ is EDFfeasible ⇒ T is EDFfeasible. Let τk be
a task inT ′ which containsFi andFj , respectively
assigned toτi andτj in T . If T ′ is schedulable, then
fk ≤ dk. According to theSimple Partitioningrules,
Fi andFj must necessarily belong to the same set
of pathsΠ, so their minimum path deadlinesdi and
dj are the same, and they are equal todk. Therefore,
independently of the order of the two blocks, since
τk executes both,fi ≤ di and fj ≤ dj, making the
task setT feasible.

C. JLA optimality

Finally, we assume that aDAG system is parti-
tioned using theJLA algorithm, with theFull Dead-
linesassignment. We need to demonstrate that such
a task set is schedulable if the task set generated
with LA is schedulable, and vice versa.

Once again, the proof exploits equivalence of the
deadlines of all theLA tasks that are merged into a
singleJLA task. In fact, when a functional blockFi

has more than one output, the successorFj , which
is assigned to the same task byJLA is the one on
the path with the shortest deadline (Figure 16).

Theorem 7: If a task setT is created using the
LA algorithm from aDAG systemS, and T ′ is the
reduced task set created withJLA, T is feasible⇔
T ′ is feasible.

20

The proof is similar to the proof ofLA optimality,
considering thatJLA tasks groupLA tasks with
identical deadline similarly to the wayLA tasks
group functional locks with the same deadlines. The
interchangeability of tasks with the same deadline
in an EDF schedule can be used to demonstrate
equivalence with respect toEDF schedulability of
the two sets.

IX. CONSIDERATIONS ON IMPLEMENTATION

As described in Section V-A, the way the task set
is generated requires the operating system to support
some special functionality that is not available from
current operating systems. In particular, if a task can
be activated by more than one task, and hence by
more than one event, it must be assigned a different
base deadline depending on which event the activa-
tion comes from. Therefore, each activation has to
carry information on the event that originated the
activation itself and on the deadline of the shortest
path that can be originated from the task. Also, since
pending activations must be buffered, they must be
served in an earliest deadline order.

While the shortest relative deadline among all the
possible outgoing paths can be statically computed,
the activation time of the event and the external
source that triggered the execution path must be
dynamically communicated along the chain of com-
putation by adding the appropriate information to
the signal.

Implementing such mechanism can be hard, since
it demands for additional run-time overheads, limit-
ing its adoption in embedded systems with limited
computational resources.

In Section V-E, we presented a mechanism to
transform a precedence graph in a set of precedence
trees (transactions), by splitting tasks that have more
than one incoming activation. In this way, every
task is assigned a fixed base deadline. Therefore,
all tasks activated by one external event can be
activated at the same time with their own fixed base
deadline. This can be easily implemented also as an
user space library, without any modification to the
scheduling mechanism. However, the transformation
method generates many more tasks and resources,
and this in turn may require more overhead and
more memory to implement the application.

Fig. 17. An example ofDAG not schedulable by fixed priority.

X. A SAMPLE COMPARISON

In this section, we show the advantage of using
our methodology, based onEDF scheduling, over the
methodology in [20] that is based on fixed priority
scheduling. The authors of [20] mention a heuristic
algorithm that tentatively assigns functional blocks
and priorities to tasks until a schedulable solution
is found. However, since the algorithm was not
described in detail, we could not compare it against
ours. Rather, we will try to use both rate monotonic
and deadline monotonic priority assignments.

The exampleDAG is shown in Figure 17. The
WCET of the blocks are the following:

Block F1 F2 F3 F4 F5 F6 F7

γ 30 10 30 20 50 40 35

The relative deadlines assigned to the paths are
the following:

• P1 = [e1, F1, F3] has a deadline of∆1 = 100;
• P2 = [e1, F1, F2, F5] has a deadline of∆2 =

200;
• P3 = [e1, F1, F2, F4] has a deadline of∆3 =

300;
• P5 = [e2, F6, F7] has a deadline of∆4 = 150.

Finally, the period ofe1 is T1 = 300 while period
of e2 is T2 = 150.

By applying algorithmJLA to the DAG, the fol-
lowing tasks are derived:

Task τ1 τ2 τ3 τ4

Components F1, F3 F2, F5 F4 F6, F7

C 40 50 50 75
Db 100 200 300 150
T 300 300 300 150

Now we suppose that these tasks are assigned
fixed priorities, using rate monotonic: tasksτ1, τ2

and τ3 have priority 1 (the lowest) while taskτ4

has priority 2 (the highest). By applying response
time analysis, taskτ1 has a worst case response

21

time of 115 that is greater than its base deadline.
Therefore, the system is not schedulable with this
priority assignment.

Another possibility is to try a deadline monotonic
priority assignment. In this case,τ1 has priority
4 (the highest),τ4 has priority 3, τ2 has priority
2 and τ3 has priority 1 (the lowest). Again, by
applying response time analysis, we obtain a worst
case response time forτ2 of 240, greater than its
deadline.

Instead, by applying Equation 1 the system results
schedulable byEDF.

Please note that the example is not simply a
pathological case, but it is representative of an entire
class of software models where a single external
event triggers more paths with different deadlines.

XI. EXPERIMENTS

We performed several experiments on randomly
generated task graphs in order to verify the time and
schedulability efficiency of the algorithms, when
compared to state of the art solutions based on fixed
priority scheduling. The following parameters were
subject to evaluation:

• feasibility: to verify the efficiency in terms of
the percentage of functional graphs that can be
scheduled;

• grouping efficiency: to check the size of the
generated task set.

• execution time: to give an indication upon the
size of the problems (in terms of number of
functional blocks) that can be effectively solved
by our algorithms.

A. Experimental setup

We compared our algorithms against an imple-
mentation of [20] where fixed priorities are assigned
according to the Rate Monotonic or the Deadline
Monotonic rule. We tested the scheduling algo-
rithms with randomly generated graphs of functional
blocks, produced using theTGFF, Task Graphs For
Free tool. The TGFF tool, now at version 3.0, is
widely used in the research community on em-
bedded systems and almost a de-facto benchmark
when testing algorithms working on graphs of tasks
or functional blocks. Unfortunately, when used for
generating graphs with timing constraints, it only
provides limited control over the generation of the

deadlines and the activation rates of tasks and
events.

The TGFF tool generates task graphs (graphs of
functional blocks, for the purpose of our study)
based on the configuration parameters defined in
the tgffopt input file and it produces atgff file
with a text description of the graph. The graph
description produced byTGFF contains a table with
the timing attributes that are assigned to each block:
computation time, period, and also deadline (in the
last version of the program). In our case, period
and deadline are used in events (root nodes) and
outputs (leaf nodes), respectively and ignored in
other nodes. Unfortunately,TGFF assigns deadlines
to nodes in a deterministic way, based only on their
distance from the root node (in direct proportion).
Furthermore, even if the current version of the
program allows generating graphs with multiple
root nodes, the graph generator assigns the same
activation period to all of them.

In order to provide the additional flexibility and
generality required for our real-time analysis, we
wrote a feeder program (inC++), which creates the
tgffoptoption file, setting the parameters required by
TGFF for graph generation and we also developed
a post-processing program then transforms thetgff
output file by modifying the deadlines and the acti-
vation rates of the leaf and root nodes. Uncertainty
in the values of periods and deadlines is obtained by
multiplying theTGFF values, by random values uni-
formly drawn from the interval[1.0, 3.0]. Activation
periods are finally rounded up in quanta to lower
the hyperperiod and the complexity of theEDF test.
The final output of the post-processing phase is
an XML file describing the functional graph. The
XML file is processed by an analysis and simulation
tool (written in Java) implementing the grouping
and schedulability analysis algorithms. The whole
process is invoked repeatedly by a bash script which
assigns different parameters at every cycle.

There is a large number of parameters that can
be used to define a functional graph:

• the number of (external) event nodesnev

• the number of functional nodesnf

• the (average) in-degreenin and out-degreenout

of the nodes
• the average utilizationU for the entire func-

tional set
• the average ratio between the Deadline of the

leaf node with highest depth and the period of

22

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 f

ea
si

b
le

 t
as

k
 s

et
s

CPU Utilization

Number of scheduled graphs

Legend
EDF
RM
DM

Fig. 18. Percentage of schedulable graphs whenD/T ≈ 1 (nf =
25 ± 10).

its triggering event (D/T)

B. Results

In the first series of tests we usedJLA andLA for
grouping functional blocks into tasks and then we
compared our methods against an implementation
of Saksena’s schedulability analysis where fixed
priorities are assigned according to the event rates
(in Rate Monotonic fashion), or according to the
smallest deadline among all the output nodes that
can be triggered by the block (that is, Deadline
Monotonic).

In this case, we selectednev = 3 ± 1 external
events, andnf = 25±10 functional blocks. Initially,
we ran the test with the maximum deadlines approx-
imately equal to the periodsD/T ≈ 1, then the ratio
was increased with steps of0.1, until D/T ≈ 2.
For each set of values, we tried different utilization
values, fromU = 0.1 to U = 1.0.

In all cases, our algorithm performed much bet-
ter than its fixed priority scheduling counterparts.
Figure 18 shows the percentage of schedulable sets
when the deadline approximately equals the acti-
vation period. When the ratioD/T is increased, an
increasing number of task sets is found schedulable,
but the gap between our EDF-based method and
fixed-priority based algorithms widens even more
(Figure 19).

We then went back to our initial test with a
deadline/period approximate ratio of1, and spanned
the results with a variable number of average func-
tional blocks, from5 ± 1 (Figure 20) to50 ± 10
(Figure 21). The percentage of schedulable sets
did not change significantly with the number of

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 f

ea
si

b
le

 t
as

k
 s

et
s

CPU Utilization

Number of scheduled graphs

Legend
EDF
RM
DM

Fig. 19. Percentage of schedulable graphs whenD/T ≈ 2 (nf =
25 ± 10).

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 f

ea
si

b
le

 t
as

k
 s

et
s

CPU Utilization

Number of scheduled graphs

Legend
EDF
RM
DM

Fig. 20. Percentage of schedulable graphs when the number of
functional blocks is5 ± 1 (D/T ≈ 1).

functional blocks. The slight increase in the per-
formance of our method for larger sets and the
corresponding decrease for fixed-priority scheduling
should be considered within the range of experimen-
tal uncertainty.

To test for grouping efficiency, we generated
graphs with increasing numbers of average func-
tional blocks, and tested the grouping obtained with
LA and JLA in terms of number of tasks. We ran
batches of500 seeds, with5 to 50 average blocks for
each seed. Every test batch had different values for
the maximum in-degree and out-degree (number of
input and output links for each block, respectively).
We ran batches with maximum in-degrees of1 and
2, and maximum out-degrees of2 to 4.

Figures 22 and 23 show the result for the two ex-
treme settings ((in-degree,out-degree) respectively
equal to (1,2) and (2,4)). The graphs clearly show
that, unless the graph is very sparsely connected,
only JLA results in a number of tasks significantly
smaller than the number of functional blocks and,

23

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 f

ea
si

b
le

 t
as

k
 s

et
s

CPU Utilization

Number of scheduled graphs

Legend
EDF
RM
DM

Fig. 21. Percentage of schedulable graphs when the number of
functional blocks is50 ± 10 (D/T ≈ 1).

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70

%
 g

en
er

at
ed

 t
as

k
s/

n
u

m
b

er
 o

f
b

lo
ck

s

Number of functional blocks

Algorithm grouping efficiency

Legend
LA

JLA

Fig. 22. Percentage of generated tasks with respect to number of
blocks, assuming max in-degree = 1 and max out-degree = 2.

more importantly, it produces tasks of larger size
and less subject to large context switch overheads.

All the experiments done so far have shown that
our methodology is computationally tractable: on
a 2Ghz AMD Athlon 64, running algorithmJLA

and the corresponding scheduling analysis on aDAG

with 100 functional blocks takes less than 4 seconds.

XII. CONCLUSIONS

We have presented a model for the description
of the dataflow architecture of embedded systems
and algorithms for the synthesis of the architecture-
level design, the automated logical-to-architectural
mapping and schedulability analysis of the resulting
task set. Our proposal is based on runtime support
from a real-time operating system capable of earliest
deadline scheduling. The presented solution allows
to reduce the overheads and excessive priority in-
versions of existing solutions that map all functional
blocks (or reactions) into a single thread or assign
a thread of execution to each action or possibly

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70

%
 g

en
er

at
ed

 t
as

k
s/

n
u

m
b

er
 o

f
b

lo
ck

s

Number of functional blocks

Algorithm grouping efficiency

Legend
LA

JLA

Fig. 23. Percentage of generated tasks with respect to number of
blocks, assuming max in-degree = 2 and max out-degree = 4.

to each active object. Sample cases show how our
method can possibly improve the schedulability of
the dataflow graph, implemented in a set of threads
scheduled with dynamic priorities in comparison
with existing solutions based on fixed priority.

Extensions of this research will be focused on
further reducing the number of tasks and applying
the methodology to multiprocessor and distributed
systems.

REFERENCES

[1] UML Profile For Schedulability, Performance, And Time, Ver-
sion 1.0. http://www.omg.org, 2001.

[2] T. Baker, “Stack-based scheduling of real-time processes,”
Journal of Real-Time Systems, vol. 3, 1991.

[3] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, and Y. Watanabe, “Metropolis: An integrated envi-
ronment for electronic system design,”IEEE Computer, vol. 36,
April 2003.

[4] S. Baruah, L. Rosier, and R. Howell, “Algorithms and complex-
ity concerning the preemptive scheduling of periodic real-time
tasks on one processor,”The Journal of Real-Time Systems,
vol. 2, 1990.

[5] T. Beck, “Current trends in the design of automotive electronic
systems,” inProceedings of the Design Automation and Test in
Europe Conference, 2001.

[6] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guer-
nic, and R. de Simone, “The synchronous languages 12 years
later,” Proceedings of the IEEE, vol. 91, Jan. 2003.

[7] J. Bézivin, “On the unification power of models,”Journal of
Software and Systems Modeling, vol. 4, no. 2, pp. 171–188,
May 2005.

[8] A. Brown, “Model driven architecture: Principles and practice.”
Journal of Software and System Modeling, vol. 3, no. 4, pp.
314–327, 2004.

[9] A. Burns and A. Wellings,HRT-HOOD: A Structured Design
Method for Hard Real-Time Systems. Elsevier Science, Ams-
terdam, NL, 1995.

[10] G. Buttazzo,Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Boston: Kluwer
Academic Publishers, 1997.

24

[11] H. Chetto and M. Chetto, “An adaptive scheduling algorithm for
fault-tolerant real-time systems,”Software Engineering Journal,
pp. 93–100, May 1991.

[12] H. Eriksson, M. Penker, and D. Fado,UML 2 Toolkit. New
York, NY, USA: John Wiley & Sons, Inc., 2003.

[13] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing end-to-
end timing constraints by calibrating intermediate processes,”
in Proceedings of Real-Time Systems Symposium, December
1994.

[14] E. Lee, “Overview of the ptolemy project,” University of
California, Berkeley, Tech. Rep. UCB/ERL-M01/11, 2001.

[15] Mathworks, “The mathworks simulink and stateflow user man-
uals,” available on Internet: http://www.mathworks.com.

[16] A. K. Mok and C. Puchol, “Integrated design tools for hard
real-time systems,” inProocedings of the 19th IEEE Real-Time
Systems Symposium, December 1998.

[17] UML 2.0 Superstructure Specification, OMG Document –
formal/05-07-04 ed., OMG, July 2005.

[18] UML Profile for Schedulability, Performance and Time Specifi-
cation, OMG Document – formal/05-01-02 ed., OMG, Jannuary
2005.

[19] R. Pellizzoni and G. Lipari, “Feasibility analisys of real-time
periodic tasks with offsets,”Real-Time Systems, vol. 30, no.
1-2, pp. 105–128, May 2005.

[20] M. Saksena, P. Karvelas, and Y. Wang, “Automatic synthesis
of multi-tasking implementations from real-time object-oriented
models,” inProceedings of the IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, March
2000.

[21] L. Sha, R. Rajkumar, and john P. Lehoczky, “Priority inher-
itance protocols: An approach to real-time synchronization,”
IEEE transaction on computers, vol. 39, no. 9, September 1990.

[22] J. Stankovicet al., “Vest: An aspect-based composition tool for
real-time systems,” inProceedings of the 9th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS
2003), May 27-30, 2003, Toronto, Canada. IEEE Computer
Society, 2003.

[23] L. Tratt, “Model transformations and tool integration,” Journal
of Software and Systems Modelling, vol. 4, no. 2, pp. 112–122,
May 2005.

