A methodology for mapping functional blocks
Into earliest deadline scheduled threads

Cesare Bartolini

. INTRODUCTION ties is performed. In order to reduce programming
errors, tools for automatic generation of functional
code can also be used at this stage. For example, in
Increasing complexity and short time to markehe automotive domain the Simulink toolkit (based
demand for higher productivity and reduced errain a synchronous reactive semantics) supports the
rates in the production of reactive embedded soflesign and simulation of control algorithms and the
ware. Formal techniques for verification of funcStateflow plug-in (and the associated statecharts-like
tional and non-functional properties and a numbgemantics) captures the evolution of the systems
of design and modeling methodologies as well &sate with the arrival of external events and the
formal languages have been proposed in the Iggissibly subsequent mode changes (Control algo-
decades in order to provide support for formal aithms design and sign-off stages of Figure 1). UML
simulation-based verification of a least a subsghd the object-oriented paradigm are other very
of the requirements. Automatic generation of thgopular choices (albeit often in different application
code implementation of the model is also advocatgdmains) and, more recently, the real-time UML
as necessary for reducing the probability of faufirofile (implemented by commercial products such
injection in the manual coding phase. as Rational Rose Real-Time) and a subset of the
Collectively, these practices go under the nan®0 revision of the language assume a (transitional)
of model-based design and development. Unfarodel where active and passive components coop-
tunately, an encompassing methodology that carate in the implementation of the system behavior
support all phases of the design stage and provigied each call action upon a component’s method
formal verification of all system properties is stilresults in the transition of the statechart automata
out of reach for most systems of practical interesfescribing the object behavior.
and most designers must necessarily settle for loweRequirements for logical-level resources, timing
expectations. constraints and timing assumptions may be formally
The most common assumption is the sepamdefined at this level, but timing analysis, when
tion of the two main concerns of functional anénd if performed at this stage, only deals with
architectural specification. Layering of functionadbstract specification entities, typically assuming
and architectural-level design is among the founhfinite availability of physical resources (such as
ing principles that inspired the Ptolemy frameworknemory or CPU speed).
[14], the Metropolis methodology and tool set [3], At the Architecturelevel, the designer defines the
emerging standards and recommendations, suchcaacrete model on which the functional abstractions
the UML Profile for Schedulability, Performancemust be mapped and constrains the generic specifi-
and Time from the Object Management Group, [Hdation by defining an implementation on an architec-
and industry best practices, such as the V-cycle wiral platform. At this level, design choices define
software development common in the automotiyamong others) the levels of concurrency and the
industry [5] (Figure 1). resource management policies. The definition of the
Functional design is concerned with the develarchitecture of the software threads and the selection
opment of logically correct software. Models andf the resource management policies is a non-
languages apt at representing the abstractions us®dal task, with possible implementations ranging
by application domain experts are often used amm single thread implementations to networks of
formal verification or simulation of system propereoncurrent processes (Software design stage in the

A. Executive summary

Specifications

Control algorithms Soﬂvx;?ri_d;?lgn
design ¢
. Functional
Control design testing
sign-off

Software design

Fig. 1. Software development in the V-cycle methodology.

v-cycle of Figure 1). The designer essentially tries to achieve a com-
Single thread implementations are quite commatiomise between these two extreme, balancing re-
(see the related work section) and simple: the entigponsiveness with schedulability, flexibility of the
functional specification is executed in the context @fhplementation and performance overhead.
a single task, which performs a never ending cycle The lack of a tool to support this development
where it serves events in a non-interruptable fashipnocess is also an issue we try to address. At the
according to the run-to-completion paradigm. Theurrent state of the art, no commercial tool is able
thread waits for an event (either external, like at® support a developer through all stages of system
interrupt from an 1/O interface, or internal, like a caldlesign. While there is a lot of available tools to
from one object to another); fetches the event andéscribe a system, the mapping process currently
the associated parameters and, finally, it executasks support.
the corresponding code. On the other extreme, weTo solve this type of problems, from many sides,
could define one software task for every functionakveral attempts are being made to incorporate al-
block. Each task can be assigned its own prioritigady at the modeling stage appropriate notations
depending on the criticality and on the deadlinier expressing the desired non-functional properties,
of the corresponding activity. At run time, than a way that can be subsequently analysed and
operating system scheduler properly synchronizeansformed, via successive refinements, into a con-
and sequentializes the tasks so that the orderfofming implementation. The idea of using and an-
execution respects the functional specification. notating models as a first class element in software
Both approaches may easily prove inefficiendevelopment is the philosophy behind the emerging
The single thread implementation suffers from largdodel Driven Engineering (MDE) approach [7],
priority inversion due to the need of completing thi8], [23].
processing of each event before fetching the nextMDE is a breach in software engineering con-
event in the global queue. The one-to-one mappirgrning application modeling and implementation.
of functions or actions to threads suffers fronn this paradigm, models provide abstractions of
excessive scheduler overhead caused by the neeghysical system that allow engineers to reason
for a context switch at each reaction. Considerirapout that system by ignoring extraneous details
that the action specified in a functional block cawhile focusing on the relevant ones [8]. This is not
be very short and that the number of functionactually different from traditionally recommended
blocks is usually quite high (in most applicatiogpractice in any software development process since
it is in the order of hundreds), the overhead dhe earliest days of programming. The main differ-
the operating system could easily prove unbearabésce between usual practice and the MDE stays in
Furthermore, standard Rate Monotonic analysis tife fact that in the new vision models are not only
this model is only possible when cooperation amongged for documentation purposes, but they become
active objects is restricted to purely asynchronowgell defined input/output elements for computer-
communication or interaction through semaphor&ased tools that implement precise operations [7].
protected mailboxes [9]. Hence, models used for reasoning and analysis

are then directly transformed into the desired irmeeded to apply the proposed methodology. With
plementation. This usage of models as a baselités extension, the task generation algorithms could
for implementation permits to rise the abstractiobe easily applied to a UML design. While it would
level at which solutions are described, and openda interesting to see an actual implementation of
realm of novel possibilities for creating, analyzingthis methodology in a UML design support tool,
and manipulating systems through various types thfe lack of such a tool featuring all the novelties
tools [23]. However, not to deceive these expectatroduced in the recent UML 2.0 specification
tions, the customary attitude to system developmenirrently prohibits a similar development. However,
based on the usage of individual tools that teride methodology can nonetheless be used by first
to only operate on specific models conforming tdescribing the system according to the notation and
their own internal format has to change in favour dftructure introduced later.
standard techniques and languages [23].

Currently, the standardization process of th& Related work
MDE is strongly oriented towards the Unified Mod-"
eling Language (UML) as the primary modeling The number of works devoted to the specification
notation [8]. UML provides a variety of instrument®f real-time systems at the logical level is simply
to describe the characteristics of a generic systemt@o high to try even a short survey of the existing
corresponding models. However, it is not completg)ethodologies and languages. We will divide them
in the sense that the basic elements of the lanto the two broad categories of (strictly) syn-
guage cannot cover all potential needs for describinfronous models and languages and asynchronous
specific systems from any domain. Hence in sonfer general) models.
cases the definition of domain-specific variants of Synchronous reactive languages, such as Esterel,
the UML may be required. The UML however hasustre or Signal [6] define the system as a netlist
already been conceived for extensibility, for whickgraph) of processing blocks and assume the compu-
purpose it provides a built-iprofiling mechanism tation of the response or reaction to events by each
to extend the language with elements and construbteck takes zero time. External events are sampled
apt to describe specialized features, though remaand computation proceeds according to the discrete
ing compliant with its standard definition. time model. A formal semantics and mathematical
results allow verification of logical properties such
as liveness or correctness with respect to constraints
or invariants. In systems developed according to this

The goals of this research are centered around tnedel, the scheduling problem is solved statically
design of real-time systems, particularly focusingt compile time (equivalently, the operating system
on the mapping phase. The main goal is to providevel components are automatically synthesized) and
a complete methodology for generating an optim#ie aim of the timing analysis is making sure that the
or sub-optimal task set ready for execution on langest chain of reactions or computations initiated
real-time scheduler. To achieve this goal, we havy any event fits in the time interval between
provided two algorithms, called LA and JLA re-any two ticks. Unfortunately, these systems suffer
spectively, which analyze the functional design arfdtbm multiple inefficiencies, arising from two main
generate the task set. We have proven that the taskirces: the quality of the code generated by the
set thus generated is optimal from a feasibility poirompiler and the priority inversions and limited flex-
of view, thanks to the use of a dynamic prioritybility of the scheduling strategy. However, in those
scheduling algorithm. cases where a discrete time model is applicable and

This methodology, though efficient and easilgoncerns for safety overcome the additional costs
flexible and adaptable to specific requirementsaused by compiler and scheduling overheads, these
needed to be supported by a universal languag®dels provide a satisfactory solution encompass-
instead of being based on an ad-hoc model. For tlvigy both stages of the development. A synchronous
reason, the work has been extended to be UMteactive model (although based on a looser, semi-
compliant. In particular, an extension of the SPToermal semantics) is also at the base of the widely
profile has been developed to include the conceptsed commercial tool Simulink from Mathworks.

B. Scope and context

In this case, the accompanying code generatibes are expressed in a fundamental way, such as
tools (such as Embedded coder) generally offer thates of execution and relative deadlines has been
designer three options for generating the thregaesented in [13]. As a further example, in [16] the
architecture. The first option simply consists in authors proposed the synthesis of a cyclic executive
single thread implementation, with the associategheduling starting from a Modechart specification
drawbacks. In the multi-thread option (availablef the system.

only for discrete time models where the rates of

external and internal events are strictly harmonic) Finally, the problem of matching the logical level
all the functions activated with the same rate ate the software architecture level and the corre-
grouped in one single task and executed in lexiceponding synthesis of the task model has been
graphic order. Threads are then simply scheduldiécussed in length in the UML case by Saksena and
according to the Rate Monotonic rule. Possible racthers [20]. In their work, the authors assume a more
conditions when accessing variables shared amaygneral model of active objects freely interacting
blocks with different rates can be solved accordirtgy exchanging events resulting in (asynchronous)
to a deterministic (fixed delay) or nondeterminsignals or (synchronous) method calls. Each active
istic (semaphore-protected) synchronization modebject executes according to the base server model:
Unfortunately, in both cases, the semantics of tlasvaits messages in the input queue and processes
implementation differs from the semantics of ththem. Incoming messages to each object are queued.
simulated model [15]. The mapping and scheduling problem needs to

In the case of asynchronous models and geneaiccount for multiple constraints and design options.
languages, such as UML (similar reasoning apirst, object methods need to be executed according
plies to SDL), a mapping or synthesis procedute a run-to-completion paradigm in order not to
including formal verification of logical and timingcompromise the consistency of the object’s state.
properties is currently not available and the logic&8econd, the scheduling problem becomes a dual
and architecture models are developed in stagpsoblem: scheduling the messages in the input queue
In UML, the logical and architecture designs aref each object and scheduling the threads on the
both drawn using objects (at different levels gbrocessor. Furthermore, a method for mapping the
granularity). execution of active object methods (actions) into

The recent development of the OMG UML prothreads is needed.
file for schedulability, performance and time pro-
vided modeling constructs for specifying logical Based on this assumption, the authors discuss a
and physical resources, concurrent active objesimgle threaded solution, where all actions are im-
(threads), binding of logical objects into architectunglemented by a single thread and events are queued
objects and representation of timing attributes ary priority (only the message scheduling problem
constraints, thus paving the way for schedulabilityeeds to be considered) and a multi-threaded so-
analysis of UML architecture models. lution where threads inherit their dynamic priori-

Application of schedulability analysis techniqueses from the priorities of the messages that acti-
to the design problem can provably reduce the totedte them. A mechanism based on priority ceilings
composition time and the round implementatioprotects against multiple priority inversions when
time when tuning the design of the architecture levetutual exclusion on objects needs to be guaranteed.
by as much as 50% [22].

In the context of this work, a survey of the Unfortunately, while the single threaded imple-
existing scheduling methodologies is clearly imposaentation is analyzable and practically applicable
sible for space constraints, however, an exception(athough with some restrictions and overheads), the
necessary for previous work done in the context afulti-threaded implementations are either almost
architectural model synthesis, which bears a stromgpossible to analyze for the worst case timing
connection to our research. scenario (when thread priorities are static, as im-

An early attempt at task synthesis, mainly aimgalemented by most commercial tools) or analyzable
at solving the problem of synthesizing a graph dbr worst case behavior but inapplicable to the code
cooperating tasks where architecture-level propeayenerated by existing tools.

[I. FUNCTIONAL MODEL

Most real-time embedded systems have a simple
structure: some event (generated for example by a
sensor) or user input triggers the system’s execution,
the system does some operations, it processes the
input signal, updates the internal state and then
generates the outputs.

One natural model for this kind of structures is
the dataflow model Of course, since this model
identifies a particular structure, not all systems
(especially not general-purpose systems) can be
adequately represented using dataflow.

A dataflow model can be represented with a
directed graph. Such a graph will have inputs from
the environment, which represent the external events
that can trigger the execution. At the other end of the
graph the outputs mark the end of the execution of
the dataflow. In the middle, the collection of edges
and vertexes represents the system'’s functionality.

In this research, we use a restriction: no cycles
must exist inside the structure of the graph. This is
a common restriction in the dataflow model, since it
largely reduces the complexity of the analysis while
still leaving enough expressive power to define the
behavior of most embedded systems [6].

Our model of execution can be represented
through aDirected Acyclic Graph(DAG). Formally
speaking, théunctional modelised in this research
is a t-uple{V, £, R}, whereV is the set of vertices,
£ the set of edges, an® is a set of mutually
exclusive (logical) resources, representing shared
data.

eV = {F,...,F,} is the set offunctional
blocks They represent the basic operations of
the system. A functional block; is character-

considered at the current stage of this research
and will be the subject of future extensions.

If the block is scheduled to execute, it first
acquires all the needed resources; then, it ex-
ecutes consuming exactly one token. The du-
ration of the execution is a random variable
comprised betweerd and v;. At the end of
the execution, it first releases all resources, and
then fires its output port. If no other token is
present on the input port, the block becomes
inactive Otherwise it remains active.

E={lL,..., 1} is the set offunctional links

A functional link I; = (Fj, Fy) connects the
output port of functional blockf}, (the source
block) to the input port of block), (the sink).
One functional block can be the source or
sink of many links. When a functional block
completes execution, it fires its output port:
this means that tokens are sent on all the links
starting from that output port. When fired, a
token is instantaneously received on the input
port of the sink.

In the following, the source and the sink of link
l; will also be denoted byrc(l;) and snk(l;),
respectively.

In our model, we focus on the flow of control
among blocks. Although our tokens are pure
activation signals (i.e. they do not carry data),
an extension to typed signals is possible.

R = {Ry,...,R.} is the set of logical re-
sources that can be used by the functional
blocks to carry out their computations. They
are used to model shared data structures that
can contain state information or shared data
and that need to be executed in mutual exclu-
sion.

ized by a maximum computation time and a An external eventesults from the execution of
set of used resources, ;,. .., R;). A block a special functional block; with no input links,

F; has oneinput port and oneoutput port representing one entity in the external environ-
An input port is abuffer of infinite sizethat ment. Since external events are produced by the
may containactivation tokensWhen at least environment, we assume a minimum interarrival
one activation tokenis present on the inputtime between successive activations, denotedjby
port, the functional block is active. A functionalTherefore, an external event can periodic (i.e.
block can execute only if it is active and allith a constant interval of time between events) or
resources in the resource set are available. Eagoradic

functional block is executed once for each An outputo; is a special functional block with

activation token; therefore, if multiple tokensho output link. It represents a consumption by the

are input to a block, the activation semantiosnvironment of the data produced by the system and
is of OR type. AND type activation semanticssent to some actuator. For our purposes, an output
as allowed by other modeling languages, is ni® merely a stub where execution ends.

TABLE |

It is important to make some considerations on
PARAMETERS OF THE EXAMPLE

the execution time of a block. In practice, execution

times strongly depend on the hardware platform on e1 T1=200 | F1 71 =10
which the application is implemented. Therefore, €2 T, =300 | Fp v2=20
€3 T3 =700 E; ¥3 = 15

we assume that the hardware architecture is known
and that computation times can be estimated before
actually deploying the system. In reality, the devel-
opment process will follow a spiral model in which, s Flo) A=7T00 | Fs 45 =25
at each incremental step, the execution time of each es, Fra) A =1500 | Fy 49 =90
functional block can be more accurately estimated. Fio mo=25
A functional chainfrom F; to F;, or P(i,j), is Pu m=2

€4 T4 = 1500 F4 Y4 = 25
62,F8) A =200 Fs Y6 =5
) A = 700 F7 Y7 = 90

an ordered sequende = [[i,...,[,] of links that, e e %0
starting from F; = src(ly), reach F; = snk(l,)
crossingn+1 functional blocks such thatuk(l,) = — EE—> = 3 o —H
src(lg1). F; will be the chain’s source and; its
sink. Clearly, a sequence of functional links is i INNEHE—> F7 re —
strict relation with a unique sequence of function:
blocks. Thus a functional chain also (and mo: I e
importantly) denotes a sequence of blocks. - - <:

There can be more than one functional cha Ly 2
between two blocks and j. The k-th functional N » 2 —>h

chain betweer¥; and F; is denoted withP(z, j).
If a block F; € Py(i,7) is activated beforel),
P(i,j), the former is apredecessoiin respect to Fig. 2. Graphical representation of the example of SectieA. |
the latter, which issuccessarthe notation used is

Fp < FS.' To S|mp.I|fy the notation, W'thOUt .Ioss c)finstance of a given event triggers a new instance of
generality, a chain from#; to F; will be simply

denoted byP(i.). the path. The activation time for eveny; is denoted

A path P,(e;,0,) is a chain withe; as source with 4; ;. L o
A 7 . . : While the path deadline is a relative time con-
ando; as sink. Substantially, a path is a chain from

one end of theAG to the other. A path representsStra'nt’ independent of the actual path instance, each

one end-to-end execution of the system, from tiIi)ath |r§tance will have its absolute deadling; =
triggering of the external event to the generation 6%’”' + 5
the output. More than one path can be originated by)
one external event. A. Example of a functional model
Being the application described withtanG, no The expressiveness of the proposed functional
chain must exist which has the same block @sodel is demonstrated through a simple example
both source and sink; i.e., no cycles must exist aguivalent to the sampleufiL) object model in
the graph. Clearly, this limitation does not excludgR0]. The DAG is shown in Figure 2. The example
programming constructs like conditional loops fronconsists oft external events that activatedifferent
our modeling; simply, any loop must be entirelpaths. A total of12 functional blocks are defined.
contained inside a functional block. The periods of the events, the computation times of
The path deadlinefor P;, denoted byA;, is the the functional blocks and the deadlines of the paths
end-to-end constraint for the computation performede summarized in Table |I.
in the path. The implementation and the run-time One main difference between our model and the
mechanisms must ensure that all the functionadodel in [20] is the possibility to set deadlines for
blocks in the path must be completed at mast paths. In the model presented in [20], deadlines are
time units since the arrival of the event. assigned to the external events. This means that all
e; ; Is thej-th activation instancef evente;, and paths starting from the event must be completed
P, ; is the j-th activation of pathF;, since every before the same deadline.

However, in many cases, the functional blocks apresent and expressed in a very detailed way in
tivated by an external event can have very differetite UML extensions proposed in [18], there are no
criticalities. As an example, consider the externatferences to the notion of a path as intended here.
eventes that activates two paths, one consisting of The rest of this section focuses on the UML
blocks I3 and Fy, the other one consisting of blocks/iewpoint, i.e., we explains how to model the above
F3 and Fyy. Suppose that blocly is critical and notions into a UML-compliant notation. In particu-
must be completed before the next instance;of lar, as explained below, we have identified a specific
triggered. Therefore, the deadline for pdtfles, Fy) type of diagram, the Activity Diagram, as the central
is 700. Now, suppose that blocky, is used to log element of our profile. Activity Diagrams [12] were
some data on a secondary storage. This activityilgroduced in UML to model the procedural flow
not critical, so we could set a long relative deadlinef actions that are part of a larger activity. Since
for path P(es, Fiy). Expressing these constraintthe concepts and the scheduling algorithm we refer
with the model proposed in [20], is not easy (iin this research are based ordataflow modelin
possible), while we can naturally do it in our modebparticular on éirect Acyclic Graphrepresentation),

Another difference is that in our model we do notve note a natural correspondence with these kind of
need to associate @riority to each event. In [20], diagrams.

a customized scheduler, based on fixed priority, iResource.To model the resources, in principle we
assumed. Therefore, it is necessary to specify theuld inherit the whole set of characteristics pro-
priority of every event, introducing one more (unposed in the SPT-Profile within theSAresource>
necessary) design parameter. Instead, our schedubtgyeotype definition. In particular, this stereotype
model is based oreDF, as will be described in identifies a kind of resource that can be contended
Section IV-A. Therefore, we do not need to specifgy multiple concurrent actions and whose access
any additional priority. is protected by some mechanism. Several tagged
values are associated with the definition of resource,
but these are too detailed for our purposes, so they
will be not considered at this stage. Unfortunately,

The functional model described in Il is very pracsuch stereotype cannot be applied directly to the
tical and simple, suiting perfcetly the methodolog®bjectNodes of an Activity Diagrams [17], since
for generating task sets developed in our researthis concept does not specialize any element of the
However, since it is a custom model, it has seversereotype base class list [18]. In order to exploit
defects. Such a model cannot be designed usingha definition of resource as we utilize it in our
widely known formalism such as UML, and the deprofile, without infringing the semantics of SPT-
scription of a system would need a custom tool. F@rofile elements, we introduce a new stereotype
this reason, an effort has been made in this resea(aResource>), which is defined in identical way
to extend the UML Profile for SPT; this extensioms «SAresource>, but can be applied also to Ob-
would allow a developer to design a system usirjgctNodes.

a UML notation while still being able to create theFunctional block. A functional block is basically
task set using the proposed methodology. a unit of work with a defined execution pattern,

The usual structure in the UML community folawhich contends the use of some resources with
lowed for presenting a profile is to introduce firsbther functional blocks. Such definition corresponds
the basic abstractions we need and their semanticsthe specification of«SAaction> used for the
(which is called the “Domain Viewpoint") and therscheduling domain description in the SPT [18]. The
to define how these abstractions can be modeledSRT Profile again introduces a lot of characteristics
UML (which is called the “UML Viewpoint"). in order to clarify the role of an action, but in

The Domain Viewpoint has been broadly dissur case only theAworstCase tagged value will be
cussed in Section Il. The main abstractions wensidered at the present stage. Such value refers to
need to model focus on the notions @sources the maximum computation time of the functional
functional blocks external eventand paths Even block as defined in Section Il. This stereotype can be
though something quite similar to the concepts alirectly applied to an Action element of an Activity
resources, functional blocks and external events &egram, since it specializes the concept of an

I1l. EXTENDED UML PROFILE

Stereotype Base Class Parent Used Tags
<Resource>> ObjectNodes < SAresource>>

< SAction>> Action SAworstCase
< ExtEvent> InitialNode < SAtrigger> SAoccurrence
<Path> ActivityPartition Deadline
TABLE 1

STEREOTYPESDEFINITION

Action from BasicActions [17], which are allowedcase we want to force somehow this concept and
as base classes for the stereotyp®@aaction> [18]. model the notion of paths as introduced in Section
The execution model in Section Il allows a funcH. A path is an ordered sequence of steps that the
tional block to have a set of input or output portssystem has to execute following up an input by an
Such ports can manage tokens to transfer contrekternal event: we can then see an activity partition
step by step, between functional blocks through tlaé a container of a set of related actions triggered
defined dataflow. In the UML Activity Diagram, theby an external event and whose execution has to
actions already provide this concept by means be performed in accord to some timing constraints.
the notion ofpins Since we have represented &igure 3 depicts the notion of path into the SPT-
functional block by means of an extension of throfile domain viewpoint. The stereotyperath>,
action of an Activity Diagram, hence the ports caapplicable to the ActivityPartition UML modeling
be rightly represented using the pins. element, defines its end-to-end constraint for the
External event.As usual, in the case of embeddegomputation by means of Beadline tagged value.
systems there appears quite often the notion of soflethe execution model of Section Il the latter
event, generated for example by a sensor, whitgPresents the maximum reaction time expected for
triggers system execution. Activity Diagrams caf computation denoted as.
model the starting point for executing an activity In some cases an action could belong to more
by means of their InitialNodes [17], but in its usudPaths; in these cases the usual graphical and textual
definition no real-time annotations are possible. TH@tations of Activity Diagrams can be adopted. In
SPT-Profile, on the otehr side, provides the instr@articular, the classical UML Activity Diagram tex-
ment to model events of this kind by means of tHglal notation entails to annotate each node with the
<SAtriggers>- stereotype. However, this stereotypactivity partition or partitions to which it belongs,
cannot be applied to an InitialNode, since neith@nclosed within round brackets.
the latter, nor any of its generalization, appears inA resume of the definitions and uses of the
the base class list okSAtriggers> [18]. There- Previously described stereotypes is given in Table II.
fore for this case we introduce a new stereotygeach row specifies: the name of the stereotype; the
(<ExtEvents) defined as<SAtriggers, which can classes of the UML metamodel to which it can be
be applied to the InitialNode modeling concep@pplied Base Class); the name, if it exists, of the
At the moment, the only tagged value that wextended SPT-Profile stereotyplafent), and the
associate to this new stereotype is Sr@ccurrence tagged values defined or requirédsed Tags).
one, which defines the pattern of inter-arrival times
between consecutive occurrences of the trigger, as IV. SOFTWARE ARCHITECTURE
specified in [18]. Referring to the notation adopted According to our methodology, a functional
in Section I, this tagged value corresponds to theodel must bemappedon a set of real-time tasks.
characteristic of an external event denotedlas A task is denoted with; and itsj-th instance is
Path. In their classical formulation, Activity Di- 7, ;, activated at a time, ;. Relative task deadlines
agrams allow to group flows of actions by mearare denoted byD, ;, while absolute ones aré, ;
of activity partitions (these are also sometime refreferring to thej-th instance of task;).
ferred to asswimlaney The grouping is made with Task 7; starts its execution for thg-th instance
respect to the role of some entity or process whad times; ;, and the execution is terminated at time
is responsible for carrying on those actions. In oyf ;. The deadline is respected ff; < d, ;.

Path SResource f— — — — |

+Deadline |
From SPT-Prafile
L. 0.1+ usedresources | |
1..* i belong n.* | |
SAction . Trigger
+iworst-caseCompletitionTime | o # n. + | toccurrencePattern
+ precedents

Fig. 3. The extension on SPT-Profile with tRath

TABLE Il

Theresponse timéor the j-th instance of task;
SUMMARY OF NOTATIONS AND DEFINITIONS.

is the time difference between its finishing time and

its activation:r; ; = f; ; — a ;. F Functional block
. . . . l Functional link
The computatlop tlm.eci,j for the j-th mstz.ance. . External event
of task 7; is the time it would take executing if 0 ~ Output
there were no other concurrent tasks;(< r; ;). P Functional chain or path
. « T
The worst case execution time of a taskdenoted 5 Functional blockwcET
as C;, is given by the sum of thevCeTs ~, of C TaskwCET
all functional blocks contained in the task. Since ‘ TaskEC\/Z“r:f;E?it\'/C;rt‘i;'r:“tfm(:C‘”a)
a task is st_rictly seqqential, the only approx_imation o Task activation time
introduced is neglecting the overhead resulting from 5 Task start time
signal latency on the bus, scheduling overheads, and f Task finishing time
r=f—a Response time
SO on. w=s—a Waiting time
The base deadlineof a task instancey; is the ? Ff’ ;tt:]‘ ;Efé'l‘fedgggg{:ﬁe
time di_fference between its absolu_te deadline and D Task relative deadline
the arrival of the external event which caused such d Task absolute deadline
. . b H
instance to executd?? , = d;., — A; j, wheree; ; is D [Base deadiine
ible f fi t £ Duration of critical section
responsibie tor activating,;. T Preemption level
A task can use resources in mutual exclusion. The ceil(R) Ceiling of resourceft

use of such resources derive from the functional
blocks that the task executes. Therefore, if a func- . _ .
tional block F; is implemented by task; and the inversely proportional to its base deadline:

functional block uses resourde,., we say that task 1
7; UsesR, with a critical section of duration equal T = o
to the wCeT of Fj. We denote by, , the longest i

critical section among all critical sections of task Fqr each resourc®. we define aceiling:
on resourcer,.

We assume that the underlying scheduling policy ceil(R) = miaX{m | 7; usesit}.
implements a synchronization protocol like Priority
Ceiling [21] or Stack Resource Policy [2]. There- Table 1l summarizes the symbols defined in our
fore, we define a preemption level for task -, mathematical model.

10

A. Execution platform B> > 2 —>» 1 >l

We assume that the application is implementse Al
on a single processor architecture, with a ree L A
time operating system. We assume earliest deadl * = +—H

first (EDF) as the scheduling algorithm, but the N> fe »—» & v

task model is not the usual periodic/sporadic mode:

and tasks are not assigned periods or MINIMWY 4 sample application graph.

interarrival times. While a task activated by an event

is considered to be periodic or sporadic (having the

same period or minimum interarrival time as the priority task. In other words, a task never
event), a task that is activated by another task cannot activates higher priority tasks. This provides
be assigned a period (analysis based on the min- an upper bound to the maximum number of
imum interarrival time would be too pessimistic). preemptions;

A task is assigned an absolute deadliieupon . the generation of the task set must not depend
activation. on the computation times of the blocks;

« the parameters of the tasks (deadlines or prior-
V. GENERATION OF THE TASK SET ities) depend on the end-to-end path deadlines;

In this section we present the methodology for The two algorithms presented in this research
mapping functional blocks to real-time tasks, an@e called Late ActivationL@) and Joined Late
to generate the task real-time scheduling parameteitivation (JLA). To show the differences between
The general problem is quite difficult because theteem, the sample application shown in Figure 4 will
is a high number of possible mappings. Rather th&g used. ThenCETs of the functional blocks are
exhaustively searching among all possibilities, wghown below:

propose two different algorithms that derive the [Block| Fy | Fy | Fs | Fy | Fs | Fg | F»
task set with complexity linear in the number of ~ 6 1 31311412713
functional blocks, according to their topology. We
will prove in Section VIII that such algorithms are
optimal for the single processor case and assumi

The DAG has three paths with the following
racteristics:

EDF as scheduling policy. o P, = ey, F1, Fy, Fy] has a relative deadline of
The basic ideas underlying the two algorithms are 21 = 18; _ _
the following: o P, = ey, I, I, F5] has a relative deadline of

each functional block is mapped onto only one
task (this assumption can be removed in future
work);

if two blocks belong to the same paths and
one is the successor of the other, then the two
blocks are candidates for placement in the same

task: The algorithm analyzes theaGc and creates the

if there is no path between two given blockdask set in two steps: in the first step, the tasks are
these cannot be assigned to the same task; created, and the functional blocks are assigned to
once a task starts executing, it never blocige tasks; in the second step, it assigns the real-time
waiting the completion of another task; in otheparameters to the tasks.

WOde, the 0n|y Synchronization mechanismSI The algorithm for Creating the tasks is shown in
used in our model are the activation of a taskigure 5.

and mutual exclusion semaphores for sharede. Lines 1-3: every event activates at least a block
resource; which must be processed by the algorithm.
once a task starts executing, it can be pre- After all successors of an event have been
empted before completion only when an exter- considered (and the queu@ emptied), the
nal event results in the activation of a higher analysis proceeds to the next event.

o Py = ey, Fy, F7, F5] has a relative deadline of
A3 = 25

Late Activation

11

Al gorithm LA

Vari abl es: a queue @ of bl ocks,
initially enpty;

1: For every event e; {

2 insert the successor of e; in the queue Q;
3: while (the queue is not enpty) {
4 extract block F, from Q;

5 if (Fr, is not an output) {

6: create a new task 7j;

7: condition = true;

8 while (condition) {

9 insert Fp in 7y

10: if (F, has only one successor Fj
11: and F, has only F, as predecessor)
12: insert Fj in 75

13: continue the cycle with Fy = Fy;
14: } else condition = fal se;

15: }

16: all successors of F; that are not
17: al ready part of a task are inserted
18: in Q

19: }

20: }

21}

Fig. 5. Pseudo-code for Algorithma.

« Lines 4-17: this cycle represents the processinge activate the successor tasks.

of an event and all its successors. _ . .
. Line 5: if an output has been reached, then Notice that all successors are activated just before

there is no other block in the path. The a|goqompletion of the task instance. Also, the activations
fithm moves to the next element in the queué'® buffered; therefore, it can be that while a task

. Lines 6-9: a new task must be created arfiXecutes, itis activated again by some other external

blocks will be inserted into it. At least one€VeNt or by some other task. In this case, the

block will be used: the presence of other block&Ctivation remains pending and is buffered until the
depends on theac topology. task completes the currently executing instance.

« Lines 10-14: if F};, has only one successéi,, Among all pending activations, the one corre-
and is its only predecessor, then all paths cosponding to the path with the shortest deadline must
taining F}, also containt},. When this happens,be served first. Therefore, each activation carries
the two blocks will belong to the same taskinformation about the corresponding path deadline,
Otherwise, the current task is finished, and wand the incoming activations are inserted in a queue
leave the cycle. ordered by deadline.

» Lines 16-18: at this pointf, will have some Once the set of functional blocks has been par-
successors; these might have been procesggéned into tasks, we must assign the scheduling
earlier in the algorithm. If this is not the caseparameters to the tasks. Each instance of an external
then they will be queued for later iterations. eyent may result in multiple activations of internal

Notice that the precedence relations overthe tasks, but only one for the first task in the path. The
imply precedence relations over the tasks. As rgles for assigning the deadlines are listed below:
consequence, we obtain a set of precedence related
tasks, a model similar to the one by Chetto and "
Chetto [11]. All tasks will have the same following
cyclic structure:

every time a task is activated by an external
event or by a functional link, it is assigned
an absolute deadline equal to the minimum
absolute deadline of all sub-paths originating
« wait for next activation; from the activation event.

« execute the assigned functional blocks; . a task activated by an external event, let it be

12

OO - |

Fig. 6. The precedence relations among the tasks generated.b 1 L L L

71, has an absolute deadline of

_HH

Fig. 7. Schedule produced .
dy = min{d; | 1 € B},
(2

« the absolute deadline of a task € P, which The first interval of the schedule obtained when
is activated byr,_,, € P at time f;_,, is all events are activated at tindeis shown in Figure
. 7. One important property of this algorithm is that a
dig = mjm{&j | a0 € Iy} task can only be preempted by the activation of an
external event. In other words, the tasks in a path
: . . . oing from one external event to an output have
functional blocks is not required for computing the, - easing absolute deadlines: therefore, every task

deac_jlmes. has always priority over its successors.
It is important to underline that, when activating a

task, we must specify its current absolute deadling. ANOther important observation regards the way
Also, activations must carry information about thi'€ &lgorithm generates the tasks. Basically, every
absolute deadline, computed according to the pfdne one functional block has mko:ce than one suc-
vious equations. Unfortunately, this is not usuall esso:, we create one Pew tas I t())lr ell/ehry Succes-
available in commercial implementations of ther SCF- AlSO, every time a functional block has more

scheduler. We will discuss the implications of thifhan one ihcoming link, we create a new task that
characteristic of the algorithm in Section IX. starts from this block. This second rule makes the

Finally, in the classicakEDF scheduler, deadlineSChe‘ju'albility analys.is more diffigult; In fact, suqh a
ties can broken arbitrarily. In this research, w sk ca}nnot be conS|dgred a periodic because it can
assume that oUEDF scheduler does not allow°® act|vate_d by two c!n‘ferent ext_ernal events _that
preemption between tasks with the same deadling?" have different perlod§ or minimum mtera_rnval

times. Also, every time this task is activated, it can
be assigned a different base deadline, depending on
B. Example withLA which event the activation comes from.

To demonstrate howA works, we show the Inthe example, task, can be activated by task
results of the partitioning on the example of Figurand by taskr: when activated bys, it is assigned
4. The task set and its parameters are listed belcabase deadline equal to the deadline of path-
le1, F1, F3, F5], which is equal toA, = 22; when

Notice that knowledge of thevCeTs of the

Task 1 T T3 | T4 Ts S . . -
it is activated by taskm, it is assigned the base
Comgone”ts fgl Fzleﬂr 23 115 Fﬁf? deadline of pathPy = [es, Fy, o, Fs], which is

Az = 25. Notice also, thaty is not a periodic task,
The precedence relations among tasks are d@ce it can be activated by event and by event
picted in Figure 6. €.

13

As we will see in Section V-E, a schedulability
analysis can still be carried out: one possible so-
lution is to analyze each different activation sepa-
rately.

C. Joined Late Activation a

Algorithm JLA is an improvement overA that
tries to reduce the number of generated tasks. The
pseudo-code for the algorithm is shown in Figure
8. The differences from the one shown in Figure 5
are displayed irboldface.

. Lines 10-12: if F, is assigned to taskj, it is Fig.- 9. The precedence relations among the tasks genenatachb
likely that one of its successors will be assigned
to the same taskF}, belongs to a set of pathg
P ={P,...,P,}; each one of its successor " : h J’
belongs to a subset ¢?. The minimum path |
deadline will beA = min{A, | P, € P}. There |
will be at least one successor 6} contained |4 [\
in a path with deadline); this will be the .
candidate successor. In case there is more th " l
one they will all be candidates, and failing th¢!< |
first another one may be tested. If the candida
has only one input link, then it will be included _ l
in task 7;. The task cannot contain a block '3: 5 3 0 *
which does not belong to the path with tht
minimum deadline, otherwisg would activate i, 15 schedule produced bya.

a task which would immediately preempt it.

o Lines 14-15: all successors except the one
which was included in the task, unless they |t is important to point out that, since these tasks
have already been assigned to other tasks, myfictly follow the blocks’ properties;; will execute
be queued for later processing. for at most6 (which will actually be4 in our

The main difference is that, if a functional bloclexample) time units, then activates before going

has more than one successor, the one belongingoto with its execution. The resulting schedule is
the path with the shortest base deadline is selectdthrted in figure 10.

and inserted in the same task. Notice that, as before,

the precedence relations in tmaG imply prece- E. Schedulability test

dence relations among the generated tasks. _ _ N
In this section, we propose a schedulability anal-
_ ysis test for the generated task set. Let us start to
D. Example withjLA analyze the schedulability of the task sets produced
When partitioned withiLA, the example shownby Algorithm LA. We will then show that the same
in Figure 4 produces a set of four tasks, as shovanalysis can be applied to the task sets generated

in following table: by JLA.
As anticipated in the previous section, the main

B
I

Task T1 To T3 T4 . X
problem is that when a task can be activated by
Compconents Fl’fé’FA‘ 1;3 115 F65F7 more than one task, belonging to different events, it
cannot be modeled as a periodic or sporadic task.

The precedence relations between the tasks #&mefact, each time this task is activated, it can be
depicted in Figure 9. assigned a different task deadline. The basic idea

14

select Fj, as the successor of Fj that belongs to
the path with the minimum relative deadline A

all successors of Fj not already assigned
to a task, except Fj, areinserted in Q
continue the cycle with Fi = Fy;

Al gorithm JLA

Vari abl es: a queue @ of bl ocks,

1: For every event e; {

2: insert the successor of e; in the queue Q;
3: while (the queue is not enpty) {
4: extract block F, fromQ@;

5: if (Fr is not an output) {

6: create a new task 7j;

7: condition = true;

8: while (condition) {

9: insert Fjp in 7j;

10:

11.

12: if (F1, has only one predecessor) {
13: insert Fj in 75

14.

15:

16:

17: } else condition =

18: }

19: all successors of

20: part of a task are inserted in Q;
21:

22: }

23}

initially enpty;

fal se;

Fy, that are not already

Fig. 8. Pseudo-code for AlgorithraLA.

(L
©
(@

Splitting taskrs.

Fig. 11.

underlying our analysis is teplit such tasks (and all

the successors) in many tasks, one for each different

activation.

Let us clarify the idea with an example. Consider
again the precedence graph of Figure 6. We split

taskr, into two different tasksy; andr?, activated

by tasksr, ands, respectively. The resulting graph

is shown in Figure 11.

root can be associated the same pefipénd each
task is always assigned the same base deadline. The
same thing happens with tasksand 72.

However, we also have to take into account an
additional constraint: since; and 7} are actually
the same tasks; is not allowed to preempt;
and vice versa. To account for this non-preemption
constraint, we introduce pseudo-resourcéor each
split task. In the example, a resourBg, is created,
and every timer} or 77 are activated, they must first
lock resourceR,, before starting to execute.

Generalizing, we transform a precedence graph
in a set of trees, according to the following rules:

« every external event becomes the root of a tree;
the tree contains all the tasks activated by the
corresponding root event;

suppose that a task is activated by many
events or tasks; we split the task into many
identical “pseudo-tasks”, one for every differ-
ent incoming activationr;, ..., 7", wherem

is the number of different incoming activations.
All of them will have the samencCET; each

As you can see, in this case, the original prece-
dence graph has been separated into a “forest” of
trees. Each tree has an event as root. Now, task
71 can only be activated by task and hence by
evente;. Therefore, all tasks in the tree with as a

one has a different base deadline, depending on
the corresponding path. Moreover, since a task
cannot interrupt itself, we create a “pseudo-
resource” R,,, shared between all the split
tasks originated byr;, to prevent them from

15

preempting one another. Each split tagkis period, an alternative formula fdr* is the following
assigned a critical sectiog’, with duration [4]:

equal to thewceT of 7;. In addition, when a . Umax,(T; — DY)

task is split, all its successors must be split too L= 1-U :

with the same method.

_ i Theorem 1. Given a task set generated by algo-

At this point, each task (both normal and pseudgihm La, and the corresponding precedence graph,
task) can be associated a perigf equal to the consider the task set obtained by transforming the
period (or minimum interarrival time) of the rOOtprecedence graph in a forest of trees according to

event. We have then transformed our set of cofflje ahove methodology. The task set is schedulable
plex tasks into a set of sporadic tasks, for whigh Equation (1) is verified.

schedulability analysis techniques are well-known. b5 The proof simply descends from the

To test the schedulability of the generated tagfocessor demand analysis. Proofs of correctness for
set, we use the processor demand criterion, f!’i?&uation (1) can be found in [4], [10] and [19
proposed by Baruah et al. [4]. According to thiS ginayly it is straightforward that the above
criterion, the worst case condition is when all eventgpeqyapility test is valid both for the task sets gen-

are activated at the same time, that by convention Wg,iaq byLA and byJLA. In fact, the transformation
denote with timé). Then, we must test the processqfathod can be applied to bOIliIlA andLA.

demand in all time intervals starting from tinte
until the first idle time. The two conditions to check
are the following: VI. EXAMPLE

This section exposes an illustrative example on
N C; the complete use of the proposed methodology, from
U= ZT <1 the description of the system using the extended

=1 " profile, to the application of theLA algorithm for
generating the task set from the functional blocks,
N I_ Db to the execution of that task set on a scheduler. In
VL < L*’Z {Q _ iJ + 1) CZ} +B(L) < L, Pparticular this example shows a scenario where a
i—1 T; 0 system collects informations form the environment
(1) by means of a sensor, filters them and update the
where N is the number of tasks, including théts control subsystem. At the same time the filtered
pseudo-tasks generated by the transformation deformations capturer, can be transformed in a hu-
scribed above, and = Y7, % < 1 is the total man readable form and stored in a log repository.
system load. The term®(L) is the blocking time in Periodically a user can query such repository in

interval L and it is defined as follows [19]: order to monitor the whole system.

(2

1
B(L) = max {sz,r | Db > L A ceil(R,) > _} , sensor User O Lser iput

L ”—E
Finally, L* is an upper bound to the end of the ¥

busy period. It is defined by a recursive equation: Sampler i) G

Logger

N
Fo=2.¢ gl L,
1=1 —
N Controller Tranmsform
L*(k—1)
L(k) =Y | ——| C;
() Z [T, -‘ Fig. 12. The Scenario in the Example

=1

The recursion ends wheh*(k) = L*(k — 1), and Figure 13 depicts the use of the extended notions
convergence is guaranteed whéh < 1. In the of UML Activity Diagrams in order to model the
special case in which all deadlines are less than tinéormal scenario in Figure 12.

16

The model is composed by three patisté- Last, we applyrule 3. It specifies that;, should
Control, SignalRecord, UserLog). Each of them is not include theTransform block, but rather thectri
represented by an Activity Partition stereotyped ddock; this is because thpataControl path has a
<Path> and their deadline is represented by thsricter deadline than theignalRecord path. If the
tagged valu®eadline set to 18, 40, 200 respectivelypartitioning used were the one described above, the
DataControl and SignalRecord share the same exter-Transform function would be executed before thel
nal event ¢1) and the first two functional blocksblock, resulting in a priority inversion. The final task
(Sampler, Filter). e1 produces the stimulus for theset is as follows:

system with a constant interval of time and INaskT Functional blocks | Deadlinel Period
particular each 40 msec. On the other havkdrLog 7| Sampler, Filter, Ctrl 13 10
has its own periodic initial nodee%), but share its 72 Transform A0)
last action node wittsignalRecord (Logger). At last, - Logger 40/200)
each functional block was modeled by an action T4 Userlnput 200 100

stereotype as«SAction> and the duration of the
their execution is represented by the tagged valueDeadlines have also been assigned according to
SAworstCase. the rules described in Section V. These are the

From this formalization of the system, by mean@Psolute deadlines relative to the first instance of
of a transformation engine the UML scenario caf€ tasks; subsequent instances will have greater

be provided as input to the algorithms described fifadlines. It is possible to assign relative values
Section V in order to obtain an activity schedulfor deadline; these would be the base deadlines;

ing if it is possible. For the motivations arguedioWwever, they are not in the scope of this article.
in Section I-B, at the moment the engine is not @ andy are actlvatgd by extern.al events, there-
already implemented, although theoretically sudRre they can be assigned a period equal to that

transformation is possible. of the event. On the other hand, and7; do not
The table below shows in a compact form thgave an explicit period, since they are activated at
path structure of the example: non-periodic intervals after the execution of their
predecessors.

Path Functional blocks A The reason whyr; is assigned two different
DataControl Sampler, Filter, Ctrl 18 | deadlines is because it is activated twice, once by
SignalRecord Samp., Filter, Transf., Log 40 | 7, and the other byr,. When activated byr, its

UserlLog Userlnput, Logger 200 | deadline is that of thesignalRecord path, i.e.40;

We can now apply our partitioning methodolog;}f"he” activated byr, it has the deadline of the

as explained in Section V. We first uage 1, which Usertog path, which is200.

states that every task must be included in a path.TNiS task set is ready for execution on &DF
One possible resulting task set is shown below: scheduler. The Gantt chart produced by a simulation

of the schedule is shown in Figure 14. In the chart,

Task Functional blocks up-pointed arrows represent task activation times,
71 | Sampler, Filter, Transform, Logger while a task deadline is depicted with an arrow
To Ctrl pointing down. Rectangular blocks (independently
T3 Userlnput of their color) show the task running on tlzeu.

This partitioning is not in accordance withle 2, Starting from anxmL representation of theAg,

because theogger block has more than one inputthe whole methodology, from the task partitioning
link. By applying the second rule, we obtain th nd the deadline assignment to the simulation, has

een executed with a tool we have developed.

following:
Task Functional blocks VIl. PREEMPTION BOUNDS
71 | Sampler, Filter, Transform '
Ty Ctrl In this section, we provide worst-case bounds for
T3 Userlnput estimating the number of preemptions in the system.
T4 Logger The following theorems are based on the concept of

17

<zPath=x <«Path=> <zPath==
DataControl SignalRecord UserLog
<<ExtEvent>> el <<ExtEvent>> g2

Shoccurrence=periodic, 40

—| 5Aoccurrence=periodic, 100
{DataControl, SignalRecord)

(UserLog)

ShworstCase=10 k
(UserLog)

<=Shction>>
Sampler

[]
<=Shction =
Filter

ShworstCase=6
{DataControl, SignalRecord)

ShworstCase=3

{DataControl, SignalRecord)
ShwmorstCase=1 k _
{DataControl)

[]
<=Shction>>
UserInput

ShwmorstCase=10 k
(Signalrecord)

|
[

<<SAction==
Transform

[]
<<SAckion=> SéworstCase=10
Logger (SignalRecord, UserLog)

®

Fig. 13. A DAG representation by means of the UML Activity Biam extension.

el @l ml m! ml ml ml ml
N B S S R L

[]
<=SActionz =
Chrl
[

T [- R
. ip ir ip ir ip ir ip .
. FipﬁfiripﬁFiTih
Fig. 14. Schedule chart example.
transaction A transactionl’ is the complete, worst- Proof: In LA, a task can only activate other

case set of functional blocks executed upon arriviasks in the same transaction instance at its comple-
of an external event with a minimum interarrivation time, hence no preemption can possibly occur.
time equal to that of its source event. The numbér JLA, it is possible for a task to activate another
of transactions in the system is clearly equal to thask in the same transaction before it completes,
number of external events and each transactionbist the newly activated task always has a deadline
a tree of functional blocks (Section V-EJ;(k) higherthan, or equal to the deadline of the activating
refers to thek-th instance of transactiol;. For task 7. This is because the set of paths to which
practical reasons, we denote an event, its minimumbelongs is a superset of the path sets of its
interarrival time and its transaction with the samsuccessors, and the minimum path deadlinefor
index. will always be less than or equal to the minimum
A transaction contains a number of paths aer‘th deadline f(_)r _its SUCCESSOrS. Since preemption
the path sets of different transactions have a n@nong same priority tasks is disallowed, then proof
intersection. Among all paths ifi, the minimum 'ollOWs. u
and maximum deadlines are labeled, respectively asTheorem 3: If a transactioi’ has a minimum
A™n = min{A; | P, € T} and A™* = max{A; | interarrival time 7' such thatT + A™" > A™,
P, eT}. then a job in the k-th instanc& (k) will never
Theorem 2: The execution of a taskin the pe preempted by a job belonging to the following
transaction instancé’,; (k) cannot be preempted bynstances'(k') with &' > k.
another task in the same transaction instance. Proof: Assume the triggering event of instance

18

['(k) arrives at timeA. Then, the least possible timenumber of task frames that are active and need to
for the activation of the next instandg(k + 1) will be stored in the system stack at any given time. This
be A+7T. The maximum deadline for a task instanceound can be used to provide a better estimate of
7, iIn T'(k) is d; = A+ A™* and the minimum the amount of RAM memory that is required for the
possible deadline for a tagk in I'(k + 1) is d; = execution of the system.

A+T+A™", From our hypothesis of it is clearly

dj > d;. Therefore, every job deadline (k) is VIIl. PROOF OF OPTIMALITY FORLA AND JLA
lower than any job deadline i(x +1) and also in In this section, we demonstrate that the task

P(K') with & > &.) synthesis algorithms of botba and JLA are opti-

. C;orollarym}n: In a system with, external events, a1 ynderepr scheduling. The following theorems

IfVi, T+ A7 > A", then the maximum possibley o e that task sets generated by and JLA are

number of preemptions at any given timenis- 1. £ schedulable if and only if the task set produced
Proof: Given Theorems 2 and 3, if the abov%y one-to-one mapping of tasks to functions is

property is true a task can never be interrupted R{pequlable undezpr. Given thatepr scheduling

another task in the same transaction (regardlessjOfstimal in the case of independent tasks, then both

the instance). The only possible preemptions ajes andia are also optimal scheduling algorithms

between different transactions, and since there akeihe case of independent function trees.

n in total, there can be a maximum of — 1 |t scheduling overheads are considered, them

preemptions ana active tasks at any time. B ,5q,ces less context switches and it is clearly to
Please note, if deadlines are not assigned to patl'i'é'preferred over the other methods.

but to transactions (as in [20]), thel™™ = A™* 14 the following, the termFull Deadlinesrefers

and the limit on the number of preemptions holdg, the deadline assignment policy giving a task a

regardless of the interarrival times of the transaggsdiine equal to its minimum path deadline.

tions. _ _ We first show that, in case of independent trees
The above results can be generalized to find tBd functions, a one-to-one mapping (one task per
maximum number of active tasks in the systefynction) using theFull Deadlines assignment is
when the condition on event interarrival times angptimal. Then, we prove that the grouping of func-
transaction deadlines of Theorem 3 cannot be gugbns into tasks performed by then and theJLA

anteed. In this case, it is possible to bound thggorithms do not compromise schedulability.
number of future instances of a transaction that can

possibly preempt a transaction instance. . L
Theorem 4: An instance of a transactioli(i), A. Full Deadlines Opt'm?hty '

can be preempted by a maximum k¥ future ~ Theorem 5: If a generioAG systens is mapped

instances of the same transaction, i.e., the 160 a task setl’ by assigning a unique task;

instance that can preemmt(l') is F('i—l—]{:M), where for each functional blockF;, and if every task
7; iIs assigned a deadling; equal to the lowest

M Amar — Amim @) path deadlined among all paths to which block;
T belongs to, then a necessary and sufficient condition
Proof: If we assume periodic transactionsfor feasibility of S is that7 be EDF feasible.
which is the worst-case assumption, thefi) will Proof: S is feasible = T is EDFfeasible. If
be activated at time7. Its longest deadline will S is feasible, then a schedute exists such that
be i7"+ A™e. The i + k-th instance of the sameevery pathP; finishes its computation within its
transaction will be activated at tim{é+4)7, and the path deadline);. Every functional blockF;, conse-
shortest deadline of its tasks will Be+k)7'+A™". quently, must have ended before the path deadline of
The preemption is possible {fi + k)T + A™" < all paths to which it belongs?j | F; € P;, fi <6,
iT + A™e*, which is true if k < 222"~ In where f; is the finishing time forF,. If d; =
addition, k. must be an integer; hence Equation Znin;{J; | F; € P;} is the minimum path deadline
B for F;, we havef; < d;. According to theFull
The bound on the number of preemptions occubeadlinesassignment; is also the deadline for
ring at any given time can be used to bound thaskr; (implementing blockF;). It follows, that the

5\\\ LAtasks .. - "% 34
LA tasks 3 i :

0, <0, <08; <3y
Fig. 15. LA grouping of functional blocks.
Fig. 16. JLA grouping ofLA tasks.

feasible schedule fof is also a feasible schedule _
for T SinceEDF is optimal and a feasible schedul§chedule forl” can now simply be constructed by
for T exists, then the task s&tis EDF schedulable. Scheduling task;. on the CPU at time;, ;. 7, will

T is EDFfeasible = S is feasible. If T is epF finish in Jkns SINCE it executes for the sum of the
feasible, then every task, completes before its COmMputation times of the func'FlonaI blocks mapped
deadline and so does the corresponding functiofai© it. The task schedule faF” is guaranteed to be
block F;: f; < d;. Butd; = min{4; | F; € P;}, then EDF becaus.e the task deadlines matc_h the deadlines
fi <d; = Vj | F; € P;, f; < 6,. This means that of the functional sets they are replacing.
every functional block executes before the deadlines!” is EDFfeasible = T'is EDFfeasible. Let 7, be

of all paths it belongs to. Thers is feasible. m @ taskin7” which containsF; and £, respectively
assigned ta; andr; in 7. If 7" is schedulable, then

o fr < dj. According to theSimple Partitioningules,
B. LA optimality F; and F; must necessarily belong to the same set

The second step is to prove that the grouping of pathsIl, so their minimum path deadlinels and
does not compromise the optimal schedulability of; are the same, and they are equaltoTherefore,
the Full Deadlinesalgorithm. independently of the order of the two blocks, since

Theorem 6: If a task sel’ is a one-to-one as- 7 €xecutes bothf; < d; and f; < d;, making the
signment of functional blocks from a feasilac task setl’ feasible. |
systemS' using the Full Deadlines assignment, and
T’ is the task set created by applying the
grouping toS, thenT is EDF feasible< 7" is EDF
feasible. Finally, we assume that BAG system is parti-

Proof: T'iseDFfeasible = T"isEDFfeasible. tioned using theLA algorithm, with theFull Dead-

Let ¥, = {Fk1, Fro, Frn} be the set of func- linesassignment. We need to demonstrate that such
tional blocks assigned to the same taskin 7’ a task set is schedulable if the task set generated
whereF;. ; < F}. ;11 (Figure 15). They belong to thewith LA is schedulable, and vice versa.
same set of pathH,. This means that task, € T’ Once again, the proof exploits equivalence of the
and all tasks implementing the functional blockdeadlines of all theA tasks that are merged into a
{Fy1, Fi2, Fi.n} In T have the same deadlidg,; = singleJLA task. In fact, when a functional blodk;
dpo = ... = dp, = dp, = min{é | P, € I} . has more than one output, the succesBgrwhich
According to theeDF scheduling rules, tasks withis assigned to the same task ya is the one on
the same deadline can be scheduled in any ordée path with the shortest deadline (Figure 16).
Hence, if T is EDF feasible, then there exists a Theorem 7: If a task séf’ is created using the
feasible schedule where all the functional blocksa algorithm from abDAG systemS, and 7" is the
sets belonging to the sekg, for all k, are executed reduced task set created withA, 7' is feasible<
consecutively, froms;, to f;,. A feasible EDF 7" is feasible.

C. JLA optimality

20

The proof is similar to the proof afa optimality, > o o R e
considering thatiLA tasks groupLA tasks with A \
identical deadline similarly to the wayA tasks ¥ a8 x %
group functional locks with the same deadlines. Tt ’
interchangeability of tasks with the same deadlir) |
in an EDF schedule can be used to demonstra
equivalence with respect teDF schedulability of il & +—» i +——H
the two sets.

Fig. 17. An example obAG not schedulable by fixed priority.

IX. CONSIDERATIONS ON IMPLEMENTATION X A SAMPLE COMPARISON

As described in Section V-A, the way the task set ' this section, we show the advantage of using

is generated requires the operating system to supp%tl’f methodolqu, based ®DF schedulm_g, over_tht_a

some special functionality that is not available fro ethodplogy in [20] that is based on fixed priority
current operating systems. In particular, if a task C&qhedullng. The authors of [2.0] menUop a heuristic
be activated by more than one task, and hence orlthm_ t_hat tentatively assigns functional bloqks
more than one event, it must be assigned a differ d priorities to tasks_ until a schedL_JIabIe solution
base deadline depending on which event the activ _found. However, since the algorithm was not

tion comes from. Therefore, each activation has scribed in detail,.we could not compare it again;t
carry information on the event that originated th@Urs: Rathler, we wil try to use both rate monotonic
d deadline monotonic priority assignments.

activation itself and on the deadline of the shortef' : SR

path that can be originated from the task. Also, sinceThe exampleDAG is shown in Flg.ure 17. The

pending activations must be buffered, they must YECET of the blocks are the following:

served in an earliest deadline order. Block | Fy | Fy | F5 | Fy | F5 | Fs | Fx
While the shortest relative deadline among all the v 130]10]30]20]50]40)35

possible outgoing paths can be statically computed,The relative deadlines assigned to the paths are

the activation time of the event and the externgde following:

source that triggered the execution path must be, Py, = [ey, Fy, F5] has a deadline ah;, = 100;

dynamically communicated along the chain of com- Py — [61’ F17 F», F5] has a deadline of\, —

putation by adding the appropriate information to = 5. Y

the signal. o Py = [e, F, F,, Fy] has a deadline of\; =
Implementing such mechanism can be hard, since 30:

it demands for additional run-time overheads, limit- | p, — [¢,, Fy, F+] has a deadline of\, = 150.

ing its adoption in embedded systems with Iimitegina"y, the period ofe, is T, = 300 while period
computational resources. of ey is Ty = 150.

In Section V-E, we present_ed a mechanism to By applying algorithmiLa to the bAG, the fol-
transform a precedence graph in a set of precedengging tasks are derived:
trees (transactions), by splitting tasks that have more

- - L - Task T T T T.
than one incoming activation. In this way, every 1 2 3 4
task is assigned a fixed base deadline. Therefore, Components 14, 5 | Iy, Is | 1y | Fy, I
all tasks activated by one external event can be gb 14000 25000 35000 17550
activated at the same time with their own fixed base
deadline. This can be easily implemented also as an T 300 300 | 300 | 150

user space library, without any modification to the Now we suppose that these tasks are assigned
scheduling mechanism. However, the transformatidiged priorities, using rate monotonic: tasks, 7
method generates many more tasks and resouraes] 3 have priority 1 (the lowest) while taskr,

and this in turn may require more overhead artths priority 2 (the highest). By applying response
more memory to implement the application. time analysis, task; has a worst case response

21

time of 115 that is greater than its base deadlineleadlines and the activation rates of tasks and

Therefore, the system is not schedulable with thevents.

priority assignment. The TGFF tool generates task graphs (graphs of
Another possibility is to try a deadline monotonidunctional blocks, for the purpose of our study)

priority assignment. In this case; has priority based on the configuration parameters defined in

4 (the highest),r, has priority 3, 7 has priority the tgffopt input file and it produces dgff file

2 and 73 has priority 1 (the lowest). Again, by with a text description of the graph. The graph

applying response time analysis, we obtain a worgscription produced byGFF contains a table with

case response time fop of 240, greater than its the timing attributes that are assigned to each block:

deadline. computation time, period, and also deadline (in the
Instead, by applying Equation 1 the system resul&st version of the program). In our case, period
schedulable by¥DF. and deadline are used in events (root nodes) and

Please note that the example is not simply @utputs (leaf nodes), respectively and ignored in
pathological case, but it is representative of an entiggher nodes. Unfortunately,GrF assigns deadlines
class of software models where a single exterrigl nodes in a deterministic way, based only on their
event triggers more paths with different deadlineslistance from the root node (in direct proportion).
Furthermore, even if the current version of the
program allows generating graphs with multiple
root nodes, the graph generator assigns the same

We performed several experiments on randomigctivation period to all of them.
generated task graphs in order to verify the time andin order to provide the additional flexibility and
schedulability efficiency of the algorithms, whemenerality required for our real-time analysis, we
compared to state of the art solutions based on fixaglote a feeder program (ia++), which creates the
priority scheduling. The following parameters weregffoptoption file, setting the parameters required by
subject to evaluation: TGFF for graph generation and we also developed

. feasibility: to verify the efficiency in terms ofa post-processing program then transforms ttifé

the percentage of functional graphs that can legitput file by modifying the deadlines and the acti-

Xl. EXPERIMENTS

scheduled; vation rates of the leaf and root nodes. Uncertainty
. grouping efficiency: to check the size of thé the values of periods and deadlines is obtained by
generated task set. multiplying the TGFF values, by random values uni-

« execution time: to give an indication upon th&érmly drawn from the intervall.0, 3.0]. Activation
size of the problems (in terms of number operiods are finally rounded up in quanta to lower
functional blocks) that can be effectively solvethe hyperperiod and the complexity of tHer test.
by our algorithms. The final output of the post-processing phase is

an xMmL file describing the functional graph. The

xML file is processed by an analysis and simulation

tool (written in Java) implementing the grouping
We compared our algorithms against an implend schedulability analysis algorithms. The whole

mentation of [20] where fixed priorities are assignegrocess is invoked repeatedly by a bash script which
according to the Rate Monotonic or the Deadlingssigns different parameters at every cycle.

Monotonic rule. We tested the scheduling algo- There is a large number of parameters that can

rithms with randomly generated graphs of functiondle used to define a functional graph:

blocks, produced using thecFF, Task Graphs For . the number of (external) event nodes,

Free tool. The TGFF tool, now at version 3.0, is « the number of functional nodes;

widely used in the research community on em- « the (average) in-degree,, and out-degree,,;

bedded systems and almost a de-facto benchmark of the nodes

when testing algorithms working on graphs of tasks « the average utilizatioi for the entire func-

or functional blocks. Unfortunately, when used for tional set

generating graphs with timing constraints, it only « the average ratio between the Deadline of the

provides limited control over the generation of the leaf node with highest depth and the period of

A. Experimental setup

22

Number of scheduled graphs Number of scheduled graphs
100 T B 100 ==s =
‘\‘ T \ --------- ",
P 80 % e \ ey @ 80 e X)
E 5, " T~ E Nk
g 60 “‘_ e '."._ R \ g 60 e “\" B
Q “"\ K © . ‘.
Z 40 : <4 o) Z 40 e N 3)
&L T s, . &L S, .,
S .. Legend S
20 FEDF : 7 A EDF s b
D Y T T R R
0 DM seeeeee 20 b SSa S~

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1
CPU Utilization CPU Utilization

Fig. 18. Percentage of schedulable graphs whefl" ~ 1 (ny = Fig. 19. Percentage of schedulable graphs whefl” ~ 2 (ny =
25 + 10). 25 + 10).

Number of scheduled graphs

its triggering event D /7))

100 <]
~"~- *e \
--.__.. .. \
. 30 S :) — \\
B. Results W o S T T SN SO R
In the first series of tests we useda andLA for 2 -]

grouping functional blocks into tasks and then Wé
compared our methods against an implementation .
of Saksena’s schedulability analysis where fixed ot :
priorities are assigned according to the event rates %' 02 03 04 05 06 07 08 09 1

(in Rate Monotonic fashion), or according to the CF Hitation

smallest deadline among all the output nodes thad. 20. Percentage of schedulable graphs when the number of
can be triggered by the block (that is, Deadlinf@nctional blocks is5 + 1 (D/T ~ 1).

Monotonic).

In this case, we selected., = 3 + 1 external
events, andy; = 25+ 10 functional blocks. Initially, functional blocks. The slight increase in the per-
we ran the test with the maximum deadlines approfermance of our method for larger sets and the
imately equal to the period® /T ~ 1, then the ratio corresponding decrease for fixed-priority scheduling
was increased with steps of1, until D/T =~ 2. should be considered within the range of experimen-
For each set of values, we tried different utilizatiotgl uncertainty.
values, fromU = 0.1 to U = 1.0. To test for grouping efficiency, we generated

In all cases, our algorithm performed much begraphs with increasing numbers of average func-
ter than its fixed priority scheduling counterpartgional blocks, and tested the grouping obtained with
Figure 18 shows the percentage of schedulable setsand JLA in terms of number of tasks. We ran
when the deadline approximately equals the actiatches o600 seeds, witty to 50 average blocks for
vation period. When the rati® /T is increased, an each seed. Every test batch had different values for
increasing number of task sets is found schedulabllee maximum in-degree and out-degree (number of
but the gap between our EDF-based method aimghut and output links for each block, respectively).
fixed-priority based algorithms widens even moré/e ran batches with maximum in-degreesladénd
(Figure 19). 2, and maximum out-degrees dfto 4.

We then went back to our initial test with a Figures 22 and 23 show the result for the two ex-
deadline/period approximate ratio bfand spanned treme settings ((in-degree,out-degree) respectively
the results with a variable number of average funequal to (1,2) and (2,4)). The graphs clearly show
tional blocks, from5 + 1 (Figure 20) to50 4+ 10 that, unless the graph is very sparsely connected,
(Figure 21). The percentage of schedulable seisly JLA results in a number of tasks significantly
did not change significantly with the number ofmaller than the number of functional blocks and,

23

Number of scheduled graphs Algorithm grouping efficiency
100 p== - R s £ 100 -) T T
~~~~~ ' N £ P~
. o
s 80 ot : : s T80 pe , ]
2 z e, _ _
2w 7\,,\ — \ g 60 ) ) SR B
) s . >
= kY . <
z 40 B Y oy g 40 : :
& \ p =]
Q
= £
o}
=
Q
e
IS

0.4 0.5 0.6 0.7 0.8 0.9 1 30 40 50 60 70
CPU Utilization Number of functional blocks

Fig. 21. Percentage of schedulable graphs when the numberFif. 23. Percentage of generated tasks with respect to nuaibe
functional blocks is50 + 10 (D /T ~ 1). blocks, assuming max in-degree = 2 and max out-degree = 4.

Algorithm grouping efficiency

to each active object. Sample cases show how our

2 100 ;

§ method can possibly improve the schedulability of
3 N : S S—— the dataflow graph, implemented in a set of threads
E 60N : : . —— scheduled with dynamic priorities in comparison

35 o S | with existing solutions based on fixed priority.

I I Extensions of this research will be focused on

g *Lpf%e“d ' ' B further reducing the number of tasks and applying
s o LA the methodology to multiprocessor and distributed

10 20 30 40 50 60 70 SyStemS.

Number of functional blocks

Fig. 22. Percentage of generated tasks with respect to nuaibe
blocks, assuming max in-degree = 1 and max out-degree = 2. REFERENCES

[1] UML Profile For Schedulability, Performance, And Time, Ver-
. . . sion 1.0 http://www.omg.org, 2001.
more importantly, it produces tasks of larger Siz@y] 1. Baker, “Stack-based scheduling of real-time proesgs

and less subject to large context switch overheads. Journal of Real-Time Systemsl. 3, 1991.

. ] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. Sarajioi-
All the EXpenmemS done so far have shown tha[t?’ Vincentelli, and Y. Watanabe, “Metropolis: An integrateavie

our methodology is ComPUtati(_)na”y tra_Ctablei ON  ronment for electronic system desigifEE Computervol. 36,
a 2Ghz AMD Athlon 64, running algorithnaLA April 2003.

i i i [4] S.Baruah, L. Rosier, and R. Howell, “Algorithms and cdep
and the corresponding scheduling analysis ama ity concerning the preemptive scheduling of periodic réale

with 100 functional blocks takes less than 4 seconds. (asks on one processorThe Journal of Real-Time Systems

vol. 2, 1990.
[5] T. Beck, “Current trends in the design of automotive &lewic
XIl. CONCLUSIONS systems,” inProceedings of the Design Automation and Test in

s Europe Conferenge2001.
We have presented a model for the descrlpno[%] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. uerG

of the dataflow architecture of embedded systems nic, and R. de Simone, “The synchronous languages 12 years
and algorithms for the synthesis of the architecture- later,” Proceedings of the IEEEvol. 91, Jan. 2003,

; i maltA ; ] J. Bézivin, “On the unification power of modelsJournal of
level design, the automated logical-to architectural Software and Systems Modelingol. 4, no. 2, pp. 171188,

mapping and schedulability analysis of the resulting  may 200s.

task set. Our proposal is based on runtime suppdf A. Brown, “Model driven architecture: Principles andagtice.”

from a real-time operating system capable of earliest 942 of Software and System Modefingl. 3, no. 4, pp.

deadline scheduling. The presented S_OIUtlo_n §||OY\{§] A. Burns and A. WellingsHRT-HOOD: A Structured Design

to reduce the overheads and excessive priority in- Method for Hard Real-Time SystemsElsevier Science, Ams-

versions of existing solutions that map all functiona] _ terdam, NL, 1995. , , _

block . . inale thread .le] G. Buttazzo,Hard Real-Time Computing Systems: Predictable
0CKS (Or reactlong) Into a single t. read or as§| n Scheduling Algorithms and Applicatians Boston: Kluwer

a thread of execution to each action or possibly Academic Publishers, 1997.



[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

H. Chetto and M. Chetto, “An adaptive scheduling altfori for
fault-tolerant real-time systemsSoftware Engineering Journal
pp. 93-100, May 1991.

H. Eriksson, M. Penker, and D. FaddML 2 Toolkit New
York, NY, USA: John Wiley & Sons, Inc., 2003.

R. Gerber, S. Hong, and M. Saksena, “Guaranteeing end-t
end timing constraints by calibrating intermediate preess’

in Proceedings of Real-Time Systems SympgsDetember
1994.

E. Lee, “Overview of the ptolemy project,” Universityf o
California, Berkeley, Tech. Rep. UCB/ERL-M01/11, 2001.
Mathworks, “The mathworks simulink and stateflow usearm
uals,” available on Internet: http://www.mathworks.com.

A. K. Mok and C. Puchol, “Integrated design tools for thar
real-time systems,” ifProocedings of the 19th IEEE Real-Time
Systems Symposiufecember 1998.

UML 2.0 Superstructure SpecificatiorOMG Document —
formal/05-07-04 ed., OMG, July 2005.

UML Profile for Schedulability, Performance and Time Specifi
cation, OMG Document — formal/05-01-02 ed., OMG, Jannuary
2005.

R. Pellizzoni and G. Lipari, “Feasibility analisys ogal-time
periodic tasks with offsets,Real-Time Systemsol. 30, no.
1-2, pp. 105-128, May 2005.

M. Saksena, P. Karvelas, and Y. Wang, “Automatic sysithe
of multi-tasking implementations from real-time objectemted
models,” inProceedings of the IEEE International Symposium
on Object-Oriented Real-Time Distributed Computindgarch
2000.

L. Sha, R. Rajkumar, and john P. Lehoczky, “Priority énh
itance protocols: An approach to real-time synchronizgtio
IEEE transaction on computersol. 39, no. 9, September 1990.
J. Stankovicet al, “Vest: An aspect-based composition tool for
real-time systems,” irProceedings of the 9th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS

2003), May 27-30, 2003, Toronto, CanadalEEE Computer
Society, 2003.

L. Tratt, “Model transformations and tool integratiprdournal
of Software and Systems Modellingl. 4, no. 2, pp. 112-122,
May 2005.

24



