
Temporal Transcoding for Mobile Video Communication�

Maurizio A. Bonuccelli�

Dipartimento di Informatica
Via Buonarroti 2, Pisa, Italy

bonucce@di.unipi.it

Francesca Lonetti�

Dipartimento di Informatica
Via Buonarroti 2, Pisa, Italy

lonetti@di.unipi.it

Francesca Martelli
ISTI - CNR

Via Moruzzi 1, Pisa, Italy
f.martelli@isti.cnr.it

Abstract

Third generation mobile communication systems will
provide more advanced types of interactive and distribution
services, and video is one of the most prominent applica-
tions for multimedia communications. Adapting the media
content to different networks characteristics (communica-
tion links and access terminals), in order to enable video
delivery with acceptable service quality, is one of the most
important problems in this setting. In this paper, we con-
sider one of the video adaptation methods, namely video
transcoding, and we present new buffer-based strategies for
temporal video transcoding in a real-time context. Simula-
tion results show that our strategies achieve a good perfor-
mance in hard transcoding conditions also.

1 Introduction

Third generation mobile communication systems (e.g.
UMTS) offer new and attractive services (as video stream-
ing, video telephony, video conference) to mobile users.
These services involve different types of devices and com-
munication links. A fair and flexible allocation of the lim-
ited radio bandwidth resources among different types of ser-
vices, with their respective quality requirements, is a critical
issue.

A typical strategy to approach this problem is the con-
tent adaptation, better known as transcoding, usually per-
formed by servers of a communication system, or by gate-
ways interconnecting different networks. Transcoding al-
lows users to encode, transmit and decode according to their
features (such as channel bandwidth and terminal complex-
ity) and preferences (such as desired video quality). Video
transcoding is the process of converting a video sequence
into another one with different features, without totally de-
coding and re-encoding, so by reducing the complexity

�This work has been supported by Ericsson Lab Italy, within the PisaTel
Lab at ISTI - CNR.

�Also at ISTI - CNR, Via Moruzzi 1, Pisa, Italy.

and the running time, and enabling the interoperability of
heterogeneous multimedia networks [3]. Video transcod-
ing can provide format conversion, resolution scaling (spa-
tial transcoding), bit rate conversion (quality transcoding),
frame rate conversion (temporal transcoding). We are in-
terested in temporal transcoding. In order to distribute the
same encoded video sequence to users through channels
with different bandwidths (as for instance in a multicast ses-
sion), the coded video sequence must be converted into spe-
cific bit rates for each outgoing channel. This is needed also
when the bandwidth of a channel is temporarily reduced for
accommodating additional users when all channels are busy
(subrating). Temporal transcoding does this by eliminating
some frames in the sequence, in order to reduce the frame
rate of the video sequence, without decreasing the video
quality of not skipped frames. When frames are skipped,
recomputing the motion vectors (since the old ones are no
longer valid because they refer to skipped frames) and the
prediction errors (for the same reason), is in order. This is
done by re-using the motion vectors and the prediction er-
rors in the input video sequence as much as possible. In
addition, a frame skipping strategy must be adopted, that is
a policy for deciding the frames to be dropped. We propose
a new buffer-based frame skipping policy to allow real time
communication. To refine this policy, other three skipping
policies to be used together with this one, are proposed.

The paper is organized as follows. In Section 2, we
address the temporal transcoding problem, we survey the
results present in literature and we describe our temporal
transcoder, able to support real time communications. In
Section 3 we present our frame skipping strategies. Experi-
mental results are drawn in Section 4. Finally, conclusions
and future work are highlighted in Section 5.

2 Temporal transcoding

The typical strategy adopted in motion vectors compu-
tation is Motion Vector Composition (MVC) [1, 5, 6, 8],
together with a restricted motion estimation called Refined
Search (RS).



About frame skipping policies, there are in literature sev-
eral proposals. In [4, 5], two different strategies based on
motion activity are presented. Motion activity gives a mea-
sure of the motion in a frame, and is defined as the sum of
the motion vector components in that frame. If the motion
activity is larger than a given threshold, the frame is not
skipped, since it has considerable motion, and so transcod-
ing this frame improves the smoothness of the video se-
quence. Another policy considering the variation of motion
activity between the sequence where a frame is transcoded
and the sequence where that frame is skipped, has been pro-
posed in [7]. A different approach has been pursued in [2],
where a rate control mechanism based on a buffer level pre-
diction algorithm is proposed.

In order to meet the needs of real time applications, our
main goal was to study temporal transcoding techniques
guaranteeing a fixed communication delay. To this end,
a transcoder output buffer is introduced. Before describ-
ing our transcoder architecture, we give some definitions .
The words “input” and “output” are always related to the
transcoder. We call �� the input bit rate, and � the out-
put bit rate; � indicates the frame rate of the input video
sequence. � and � are the size and the occupancy of the
transcoder buffer, respectively. With ����, we denote the
size of the transcoded frame � . Disregarding transmission
time, the delay � introduced in the communication system,
is determined by ���: in this way, the maximum delay in-
curred by a data bit of the transcoded video sequence is at
most ���. We choose a maximum delay of � � ���	
1,
that is considered the maximum admitted delay of a real
time communication. In order to meet � , we set the buffer
size � to half the output bit rate �.

We developed a temporal transcoder architecture able to
reduce the input bit rate �� of the incoming video sequence,
by eliminating some frames, so that the output bit rate �
turns out to be constant. Notice that the frame rate of the
output video sequence is not constant, and we assumed that
the skipped frames are replaced by the previous ones (freez-
ing) at the displaying time in the final decoder.

In our transcoder, the motion vectors are computed by
one of the four MVC algorithms2, previously mentioned,
and RS procedure. The prediction errors are computed in
the pixel domain. We need to transcode each frame of the
input video sequence, before applying the skipping policies,
since, as we shall see in the following, they need to know
some features of the reconstructed frame (for instance, its
size). Transcoding each frame is needed also for avoiding
to store all skipped frames between the current frame and
the last transmitted one, which implies large memory re-
sources. Reconstructed frames are then skipped or placed

1Our arguments are still valid also with lower values of � .
2In our experiments we observed that the results obtained by these four

algorithms are equivalent.

in the buffer for being transmitted.

3 Frame skipping policies

The main concern of this paper is the frame skipping
problem, and we present new policies which aim to meet the
real time constraint, as well as to achieve a good video qual-
ity. In order to meet the first objective, a basic policy, based
on buffer occupancy, is developed. The other ones, are as-
sociated to the previous, and consider other measures such
as the motion activity, the number of consecutive skipped
frames, and a random choice. In the following, we describe
all policies in detail.

3.1 Buffer Occupancy

In order to guarantee a fixed communication delay, con-
sidering the buffer occupancy in frame skipping is needed.
We present a buffer-based frame skipping policy where two
buffer thresholds, ������ and ������, are established for
avoiding buffer underflow and overflow. Underflow occurs
when the buffer occupancy is zero, and so the final decoder
receives data of a frame after it is scheduled to be displayed,
causing the stop of the video sequence (besides the non-
utilization of the communication bandwidth). Buffer over-
flow occurs when the buffer occupancy exceeds the buffer
size, and it increases the assumed delay � . This is equivalent
to a frame loss at the decoder, since at displaying time some
bits of the corresponding frame are still in the transcoder
output buffer waiting to be transmitted. ������ and ������

are dynamically set according to the ratio ����. We ob-
served experimentally that the best values for ������ and
������ are respectively 20% and 80% of the buffer size
when ���� � �. If ���� � � it is needed to decrease
������ so that the free buffer space is always (in average)
sufficient to accommodate at least one frame. For instance,
when ���� � �, a good value for ������ is 60%. A frame
is skipped if the buffer occupancy is greater than �������,
and it is always transcoded if the buffer occupancy is lower
than �������. Independently from the value of the thresh-
old, in our buffer-based policy, we avoid the buffer overflow
by testing that the size of the transcoded frame does not ex-
ceed the free buffer space. The only exception is for the first
frame, which is an intra frame, and it is always transcoded.
If the size of the first frame exceeds the buffer size, we have
an additional delay equal to �� for those bits which do not
fit in the buffer, and after an initial delay of � � ��, this
frame skipping policy guarantees a constant delay � for the
whole transmission. If the output bit rate is equal to �, and
a constant frame rate � is used, we assume that the buffer
occupancy decreases at a constant rate of ��� bits every
��� seconds. The whole procedure is described by the fol-
lowing pseudo-code.



Basic Policy(frame � ):
if (� = first frame) transcode �
else

if ((� � ���������)&(� � ���� � �)) transcode �
else

if (� � ���������) skip �
else

if(�� ���� � �) skip �
else transcode � �� apply one of the next policies

In the next sections, we describe three policies that can
be applied at the last step of the above procedure.

3.2 Motion-based frame skipping

In Section 2, we reported some motion-based frame skip-
ping policies proposed in literature. We present here a new
motion based frame skipping policy that is applied when
the buffer constraints are met. The goal of this policy is to
transcode the frames with high motion. To perform this,
a new motion activity (MA) measure is introduced. We
slightly modified the definition given in [5], and proposed
the following one:

� �
�

�

����� � ��	�� (1)

where 	 is a macroblock, � is a properly tuned constant
and �� and �� are the motion vector components of mac-
roblock 	. In this way, the motion activity measure as-
sumes large values both in case of frame with many but
small motion vectors and in case of frames with few but
large motion vectors. These two cases correspond to dif-
ferent kind of motion: the first one occurs when there are
little movements of many objects; the second occurs when
there are few objects with great motion. Moreover, since
an intra macroblock is produced when there are many pre-
diction errors (namely, the macroblock is largely different
from the reference area in the previous frame), we assign
to intra macroblocks the maximum motion activity value,
equal to the maximum size of the motion vectors, which
corresponds to the search range used by the Motion Estima-
tion procedure. In this way, we take into account of intra
macroblocks also in the motion activity computation. If a
frame has a small value of motion activity, it can be skipped
since it is well replaced by the previous frame. Otherwise,
it has considerable motion, and it should be transcoded. In
our motion-based frame skipping policy, the motion activity
of a frame is compared with a threshold ���. The thresh-
old ������ is dynamically set to take into account (with
equal weight) the motion activity of the previous transcoded
frame ��� � ��, and the motion activity of all earlier
frames ����� � ��. The motion-based frame skipping pol-
icy is shown in the following pseudo-code.

Motion-based Policy(frame � ):
if(� = first frame) �	
��� � �;
else �	
��� � ��	
�� � �� ����� � ����;

if (����� � �	
���) skip �
else transcode �

This policy can lead to an high number of skipped
frames, since it skips many consecutive frames having a low
value of motion activity.

3.3 Consecutive frames skipping

This policy has been developed for attempting to over-
come an harmful problem arising in hard transcoding con-
ditions, that is when an high variation between the input and
the output bit rate occurs (from 128 Kbit/s to 32 Kbit/s, for
instance). Given that the input bit rate is much greater than
the output one, it is unavoidable to consecutively skip many
frames, since their size is large with respect to the output
channel bandwidth. By skipping many consecutive frames,
the size of the transcoded ones increases, since their motion
vectors and prediction errors are obtained by adding those
ones of the skipped frames. So, it can happen that the size
of a transcoded frame exceeds the free buffer space. Thus, if
that frame is transcoded, buffer overflow occurs, but if it is
skipped, the size of the next transcoded frame will be larger.
Even if, in the meanwhile, the free buffer space increases,
it could not be sufficient to accommodate the transcoded
frame. So, it is possible to reach an irreversible situation,
in which if the frame is transcoded, buffer overflow occurs,
but if it is skipped, buffer underflow occurs. We propose a
solution for this problem, by trying to minimize the number
of consecutive skipped frames. This is done by forcing the
transcoder to drop a frame (even if its transcoding does not
cause buffer overflow), in order to prevent that many frames
are dropped later.

We define 	 � ���� representing the ratio between
the input and the output bit rate. Ideally, if all transcoded
frames keep their original size and have the same size, the
number of transcoded frames should be equal to ��	. Let
� be the total number of frames in the sequence. The tem-
poral transcoder should transcode ����	� frames and skip
��� � ��	� frames. Every 	 successive frames, one of
them should be transcoded, and 	 � � should be skipped
for distributing uniformly the skipped frames. This strategy
forces the transcoder to skip 	 � � consecutive frames, in
order to prevent the number of consecutive skipped frames
to become larger than 	� �.

We show below the pseudo-code of the whole strategy.

MaxConsecutiveSkipping Policy(frame � ):
if (numConsecutiveSkippedFrames � �)

skip � ;
numConsecutiveSkippedFrames++;

else
transcode � ;
numConsecutiveSkippedFrames=0;

However, this policy does not guarantee that the above
critical situation never happens, but it is very unlikely.



3.4 Random frame skipping

Randomization is used for studying the behavior of a
system when input data do not follow any known law. In
our setting, the sizes of incoming frames are variable and it
is not possible to assume a certain distribution. This moti-
vated us to try managing the frame skipping in a random-
ized way. As we saw in Section 3.1, in real time setting,
the temporal transcoder choices firstly depend on the buffer
occupancy. We design a simple random strategy based on
the buffer occupancy, in order to decide what frames are
to be skipped. We uniformly generate a random number
in the range 
�����. If this number is larger than the buffer
occupancy �, the current frame is transcoded, otherwise it
is skipped. We observe that the greater is the buffer occu-
pancy, the smaller is the probability that the random number
is larger than occupancy, so the smaller is the probability of
transcoding the frame. In this way, we try to transcode more
frames when the free buffer level is high, and to skip more
frames when the buffer occupancy is high. We show below
the pseudo-code of this strategy.

Random Policy(frame � ):
randomNumber = random() % �;
if (randomNumber � �) transcode �
else skip � .

In the next section, we show the results of our frame
skipping policies.

4 Simulation results

We implemented an MPEG4-based transcoder and eval-
uated the performance of our frame skipping strategies by
considering two metrics: the number of transcoded frames
(indicating the video sequence smoothness), and the PSNR
(a measure that indicates the quality of transcoded se-
quence by taking into account the differences of the lumi-
nance values of corresponding pixels in the original and re-
constructed frame). We compute the PSNR between the
transcoded video sequence and the video sequence decoded
after the front encoder. Two kinds of PSNR measures are
considered: the first one, that we call PSNR1, takes into
account of transcoded and skipped frames, by replacing
these last with their previous ones (freezing). In the sec-
ond, that we call PSNR2, only transcoded frames are con-
sidered. Given that our transcoder is a purely temporal (and
not a quality) one, quality degradation is due to frame drop-
ping only. So, the first way to compute PSNR allows us
to measure the actual visual quality perceived by the fi-
nal user. The second way indicates the quality of single
transcoded frames, without capturing the degradation intro-
duced by frame dropping.

mobile foreman coastguard
FramesPSNR1PSNR2FramesPSNR1PSNR2FramesPSNR1PSNR2

Standard Transcoding condition
Buffer 155 27.09 29.21 144 30.08 34.01 105 28.72 34.36
MA-based 145 25.73 28.34 127 28.08 33.73 106 27.66 33.70
Consecutive 149 26.58 28.52 134 29.81 33.97 96 28.47 34.01
Random 148 25.95 28.72 132 28.43 33.13 106 28.13 34.13

Hard Transcoding condition
Buffer 59 22.84 28.02 45 24.21 35.00 35 24.06 35.32
MA-based 60 21.38 27.77 50 23.57 33.71 32 23.95 34.25
Consecutive 57 22.80 28.02 47 24.21 33.92 34 23.95 33.97
Random 59 22.52 27.95 50 24.36 33.84 34 24.11 34.26

Table 1. Number of transcoded frames, PSNR
(dB), PSNR2 (dB), for different video sequen-
ces in standard/hard transcoding conditions.

We consider several video sequences in QCIF format
and frame rate of 30 fps. We show only the most signifi-
cant experimental results about different benchmark video
sequences of 300 frames: “mobile”, which is a video se-
quence with a lot of motion, “foreman”, which is a video
sequence with scene changes, and “coastguard” where there
are moving objects. We evaluated our frame skipping strate-
gies both for “standard” and “hard” transcoding condi-
tions3. For the first case, we consider �� � ��� kbps and
� � � kbps; for the second one, �� � ��� kbps and
� � �� kbps. We report in Table 1 the average PSNR1 and
PSNR2 as explained above, and Figures 1 and 2 show the
PSNR1 of the first 50 frames for “mobile” sequence.

In order to have a real-time communication, buffer oc-
cupancy is the dominant factor, that is why it is considered
in all the frame skipping strategies. Consequently, from our
experimental results we deduce that there are not large dif-
ferences on the PSNR achieved by different frame skipping
strategies (see Figures 1 and 2).

By looking at the top of Table 1 we observe that all
strategies reduce to about one half the number of frames,
so achieving the same ratio between � and �� for “mo-
bile” sequence, while for other sequences the number of
transcoded frames is lower. In the bottom of Table 1 we
report the results for hard transcoding: we note that “con-
secutive” skipping policy behaves similarly to the “buffer-
based” policy, in terms of average PSNR, but by looking at
Figure 2, we observe that, in hard transcoding conditions,
the “consecutive” policy is better than the others, since the
PSNR is smoother. This happens because the frames are
dropped more uniformly.

5 Conclusions

We implemented four frame skipping strategies in or-
der to improve the quality of temporal video transcoding

3With “standard” transcoding conditions we mean a typical situation in
which the transcoder output channel has a bandwidth equal to an half of
the input bandwidth.



13

17

21

25

29

33

37

41

45

1 50Frame Number

PS
NR

 (d
B)

Buffer Motion-based Consecutive Random

Figure 1. PSNR of our frame skipping policies for "mobile" video sequence (�� � ���, � � � kbps).

12

16

20

24

28

32

1 50Frame Number

PS
NR

 (d
B)

Buffer Motion-based Consecutive Random

Figure 2. PSNR of our frame skipping policies for "mobile" video sequence (�� � ���, � � �� kbps).

in a real-time environment. Disregarding the transmission
time, we obtained a real time communication with a fixed
admitted delay. In the “buffer occupancy” strategy, we
achieved this by considering only the buffer occupancy to
skip frames, and avoiding buffer underflow and overflow. In
the others, we considered other metrics in order to improve
the visual quality. There are not large differences on the
PSNR achieved by the proposed frame skipping strategies,
but the “consecutive” policy achieves a better visual qual-
ity in hard transcoding conditions, since skipping an high
number of consecutive frames is avoided.

Several problems are still open. An interesting one is
an analytical study of the buffer occupancy over time, in
order to reduce the maximum admitted delay � . Besides,
we intend to refine the parameters of “motion-based” and
“random” strategies, by means of an extensive simulation
phase. Another interesting issue is to test the behavior of
our policies on H.263-based transcoder, and on the emerg-
ing H.264-based one.

Acknowledgment

We thank Ericsson Lab Italy team working on video
transcoding, in particular Giovanni Iacovoni and Salvatore
Morsa for introducing us in this research area, and for help-
ful discussions.

References

[1] M.-J. Chen, M.-C. Chu, and C.-W. Pan. Efficient motion-
estimation algorithm for reduced frame-rate video transcoder.
IEEE Trans. on Circuits and Systems for Video Technology,
12(4):269–275, Apr. 2002.

[2] P.D.F. Correia, V. Silva, and P.A. Assunção. A method for
improving the quality of mobile video under hard transcoding
conditions. In Proc. of IEEE ICC03, Vol. 2, pp. 928–932,
Anchorage, Alaska, USA, May 2003.

[3] S. Dogan, A.H. Sadka, and A.M. Kondoz. Efficient MPEG-
4/H.263 video transcoder for interoperability of heteroge-
neous multimedia networks. Elettronics Letters, 35(11):863–
864, May 1999.

[4] K.-T. Fung, Y.-L. Chan, and W.-C. Siu. New architecture for
dynamic frame-skipping transcoder. IEEE Trans. on Image
Processing, 11(8):886–900, Aug. 2002.

[5] J.-N. Hwang, T.-D. Wu, and C.-W. Lin. Dynamic frame-
skipping in video transcoding. In Proc. of IEEE �

�� Work-
shop on Multimedia Signal Processing, pp. 616–621, Re-
dondo Beach, CA, USA, Dec. 1998.

[6] T. Shanableh and M. Ghanbari. Heterogeneous video transco-
ding to lower spatio-temporal resolutions and different encod-
ing formats. IEEE Trans. on Multimedia, 2(2):101–109, Jun.
2000.

[7] H. Shu and L.-P. Chau. Frame-skipping transcoding with mo-
tion change consideration. In Proc. of IEEE ISCAS 2004,
Vol. 3, pp. 773–776, Vancouver, Canada, May 2004.

[8] J. Youn, M.-T. Sun, and C.-W. Lin. Motion vector refinement
for high-performance transcoding. IEEE Trans. on Multime-
dia, 1(1):30–40, Mar. 1999.


