Modeling event-driven real-time applications using DAGs *

Enrico Bini
Scuola Superiore S. Anna
Pisa, Italy
e.bini@sssup.it

Abstract

In this paper, we present a novel formalism for
modeling event-driven real-time applications based on
Directed Acyclic Graphs (DAG). We explain how it
is possible to express several kinds of software con-
structs with our model, and how these constructs can
be mapped to mathematical equations. The goal is to
express a real-time schedulability problem as a opera-
tion research problem. In the future we plan to develop
novel optimization algorithms for solving this problem.

1 Introduction

Most of the research on real-time systems has been
focused on schedulability analysis of periodic and spo-
radic task sets [4] [3] [2]. The periodic task abstraction
is very useful when modeling real-time control applica-
tions, where sensors have to be read at a given sampling
rate and actuators have to be driven periodically.

However, there is an entire class of applications for
which the periodic task model is not completely ad-
equate. We generically refer to these applications as
event-driven, as opposed to time-driven applications.
In these applications, tasks usually communicate by
means of signals and they are activated by external in-
terrupts or by user commands. Given such application,
it is quite natural to come up with a directed acyclic
graph (DAG) model: tasks are represented by nodes in
the graph, and arrows are message between tasks. In
this model, some interrupt can also be periodically ac-
tivated: however, the temporal constraints are not on
the single task, but on a given flow of data. This kind
of constraints are also called “end-to-end” constraints.
Other kind of constraints can arise from the underlying
operating system support. For example, if the message
buffer between two tasks is limited, we have also to
impose that no signal will be lost because of a buffer
overflow. Some model has already been presented in
the literature [10] [8] [9] [7]-

Giuseppe Lipari
Scuola Superiore S. Anna
Pisa, Italy
lipari@sssup.it

Carlo Vitucci
Ericsson Lab Italy
Roma, Italy

carlo.vitucci@eri.ericsson.se

Many applications that can be found in the telecom-
munication world are modeled as event-driven applica-
tions. The typical design cycle in such context is done
using formal languages and design tools which auto-
matically generate the application code. However, such
tools do not take into account real-time constraints ex-
plicitly, and it is not clear how the application func-
tionality is mapped onto real-time process. For exam-
ple, a completely ignored aspect is how to assign task
priorities [5].

To better understand the real-time nature of event-
driven application, we think that it is essential to be
able to answer the following questions:

1. how much is the maximum frequency of the exter-
nal stimula without losing any signal?

2. can we improve it by changing the tasks priorities?

3. how much does this response time increase if the
processor is loaded additionally?

The main goal of our research is so to analyze the
behavior of the system, and then to assign the tasks
parameters (such as priorities and partitioning on mul-
tiprocessor) which optimize it. As we will show in more
detail further, this optimization process will require:

e 3 formal modelization of the system;
e the definition of a cost function;

e an optimization algorithm to find the best solu-
tion.

In this paper, we present a novel graph model that is
able to describe the interesting real-time properties of
an event-driven application. The next step will be re-
searching a good algorithm to find this optimum point.

2 Model overview

The first assumption we do in our model is that
the application can be divided into a set of non-
preemptable atomic tasks. This assumption can

seem too restrictive. Nevertheless, in the embedded
software application for telecomunication handling, it
is common and often a real design rule, to avoid re-
source allocation more than necessary, particularly for
hardware interrupt process handling. Moreover, this is
just a first approach to this problem; in the future we
plan to extend our model to preemptive scheduling.

The model which best fits an event-driven applica-
tion is undoubtedly a graph, because it can well rep-
resent the flow of signal from task to task in the ap-
plication. In this graph, each node is associated to a
task and each arrow is associated to a signal. Every
task is usually labeled with 7;, its worst-case execution
time (WCET) is C; and the first instant of execution
is t;. Because of the non-preemptive hypothesis, task
7; ends its computation at t; + C;.

Signals between tasks are expressed by mathemati-
cal constraints. If, for example, the task 7 is activated
by the task 71, we will write 74 < 75 and the implied
constraint will be ¢y > ¢; + C;. In Section 3, the pos-
sible relationships between tasks are discussed in great
detail.

Our optimization process is performed on the space
of all the possible schedules. A schedule is represented
by the set of the starting times for all tasks. Formally
we define a schedule as {¢t € Rt | 3 4, t; = ¢}. In all
the rest of the paper, we will refer to this set as t-space.

So all the relationships between tasks can be ex-
pressed as constraints in ¢-space. The set of all the
points in t-space that satisfy all the constraints is called
admissible region. If, for example, we are working
on a uniprocessor, it is not possible that two or more
tasks share the same starting time. Consequently the
admissible region must keep track of these constraints.
Hence, our problem is to find a set of t; values in the ad-
missible region which are optimal according to a given
cost function.

The goal of such optimization process can be:

e to minimize the end-to-end response time, which
is the time required to complete a complex oper-
ation, independently by the specific sequence of
tasks activation;

e to find the partitioning on multiprocessor which
makes a tasks set schedulable;

e to minimize the latency, which is the time interval

between the first instant when a task is ready and
the instant when the task ends its computation.

3 System constraints

For the sake of clarity, we find useful to introduce
the following definition:

A system without constraints is an applica-
tion composed by n independent tasks, run-
ning on p processors, with p > n.

It’s easy to understand that in this case, no constraint
is needed because every tasks can always run as soon
as it is activated.

A real world application posseses two kinds of con-
straints:

e the application constraints which follow from the
application structure (typically precedence con-
traints);

e the platform constraints, which follow from the
hardware (e.g. the number of processors, the use
of a particular resource).

In our model, both the kinds of constraints are ex-
pressed by mathematical relationships between the in-
volved variables. In the following subsections all the
possible constraints are explained in great detail.

3.1 Precedncecondraint

The precedence constraint, expressed in Figure 1,
is one of the most common constraint present in an

application.
c,—()
) c;

Figure 1. Precedence constraint

It means that task 7 will be activated by task 7. In
terms of operating system primitive, this corresponds
to a signal sent from 7 to 5. In compact form we write
71 < 72. This constraint, expressed in a mathematical
formula, is:

to >t +C4

and, consequently, the admissible region in the t-space,
is

t2

C,
t

3.2 AND-synchronization condraint

This application constraint means that a task is acti-
vated when all the incoming signals have been received.

C,
k»

/_,———V
CO NN
Figure 2. AND-sync hronizatio n constraint

In figure 2 the task 73 is activated when both the sig-
nal from 71 and the one from 7 are received. This
constraint can be expressed by:

t3 > max{t1 + Cq,t2 + 02},
and in general:

ti > max{t; + Cj},

where S; is the set of task indexes sending a signal to
the task 7;. The meaning is clear: t;, the starting time
of 7;, must be greater than the ending time of all the
tasks sending 7; a signal.

Following this definition, we can easily draw the ad-
missible region in ¢-space, which is:

Cz_ Cl '

where the level curves of the t3 surface are plotted in
function of ¢; and t3. A lighter color corresponds to a
higher height.

3.3 OR-synchronization congraint

In a similar way, we introduce the OR-synchroniza-
tion constraint. It means that a task is activated when
at least one incoming signal has arrived. Its graphical
representation is shown in figure 3.

@

—

C, G,
Figure 3. OR-sync hronization constraint

The only difference between the OR and the AND
graphical representations is the input logic port of the

task to be activated. Even the mathematical relation-
ship differs slightly from the previous one. The concept
is the following: ¢; must be greater than the first ending
time of all the tasks sending 7; a signal. In mathemat-
ical formalism, it is expressed by:

t: > min{t; + Cj},
where S; is the set of task indexes sending a signal to
the task 7;. In particular, for figure 3, it becomes:
t3 > min{t; + C1,t2 + Ca}.
The corresponding admissible region in the ¢-space

(in the case when n = 3 and the tasks are related as
shown in figure 3) is:

CZ_ Cl

where the level curves of the t3 surface are plotted in
function of ¢; and t5. A lighter color corresponds to a
higher height.

3.4 Conditional congraint

This is a very common application constraint,
present in every programming language: the IF state-
ment. As we did before, we begin with the graphi-
cal representation shown in figure 4. The condition in

true CZ

()

Figure 4. Conditional constraint

the figure can be expressed by the following sentence:
“When task 7; finishes executing, if the condition ex-
pressed by the boolean variable x; is true then 7, is
activated, otherwise 73 is activated”.

Putting this constraint in a mathematical expression
is not immediate; therefore we will need an additional
explanation for it. Here’s the expressions related to the
situation shown in the last figure:

ta > t1+C1+M(1—$i)
t3 Z t1+C1+Mmi

where z; € 0,1 is the boolean variable representing the
condition, and M is a “big-enough” number (we mean
that M must be enough to ignore everything you sum
to it. There exists techniques to determinate its value).

As we can see, if z; is 1, the last constraint becomes
a precedence constraint for 7». Instead, 73 can never
run because t3 > M means t3 € (). These relationships
can then be displayed in the ¢-space in the following
way.

t

2

x=1 X=0

Cl' Cl'
t t

1

3.5 Non-conarr engy constraint

This kind of constraint can follow from both hard-
ware and software specification:

e the number of processors. If p processors are
present there cannot be more than p task execut-
ing concurrently;

e the use of shared resources. If a shared resource
allows a maximum number 7 of concurrent access,
this constraint must be specified in some way;

e the software organization. Usually all the jobs be-
longing from the same process cannot run concur-
rently.

In this case we don’t introduce any graphical way to
represent the constraint. We only express it in math-
ematical formulation. So, if we want impose the non-
concurreny between 7 and 72, we write the following
relationship:

to >t +C1 V t1 >ty +Cs.

This so means that 7» can start only after 7 termina-
tion or 7; can start after 5. Representing this con-
straint in t-space leads to the following figure:

t

2

€] / t

Following from both the last figure and the mathe-
matical formula, this constraint can also be expressed
as (11 < 72) V (72 < 71). This means that every prece-
dence constraint implies a non-concurrency constraint
too (this last property will be very useful to simplify
the set of all the constraints).

4 Future work

Clearly our research on this field isn’t yet mature
and this project is still undergoing. Our next steps
will be to find a computationally reasonable algorithm
for finding optimal solutions according to some cost
function. Then, we plan also to extend the model to
other optimization problems. Finally, all the explained
techniques will be applied to a real world problem.

References
[1] PISATEL (Pisa Initiative on Software
Architectures for Telecommunications),

http://galileo.iei.pi.cnr.it/ERI/

[2] C.L. Liu and J.W. Layland, “Scheduling Algo-
rithms for Multiprogramming in a Hard real-Time
Environment,” Journal of the ACM, 1973.

[3] E. Bini, G. Buttazzo and G. Buttazzo, “A Hyper-
bolic Bound for the Rate Monotonic Algorithm”,
IEEE Proc. of the 13" Euromicro Conf. on Real-
Time Systems, June 2001.

[4] G.C. Buttazzo, “Hard Real-Time Computing Sys-
tem”, Kluwer Academic Publishers, 1997.

[5] C. Drodos, M. Zayadine and D. Metafas, “Real-
Time Communication Protocol Development us-
ing SDL for an Embedded System on Chip Based
on ARM Controller”, IEEE Proc. of the 13t Eu-
romicro Conf. on RT Systems, June 2001.

[6] A.K. Mok and S. Sutanthavibul, “Modeling ans
Scheduling of Dataflow Real-Time System”, Proc.
of the IEEE Real-Time System Symposium, 1985.

[7] “Processing Graph Method Specification, pre-
pared by NRL for use by the Navy Standard Signal
Processing Program Office (PMS-412)”, 1987.

[8] S. Goddard and K. Jeffay, “Analyzing the
Real-Time Properties of a Dataflow Execution
Paradigm using a Synthetic Aperture Radar Ap-
plication”, Proc. of the Real-Time Technology and
Applications Symposium, Montreal, Canada, 1997.

[9] E.A. Lee and D.G. Messerschmitt, “Static Schedu-
ling of Data Flow Programs for Digital Signal Pro-
cessing”, IEEE Transaction on Computers, 1987.

[10] M. Di Natale, A. Sangiovanni-Vincentelli, F.
Balarin, “Task Scheduling with RT Constrains”,
Proc. of the Design Automation Conf., June 2000.

