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Abstract

The design of an embedded real-time application can be
divided in three phases. In the first phase, the functional
aspects of the application are specified, usually by means
of a dataflow-like formalism. In the second phase, the ar-
chitecture of the system is specified in terms of hardware
capability, RTOS to be used, etc. In the last phase, the func-
tional specification is mapped on to the system architecture
and the performance of the system is evaluated. This oper-
ation is usually done manually. Moreover, there is no au-
tomatic tool to support that permits to evaluate the correct-
ness of the mapping and the resulting performance. In this
paper, we present a general dataflow model that allows the
designer to assign real-time constraints in the early phase
of the design. Then we present a simple algorithm that au-
tomatically maps a dataflow specification onto a set of real-
time tasks to be executed in a RTOS. The algorithm is based
on the assumption that the RTOS provides EDF scheduling.
A schedulability analysis is presented that permits to evalu-
ate if the temporal constraints can be met.

1 Introduction

In the design of an embedded system, it is important to
separate the functional aspects of the application from the
architectural aspects. For this reason, the design process for
embedded systems can be logically divided in three distinct
phases. In the first phase, the functional aspects of the appli-
cation are addressed. They are related to the functionality of
the application and abstract away from the implementation
details. Usually, the designer uses a dataflow-like formal-
ism, assuming maximum parallelism among the different
activities to be carried out. Examples of such formalism are
Simulink [1], AscetSD [2], Ptolemy [5], etc.. In this phase,
the functional and non-functional constraints are specified.

In a second phase, the architectural aspects of the sys-
tem are specified. In this phase, and hardware platform is
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chosen, in terms of processors, amount of memory, external
devices, networking technology, etc. Also, the SW archi-
tecture is specified, in terms of real-time operating system
(RTOS), network protocol, etc..

Finally, the functional specification is mapped onto the
architecture specification. The different activities to be car-
ried out are assigned to real-time tasks to be executed by
the RTOS. Communication mechanisms between tasks are
selected. This assignment is done so that the temporal con-
straints specified in the initial phase are respected. This
phase includes an evaluation of the performance of the ap-
plication on the selected architecture. If the evaluation is
satisfactory, the system can be actually implemented. Oth-
erwise, the designers must go back to the first or to the sec-
ond phase and change some specification. For example, the
designer may decide that a faster processor is needed, or
more memory is necessary, or that some activity needs a
dedicated processor to be carried out. The designer can also
decide to use some simpler algorithm to reduce the compu-
tational overhead.

The mapping phase is very important because it permits
the evaluation of the “quality” of the adopted solution, in
terms of cost/benefits. However, currently not many design
tools support a mapping phase. In the current practice, the
mapping is done manually, using an experienced engineer
to select which task will execute which functional activity.
Some technique exists that assigns each functional block to
a different real-time task, and then selects the most appro-
priate task parameters so that the temporal constraints are
verified. However, this approach may potentially lead to a
great number of real-time tasks. In embedded system in-
stead, it is very important to reduce as much as it is possible
the resources used by the application like memory,RTOS

overhead, and so on.
In this paper, we first present a dataflow model for an

application that permits to specify the temporal constraints
of an application. Then, we present an algorithm that au-
tomatically generates the task set, with all the task param-
eters. This algorithm is based on the assumption that the
RTOS supports anEDF scheduler, though current efforts
show some progress in using a fixed priority scheduler. Fi-
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nally, we present the schedulability analysis for the gener-
ated task set. If the task set is schedulable, then the original
temporal constraints on the dataflow specification will be
respected.

In the aims of this research, we assume the words “task”
and “process” as referring to the same entity.

2 Related work

Most of the terminology used in this paper is based on
some works by Lee et al. [8, 4], with some significative
difference.

Gerber, Saksena et al. [6, 7, 9] presented a methodol-
ogy for automatically deriving the parameters of a task set
that describes an embedded application. In particular, in
[6], they describe a method for assigning intermediate con-
straints on the basis of the end-to-end constraints. In their
methodology, they start from the task set. The underlying
assumption is that the initial mapping of the dataflow ap-
plication on the task set is already done. The approach de-
scribed in this paper presents several differences with the
one in [6]. First, we automatically derive both the set of
tasks and their parameters. Second, we only assume one
kind of temporal constraint, that we call “path deadline”
(see Section 3.1) and corresponds to the “freshness con-
straint” of Gerber and Saksena. The work presented here
can easily be used in a system where some part of the com-
putation is left to dedicated circuits (ASICs).

The schedulability analysis is based on the processor
demand analysis, first presented by Baruah et al. of the
schedulability condition has been described in [3].

3 Functional model

In our model, an application is described by a directed
acyclic graph (DAG). More formally, afunctional modelis
an ordered pair(V, E), whereV is a set of vertices repre-
senting thefunctional blocksandE a set of edges, repre-
senting thefunctional links.

• V = {C1, . . . , Cn} is the set of functional blocks.
Functional blocks are the minimal independent opera-
tions composing the application. As we will see later, a
processpi may be composed of one or more functional
blocks, but a functional block must belong entirely to
a single process. We assume functional blocks to be
non-reentrant.

• E = {l1, . . . , lm} is the set of functional links which
connect and carry data from one functional block to
another. Each functional linkli must have a single
source, calledsrc (li), and a single sink orsnk (li).

We say thatli is an input link forsnk (li)and an out-
put link for src(li). A functional block can have more
than one input link and more than one output link. A
link with src (li) = Cj and snk (li) = Ck will be
denoted by(Cj , Ck).

An external eventei is a particular functional block with
no input links. Anoutputoj is a functional block with no
output link. Thus the link carrying an external eventei to
the functional blockCj will be (ei, Cj), while one carrying
the data fromCi to the outputoj will be (Ci, oj).

A functional block will be activated, thus starting its exe-
cution, when one of its input links are fired. During or after
its execution (depending on the algorithm used) it will fire
some or all of its output links. The blocks are activated with
an “or” activation semantics, meaning that a block is acti-
vated every time one of its input links is fired; if the blocks
receives multiple inputs, they are buffered and will be ex-
ecuted as soon as possible. Ideally, there is no limit to the
number of pending activations that a functional block (or a
process) can sustain.

Definition 1 A functional chain fromCi to Cj , or P (i, j),
is an ordered sequenceP = [l1, . . . , ln] of links that, start-
ing fromCi = src (l1), reachCj = snk (ln) crossingn+1
functional blocks such thatsnk (lj) = src (lk+1). Ci will
be the chain’s source andCj its sink.

A functional chain, or simply chain, can also have an
external event or an output (or both). Notations will be
P (ei, j) for the former andP (i, oj) for the latter.

Definition 2 In a chainP (i, j), if a blockCh ∈ P (i, j) is
activated beforeCk ∈ P (i, j), the former is apredecessor
in respect to the latter, which issuccessor; the notation used
is Ch ≺ Ck.

Definition 3 A pathP (ei, oj) is a chain withei as source
andoj as sink.

Definition 4 Two paths aresimilar if they have the same
source an sink while being different paths, thus crossing dif-
ferent sets of functional blocks.

Also, being the application described with aDAG, no
chain must exist which has the same block as both source
and sink; i.e., no cycles must exist in the graph.

3.1 Instances

An external event will be activated several times during
the life of the application. Each activation is a different in-
stance of the event and must be treated apart from others.
Thus,ei,j is thej-th instance of eventi. When an event ar-
rives, one or more paths will be activated, meaning that the
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blocks in the paths will start executing. Paths are activated
only when events arrive. ThusPi,j is thej-th activation of
pathi.

Definition 5 Thepath deadlinefor Pi, or ∆i, is the end-
to-end constraint for a pathPi, the equivalent for paths of
process deadlines.

The path deadline is a relative time constraint, indepen-
dent of the actual path instance. In the scope of this re-
search, the path deadline will be a constant value through
all instances of a path. A good way of ordering paths is
based on their deadlines, from lowest to highest.

In addition, for each path activation there will be an ab-
solute deadline:δi,j = Pi,j + ∆i.

In addition, an external eventei can be periodic or spo-
radic. In the former case it will repeat everyTi interval; in
the latter case,Ti will represent the minimum interarrival
time for eventei, and will be the interval accounted for in
the worst-case analysis.

3.2 Processes

The goal of our algorithm is to divide an application into
processes. A process is denoted bypi, while its j-th in-
stance ispi,j ; ai,j denotes the time of thej-th activation.
Relative process deadlines are denoted byDi,j , while abso-
lute ones aredi,j (referring to thej-th instance of process
pi). It might be necessary to keep track of more than one in-
stance of each process, because it may be activated by more
than one path.

As for the relative deadline, past research has often been
based on the assumption that it is the same in every instance
of a task, thus it would beDi if this assumption were true;
however, in the aims of this research, the relative deadline is
often assigned dynamically, and may change every time the
task is activated, so it is necessary to consider the instance
index too.

The time when processpi starts its execution for thej-th
activation issi,j ; while the time when the same execution
is terminated isfi,j . Obviously, the deadline is respected if
fi,j ≤ di,j .

Definition 6 Thewaiting time for thej-th instance of pro-
cesspi is the time difference between its start time and its
activation time:wi,j = si,j − pi,j ≥ 0.

Definition 7 Theresponse timefor thej-th instance of pro-
cesspi is the time difference between its finishing time and
its start time:ri,j = fi,j − si,j .

Definition 8 Thecomputation timefor thej-th instance of
processpi is the time it would take executing if there were
no other concurrent tasks, and is calledci,j ≤ ri,j .

Normally, the computation time is dependent on the pro-
cess state and inputs, though initially the assumption that
∀j, k, ci,j = ci,k will be used. Hopefully there will be an
esteem over the length of the computation time; in most
cases this will be theWorst-Case Execution Time(WCET).

Definition 9 Theblocking timefor thej-th instance of pro-
cesspi is the time during which the process, though it has
started executing, isn’t running due to scheduling issues;
that is, the time during which the process is suspended (af-
ter si,j) to allow execution of other tasks:bi,j = ri,j − ci,j .

4 Late activation

Late activation (orLA ) is the name of the algorithm pre-
sented in this paper. It is a set of rules for partitioning the
application into processes and scheduling the task set thus
created. This algorithm can be used if there is little or no
knowledge of the internal working of the application.

4.1 Process partitioning

The rules for process partitioning withLA are reported
below.

1. It is essential that a process is part of a path, mean-
ing that it must contain one or more contiguous func-
tional blocks belonging to the same path. A block of
the process might well belong to more than one path,
but there must be a path to which all functional blocks
in the process belong, plus they must be in sequence.

2. A functional block is non-reentrant. Therefore, to sim-
plify the partitioning algorithm, we restrict the number
of possible allocations by imposing that a functional
block can be assigned to only one process. Thus, a
block which is sink to more than one functional link
must necessarily be the first block of a process; all sub-
sequent blocks in the process must have one input link
only. With this rule, a process can be activated by sev-
eral other processes.

3. A block which fires more than one output link should
be the end of a process. This rule keeps the algorithm
simple and allows a higher degree of flexibility in as-
signing the process deadlines.

These rules partition the set of functional blocks in a set
of processes. The precedence relation between functional
blocks imposes a precedence relation between processes. In
the following, we will use the notationpi ≺ pj to denote
that processpi is a predecessor ofpj .

By using these rules, there is the possibility that the ap-
plication be split into too many processes, thus reducing ef-
ficiency and occupying too many resources. For example,
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by changing Rule 3, it would be possible to group an en-
tire path into a process. We are currently investigating other
algorithms to further reduce the number of processes.

4.2 Scheduling algorithm

The key rule of the algorithm is that every task keeps
track of all tasks it has to activate during its execution; when
it finishes executing, all those tasks are activated and set
ready. Deadlines are assigned at that time, based on the
path deadline and the behavior of predecessors. If the ac-
tivation of a task depends on a conditional expression, and
the condition is not met, then the task willnot be activated.
Processes are activated only if required, and all output links
of a block are fired at the end of the block’s execution, so
tasks are ready for execution as soon as they are activated
by the scheduler. We assume that tasks are preemptable and
that are scheduled by anEDF scheduler.

4.3 Deadline assignment

Relative and absolute deadlines can be easily derived
from the end-to-end deadlines. A single firing of each ex-
ternal event will be considered during this study; this way,
there will be a single instance for every path and for the first
task of every path. The rules for assigning the deadlines are
listed below:

• Every time a task is activated by an external event or
by a functional link, it is assigned an absolute deadline;

• a process that is activated by an external event, be itp1,
has an absolute deadline ofd1 = mini {δi | p1 ∈ Pi},
while its relative deadline is

D1 = min
i
{∆i | p1 ∈ Pi} ; (1)

• the absolute deadline of a processpi,l ∈ P , which
is activated bypi−1,h ∈ P at timefi−1,h, is di,l =
minj {δj | pi,l ∈ Pj}, while the relative one is

Di,l = min
j
{∆j | pi,l ∈ Pj} −

∑

k

(wk,h + ck,h) ,

pk,h ∈ P ∧ pk ≺ pi. (2)

Since a task which is activated by an external event has no
predecessors, rule (1) is a special case of rule (2). The late
activation algorithm assigns the same absolute deadline to
all processes in the same path. It is also evident that dead-
line computation is based exclusively on past events, and no
estimates about future events are needed.

5 Examples

In this section, we present some examples of the late ac-
tivation algorithm. Note that the applications presented as
examples are already partitioned into processes as described
in 4.1, thus the blocks appearing in the diagrams represent
tasks and not just functional blocks.

5.1 Example 1

The application structure presented here is likely the sim-
plest one for use with this protocol. A single external event
activates every path in the graph, and no similar paths exist.

Figure 1. Example 1

The graph presented in figure 1 shows an application
made up of three paths, ordered by deadline (assume that
“Task i” is indicated withpi):

• P1 = [p1, p2] has a relative deadline∆1 = 16;

• P2 = [p1, p3, p4] has a relative deadline∆2 = 20;

• P3 = [p1, p3, p5] has a relative deadline∆3 = 23.

The only external event activates all paths at once. Every
task has a computation time (theWCET will be used) and
a relative deadline, which is assigned when the task is acti-
vated. Computation times are shown in table 1.

A Gantt chart showing the schedule is presented in figure
2.

Clearly, if there were other processes along one of the
paths, their deadlines would have to take into account the
waiting times af all tasks in that path. So, for instance, ifp5

activates other tasks, their deadlines are influenced byw3

andw5 (not mentioningw1 since it is zero).
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Task Execution time

p1 c1 = 5
p2 c2 = 4
p3 c3 = 6
p4 c4 = 2
p5 c5 = 3

Table 1. Task computation times for example
1

Figure 2. Scheduling chart for example 1

5.2 Example 2

The other example shows an application with two differ-
ent inputs and as many outputs. The application graph is
shown in figure 3, while the taskWCETs are listed in table
2.

Task Execution time

p1 c1 = 4
p2 c2 = 3
p3 c3 = 1
p4 c4 = 3
p5 c5 = 4

Table 2. Task computation times for example
2

Again, three paths can be identified within this applica-
tion:

• P1 = [p1, p2] has a relative deadline of∆1 = 18;

• P2 = [p1, p3, p4] has a relative deadline of∆2 = 22;

• P3 = [p5, p3] has a relative deadline of∆3 = 25.

Figure 3. Example 2

This example is based on the application shown in figure 3.
A Gantt chart showing the schedule is in figure 4.

Figure 4. Scheduling chart for example 2

6 Feasibility test

To test the schedulability of the generated task set,
we use the processor demand criterion, first proposed by
Baruah et al. [3]. The standard test is the following:

∀L ≤ L∗,
n∑

i=1

(⌊
L−Di

Ti

⌋
+ 1

)
Ci ≤ L, (3)

wheren is the number of tasks,Ti, Ci andDi are the min-
imum interarrival time for thei-th task, itsWCET, and its
relative deadline respectively, andL∗ = U maxi(Ti−Di)

1−U , be-

ing U =
∑n

i=1
Ci

Ti
< 1 the processor load. This is for a

genericEDF-scheduled task set.
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This formula can be used in our algorithm with the fol-
lowing assumption: when an external eventei arrives, one
or more paths are activated, and several tasks will be acti-
vated in sequence. Actually, there would be no difference if
all tasks were activated at the same time (the event arrival)
and executed in the right order. So we use external events
in formula (3) in the place of tasks.

ne is the number of events. The maximum load that an
external event can generate on the processor is the sum of
the WCETs of all tasks it activates; in addition, some tasks
might be activated more than once by the same event, in the
presence of similar paths, so this must be accounted for.

Cei
=

m∑

j=1

αjCj , pj ∈ Pk, ei = src (Pk) , (4)

whereαj denotes the maximum number of times taskpj

can be activated by a single arrival of eventei. Pointedly, if
e1 = src (l1), and callingp1 = snk (l1) the first task acti-
vated bye1, thenα1 = 1, while a task which hasm input
links hasαj =

∑m
h=1 αh, ph = src (l) , pj = snk (l). In

other words,α for a generic taskpj is the sum of that of all
its immediate predecessors (all tasks which can activatepj).

In addition, the equivalent ofDi can be assigned to the
event; this will be the minimum deadline among all paths
activated byei. Dej = minj {∆j | ej = src (Pj)}. Tei

denotes the minimum interarrival time for the event.
Under these assumptions, external events can replace

tasks in expression (3). In the end, the condition is:

∀L ≤ L∗e,
ne∑

i=1

(⌊
L−Dei

Tei

⌋
+ 1

)
Cei ≤ L, (5)

whereL∗e =
Ue maxi(Tei

−Dei)
1−Ue

, andUe =
∑ne

i=1
Cei

Tei
< 1.

This condition is an upper bound, so it is sufficient.

7 Conclusion and future work

The late activation algorithm’s strength is the fact that it
requires no forward knowledge about the application. Ab-
solute and relative deadlines can be assigned only on the ba-
sis of past events. In an application where execution times
of processes are not known, the algorithm can be applied,
since the only dynamic values that need to be known to cal-
culate deadlines are the waiting times, which are known ex-
actly when a task activates another.

This algorithm can be applied in a straightforward way
when theRTOS is based on a message passing paradigm. In
fact, in this paradigm all tasks are blocked waiting to be ac-
tivated on a message queue. A task activates another tasks
only upon completion. Moreover, a task can be activated
several times by different tasks, and no activation must be
lost. We are currently investigating the maximum length of

a message queue given the application parameters and con-
straints. In fact, in an embedded system, it is also important
to reduce the amount of memory needed by the application.
Therefore, it becomes important to compute the maximum
length of the queue and then provide an algorithm to reduce
this length.

When theRTOS is based on a shared memory paradigm,
it may be possible for different blocks (and hence for differ-
ent tasks) to share data through mutex semaphores. How-
ever, in this case the task would experience a blocking time.
We are currently extending equation (5) to include blocking
times. Another interesting issue is to modify the algorithm
and to try to allocate the functional blocks to the task so to
minimise the number of possible conflicts on a shared re-
source.

Finally, we are considering the issue of applying our
methodology in aHW/SW codesign environment. In such
a context, a functional block might be mapped on a hard-
ware component (i.e. aFPGA) instead of a software task. In
this case, theFPGA can be considered as a coprocessor run-
ning on single task. One issue to consider is how to allocate
the remaining functional blocks to the software tasks so to
allow maximum parallelism and efficiency in the final im-
plementation. This problem is very similar to the problem
of scheduling a set of real-time tasks in a multi-processor
environment, where tasks are statically allocated to proces-
sors.
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