UNIVERSITA DEGLI STUDI DI PIsA

DIPARTIMENTO DI INFORMATICA
DOTTORATO DI RICERCA IN INFORMATICA

PH.D. THESIS

Software Testing in the XXI Century:
Methods, Tools and New Approaches
To Manage, Control and Evaluate
This Critical Phase

Eda Marchetti

THESIS COMMITTEE REVIEWERS
Antonia Bertolino (Supervisor) Lionel C. Briand
Ugo Montanari Shari Lawrence Pfleeger

Carlo Montangero

September 30, 2003

To my son Matteo

Acknowledgments

I wish to thank all the people who in different way have contributed to the
realization of this Thesis. Surely 1 would never have arrived at this result without
their support, stimuli, suggestions, patience and love.

| thank Antonia Bertolino who introduced me to the stimulating environment of
Software Testing. In these years she constantly offered me her professional and
personal support and was for me not only a good teacher but also a dear friend.
Within her research group | found a stimulating, inspiring and friendly environment
and had the good fortune to collaborate with invaluable people such as: Francesca
Basanieri, Francesca Martelli, Andrea Polini, Alberto Ribolini, and everyone else in
the Pisatel Lab.

Likewise, I wish to thank Raffaela Mirandola for her productive collaboration and
the precious advice and encouragement, and Gaetano Lombardi, Giovanni Nucera
and Emilia Peciola for the important research stimuli and useful discussions.

I thank my husband Massimo for his love, understanding, and support
throughout these years and without whom | probably would have never reached this
result. And a special thanks to my little baby Matteo who awaited me patiently at
home during the writing of this Thesis.

I am also grateful to my parents and my sister Sara for their love, understanding
and continuous support in all the difficulties encountered during these years.

Thanks finally to all my friends who have been close to me and have tolerated my
moods and strangeness.

Contents

1 01 oo 18 ot o] o TSR 13
11 Motivations and ODJECHIVES...........ociecirereieeereneeie e 15
12 THESIS OULIINE ...ttt sttt 18
13 Anoverview of the publiCatiONS SEELUS........ccerereieieieieieeiesie et reresesenes 22

Part 1. Software Testing: BasiC KNOWIEAGE ...t 25

2 S0 ATz TSN = o 27
2.1 TESHING PhASE.....cu ettt bbbt bbbt bbbt bbb b bbbt petas 27

211 SEC TECNIQUES. ...ttt st 29
212 Definition of SOftWare TESHING......ccovvrriiiiirirreseesseses s 31
2.2 QLIS Lo =Y = ST 32
221 ODJECHVES Of TESING....creerrererierrerrereeieisere s se e sas e 34
2.3 Functional and StrUCtUral TESHING........cverererirerirriereresie s sessessens 35
P2 R W o g = 1=] o OSSR 35
PG TS 1 (0o (N = 1= o 36
2.4 (0] o]1= o @ 1= 01050 1= (] o TSRO 37
25 TESHING IMEASUIES......cvcveieieieieie ittt bbbt bbbt bbbttt et ettt et e bbbt et bebebaberatas 40
251 Evaluation of the Program Under TESL........cocvvenrnire s sssseseens 42
252 Evaluation of the Test Performed...........coenicnnneeisese s 43
253 Managing the TESE PrOCESS.......ccuiiririiiiisressssssssssssssssss s s s s s s 43

3 ALittleBit of MOElING BASICS......cccovriieeirrinirierserie ettt sessses 45

31 Unified Modelling LanQUBGE ..o sesesesesesesesssssssssssssssenen 45
T S A U I 1T o OO 46
3111 USE CaSE DIAgIaM. .ottt sttt sttt s 46
3112 SEUENCE DIBOIAIMvvieeerie ettt sttt es 48
3113 (@fe][F=1oTo = 1o g1 BIF-"s =0 O ST TR 49
3114 ClasS DIAQraMc.cueueieieieieieieieieieie ettt bbbttt bbbttt bbb b besesesesesas 50
3115 STz (<] Do = PO ST 52
3116 F oYY DT o = o PO 53
3117 Component/Package DIagram.........ccovernrnnneseessessesee e seses s ssssssssesssseees 54
3118 (D]= o] [0)Y] 001 0 0 BIT="o = 0 VU 55
312 UML VIBWS ..ttt et bbb bbb bbb 55
3121 USE CBSE VIBIW ...ttt sttt st st 56

3122 oo [T or= I Y= T 57

3123 COMPONENT VIBW.....cvitirieiiriririreririsisssssessns 58

3124 CONCUITENCY VIBW....vviriieei ettt ettt 59
3125 (D= o] o) 0= 0L AN T T 60

313 UML EXtension MEChBNISIMS........ccieiriniieeinreneicie st sesses s sssssssesenns 60
3131 SEEIEOLYIE. ... ettt ettt sttt b et bbbt b bbb b 61
3132 Tagged Values and CONSLFAINTS.........covrereeirenirennresseses e sesesses e sssssssnesenns 62

32 Rational UNIfied PrOCESS........cccoeuririieeinrineirisr st ses et ssss st ssssssssnes 62
321 BESEPIACHCES. ..ottt e 64
322 SHAC SIUCIUM......evereceeieereseee ettt ettt 66
323 DYNAMIC SITUCLUE.....cveveveieieieteieieieteteiete ettt tsests bbb bbb bebesessbesesesesesesesesesesesesesasesasasas 68
3231 F o= o)1) OO TP 68
3232 E1BDOIEHION.....veeeciresesee s 71
3233 CONSITUCTION.....vteirie st 73
3234 QLI L g TS STTTST 75

Part 2: A Solution for Test Planning Management ..o 77
N I AT T e o == T o] o] - o o TR 79
41 PIOPEAN SCOPE..... vttt ettt bbbt bbb et bbb 79
4.2 REGEI WOTKS.....coeicicie ettt 80
4211 DECISIONE TOOIS ..ottt sttt 82

4.3 Background KNOWIEAGE ...ttt sttt 83
431 Basic Concepts of Performance ENGINEENNG.......covreeirnreenneniesienesesseesesessesesesesesneees 83
432 RT- UML: the Performance AnalysiS Profile........ccvvvvvvnnnnnnnsssss s 85
44 THE MELNOU.ot 89
441 EGand EQNM DENVELION........ccocceeiieeirerieeesesiseese s sreseses s ree e sssesssessssesessssssessssssssens 92
442 Architecture of the Propean TOOL........cccovvrrrrrnnrrnrrsssss s 94
45 Propean for Managing the TeStiNg Phase.........ccnrnnie s esesesnees 96
T R O = 1 1o | 96
452 Detailsof the MethodOlOgY........coveereririerenriniieenrisesie st sesssees 98
453 DiscuSSION @0 RESUILS........coiriereeierieie et 105
4531 Estimating the Completion TIME........ccovrernrnnnenees s 106
4532 Deriving the Best Personnel DistribBution..........cccocvvneninnseinnene s 110
4533 COSE EStIMALTON......coieeeeeereeie et 112

4.6 Propean Applied to RUP...........coree et nees 114
461 Detailsof the MethOOOIOGY.......ocvrrrerrirrrrsrssssesessese e sesees 115
46.11 RUP MOGEIING ..ttt 115
46.1.2 RUP CUSIOMIZATION......c.cucvrieeieee st sesss s ssss s 117

46.2 AnExample of Propean APPliCaiON........cocovvrrrrrrrrirsssesesesessesesese s 119
46.3 ANAYSISOf RESUILS.....cooeiiiecirriserie et 122
Part 3: Strategiesfor Test Case GENEr AliON.......ccovvirnninininnse s 127
5 An Automated Approach to UML-Based TeSLING......cccccoerrmrernninieninneneseeseseseesisesesesseeenens 129
51 COW_SUITE POINE OF VIBW....cecveriiecerirereisie et se et 130
52 UML Testing: an Overview of the LIiterature...........coovevvnrnnncssinsesee s sesenens 132

521 ACAHEMIC RESPONSE.....cccueireriurieirireieeisiresesete e sesae e ssss s sessse st ssesssssessesssnsesssenns 132

5211 GROUP Ao rennas 133

5212 GROUP Bi......oiiriritisie sttt sttt snees 135

L2 A 1o (0 = (=S oo g =TT 137
53 CoW_SUItE MEtNOOIOGYvveenreriireeesie ettt 137
531 Prerequisitesfor Applying COW_SUIE......coviriririnnininennenesesesesese s 138
532 COW_SUITEUSAOE.......cueurireieririrereeie sttt s sse sttt ss s 139
54 THE COWLESE SITALEQY ... ereereerererreeirireseesis e sesis bbbttt 141
541 Deriving The BaSiC SIIUCIUME. ..ottt 141
5411 USE Case VIEW ANBYSIS ...t sesses s ssss s st ssesesssessesenns 141
54.1.2 LOgiCal VIEW ANBIYSIS ..ottt sttt 142
54.13 TrEES DEITVALION......ccecieiriricieirreseie ettt 145

542 Defining a“Testing Profil€' ...ttt 148
5421 Assign WeightSto the NOUES.cviirriiirrrrrcseess s 148
54.22 Integration Stage Selection and Weighted Trees Derivation..........ccccoeeeevvenne. 149

L T O 11, 1= (] o T 150
55 USE INEErACHION TESE....ccuceeeiicerie ettt ettt st 151
551 Category Partition MEthOU.........coovirinininisiiseseresesesese sttt 152
L3 U | o = o TSR 153
5.6 COW_SUITE TOO ...ttt seesis sttt bbbt 156
57 Applying Cow_Suiteto Course Registration SySteM........cccccceernennnnreeeeiereerereresenas 159
571 Course RegiStration SYSEM........cceurrinierieirenirieisisessesissesesee s esessssssssesessssssssesssssessesenns 159
SN O o 11V (== 2N oo [T 1 o] o T 161
573 Combining UIT_Sd and COWLESL.........oouerueiriririeirirensesisresesee e sssses e sesss e sssssessesenas 167
5.8 Comparing Manual vs. Automated Test Case DEfiVation..........ccocvrreenrenseeenneneseesnenenns 171
D581 CASE MUY .ereieeeetrerecie ittt sttt e 171
582 ERI TES SIAIEOY ...covureerrereierieirenenseeisesesessis st tsesessssss e sessse e ssssssssssessssssssesssssessesens 173
583 TSt PlanS DESCIIPLION.cccuceeirereeeerrireseisie e sesie st sse s ss s 175
5831 I == = o TSRS 175
5832 UIT TES PlAN ettt bbb 177

584 Comparison Of RESUITS.......ccerriiieinirinirie sttt 180
584.1 Comparison of the Contents of the Test Plans.........cccccceeeeeeeeeeeeeeenenenns 181
5842 Comparison Relative to the test Plans Devel opment..........cceeeeeeeieeineinnnnns 183

LR = 'o o I = 1= TSN 186
Part 4: Measurementsfor TeStiNG PRase.......ccovvvvrrrnrnrnrs s 189
6 M ethodologiesfor FailurePrediCtion...........ine s senees 191
6.1 IMIOTIVALIONS. ...t bbb bbb 1901
6.2 RSz 1 1] 1ol o T o | 194
6.3 Background KNOWIEAGEcccevueureriierinirereirie sttt sttt 196
6.3.1 BayeSian APPrOBCH.......ccciiiiierircrrcrrrss e 197
6.3.1.1 The Gamma PoiSSON MOEcceviieerrnrrrseee e 198

6.32 BemMar MENOM........ccieeeeirretiet e 199
6.4 ONE-SLEP MEINOM.coieceeiirecerie bbbt 202
641 ONE-SEEP ClASSICEocovereeerereceeir ettt 202

6.4.2 ONE-SLEP BAYEIAN......ciierericicirrirrrsr e 203

6.5 TWO-SLEPS MELNOM.......ceeer e 204

B.5.1 PrediCtion PrOCEAUIE..........ooeeveeeeeeeete st eee et e et e etesrestessesressessessessessessessessessessessessessessessessenns 205

652 TWO-SIEPS CIASSICEl ..vovevevererrieieieieieieie ettt bbbttt bbb bbbt 206

6.53 TWO-SIEDS BAYESIAN....c.cccicrcicieieteieiete ettt ettt bbbttt ettt bbb bbb reperenas 207

6.6 APPLICAETON RESUIS......cvcviireieririririciriririsesriessessses s 208
B.6. 1 CASESHUAYcocvevererereretereieiete ettt ettt ettt ettt bbbttt e bbb e bbbt e b et et e be b et et e b et terererenas 208

B.6.2 RESUIE ANAIYSIS ..ottt ettt bbbttt ettt ettt b b rererenas 210

6.6.3 Two-Steps Bayesian Model with Operational Data.........ccccceeeieienienneieninseieenenns 214

7 [23= TE= o1 HT VALY Koo L= ESAN o] o] FTor= 1 1o o HE 217
7.1 Software Reliability ENGINEEIING.......cocveieiriereieiereieiereierereeierersserssssesesesesssesesesssssssessssseseses 217
711 Achievable REIADIHITY. ...ttt renas 220

7.2 RS = [221
721 Definingthe Reliability ODJECHIVES.......cccviieieeieeeeeee e 222

722 Deveopingthe Operational Profil€..........cccoccccccceeeeeeeiesre e esessseseresens 223

723 Preparing the TESIS. ...ttt ettt sttt bbb bbbt 224

724 EXECULING TNE TESS....ccccicicrcicieete ettt ettt ettt bbbt bbb b b p e renas 225

725 Interpreting TESt RESUILS. ..ottt pepenas 227

7.3 Reliability Theory: Some BasiC DefiNitioNS.........cccovennneennensee s sesennees 227
74 Reliability Growth Models: @n OVENVIEWcccerrrienrenersreseses s sesneees 229
741 MOAE ClasSifiCaliON.......cccoiiiieiisese sttt st st st st e st e s be st e st e sbesbesbesbe e ses 232

742 Reliability Growth Model SEIECHON.........ccceveieieiecieee ettt rerenes 233

743 Survey of Religbility ESimation TOOIS......cccoueieennninieieinieisieeie e sesenes 235

744 Usingthe ToolSTor PrediClionS.........ccccceicieieieieieeee ettt ereresssessresssesssesssssesssssesesenas 237
74.4.1 First Step: ApPIYING SORE ..o 238

74.4.2 Second Step: MOdElS RUNNING.......cviiiiiiieeneeeeesssess s seseens 240

7.4.4.3 Third Step: Models SHECHION.........ccccooiieeeeeeeecserese et 241

75 The APPliCatioN RESUILS........ovvirerrerirresrsrisese s 244
751 CASESHUAYcoeverererereretere ettt ettt ettt ettt ettt et et et et e b et et et et et et et ebe b et et et esetererararas 244

752 DaEAANAYSS. ..ottt ettt bbbt b bbb renas 248

753 MOl FitliNG.....cceeeeirerierieririciesse ettt sesnb e 250

Part 5: POSSIDIE IMPrOVEMENTS.......coiirieirreie et nees 255
8 ConcluSIONS AN FULUN W OI Ki....voceeceeciice sttt sttt st sttt st st st sba s 257
8.1 CONCIUSIONSveeveeee et et eeeeseetestessessesressessessessessessessesseaseasesseasesseasessessessessessessessessensassessessessens 257
811 Proposals and FULUrE WOIK........cceeueieieieieieieieieinieieieie ettt sesesssssesssssssesesssssesssesesesesenes 258

8.2 An ongoing Experience: UML COmbBINGtiON..........cccovrinierinnenire e 259
821 PropoSet APPIrOBCN......cccieieieiereieieieieretere ettt bbbttt ettt be bbbt be bbb bbb s rerenes 261
8211 Test of the Single Virtual COMPONENE.........cccovririrnininenenenesese s 261

8212 Test of aGroup of Integrated Virtual COMPONENES..........couveeererereererereneenenirenenns 263
Appendix A. An overview of EG and QN........cccviiiiriiinnnesesssssssssssss s sens 265
Appendix B. TheUIT MethOUoIOgY........cccuerirrnereninirienisensisissessssessesessesssesessssssssesssssessesenns 268

AppendiX C. UML COMPONENES.....cciiiieieieiirieressns 273

Bibliography

1 Introduction

In the twenty first Century, it seems impossible to think that less than 50 years
ago people could live without software applications. Nowadays we have the
impression that everything we use, every “electronic contraption” in our house,
office or car contains a software (firmware) heart, but so is. From their first few
months, children are accustomed using interactive or musical toys, playing
videogames, listening to music or interacting with computers. Our kitchens are filled
with domestic appliances; our cars are more like computers with four wheels than
mechanica devices; very rarely does an office exist without at least one personal
computer; even for writing this Thesis we are using a software application (indeed
writing it without this support was unthinkable). However, these are just trivial
examples; software systems are vastly applied in every industrial and medical field,
they control air, sea, and road traffic and often are responsible of our lives.

Since the 1980, the widespread use of these technologies has led a large part of
the software engineering to focus its attention on quality, usability, safety and other
characteristic attributes of software applications. In particular, interest was captured
both by the process for software development and by its results. Using their
experience software engineering researchers have gradualy arrived at the conviction
that only the joint between a mature and well-established development process with
specific techniques for the quantitative evaluation of the attributes of interest of the
artefacts produced can guarantee high quality and reliable applications. Therefore
research has been split into two sets, with of course some natural intersections and
points of contact: the former interested to the process (Software Process
Improvement (SPI) [KK0Q]), and the latter focused on the product.

Frameworks such as CMM [PPC93], SPICE [D0O99], RUP [RUP] (detailed in
Chapter 3) are the “products’ of the SPI research work belonging to the former set.
They capture the good practices for the process assessment and are de facto
references used by thousands of organizations.

Considering the latter set, generally the techniques applicable to the product can
be divided into two groups:. static techniques, which do not involve code execution,

14

as such for instance inspection, reviews, code reading, and the dynamic techniques,
which instead require code running, to which testing belongs (Chapter 2). Among
these diverse techniques in this Thesis we concentrate on Software Testing, which is
a means applicable for both evaluating product quality and improving it indirectly,
by identifying defects and problems. We propose a global view of the testing phase
exploiting and unifying the knowledge both from the industrial reality and research
context. In particular we will go offer the readers methods, tools and new
approaches, each evaluated in terms of effectiveness, cost and applicability by means
of case studies derived also from real industrial contexts, useful for planning,
monitoring, and controlling the different stages of testing process.

Software Testing concerns many related activities developed in view of specific
purposes (Chapter 2). In particular, by the application of well-defined techniques, it
exposes software failures that may involve the whole system, parts of it, or even a
single module. The failures are the primary object of interest during testing activities
and they are evaluated by measurement process for obtaining values of interest
concerning the program under test.

During recent years Software Testing has increased its role in the process of
development. It is no longer focused on the defects detection after code completion,
but is now an integrated and significant activity performed during the whole software
life cycle. Its critical nature and the importance for the overal quality of the final
products led adopting the good practice of starting its management at the early stages
of software development during the requirements analysis and proceeding with its
organization systematically and continuously during the entire development process
up to the code level.

Of course, the management of the testing activities depends strictly on the
development process adopted for delivering the software products; however the main
phases can be resumed in [BEOL]:

Planning: As for any other process activity, the testing must be planned and
scheduled. Thus the time and effort needed for performing and conpleting Software
Testing must be established in advance during the early stages of development. This
also includes the specification of the personnel involved, the tasks they must to
perform and the facilities and equipments they may use.

Test cases generation: According to the test plan constraints a set(s) of the test
cases must be generated by using a (several) test strategy (ies).

15 1. Introduction

Test cases execution: The test cases execution may involve testing engineers,
outside personnel or even customers. It is important to document every action
performed in order to allow the experiments’ duplication and meaningful and truthful
evaluations of the results obtained.

Test results analysis. The collected testing results must be evaluated to
determine whether the test was successful (the system performs as expected, or there
are no maor unexpected outcomes) and used for deriving measures and values of
interest.

Problem reporting: A test log documents the testing activity performed. This
should contain for example the date in which a test was conducted, the data of the
people who performed the test, the information about the system configuration and
any other relevant data. Anomalies or unexpected behaviours should be also
reported.

Post-closure activities: the information relative to failures or defects discovered
during testing execution are used for evaluating the performance and the
effectiveness of the developed testing strategy(ies) and determining whether the
process devel opment adopted needs some improvements.

In this Thesis, considering the above subdivision of activities, we examine
severa difficulties concerning the applicability of Software Testing in the industrial
contest. In particular, starting from the test planning we proceed systematically with
the analysis of the different testing stages, pointing out the characteristic problems
and presenting our original proposal for solving them.

1.1 Motivations and Objectives

Software Testing is a critical part of the process of development, on which the
quality of the products delivered strictly depends. Testing activity, as reflected in the
above phases subdivision, is in fact not limited to the detection of software “bugs’
but it encompasses the whole development process. Specificaly, it has been
evaluated that testing consumes at least half of the labour (calculate in terms of
required time/effort/resources/people) expended producing a deliverable software
product and sometimes, in the case of critical systems, may even reach 90% [BE9(].
Thus Software Testing must be well-planned and executed, otherwise severe
consequences can result. Recent reports and industrial experiences are testimonies
that an erroneous evaluation of the product’s quality, which allows the release of
products with important residual defects, may have negative consequences with huge

16

loss of revenue and aso risking the users safety. Unfortunately many times due to
time or cost constraints Software Testing is not developed in the proper manner or is
even skipped.

The approaches and methods presented in this Thesis share a general aim: put
research in practice. Our methods are also the fruits of many constructive discussions
with project managers, testers and developers, who bring up real necessities not yet
satisfied thoroughly by the researches performed so far.

Therefore for defining our proposals the procedural steps followed were first
going over the literature in depth, studying and evaluating the proposed solutions
relative to test planning, test cases derivation and test results analysis. Then for
facing industries’ needs, either readapting and improving the approaches found in the
literature or defining original alternatives solutions, finally proposing systematic and
rigorous procedural methods.

For this we paid particular attention to strategies for selecting the parts
(functionalities) of the software products on which the testing must concentrate in
order to avoid loss of time and effort. In the literature several solutions are presented
for generating suitable test cases, but the authors seldom concentrated on the
methodological approaches for the selection of the functionalities to be tested.
Generaly thisis a crucia aspect for software developers, which is often left to the
intuition or expertise of the program managers or testers. Unfortunately wrong
decisions in this contest can considerably increase the overall effort and time
required for delivering a “good” product. Thus in this Thesis we specifically
concentrate on this problem by proposing procedura strategies, which guide us to
suitable testing choices from the first phases of process development.

During the methodology development, following the principle of finding
applicable solutions for the industrial environment, we were subjected to two
important constraints. maximzing the usability and automation.

Concerning usability, software developers want easy-to-use and ready-to-apply
methodologies, which minimize as much as possible the required additional
formalism or ad-hoc effort specific for testing purposes. In the industrial context
these aspects are immediately translated into an increase in the cost of Software
Testing, which is improbably justified and accepted even with the evidence of
extremely good results and a great improvement in software quality. Therefore our
objective was presenting systematic and rigorous methodologies, which as far as
possible will adapt themselves to modelling notations and procedures commonly

17 1. Introduction

used by industries and real environments and not vice versa. Of course achieving the
optimal trade-off between usability and high-quality methodology is a difficult task,
which may sometimes interfere with the improvements of the solutions proposed.

The second constraint considered is automation. The increasingly strict delivery
time imposed by the customers and markets forces software developers to accelerate
product development as much as possible. This often is trandated into reducing the
time necessary for performing Software Testing, which is one of the most expensive
activities of the development. Consequently the testing phase is partially skipped and
the software products released in advance only because there is not enough time for
testing them properly.

One of the ways to pull down the overall testing time is to considerably increase
if possible the automation in test cases derivation, execution and validation, thus
reducing the manual labour. Considering these problems in this Thesis we adopt
automation as a leading principle for our proposals. Therefore, for each of them we
present executable prototypes or we define the potential architecture completely,
implementing only some of the involved components. In particular, in this process
scrupulous attention has been dedicated to the automatic selection of functionalities
to be tested and the consequent derivation of test cases, which allowed us to
considerably reduce the time required for the Test Plan definition.

As a side effect the collaboration with the industrial world provides us with
interesting case studies used for evaluating the effectiveness of the proposals of this
Thesis. The results obtained highlighted the peculiarities and deficiencies of our
methodologies and were the stimuli for modifications or improvements in order to
better adapt them to the software developers demands.

Thus in this Thesis we not only provide theoretical advancement, but also focus
specifically on the definition of practical and quantitative support applicable all along
the testing phase. As will be further detailed in the next section, our contribution
concerns. providing an origina approach for scheduling the testing activities and
distributing people and resources among them considering a multiproject
environment; defining a tool which supports the user both in the choice of the most
important software el ements on which the testing effort must be concentrated, and in
the automatic generation of the appropriate test cases by using the available UML
product specification; evaluating the effectiveness of the testing techniques applied,
while the tests are executed, in order to decide when stop testing. In particular, we
present for each of the topics treated a detailed literature survey and a quantitative

18

analysis of the methodol ogies proposed by means of their application to case studies.
Moreover, the comparison with other alternative solutions taken from the literature is
also provided.

1.2 Thesis Outline

In this Thesis we overview the different stages of the testing process from the
planning to the effective run of test cases and evauation of the obtained results
considering division of activities previously presented for organizing the contents. In
particular we have divided the Thesis into five self-contained parts, each related to a
different testing stage, excluding the first which is an introductory section. Therefore,
these reflect the life cycle of software and are in atemporal relation each other, even
if severa intersections and contact points exist.

Part I: The first part presents a overview of Software Testing and provides a brief
description of the Unified Modelling Language and the Rational Unified Process that
will be used in the Thesis. This part aims to give readers the basic information they
need for a complete comprehension of the methods and approaches presented.
Specificaly:
Chapter 2

We provide a comprehensive view of the Software Testing, clarifying the
terminology that will be used and bringing the relevant issues together in a unified
context.

Chapter 3
We provide here a brief description of the Unified Modelling Language and the
Rational Unified Process extensively used in Chapter 4, 5 and 8.

Part 11: In Chapter 4 we begin our journey into Software Testing considering the
planning activity. This must start from the early stages of requirement analysis and
continue with further refinements during the entire development. Indeed establishing
a suitable test plan is not atrivia task because it includes the definition, assignment
and scheduling of resources, time, personnel and costs. This task is even more
critical in a multiproject environment in which resources and personnel are shared
among the various products redlization. Thus, judging whether the resources
assigned to a specified task are adequate or whether under the existing organizational

19 1. Introduction

schemes the predicted time schedules will be met is a very difficult task also because
the processes involved are highly complex. The influencing factors (both human and
technical in kind) are in fact many, and in most cases not easily measurable or
predictable.

Our response to these problems is Propean, an integrated approach in which
managers can define UML models of the flow of activities to be performed during
development and the tasks to distribute among personnel by using familiar notations
and tools and then derive automatically the measures of interest. Propean is based on
the techniques of computer software performance engineering and queueing
networks. It adopts the following metaphor: the project teams correspond to the
processing resources in performance models. The process activities are associated
with the tasks to be accomplished within established time intervals. Propean allows
estimations of time necessary for completing the different testing activities, with
respect to the established deadline, and the utilization rate of each resource (people).

Contrarily to some existing tools Propean deals with multiproject environments
and provides predictions which rely on a solid mathematical background and have
statistical validity. Propean automatically translates the models into a formet that is
processable by standard performance analysis algorithms and applies a solver of the
latter to obtain the desired results. In Chapter 4 we show how the well-known
techniques from performance analysis can be usefully and quite naturally adapted to
tasks of relevance for software managers, such as ng the time to completion of
specified activities, handling personnel multitasking over different projects,
optimising the workloads in devel opment cycles, deciding about product release, and
similar issues.

Part I11. In this part we proceed with our exploration considering a subsequent
activity: tests generation. This is one of the most expensive phases of testing
development. On the basis of the financial plan established, the test cases must be
defined and distributed among the functionalities of the system to be tested, and then
executed. But deciding both the functionalities on which the testing effort should be
concentrated and the amount of test cases to dedicate to each of them is another
critica point for the testing management. Wrong decisons could increase
considerably the overall cost of the testing phase and the time required for its
completion.

20

In Chapter 5 we propose an integrated, practical and automatic approach, called
Cow_Suite, which is also prototyped in atool for generating and planning a suitable
set of test cases, starting with the UML documentation. This methodology combines
two origina components working in agreement: a strategy called Cowtest and a
method called UIT. The former provides two different test planning schemes: testing
must respect a certain resource investment, which in practice we translate into fixing
the number of test cases; or the test cases must cover a fixed percentage of
functionalities. The latter automatically generates test suites for the high-level test
stages, encompassing system and integration testing at various levels. Each generated
test suite focuses on a functional portion of the system as interactively selected by
the tester on a suitable structure of the UML diagrams.

Cow_Suite has diverse and important characteristics that can be summarised as:
usability, using exactly the sasme UML diagrams developed for analysis and design
for test planning without requiring additional formalism; timeliness, starting test
generation and selection as early as possible in the development cycle (even from
analysis or design phases); incrementality, considering progressively larger parts of
the system and addressing, at each incremental step, the functionalities and
interactions that are relevant at the level considered; scale, ability to manage even big
test suites keeping their sizes and functional coverage under control.

Part IV: In this part we consider the final stages of testing: the analysis of testing
results. Despite the effectiveness of testing techniques applied, obtaining a defect-
free code remains wishful thinking. Coping with software failures, during
development and after release, is among the hardest tasks of managers, while testing,
debugging and maintenance activities still consume the largest part of development
effort and resources. Each failure requires meticulous extra work in order to find the
causing fault(s) and correct it, which could contribute to an expected enormous
increase in the final cost of the testing phase. Thus methods to estimate the defect
contents of software are of great interest for managers and testers.

Thus we focus our attention on the nethods for predicting the fina failure rate
using the test results obtained during the testing execution. In particular, we consider
two different situations: the results are relative to the running of nonroperational
testing or the failures collected are from operational testing execution. Specificaly:

21 1. Introduction

Chapter 6

We propose two dynamic methodologies, the One-Step and the Two-Steps
Method for deriving the number of failures experienced up to the end of testing
phase, by using data collected during the testing itself. Having this estimation in
advance alows the software developers to suddenly take corrective action and
drastically reduce the extra cost of the testing phase.

The most attractive feature of the proposed models is their simplicity: they only
need collecting the intervals of time between subsequent failures without requiring
estimation of parameters of the product or of the development process. Specifically,
for prediction purposes in both the One-Step and the Two-Steps Method we used a
Classical estimator and an aternative Bayesian estimator.

Even if the models are conceived for dealing with nonroperational test results,
their generality also allows their application to operational failure data as will be
described in this Chapter.

Chapter 7

In this Chapter we continue the exploration of the testing phase considering
operational testing. The data obtained during this phase are generaly used for the
application of reliability growth models, which let the evaluation of some product
characteristics such as the level of reliability attained. Unfortunately there is
currently no known method for determining a priori which model will prove optimal
for a particular development effort. Thus an important role in facilitating the
reliability growth model selection and usage is due to the available tools. For thiswe
describe the necessary steps for using two of these tools. SoRel and CASRE. We
discuss their respective roles, the former in verifying the basilar assumption that the
faillure data exhibits a growth in reliability, the latter in selecting the suitable
reliability growth model for obtaining the required prediction. We then discuss the
advantages and difficulties encountered in applying these models for reliability
prediction, and also describe a procedure describing the steps necessary for the
integrate use of SoRel and CASRE.

Part V: In Chapter 8 we present the conclusions and an ongoing experience
concerning the readapting and integration of the Cow_Suite methodology into a more
general framework for enabling the validation of Component Based (CB) systems by
testing them against the corresponding UML architectural specifications. Specifically

22

using the emerging methodologies for representing components and development
process [CD0O0], we outline the steps necessary to provide the user with a tool for
components testing. Our intention is to define a test environment, called UML
Combination, which will be the joint, with the necessary adaptations, of Cow_Suite,
for analyzing the UML components specification and selecting and generating test
cases, and CDT [BPO3] for codifying the test cases and (re-)executing them every
time a component instance will be plugged into the system.

1.3 An overview of the publications status

The research proposals of this Thesis have been obtained with join collaboration
of different people both from the academic and industrial world and several results
achieved have been published in different international conferences proceeding and
journals. Specificaly here for each Chapter we highlight those sections have already
been published and those not yet.

Chapter 4

We presented the Propean methodology in [BMMO02], in which both the details of
the methodology and the architecture of the Propean Tool are described. The
application of Propean to managing the testing phase and its use with RUP are
instead published in [BMMO02] and [BLM02] respectively. Propean has been applied
to further a case study not included in this Thesis and presented in [BBMO02a] and
[BBMO3].

Chapter 5

The description of the test strategy Cowtest and the methodology Cow_Suite
have been presented in [BBM1] and [BBMO2] respectively. In this Chapter we
improve the overview of literature and include more details about the steps necessary
for Cow_Suite application, the procedure adopted for the derivation of the basic
structure and the algorithms used for the test cases derivation. The comparison
between the test plan derived applying Cow_Suite and that produced manually by the
ERI personnel has been published in [BILO3].

23 1. Introduction

Chapter 6

The description of the One-Step and Two-Steps methods and their application to
the real cases study have been published in [LPM99] and [BMMO2a], while the
Bemar model has been presented in [BMO1].

Chapter 7

The application of the Reliability Growth Models to industrials cases study has
been published in [BLM98]. Here we also present an origina procedure for the
integrated use of the tools Sorel and CASRE with the purpose of reliability
prediction.

Chapter 8

The ongoing extension of Cow_Suite to the Component based paradigm has been
published in [BMPO3], here we include more details of the combined application of
the existing tools.

The following table summarizes the Thesis proposals, presenting our research
result for each testing phase.

Testing phase Resear ch Results

Planning Propean approach for Test Planning Management using Queueing Networks
(Chapter 4) [BBM02a, BLM02, BMM02, BBM03]

Test casesgeneration | In OO environment Cow_Suite for test case generation and selection
(Chapter 5) [BBM01, BBM02, BIL03]

In Component Based environment a readapting of Cow_Suite for the “UML
Components’ designs (Chapter 8) [BMP03]

Test resultsanalysis | Non-operational testing: One-Steps and Two-Steps methodology for
predicting the cumulative number of failures (Chapter 6) [BM98, LPM99,
BMMO024]

Operational testing: application of the Reliability Growth model for
reliability predictions (Chapter 7) [BLM 98]

Tablel Theresearch proposalsinthedifferent testing phases.

24

PART 1:
SOFTWARE TESTING: BASIC KNOWLEDGE

2 Software Testing

Preface

This Chapter attempts to provide a comprehensive view of Software Testing,
clarifying the terminology that will be used in this Thesis and emphasizing the
relevant issues in a unified context. Due to the vastness of this topic, for each subject
we only provide a brief description and set of guideline references. We defer to the
different Chapters of this Thesis for a more complete and exhaustive explanation.

In particular, in Section 2.1 we present the definition of testing as well as some
alternative (static) techniques that can be applied for software quality purposes, while
in Section 2.2 we differentiate the various testing stages applicable during the testing
process. The techniques relevant for selecting the proper set of test cases are depicted
in Section 2.3, while the methodologies for evaluating the testing results are found in
Section 2.5.

2.1 Testing Phase

The testing phase is an important and critical part of software development,
consuming even more than half of the effort required for producing deliverable
software [BE9O]. Unfortunately, often due to time or cost constraints, the testing is
not developed in the proper manner or is even skipped. The testing activity in fact is
not limited to the detection of “bugs’ in the software, but it encompasses the entire
development process. The testing planning starts during the early stages of
requirement analysis, and proceeds systematically, with continuous refinements
during the course of development until the completion of the coding phase, with the
beginning of the test cases execution. This last step represents the biggest part of
software cost that can be evaluated in terms of: the cost of designing a suitable set of
test cases which can reveal the presence of bugs; the cost of running those tests,
which also requires a considerable amount of time; the cost of detecting them, i.e. the
development of a proper “oracle’” which can identify the manifestation of a bug as
soon as possible; the cost of correcting them.

28

All these activities have in common the same testing purpose: evauating the
product quality for increasing the software engineering confidence in the proper
functioning of the software. However it must be made clear that testing cannot show
the absence of defects; it can only reveal that software defects are present, as shown
by Dijkstraaslong as thirty years ago [DI70].

We report the definition of the Software Testing introduced in [BEOL]:

Softwar e Testing consists of the dynamic verification of the behaviour of a
program on a finite set of test cases, suitably selected from the usually infinite
executions domain, against the specified expected behaviour

As shown by this definition, testing deals with dynamic verification of system
quality, which also involves the code execution, as will be better described in this
Chapter.

Generally the techniques applicable for quality evaluation can be divided into two
sets. static techniques, which do not involve code execution, and dynamic
techniques, to which testing belongs, which instead required running code. The static
techniques are applicable all during the process development for different purposes
such as to check the adherence of the code to the specification or to detect defectsin
code by its inspection or review. Instead the latter approach more properly observes
failures as they show up. In particular dynamic anaysis techniques involve the
execution of the code and the analysis of its responses in order to determine its
validity and to detect errors. The behavioral properties of the program are also
observed.

Other examples of dynamic analysis include simulation, sizing and timing
analysis, and prototyping, which may be applied throughout the lifecycle [PW93]. In
this Chapter we briefly present the static techniques (Section 2.1.1), preferring to
concentrate on testing, which is the main topic of this Thesis".

Before continuing the presentation of the diverse aspects of Software Testing it is
important to clarify the terminology relative to the terms “fault”, “defect” and
“faillure” that we will use. Although their meanings are dtrictly related, there are
some distinctions between them.

As discussed in [BEQO3], a failure is the manifested inability of the program to
perform the function required, i.e. a system malfunction evidenced by incorrect
output, abnormal termination or unmet time and space constraints. The cause of a

! For the structure of the following sections we refer to [BEO1].

29 2. Software Testing

failure, i.e. the missing or incorrect code, is a fault. In particular, a fault may remain
undetected until some stirring up event activates it. In this case it brings the program
into an intermediate unstable state, called error, which if propagated to the output
causes afailure. The process of failure manifestation is therefore [PL 98]

Fault® Error® Failure

which can be iterated recursively: afault can be caused by afailure in some other
interacting system.

Testing reveals failures and a consequent analysis stage is needed to identify the
faults that caused them. In particular, it is possible that many different failures can
result from a single fault, and the same failure can be caused by different faults. In
this situation what should be better estimated in a program, its number of contained
“faults” or how many “failures’ it would expose? Either estimate taken alone can be
tricky: if failures are counted it is possible to end up the testing with a pessimistic
estimate of program “integrity”, as one fault may produce multiple failures. On the
other hand, if the faults are taken into consideration, it is possible to evaluate at the
same level harmful faults that produce frequent failures, and inoffensive faults that
may remain hidden for years of operation. It is hence clear that the two estimates are
both important during development and are produced by different (complementary)
types of analysis.

In this Thesis we will present different methodologies and approaches to manage
and control the testing phase under different complementary aspects. In particular,
we areinterested in what it is observable by testing, i.e., the failures.

2.1.1 Static Techniques

The static techniques are based on the examination of the project documentation,
the software and other related information about requirements and design and not on
software execution [DRWO02]. These data are also used to trace the requirements into
the developed software and to verify its adequacy to the specification. The static
technigues include software inspection, reviews, code reading, algorithm analysis
and tracing. Thus the use of static techniquesin not limited to the testing phase; their
application during the entire the development phase is even more important. In
particular they can be applied [PW93]:

During the requirements phase, they can be used to check adherence to

specification conventions consistency, completeness and language syntax.

30

Commonly used static analysis techniques are flow analysis, data flow analysis,

traceability analysis, and interface analysis.

During the design phase, the most commonly used techniques include agorithm

analysis, database analysis, interface analysis and traceability analysis.

During the implementation phase the frequently used techniques are code

reading, inspections, walkthroughs, reviews, control flow anaysis database

anaysis interface analysis, and traceability analysis. Other categories of
techniques are complexity analysis, sneak circuit analysis and dlicing.

It is worth noting that an important and widespread used class of static (analytic)
techniques is the use of forma methods to verify software requirement and design.
Thistechnique is attracting quite alot attention from both research and industries and
the proof of correctness as well as the verification of security and safety requirements
of different (crucial) parts of a critical system is will be increasingly applied
[NAS97]. However thisis avast area of research, quite far from the objectives of this
Thesis, thus we refer the reader to [WRO1] for complete documentation and
overview of the literature.

Nevertheless, it should be considered that a defect can be more or less disturbing
depending on whether, and how frequently, it will eventually show up at the find
user (and depending of course on the seriousness of its consequences). Indeed,
whether few or many, some defects will inevitably escape testing and debugging. So,
in the end, one important measure of quality of the product useful in deciding
whether it is ready for release is software reliability. Until they do not cause failures
the remaining defects trouble neither customers nor producers. In Chapter 7 we will
discuss thistopic in detail.

We conclude this section considering the alternative application of static
techniques in producing values of interest for testing process control. Different
estimations can be obtained by observing specific properties of the present or past
products, and/or parameters of the development process In particular during the
testing phase the static techniques may be applied to estimate the total number of
defects and provide very attractive measures. Since by testing we find the failure and
fix the related fault, static models would provide a prediction on how many defects
areleft in the code.

Thus static techniques could be very attractive to managers for prediction
purposes, because they provide "numbers', which the managers are eager for, very
early in the process compared to dynamic models. The latter can be used late in the

31 2. Software Testing

life cycle, i.e., during the testing phases, when it may be too late to efficacioudy re-
direct development efforts. Static defect models on the other hand can be applied to
identify more risky modules and consequently re-allocate testing resources or modify
design.

It is not possible to decide which is the most appropriate between static and
dynamic techniques because both of them are useful for different objectives. For
instance in the front-end phases of the life cycle, managers should use the static to
apportion risk among modules and to allocate development time and resources. In the
final stages of development they should use the dynamic instead in order to evaluate
the degree of disturbance created by defects that are inevitably left, and to decide
whether the product is ready for delivery.

2.1.2 Definition of Software Testing

Referring to [BEO1, BEO3] in this section we discuss the main concepts of the
Software Testing definition provided in Section 2.1. As already stated, the testing isa
complementary approach of the static techniques described which involves the
execution of the code. The term “dynamic” means precisely that the “testing always
implies executing the program on (valued) inputs’ [BEO1] in a specific environment.
Principally for the non-deterministic systems, the results obtained by testing depend
strictly on the input provided as well as state of the system. Therefore when speaking
about input values the definition of the parameters and environmental conditions
characteristic of a specific system state must be included when necessary.

Of course, even if the set of input values can be considered infinite, those that
will be run effectively during the testing of a program must be finite. It isin practice
impossible, due to time constraints, to exhaustively exercise every input of a specific
set even when not infinite: this operation could require thousand of years [DJ70]. As
stated in [BEO3], a good test strategy therefore requires a trade-off between the
number of chosen inputs and overall time and effort dedicated to the testing
purposes. The selection of test cases is thus a critical and important aspect of testing,
and the choice of the best test criterion to be applied for this purpose is a complex
problem as yet unsolved [VJBO03]. Different techniques can be applied depending on
the target and the effect that should be reached.

Once the tests are selected and run, another crucial aspect of this phase is the
detection of failure, i.e. the oracle problem, which means deciding whether the
observed outcomes are acceptable or not. As reported in [BEO1] there are two

32

possibilities for checking the behavior of the program under testing: testing for
validation, i.e., evaluating the program against the user’s expectations, or testing for
verification (conformance testing), i.e, evaluate the programn against the
specifications.

2.2 Testing Level

Generdly the testing is performed at different levels during the development
process and can involve the whole system or parts of it. Here we distinguish three
different stages. unit, integration and system test [BE9O Chapter 1], [PL98 Chapter
7] providing in the following a brief description of each. It isimportant to clarify that
no stage is more important than another. Each one has its specific target and
difficulties and only a good combination of them can provide products of quality.

Unit Test

A unit is the smallest testable piece of software, consisting of hundreds or a few
lines of source code, and generally representing the result of the work of one
programmer. The Unit test’s purpose is to ensure that the wnit satisfies its functional
gpecification and/or that its implemented structure matches the intended design
structure [BE9O, PL98]. When the tests reveal an anomalous behavior, it is said that
thereisaunit bug.

Unit tests can also be applied for test interfaces (parameter passed in correct
order, number of parameters equal to number of arguments, parameter and argument
match), local data structure (improper typing, incorrect variable name, inconsistent
datatype) or boundary condition. Further specific details concerning the unit test are
in [|EEEQ3].

I ntegration Test

Integration is a process by which components are aggregated to create a larger
component. Even though the single components are individually acceptable when
tested in isolation, they could result incorrect or inconsistent when combined in order
to build complex systems. For example, there could be an improper call or return
sequence between two or more components [BEQO]. Therefore integration testing is
specifically aimed at exposing the problems that arise from the combination of
components by the verification that each component behaves according to its
specification defined during preliminary design. In particular, it is mainly focused on

33 2. Software Testing

the communication interfaces among integrated conponents. The recent (and even
not-so-recent) testing literature contains few entries relative to integration testing,
and practical methodologies rely essentially on good design sense and the testers
intuition.

Integration testing of traditional systems was done substantially in either a non
incremental or an incremental approach. Except for small, smple systems, in a non
incremental approach the components are linked together and tested all at once (big-
bang testing) [JO95]. In the incremental approach, we find the classical “top-down”
strategy, in which the modules are integrated one at a time, from the main program
down to the subordinated ones, or “bottomup”, in which the tests are constructed
starting from the modules at the lowest hierarchical level and then are progressively
linked together upwards, to construct the whole system. Usually in practice, a mixed
approach is applied, as determined by external project factors (e.g., availability of
modules, release policy, availability of testers and so on) [PL9§].

In modern Object Oriented, distributed systems, approaches such as top-down or
bottom-up integration and their practical derivatives, are no longer usable, as no
“classical” hierarchy between components can be generally identified. Some other
criteria for integration testing implies integrating the software components or
subsystem based on identified functional threads [MGB99], [MUQZ2]. In this case the
test is focused on those classes used in reply to a particular input or system event
(thread-based testing) [Jo95]; or by testing together those classes that contribute to a
particular use of the system.

A different branch of the literature is testing based on the Software Architecture:
this specifies the high level, formal specification of a system structure in components
and their connectors, as well as the system dynamics. Some recent papers explore the
way in which the description of the Software Architecture could be used to drive the
integration test plan [BCI00, BIM01, MUO2]. Indeed, in [GKCO1] the authors have
also investigated the expression of Software Architecture in UML, with appropriate
stereotype extensions.

Finally, some authors have used the dependency structure between classes as a
reference structure for guiding integration testing, i.e., their static dependencies
[KGH95], or even the dynamic relations of inheritance and polymorphism [L TWOQ].
Such proposals are interesting when the number of classes is not too big; however,
test planning in those approaches can begin only at a mature stage of design, when
the classes and their relationships are already stable.

34

In this Thesis (specifically in Chapter 5) we concentrate mainly on this typology
of testing, proposing in contrast an approach that deals with big, complex systems
and that can be used from the early stages of design, when the component structureis
preliminarily sketched.

System Test

System test involves the whole system embedded in its actual hardware
environment and is mainly aimed to verify that the system behaves according to the
requirements document. In particular it attempt to revea bugs that cannot be
attributed to components as such, to the inconsistencies between components, or to
the planned interactions of components and other objects.

As will be discussed in Chapter 7, test and data collected applying this type of
testing can be used for defining an operational profile of the system which support a
statistical analysis of the systems reliability [MU93], [LY96]. Generally system
testing includes testing for performance, security, reliability, stress testing and
recovery [JO95, PL9§].

2.2.1 Objectives of Testing

The Software Testing can be applied for different purposes, such as verifying that
the functional specifications are implemented correctly or that the system shows
specific reliability. In [BEOL1] a complete list of the possible testing objectives is
provided; here we limit ourselves to describing those that will be mentioned in this
Thesis.

Acceptance testing is the final test action prior to deploying the software. Its

goal isto verify that the software respects the customer’s requirement, i.e., it can

be used by the end-users to perform those functions and tasks the software was
built to do [PL98].

Alpha testing Before releasing the system it is given to the in-house user for

exploring the functions and business tasks. Generaly there is no test plan to

follow; the individual tester determines what to do [KFN99].

Beta Testing the same as Alpha testing but the system is given to external users.

In this case the amount of detail, the data, and approach taken is entirely up to the

individual tester. Each tester is responsible for creating their own environment,

selecting their data, and determining what functions, features, or tasks to explore.

Each tester is responsible for identifying their own criteria for whether to accept

35 2. Software Testing

the system in its current state or not. Beta testing is thus the less controlled phase
[KFN99].

Reliability achievement: testing is a means to improve reliability; therefore the
test case must be randomly generated according to the operational profile. In
Chapter 7 we provide a complete description of reliability testing as well as the
method used for evaluating the reliability level reached [LY 96].

Functional Testing: Tests focused on validating whether the observed behavior
of the tested system conforms to the specification. In particular it checks whether
the functions are as intended and provides required service(s) and method(s).
This test is implemented and executed against different tests targets, including
units, integrated units, and systems [PE95]

2.3 Functional and Structural Testing

As stated previoudly, a testing technique is a systematic method used to select
and/or generate tests. It can be considered effective if the tests included are likely to
reveal bugs in the tested object. Since objects are modified in order to correct their
bugs, the kind of bugs found in an object changes with time, and thus the
effectiveness of atechnique.

In [BEOL] two alternative classifications of test techniques are provided: the first
is based on how the tests are generated (for instance tester expertise, specification,
code structure and so on) the second is based on the type of information about the
software, used for generating the tests (black-box or white-box). We adopt the latter
here briefly presenting the main testing techniques applicable.

2.3.1 Functional Testing

Functional testing, also called black box testing, relies on the input/output
behaviour of the system. In particular the system is subjected to external inputs, so
that the corresponding outputs are used to verify the conformance of the system to
the specified behaviour, with no assumptions of what happens in between. Therefore
in this process we assume knowledge of the (formal or informal) specification of the
system under test, which can be used to define a behavioural model of the system (a
transaction flowgraph). This graph is either focused on how software is built (i.e.
structure) or on how it behaves (i.e. function). A structural focus leads us to
structural test techniques, whereas a functional (behavioural) focus leads us to
functional test methods [BE9Q].

36

One of the crucia aspects of black box testing is therefore the inputs selection. A
complete functional test would consist of subjecting the program to all possible input
streams and verifying the outcome produced, but as stated in Section 2.1.2 thisis
theoretically impossible. For this different techniques can be applied such as:

Testing from formal specifications: In this case it is required that specifications

be stated in a formal language, with a precise syntax and semantics. The tests are

hence derived automatically from the specification, which are also used for
deriving inductive proofs for checki ng the correct outcome [ZHM97].

Equivalence partitioning: the functional tests are derived from the specifications

written in structured, semiformal language. The input domain is partitioned into

equivalence classes so that elements in the same class behave similarly. In this
context the Category Partition is a well-known and quite intuitive method, which
provides a systematic, formalized approach to partition testing [OB88].

Boundary-values anaysis. This is a complimentary approach to equivalence

partitioning, and concentrates on the errors occurring at boundaries of the input

domain. The test cases are thus chosen near the extremes of the class. [JO95,

KFN99].

Random methods. consist of generating random test cases based on a uniform

distribution over the input domain. It is alow-cost technique because large sets of

test patterns can be generated cheaply without requiring any preliminary analysis
of software [BE9O].

Operational profile: test cases are produced by a random process meant to

produce different test cases with the same probabilities with which they would

arisein actual use of the software [LY 96].

One of the points against the black-box testing is its dependence on the
specification’s correctness and the necessity of using alarge amount of input in order
to get good confidence of acceptable behaviour.

2.3.2 Structural Testing

The structural testing, also called white-box testing, requires complete access to
the object’ s structure and internal data, which means the visibility of the source code.
The tests are derived from the program'’s structure, which is aso used to track which
parts of the code have been executed during testing. For this some of the commonly
used techniques for test case selection are:

37 2. Software Testing

Control flow-based criteriac these techniques use the control flow graph
representation of a program in which nodes correspond to sequentially executed
statements while edges represent the flow of control between statements. The aim
of white box testing criteria is to cover as much as possible the control flow
graph, limiting the number of selected test cases. In particular they differentiate
in: statement coverage which is based on executable statements, Branch
coverage, which focuses on the blocks and case statements that affect the control
flow, Condition coverage which relies on subexpressions independently of each
other, Path coverage which is based on the possible paths exercised through the
code [BE9SO, ZHM97].
Data-Flow coverage: In data-flow testing, a data definition of a variable is a
location where a value is stored in memory (definition) and a data use is a
location where the value of the variable is accessed for computations (c-use) or
for predicate uses (p-use). The data-flow testing goal is to generate tests that
execute program subpaths from definition to use. Traditiona data-flow analysis
technigues work on control flow graphs annotated with specific information on
data usage [JO95, ZHM97].
Generaly the functional and structural test strategies are not alternative
approaches but can be used in combination because they use and provide different
sources of information.

2.4 Object Oriented Testing

Object-Oriented programming (OO) has nowadays become the preferred
paradigm for large-scale system design. Due to the extent of published papers and
books on this argument, and specifically on the Object Oriented Testing, it is not
possible to provide an exhaustive dissertation on this argument here therefore, we
limit ourselves exposing the main concepts, referring the reader to [BI199] for more
details.

The OO programming encompasses a body of methods, processes, and tools used
to construct software systems and provides a unifying paradigm for the three
traditional phases of software development: analysis, design and implementation
[KM90]. It has in fact an excellent structuring mechanism, the classes, which permit
the division of the system in well-defined units, which may then be implemented

Separately.

38

OO programming introduces a new concept of a subprogram, different from the
traditional systems, because it attempts to separate the specification (interface) for
the subprogram from its implementation (body). Hence a class can export a purely
procedural interface and the internal structure of data may be hidden. This allows the
structure to be changed without affecting users of the class, thus supporting software
reuse and simplifying maintenance. New classes may be created as extensions of
existing classes through the reuse of a classin a library, or via inheritance. In both
cases the result is a reduction in the amount of software, which must be written
because since previously tested classes may be utilised [KR98].

Thus, OO introduce powerful new features in the program languages, which
provide visible benefits in software design and programming but also raise new
problems in the Software Testing and maintenance phases. These characteristics can
be summarized as [WH92, LMR92, BI99, KHGO02]:

- Encapsulation: modeling and storing with an object the attributes and the
operations an object is capable of performing. This increases the difficulty in
controlling the object interactions and in consequently preparing suitable test
cases to verify such interactions.

Inheritance: the properties defined for a class are inherited by its subclasses,

unless it is otherwise stated. However, a method that is tested to be "correct” in

the context of the base class does not guarantee that it will work "correctly” in the
context of the derived class. The retesting of inherited methods in a different
context is therefore a rule, which increases the number of tests to perform.

Polymorphism: is the ability to bind a reference to more then one object. This

means that each possible binding of a polymorph component requires a separate

test.

Dynamic binding means code that implements an operation that is unknown until

run time. These features make testing more difficult because the exact data type

and implementation cannot be determined statically, and the control flow of the

OO program is less transparent.

In this context the traditional Software Testing techniques, generally based on
imperative programming, are often not directly applicable to the OO software with
their event-driven nature. Specificaly, four different levels of testing can be
individuated [CCTO02]:

The algorithmic level in which the code of each operation in class is tested

separately, so that conventional testing techniques can be applied;

39 2. Software Testing

Class level in which the objective is to verify the integrity of a class by testing it

asan individual entity.

Cluster level is concerned with the integration of classes. As the functionality of

individual classes has already been verified, the focal points are usually placed on

the synchronization of different concurrent components as well as interclass
method invocations.

System level in which the interactions among clusters are tested.

Thus starting from the class level a significant difference between conventional
program testing and OO Software Testing is due to the state depended behaviors.
While in the former this situation is common for the embedded systems, in OO
programming, many objects may have state depended behaviors and/or interact with
each other. Often the subprograms are encapsulated within a larger entity, e.g. a
class, working in conjunction with the other items of the same object. This situation
makes the test of a subprogram in isolation very difficult because the smallest
testable unit is no longer the subprogram, but classes and instances of classes
[KHGO2].

Another important point which differentiates the non-OO approaches from the
OO0 is integration testing. In the former approaches such as top-down, bottom-up or
big-bang can be applied. Instead in the OO context, considering a unit, the methods
associated with each operation often take advantage of the underlying
implementation of the class, hence testing in isolation each operation-method
combination is difficult. Thus to test a class the following activities must undertake
[KR9g]:

a) Create an instance of the class, i.e. an object, passing the appropriate parameters
to the constructor

b) Call the methods of the object passing parameters and receiving results

c) Examinetheinternal data of the object

This can be achieved either by writing a test program for each class and their
inclusion of debug statements or by the inclusion of appropriate mechanisms in the
program development environment itself. The natural testing integration is therefore
to combine "subprograms" into a class, one a a time and thus testing the whole
system. This avoids creating the specific doject states, because they can be set by
other encapsulated operations, or combinations of encapsulated operations. In this
Situation it is clear that specific approaches for the integration may not help since
each operation may be used to test the other [BE93].

40

In OO programming different testing techniques can be applied starting from the
cluster level as listed below. But most of them are the reviewed approaches or
extension of the techniques used in the imperative programming paradigm, and only
a few techniques are specific for the object-oriented context. We refer to [CCT02]
for a complete description.

State-based approach relies on the construction of a finite-state machine or
state-trangition diagram for representing the different states of the program under
test. The difficulty of the technigue increases with the number of concurrent units
and mainly during the dynamic instantiation of objects during program execution
[KCTO2].

The event-based paradigm uses temporal relationships between synchronization
events such as message sequence constraints or temporal logic [CT98].

Integrated formal methods combine object-orientation with other formal
paradigms such as finite state machine or process algebra[SC99, SDO01].

Deterministic and reachability testing forces the synchronization to be
executed in desirable orders so that a deterministic test oracle can be applied and
checked with the deterministic result. Due to dynamic binding, the same
synchronization may result in different binding effects at different points of input
[SCKO01, CLLO2].

For fault-based testing, techniques such as mutation testing may not be effective
in object-oriented programs and must thus readapted for this contest [KCMO01]

UML-based techniques conduct testing by using the UML documentation. We
provide an extensive survey of these techniquesin Chapter 5.

Dynamic data flow testing helps identify anomalies of data actions by collecting
information during program executions. Conventional probing techniques may not be
adequate for languages that support Java-like reflection [SBAO1]

2.5 Testing Measures

Measurements are nowadays applied in every scientific field for quantitatively
evaluating parameters of interest, understanding the effectiveness of techniques or
tools, the productivity of development activities (such as testing or configuration
management), the quality of products, and more. In particular, in the software
engineering context they are used for generating quantitative descriptions of key
processes and products, and consequently controlling software behavior and results.
But these are not the only reasons for using measurement; it can permit definition of

41 2. Software Testing

a baseline for understanding the nature and impact of proposed changes. Moreover,
measurement allows managers and devel opers to moni tor the effects of activities and
changes on all aspects of development. In this way actions to check whether the final
outcome differs significantly from plans can be taken as early as possible [FP97].

However, as stated in [PJC97] the most successful measurement program would
be one in which researcher, practitioner and customer work together to meet goals
and solve the problems, but this occur very rarely. The measurement process is
formally defined as: “ The process by which numbers or symbols are assigned to
attributes of entitiesin thereal world in such a way as to describe them according to
clear and defined rules’ [FP97], where an entity represents an object or an event,
and an attribute is a feature or property of an entity. In other words this means
representing the real world with mathematical expressions and rules so that it will be
clearer and easier to understand the attributes and their relationships.

However, is not unusual to have different measures for the same thing, which can
generate confusion or lead to erroneous management decisions. Thus it is important
to determine which representation is the most suitable for measuring an attribute of
interest i.e. the scale of measurement. As reported in [FP97] the main types of scales
are:

Nominal, in which the items are divided into different classes with any notion of

ordering among them;

Ordinal, in which the different classes are ordered with respect to the attribute;

Interval, in which it is possible to define the concepts of distance from the

ordered classes even if thereisno “zero point” in the scale;

Ratio in which mapping preserves the order, size of intervals, and ratios between

them and where the total lack of attributes represents the zero element;

Absolute, in which measurement sinply counts the number of elements in the

entity set.

We refer the reader to [WRO01] and [IEEES8] for a wider coverage of the topic of
quality measurement, including fundamentals, measures and techniques.

However, it is important to clarify that measuremernt is not exclusively for
making predictions. The measures, or measurement systems, are used to assess an
existing entity by numerically characterizing one or more of its attributes, while a
prediction system consists of a mathematical model together with aset of prediction
procedures for determining unknown parameters and interpreting results (i.e.
predicting several attributes of a future entity). In particular validating a prediction

42

system in a given environment consists of establishing its accuracy by empirical
means,; that is, by comparing model performance with known data in given
environment, while the validation of a measure ensures that this numerically
characterizes the claimed attribute by showing that the represented condition is
satisfied [FP97].

Considering the testing phase, it is important to clarify that there is no agreement
in literature on how to classify the different applicable measures. We decide here to
adopt the [BEO1] classification, so we consider that measurement can be applied
either to evaluate the program under test, or the selected test set or even for
monitoring the testing process itself. In particular as stated in [BMB96] within each
group it is possible to distinguish direct and indirect measures. To direct measures
belong for example lines of code (LOC) produced, execution speed, memory size or
defects reported over a set period of time. Indirect measures include functionality,
quality, complexity, efficiency, reliability, and maintainability.

In the following section we report only the measures that will be mentioned in
this Thesis, referring to [BEO1] for a complete overview.

2.5.1 Evaluation of the Program Under Test

For evauating the program under test the following measurement can e applied:
Program measurement to aid in planning and design testing: considering the
program under test, three different categories of measurement can be applied as
reported in [BE9Q]:
The Linguistic measures: these are based on proprieties of the program or
specification text. This category includes for instance the measurement of:
Sources Lines of Code (LOC), the statements, the number of unique operands
or operators, and the function points.
The Structural measures. these are based on structural relations between
objects in the program and comprise: control flow or data flow complexity.
These can include measurements between program modules, in terms of the
frequency with which modules call each other.
The Hybrid measurement: these result from the combination of some
structural linguistic properties.
Fault density: Generally thisis awidely used measure in industrial context and
foresees the counting of the discovered faults and their classification by their type.
For each fault class, fault density is measured by the ratio between the number d

43 2. Software Testing

faults found and the size of the program [PE95]. We discuss in detail this type of
measurement in Chapter 6.

Life testing, reliability evaluation: By applying the operational testing for a
specific product it is possible either to evaluate its reliability and decide if testing can
be stopped or to achieve an established level of reliability. In particular the
Reliability Growth models can be used for predicting the product reliability [LY 96].
We discuss in detail this type of measurement in Chapter 7.

2.5.2 Evaluation of the Test Performed

For evaluating the set of test cases implemented the following measures can be
applied:

Coverage/thoroughness measure: Some adequacy criteria require exercising a
set of elements identified in the program or in the specification by testing. In this
case, during the testing the number of elements covered by test cases are monitored
and the coverage (expressed in percentage) is derived as the ratio between the
covered elements and the total number. The coverage can be for instance relative to
the paths, the statements of the branches as well as the number of functionalities
exercised during testing [PF97]. We discuss this type of measurement in Chapter 5.

Comparison ad relative effectiveness of different techniques In this case,
once established exactly what the term effectiveness means, test case are used to
evaluate the effectiveness of the testing techniques applied. Possible evaluations can
be the number of faults found during testing, and the improvement in reliability after
testing. Analytical and empirical comparison between different techniques can be
used for this[JO95]. We discuss this type of measurement in Chapters 6 and 7.

2.5.3 Managing the Test Process

For managing the test process the following measures can be applied:

Effort/Cost estimation: The testing phase is a critica step in process
development, often responsible for the high costs and effort required for product
release. The effort can be evaluated for example in terms of person-days, months or
years necessary for the realization of each project. For cost estimation it is possible to
use two kinds of models: static and dynamic multivariate models. The former use
historical data to derive empirica relationships, the latter project resource
requirements as a function of time [PR94]. In particular, these test measures can be

related to the number of tests executed or the number of tests failed. We discuss the
cost/effort estimation in Chapters 4 and 5.

Internal vs. independent test team: An important task in test danning is the
estimation of resources required which means organizing not only hardware and
software tools but also people. Thus the formalization of the test process also
requires putting together a test team, which can involve internal as well as external
staff members. The decision will be determined by consideration of costs, schedule,
maturity level of the involved organization and the criticality of the application. We
discuss this topic in Chapter 4.

Summary

In this section we provide a brief description of Software Testing, presenting its
objectives and various ways to achieve them. In particular, we concentrate mainly on
those testing techniques and measurements which will be used and mentioned in this
Thesis. Our purpose was not to exhaustively present the world of Software Testing in
al its parts (other references can be used for this purpose) but to provide an
orientation Chapter to the readers of this Thesis.

3 A Little Bit of Modelling Basics

Preface

In this section we provide some basic concepts concerning the Unified Modelling
language (Section 3.1) and the Rational Unified Process (Section 3.2) that will be
used in this Thesis, specifically in Chapters 4 and 5.

3.1 Unified Modelling Language

The definition of the Unified modelling Language, UML, started in 1994 with the
cooperation of Grady Booch and James Rumbaugh at Rational Software Corporation
and proceeded over the years with the collaboration of Ivar Jacobson as well until the
release of Version 1.0 in the January 1997. From this date various versions have been
up until the released 1.5 in March 2003.

In this section we briefly report the main concepts of UML without referring to a
specific version because the intent is only to provide background knowledge useful
for the reader’s understanding of concepts presented in this Thesis. We refer to
[UML, JBR98, RIB99] for further details.

The underlining idea of UML is to provide a modelling language for specifying,
visualizing, managing and documenting the phases and characteristics of a software
development process. The UML can be used for specifying requirements by creating
diagrams to trace analysis and design phases (analysis and design models) and
visualizing the system as assembled after its effective realization. Moreover the
UML can lead the system construction in the different development phases by
applying a Round Trip approach, i.e. using the models for code generation and
reporting back the possible code modifications in the models themselves.

The UML created only as a modelling language and not as a programming
language, can be used instead of textual documentation for documenting the system.
The developed models in fact represent an expressive, compact and consistent way
for expressing information during the life cycle.

46

The basic concepts of UML are summarized in three different categories:
Diagrams, Views and Extension Mechanisms. We briefly discuss their man
characteristic in the following subsections.

3.1.1 UML Diagram

UML diagrams are graphs describing a particular characteristic or system
behaviour. UML has eight diagrams that can be used in different combinations for
representing all aspects and functionalities of the system (the view of the systems). In
terms of the views of amodel, the UML defines the following graphical diagrams:

use case diagram

class diagram

behaviour diagrams:

0 state diagram
0 activity diagram
interaction diagrams:
0 sequence diagram
o collaboration diagram
implementation diagrams:
0 component diagram
0 deployment diagram
We provide a brief description of each in the following.

3.1.1.1 Use Case Diagram

A Use Case Diagram is a description of a specific aspect of system behaviour (a
system functionality) and in particular represents the interactions between a number
of external agents (actors) and their connections with the system. In particular an
actor is defined as someone (a possible system user) or something (a system) that
interacts with the system using information interchange
A Use Case (UC in the following) is directly connected to a requirement of the
system and represents a functionality, i.e. a specific use that a system provides as
perceived by an actor. In particular a UC describes the interaction between the actors
and the system, not the internal logic of a system functionality, at different levels of
detail (system or subsystem). The actua description of a UC is generally expressed
in a textual way. In particular a UC is a class, not an instance, and describes the
functionality as a whole including alternatives, errors and exceptions. An

47 3. A Little Bit of Modelling Basics

instantiation of a UC is called scenario, and describes a specific sequence of actions
that illustrates system behaviours through the interaction of the components defined
in the architecture. Hence the scenarios are used to drive the discovery of use cases
and actors. A Use Case is always initiated by and actor which requires a sequence of
actions to the system and provides an output to an actor [EPOQ].

The UC and the actors are connected by associations (communication
associations), which show how the actors communicate with the system. Generally
an association is non-directional one-to-one relationship.

- -

Request of participants lists Look up partecipants forms

\ies» /Jses»

Verify the payment

\L«extend»

Invoice emission

Figurel Relationships between UCs
A Use Case can be refined using other Use Cases, which can be put in relation to

each other, by using three kinds of relationships (Figure 1):

- Extends relationship which is a generaization relationship where one use case
extends another use case by adding actions to a general use case.

- Uses relationship which is a relationship where one use case uses another use
case indicating that as a part of the specialized use case, the behaviour of the
genera use case will also be included.

- Grouping relationship when a number of use cases handle similar functionalities
they can be bundled in a package
The UCs are a representation of implementation-independent system

functionalities.

48

3.1.1.2 Sequence Diagram

A Sequence Diagram (SD) shows the dynamic collaborations between a certain
number of objects highlighting the way in which a scenario is realized by the
interactions of a set of objects. A SD is focused on the sequences of messages
exchanged between the objects, and is characterized by two dimensions. 1) the
vertical dimension represents time and 2) the horizontal dimension represents
different objects [UML]. Normally time proceeds down the page and is represented
by the LifeLine activation of the objects involved.

X

)) : Registration : Secretary : Web System
APartecipant : Thilees

Participant

i 1. request of registrationq)

=

|

. . |

1.1. registration I
g 0 L 1.1.1. verify seminar data()

=

1.1.1.1. confirm seminar data()

1.1.3. confirm registration()

< J

1.2. enable registration() I} |
-]

|
|
J

———————FEE
—— T

Figure2 An example of SD
The objects exchange Messages, which represent the interaction between them: a
sender requests a service owned by the recelver. The message activation is
represented in the SD by an arrow at the head of a focus of control region, i.e, a
rectangular box on the object Lifeline that shows the period of time during which an
object is performing an action, either directly or through a subordinate procedure.
There are different typologies of messages that we describe briefly below (for
more details and their graphical representation we refer to [UML]):
Synchronous message: when the sender who has required a service waits for the
response of areceiver to continue its execution.

49 3. A Little Bit of Modelling Basics

Self-delegation: the sender sends a message to itself.

Asynchronous message: the sender continues to execute after sending the

message without waiting for it to be handled. It is used particularly in Real Time

applications, where objects interact concurrently for creating for instance new

threads, new objects, or for communicating with a thread aready under

execution.

Object deletion: an object termination caused by another object or the object

itself

The messages can then be characterized by iterations, i.e. when a message is sent
several times to multiple receivers (ex. operation for a set of elements) or conditions
to model branches or to decide whether or not to send a message.

3.1.1.3 Collaboration Diagram

The Collaboration Diagrams (CD) specify the objects collaborating in a specific
scenario and the messages exchanged. They express the same information as the
Sequence Diagrams, but while a SD describes the interactions among objects
focusing on time, a Collaboration Diagram shows them in terms of space.

1. request of registration() . ; ;
. Registrat
R egistration

B

1.2. enable registration()

APartecipant : Participant 1.1.3. confirmregistration()

1.2. verify availability of partecipants number()
—_—

[

. Secretary

1.1. fegistration()

1.1.1. verify seminar data()

1.1.1.1. confirm seminar data() “Web System

Database

Figure3 The CD derived by the SD of Figure2

50

The CD therefore gives an explicit representation of objects relations
highlighting the collaborations among objects and emphasising more the Objects
links. In particular the messages are not ordered in space so they need an ordinal
numbering. In some tools (Rational Rose, for example [RRT]) one diagram can be
easily derived from the other. In Figure 3we show the CD obtained by the SD of
Figure 2.

3.1.1.4 Class Diagram

A Class Diagram shows the static structure of a system representing its classes
and objects with attributes and methods. It specifies the constraints among classes
using different types of associations as will be described later in this section. A
system can have one or more Class Diagrams defined at diverse development phases
(analysis, design and so on) representing different object typologies such as
interfaces, implementation modules and subsystems.

A class in a Class Diagram is the description of an object type with its
characteristics and behaviours and it is characterized by:

a) TheClass Name: the name of the object to which the class refers
b) The Attributes describe he characteristics of an object. Each attribute has a

Type (e.g. primitive types. Integer, Boolean, Real) and a Visibility which

indicates whether the attribute can be referenced from the other classes. The

Vishility can be:

- Public (+): the attribute can be used and viewed outside the class;

- Private (-): the attribute cannot be accessed from other classes,

- Protected (#): the attribute can be used only from the class or from its

subclasses,

- Implementation/Package (?): the attribute can be accessed only from classes

within the same package;
¢) The methods. describe the behaviour of a class, i.e. the actions that can be
executed. They are used to manipulate attributes.

A Class Diagram consists of classes and the relationships between them. In
particular the involved classes can be put in relation to each other using:

Association: a class connection, i.e. a semantic link between objects of classes

involved. The association is characterized by the name, usually a verb indicating

the action, the navigability, i.e., the direction in which the association is

51 3. A Little Bit of Modelling Basics

practicable (ex: a user utilizes a pc) and the multiplicity which indicates how
many objects are linked to the association. Ex.: 0.1, n.m;

Aggregation: a special case of association which indicates that the relation
between the classes is a sort of “whole-part” (Ex. person-team).

Composition (composition aggregation): a stronger concept than aggregation.
The part lives inside the whole and it will be destroyed together with its whole.
The multiplicity of the whole can be 0 or 1 (Ex. window-button).

Generalization (inheritance): a relationship between a general and a specific
class (Ex. vehicles- cars, boats). It can be used to specify a superclassi.e. aclass
with a more general behaviour or a Subclass, i.e. a class which inherits all the
characteristics of the superclass (attributes and methods); it is consistent with the
superclass and it specializes its characteristics.

Registration
izicode : Integer q Secretary
BEdate : String manage
Bcourse : String

Hregistration()

0..n Bconfirm seminar data()

Mrequest of registration() verify availability of partecipants number()
Sconfirm registration()

[

mangges

- attends 0..n
Partecipant Course

0..n 1 T

teaches

1
Teacher

Figure4 An example of a Classdiagram
Refinement: the relationship between two descriptions of the same thing but at
different degrees of detail.
Dependency: a semantic connection between two model elements (classes,
packages, use cases) one independent and one dependent. A change in the
independent element will affect the dependent element.

52

We show in Figure 4 an example of a Class Diagram which specifics the different
relations of the object involved in the SD of Figure 2.

A specific typology of a Class diagram is the Object Diagram which uses the
same notation and relationship of a Class Diagram, and is used to show specific links
from class instances at some moment in time. It can be viewed as an example of a
Class Diagram to illustrate how a complex Class Diagram can be instanced.

3.1.1.5 State Diagram

The State Diagram is the complementary description of the Class Diagram
because it specifies the life cycle of the class objects. It shows all possible states that
the objects can assume during their life and the events causing the state changes,
called transitions. Specifically a state is the result of previous activities performed by
the object and it istypically determined by the values of its attributes.

add partecipant[count >20]/ count=count+1

Setu [\/
P] add partecipants / count=0 (Available
do/ InizializeCourseData I | dol ModifyCourseData

courselcancellation

. nt =2
Se cancellation [count=20]

(Cancelled] (Complete]

do/ pay back partecipants quotes l course cancellation | do/ elaborate final course data

. .

Figureb An example of State Diagram

There are three standard events that can determine the change of an object state:
an action in the entry state, inside the state, do, and in the exit state. They are
characterized by different types. a condition becomes true (change event); the receipt
of an explicit signal from another object (signal event); the receipt of a call on an
operation by another object (call event); the passage of a designated period of time
(time event).

Finaly atransition can be a Parallel Transition, i.e. it can be divided in one or
more parallel transitions and the subsequent actions performed concurrently, or a Self

53 3. A Little Bit of Modelling Basics

transition, i.e. the causal event brings again in the same state. We report in Figure 5
an example of the State Diagram.
3.1.1.6 Activity Diagram

The Activity Diagram shows sequences of activities, such as for instance the
internal logic of aprocess, and it is used typically to describe the activities performed

during an operation.

(registration to a course >

Hotel Pay the course
reservation

Attend the
course

Figure6 An example of Activity Diagram

The Activity Diagram is a variant of a State Diagram, in which the states called
activities, allow the description of concurrency and synchronization. As in the
commonly used flow-charts the Activity Diagrams describe the interactions among
objects or processes showing: how actions are taken, what they do (change of object
states), when they take place (action sequences), where they take place (swimlanes).
Specifically a swimlane groups activities in vertical zones with respect to their
responsibility. They are used to describe where the actions are performed (in which
object) or in which part of the project. In Figure 6 we show an example of an
Activity diagram.

3.1.1.7 Component/Package Diagram

A Component Diagram shows the physical structure of the code in terms of
components and their dependences. In particular the components describe the
implementation in the physical architecture of the concepts and the functionalities
described in the logical architecture. They are executable software modules with
their own identity and interfaces.

In a Component Diagram the enclosed components are characterized by
dependency relations. A dependency between two components means that one
component needs the other for its complete definition. In Figure 7 we show an
example of a Component Diagram.

The Component Diagram can aso be viewed as Package Diagram. This is a
particular diagram that can be applied to any type of model element but it is usualy
used to collect classes and define their dependencies. Specifically every Class
Diagram should be inserted in a Package diagram. In Figure 8 we report an example
of a Package Diagram.

Seminar.dll

/
Registration
Course.cpp .cpp

Figure7 An example of a Component Diagram

Partecipants
management

—
1 -
—
| —
—
L —
—
—
—

Courses P
management

Figure8 An example of a Package Diagram

55 3. A Little Bit of Modelling Basics

3.1.1.8 Deployment Diagram

A Deployment Diagram depicts the run-time architecture of processors, devices,
and the software components. It is the final physical description of the system’s
topology, describing the structure of the hardware units (nodes) and the software to
execute on each unit. Specifically a node is a physical object (device) that has some
kind of computational resource while a connection is the communication path among
nodes. In Figure 9 we report an example of a Deployment Diagram.

Friner

e YWek System
e SEMEr

Lecretary ,/.

Figure9 An example of Deployment Diagram

3.1.2 UML Views

Generally the modelling of the architecture of a (complex) system requires
dealing with the problem from different points of view, considering diverse aspects
such as: defining the static structure and dynamic interactions (functional aspects);
establishing the timing, reliability, deployment requirements (non-functional
aspects); organizing and scheduling resources and people in working groups and
finally mapping to code modules (organizational aspects).

Considering the definition of the software architecture provided by the IEEE
Working Group on Architecture in [IEEEQL] as "the highest-level concept of a
system in its environment”, it is evident that architecture description requires only
the definition of its structure but it also encompasses the "fit" with system integrity,
with economical constraints, with aesthetic concerns, and with style. It is not limited
to an inward focus, but takes into consideration the system as a whole in its user
environment and its development environmert - an outward focus.

Therefore the system architecture is described by a number of views (multiple
viewpoints from OO methodologies) each representing a particular aspect of it and

56

addressing some specific set of concerns, specific to stakeholders in the devel opment
process. end users, designers, managers, system engineers, maintainers, and so on
[RUP].

The views capture the major structural design decisions by showing how the
software architecture is broken down into components, and how components are
connected by connectors to produce useful forms [PW92]. These design choices
must be tied to the requirements, functional, and supplementary, and other
constraints. But these choices in turn put further constraints on the requirements and
on future design decisions at alower level.

Each view is described in a number of diagrams containing information that
emphasizes a particular characteristic of the system. In this section we consider the
typical set of views, called the "4+1 view model” [KRU95] as schematise in Figure
10. In the following we provide a brief description of each of them:

Component View Logical
View

Use Case View

' AN

Deployment View Concurrency View

Figure 10 The 4+1 view model

3.1.2.1 Use Case View

The Use-Case View describes the functionadlities the system should deliver, as
perceived by external actors and contains use cases and scenarios that encompass
architecturally significant behaviour, classes, or technical risks. The Use Case View
is central for the development; its content drives the development of the other views,
and in particular it describes the final goal of the system. Generally the Use Case
view includes the following diagrams:

Use Case Diagram

Sequence/Collaboration DiagramActivity Diagram

Specificaly, in the Use Case Diagram the UC describes a system functionality, or
more precisely arequirement at different levels of detail. In the Use Case View there

57 3. A Little Bit of Modelling Basics

could be UCs associated with main requirements, others that are related to the minor
system functionalities.

Top-Level Package

k-l
shows an architectiralby

The Use-Case View zignificant subs et of h‘ ﬁ

UseCase Packages

R S

Actors Use Cases

Figure1l The use-caseview asconceived in RUP.

In particular a UC associated with a high level requirement could be better
specified either by using other UCs for the related subfunctionalities, or SDs and
CDs for describing the required behaviour. For this reason, the UML principle for
realizing a UC is a collaboration. It shows the implementation of the UC in terms of
classes/objects and their relationships and interactions. A collaboration is represented
by a number of diagrams showing the context and the integrations between the
participants of the collaboration (classes/objects). The diagrams used for this purpose
can be collaboration, sequence or activity

Figure 11, taken from the Rational Unified Model (RUP) documentation [RUP]
shows the content of the Use Case View and where it is realized within RUP as will
be better described in Section 3.2.

3.1.2.2 Logical View

The Logical View is mainly an architectural view of the system which constitutes a
basis for its structure and organization. It describes how the system functionalities,
depicted in the Use Case View, are realized in terms of the static structure and
dynamic collaboration between objects.

The design elements of the Logical View are generally collected into packages
(for instance system, subsystem, Use Case redlization) and classes, possibly grouped
in turn into two high level packages. the Analysis Model and the Design Model.
Referring to [RUP] the former is considered an optional package, mainly
representing a conceptual overview of the system. It can constitute a foundation for

58

the development of the Design Model, which is instead an abstraction of the
implementation of the system. The Design Model represents and documents the
design of the system in terms of design classes, subsystems, packages,
collaborations, and the relationships between them.

The Design Model
=

Top-Lewel Package

Shows an architedurally |
.) significant subset of
The Logical View Design Subsystems
Package=
Classes Use-Case Realization s

Figure 12 ThelL ogical View asconceived in RUP

Thus the Logica View provides a basis for understanding the structure and
organization of the design of the system and generally includes the following
diagrams,

Interaction diagrams (sequence and collaboration)

Class Diagram

Activity and State Diagram

Figure 11, taken from [RUP] shows the content of the Logical View and where it
isrealized within RUP as will be further described in Section 3.2.

3.1.2.3 Component View

The Component View, caled also Implementation View [RUP], is the description
of the implementation modules and their dependencies. The alocation of packages
and classes of the Logical View, to the packages and modules of the Component

59 3. A Little Bit of Modelling Basics

View, is also described. The purpose of this view is to capture the architectural
decisions made for the implementation. Typically, the Component View contains:

An enumeration of all subsystems in the implementation model;

Component diagrams illustrating how subsystems are organized in layers and

hierarchies

[llustrations of import dependencies between subsystems

This view is useful for assigning implementation work to individuals and teams,
or subcontractors, assessing the amount of code to be developed, modified, or
deleted; reasoning large-scale reuse; considering release strategies [RUP)

3.1.2.4 Concurrency View

The Concurrency View called also Process View [RUP], focuses on the division
of the system into processes and processors and on the non-functional characteristics
of the system used for efficient resource usage, parallel execution and the handling of
asynchronous events from the environment.

Custormer Interface

==thread== /
Custamer Interface

Speaker ReceiptPrinter

Display keyFad

==rOCESS== ==thread==
ATM Main [#——— ATM Interface [ATMNetwark

CashDrawer

d“:threadb: ‘/_,_,_/—'
Device Contraller Q—__%____E -
Cash Dispenser

Figure 13 An example of Concurrency View for the process organization of the system.
It specifically contains the description of the tasks (process and threads) involved,

their interactions and configurations, and the allocation of design objects and classes

60

to tasks. This view need only be used if the system has a significant degree of
concurrency. As [BRJ9§] states: "With UML, the static and dynamic aspects of this
view are captured in the same kinds of diagrams as for the design view - i.e. class
diagrams, interaction diagrams, activity diagrams and statechart diagrams, but with
a focus on the active classes that represent these threads and processes.” Of concern
when constructing and using the process view are, for example, issues of
concurrency, response time, deadlock, throughput, fault tolerance, and scalability.
Figure 13, taken from [RUP] documentation, shows an example of Concurrency
View for the process organization of a system.

3.1.2.5 Deployment View

The Deployment View shows by means of a Deployment Diagram the physical
deployment of the system, such as the description of the various physical nodes for
the most typica platform configurations, the alocation of tasks (from the Process
View) to the physical nodes, and connection among the different nodes. This view
need only be used if the system is distributed. Figure 14, taken from the RUP
documentation [RUP] shows an example of Deployment View.

3.1.3 UML Extension Mechanisms

Even if the UML aready provides a rich set of modeling concepts and notations,
the Meta Model, representing the common OO concepts linked together by well-
defined semantic rules, the users may require either additional features and/or
specific notations or to attach non-semantic information to models.

These needs are satisfied in UML by three built-in extenson mechanisms,
(Constraint, Stereotype, and TaggedVaue) which let the user define its own
modeler’s repertoire as well as attach free-form information to modeling elements.
These three extension mechanisms can be used separately or together to define new
modeling elements that can have distinct semantics, characteristics, and notation
relative to the built-in UML modeling elements specified by the UML Meta Mode.

In particular the Object Constraint Language (OCL) [WK99], which is a formal
language to specify constraints and other syntax expressions related to model
elements, can be used. In the next subsection we report a brief description of the
extension mechanism.

61 3. A Little Bit of Modelling Basics

3.1.3.1 Stereotype

The stereotype is the most important extension mechanisms: it defines and
specializes new types of model element basing on the previously defined elements.
The stereotype is therefore a semantic redefinition or extension of a previousy
defined semantic of the elements.

Log Cash Display

el ‘
Device Dispenser

Feceipt

Frinter | ™ Keypad

Card |

Reader Metwiork
preemptive nterface

/ ATM Main

. Customar Inte riace T-1 netwark
i’ .
ATM Hetwork Interfacs connection
Processar Crevice Controlier

* 200 Mhz Pentium b

hWlemary:
* 64 Mhb
ATM Metwork
Server PMetwork
Intetface
preemptive

Figure 14 The Deployment View showsthe physical distribution of processing within the
system.

Typicaly it is used in classes, types, relationships, components and operations
and in all the diagrams where the original element was used. Some of the standard
Stereotypes are: For classes:

<<actor>>;

<<interface>>, which is described only as abstract operations linked to a class, a

component or a package;

<<control>>, <<boundary>>, <<entity>> which are used to increase the semantic

meaning of the classes and their usage in modeling situations (usually Analysis

Model). In particular:

62

- the <<boundary>> stereotype specializes the use of a class for presentation
and manipulation. It presents and communicates the information in a system
to another system such as human or machine and can also be used to
manipulate information. Typically <<boundary>> stereotypes refer to
windows, dialogs or communications classes

- <<entity>> stereotypes are used to model the core concepts.

- <<control>> stereotypes are used to connect the boundary objects with their
entity objects and to handle a sequence of operations inside the system.
Specifically the <<control>> stereotypes handle the processing of the
information in the entity objects along with the functionality sequences that
involve a number of entity objects.

For use cases (Traceability): <<use case realization>> stereotype is used to show the
realization (implementation) of a system functionality described in a use case.

For generalization relationships. <<extends>> and <<uses>> stereotype

For operations <<constructor>>stereotype

For package: <<layers>> stereotype which is used to decompose a system in groups
of tasks in which each group of subtasks is at a particular level of abstraction, and
<<subsystem>> stereotype.

3.1.3.2 Tagged Values and Constraints

A tagged value is a (Tag, Vaue) pair that permits arbitrary information to be
attached to any model element. A tag is an arbitrary name; some tag names are
predefined as Standard Elements as listed below. At most, one tagged value pair with
a given tag name may be attached to a given model element. The interpretation of a
tag is (intentionally) beyond the scope of UML, and can be shown in the diagram or
separately documented. Some of the standard tagged values are: for types, invariants,
for operations, Preconditions and Postconditions.

The constraint concept allows new semantics to be specified linguistically for a
model element. The constraint is a semantic condition or a restriction, which can be
used within the diagrams or wherever necessary. The specification is written as an
expression in adesignated constraint language (such as OCL).

3.2 Rational Unified Process

During the last ten years, part of software research has been dedicated to the
improvement of the development process, (Software Process Improvement (SPI)

63 3. A Little Bit of Modelling Basics

initiatives) because it realized that software products cannot be completely evaluated
without also considering the process that produces them [KKO0QO]. In this context the
CMM model, [PCC93], developed at the Software Engineering Institute (SEI) isade
facto reference used by thousands of organizations together with the SPICE
framework (1ISO 15504) [DO99]. We report below a brief description of the
commonly used process assessment models referring to [ELMO1] for further details.

As summarized in [KKOQ], the CMM model is a framework that describes the
elements required for an effective software process. In particular, it focuses on an
evolutionary improvement path from an ad hoc, immature process to a mature,
disciplined process. It presents sets of recommended practices in a number of key
process areas that have been shown to enhance software development and
maintenance capability. The CMM guides developers in gaining control of their
development and maintenance processes, and evolving toward a culture of software
engineering and management excellence.

Other methods for managing the program improvement are the IDEAL
framework [MF96] defined at the SEI, and the Rational Unified Process (RUP),
which we present in detail in this section.

As described in [KKOO] The IDEAL method is an integrated approach for SPI
defined by the SEI which identifies five phases: Initiating, Diagnosing, Establishing,
Acting, and Leveraging. Each of these phases is centered on a particular activity:

Initiating, which specifies the business goals and objectives that will be realized

or supported

Diagnosing, which identifies the organization’s current state with respect to a

related standard or reference model

Establishing, which devel ops plans to implement the chosen approach

Acting, which brings together everything available to create a “best guess’

solution specific to organizational needs and put the solution in place

Leveraging, which summarizes lessons learned regarding processes used to

implement IDEAL

The Rational Unified Process [RUP], which is a detailed refinement of the
Unified Process (UP) defined by Jacobson et a. [JBR98], presents itself as a Web-
enabled software engineering process useful for: improving team productivity,
delivering of software best practices to all team members, guiding the user in
applying UML during the process development, and providing an extensive set of
guidelines, templates, and examples. It is in particular a customizable framework,

adaptable to the different organization exigencies, supported by tools (tightly
integrated with Rational tools) which automates a large part of the process
development [KROO].

A central role of this processis represented by the RUP Best Practices, which are
mainly guidelines for a well-established process development. RUP identify six best
practices, detailed in next section, which are: Develop Software Iteratively, Manage
Requirements, Use Component-Based Architectures, Visually Model Software,
Verify Software Quality, Control Changes to Software.

The RUP structure is characterized by: a static structure that describes the process
(who is doing what, how and when) (Section 3.2.2); dynamic structure that details
how the process rolls out over time (Section 3.2.3); an Architecture-centric process
that defines and details the architecture; a Use-Case Driven Process which specifies
how use cases are used throughout the development cycle.

3.2.1 Best Practices

There is not a single definition of Best Practices because they treat many topics.
They can be viewed as any commercially proven approach applicable to software
development which, used in combination, allows identification op the root cause of
software development problems [SPM]. We report a brief description of the best
Practice as intended in RUP below.

Develop Software Iteratively

RUP suggests avoiding the classic waterfall development process, preferring
instead an iterative one. There are various reasons why it is necessary to develop the
software iteratively [KROQ] as a better tolerance of requirements changes, which
often are the cause of project troubles, missed schedules and so on or an
improvement on the integration process which are more precise.

65 3. A Little Bit of Modelling Basics

Figure 15 Theiter ative development process
Feguirements

Eusiness . .
Modeling Analysis & Design

Flanning
Initial Implementation

Flanning

Config. & Change
Management

Environment / Deployment
,-"'\

Evaluation

The elements are integrated progressively starting from the smaller ones and
proceeding in a conti nuous and constant way, mitigating in this manner the risks as
well. Moreover developing software iteratively avoids late discovery of design
defects, facilitates reuse of common parts and results in a more robust product. The
general schema of an iterative processis taken from [BO88] and shown in Figure 15.

M anage Requirements

A requirement is defined as a condition or capability to which the system must
conform. Reguirements management consists of three activities: finding, organizing
and documenting the system’s required functionalities and constraints; evaluating
changes to these requirement and assessing their impact; tracking and documenting
the changing requirements of a system. Proper requirements management offers the
solutions for the root causes of software development problems.

Use Component-Based Architectures

A Component Base Development (CBD) permits assembly of software from
manageable modules, reuse or customizing the existing components and reuse of the
commercialy available components. When the software is developed iteratively, by
using component-based architecture, is possible to observe the continuous evolution
of the system architecture. In particular each iteration produces an executable
architecture that can be measured, tested, and evaluated against the system’s
requirements.

Visually Modd Software

The use of a visua notation, such as UML, alows visualizing, specifying,
constructing and documenting the structure and the behavior of the system
architecture. This has the beneficial effect of improving communications in the
design teams and letting to hide or expose details as necessary. In particular, visua

66

models can be useful for many purposes. understanding complex systems; exploring
and comparing design dternatives at a low cost; forming a foundation for
implementation; capturing requirements precisely; communicating decisions
unambiguously.

Verify Software Quality

This means the continuous assessment of the quality of a system with respect to
its functionalities, reliability, application performance and system performance. In
particular the verification is performed by creating tests for the key scenarios, each
one representing some aspect of the system’s desired behavior. The management of
quality has different purposes. to identify appropriate indicators (metrics) of
acceptable quality; to identify appropriate measures to be used in evauating and
assessing quality; to identify and appropriately address issues affecting quality as
early and effectively as possible.

Control Changesto Software

The changes in software are extremely important in an environment in which
multiple developers, organized into different teams, are working together on multiple
iterations, releases, products, and platforms. This activity may include: definition of
repeatable procedures for managing changes to software, proper resources allocation
based on the project's priorities and risks; continuous monitoring of the changes
including how to track, control and ensure that changes are acceptable.

3.2.2 Static Structure

The RUP static structure is presented mainly by four primary modeling elements:

Workers: In RUP the term worker refers not to an individual but to the roles that
must be performed to do specific work. A role is an abstract definition of a set of
activities performed and artifacts owned. A worker thereforeis a sort of “hat” that
an individual can wear during the project. He/she performs one or more roles and
is the owner of a set of artifacts. The mapping from individual to workers is
performed by project manager when he/she plans and staffs the project.

Activity: a specific unit of awork to be performed and is assigned to a specific
worker. To each worker is associated a set of activities which expressed the
workers' behavior. The granularity of an activity can be afew hours or more than
one day; it may be repeated severa times on the same artifact in the different
iterations. In this case the repeated activities may be performed by the same

3. A Little Bit of Modelling Basics

worker but not necessarily the same individual. Every activity is generally broken
into steps:
o Thinking step: the worker understands the task, examines the artifacts, and
formulates the outcome
0 Performing step: the worker creates or update some artifacts
0 Reviewing step: the worker inspects the results against some criteria
Not all the steps are necessarily performed each time an activity isinvoked.
Artifacts: the tangible objects of the project, which can be developed or used for
producing the final product. The artifacts are used as input by workersto perform
an activity and are the output, or results, of such activities. Typically they are not
documents; the RUP approach discourages systematic production of paper
documents, preferring to maintain the artifacts within the appropriate tool used to
create and manage them. The RUP artifacts fall into five information sets: The
Management set (Planning artifacts, Operationa artifact), Requirement set
(Vison document, Use-case model), Design set (Design model, Architecture
description), Implementation set (Source code and executable), Deployment set
(Installation scripts, User documentation).
Workflows. are a sequence of activities that produces a result of observable
value. The activities often tightly interwoven especially when they involved the
same worker or individual. In UML a workflow can be expressed as a sequence
diagram, a collaboration diagram or an activity diagram. There are two types of
workflows. Core Workflows and Workflow Details.
The Core Process Workflows are divided into two groups, representing a
partitioning of all workers and activities into logical grouping. The first group is
composed of the Engineering workflows: Business modeling workflow,
Requirements workflow, Analysis and design workflow, Implementation
workflow, Test Workflow, Deployment workflow. The second group is
represented by the Supporting workflows: Project management workflow,
Configuration and change management workflow, and Environment workflow.
Each core workflow is associated with one or more models, which are in turn
composed of associated artifacts, for instance use-case model, design model,
implementation model, and test
Additional process elements. are added to activities or artifacts to make the
process easier to understand. They are divided into: guidelines, which are rules,
recommendations, or heuristics that support activities and steps; templates, which

68

are models, or prototypes, of artifacts; tool mentors, which show how to perform
the activities or steps using a specific tool; concepts, which are all the key
concepts used during the process, for example, iteration, phase, risk and so on.

3.2.3 Dynamic Structure

The dynamic structure describes how the process rolls out over time, in particular
in RUP, which is organized into four different phases (Inception, Elaboration,
Construction, Transition Figure 16). We report in the following section a brief
description of each taken from [RUP, KROQ].

As shown in this figure, every phase ends with a milestone, i.e. a point intime
where goals have to be reached and critical decisions must to be made. These four
phases constitute a development cycle which end with software generation.
Specifically the software development starts with an initial development cycle and
evolvesin new software generation with an evolution cycle, which can be triggered
for instance by user-suggest enhancements or changes in the user’s context or in the
underlining technology.

Inception | Elahuratiun| Construction | Transition |
Lifecycle Lifecycle Initial Product
ohiectives architecture operational release
milestone milestone capahility milestone

milestone
time™

Figure 16 RUP phases

Unless the product "dies," it evolves into its next generation by repesting the
same sequence of Inception, Elaboration, Construction and Transition phases. Figure
17, taken from [RUP] show the general schema of the RUP development process,
demonstrating how the workflows evolve within the different phases.

3.2.3.1 Inception

The Inception phase goal isto achieve concurrence among all stakeholders on the
lifecycle objectives for the project. It is particularly important for development of
new products in which there are significant business and requirements risks which
must be addressed before the projects can proceed. It is important to specify that the

69 3. A Little Bit of Modelling Basics

Inception phase is not a requirement phase; rather it is a kind of feasibility phase

where just enough investigation is done to support a decision to continue or to stop.
We list here some of its main purposes.
Establishing the project scope and boundary conditions. This includes the
definition of the most important requirements and constraints, the acceptance
criteria, and what isintended to be in the product and what is not.
Discriminating the critical use cases of the system and the primary scenarios (Use
Case Modd).
Exhibiting, and maybe demonstrating, at least one candidate architecture against
some of the primary scenarios. This means mainly the evaluation of the trade-offs
in design, and in make/buy/reuse, and the feasibility through simulation model or
initial prototype. It is important to note that the real architecture will be realized
only during elaboration and Construction phases.
Estimating the overall cost and schedule for the entire project and the potential
risks (the sources of unpredictability). Thisincludes the evaluation of alternatives
for risk management, staffing, project plan, and cost/schedul e/profitability trade-
offs.
Preparing the supporting environment for the project. This means assessing the
project, the organization and selection of the required tools, as well as deciding
which parts of the process must be improved

70

Phases
Workflows |Inoeptiun|| Elaboration H Construction || Trans]tiun|
Business Modeling | h_,_

Rﬂumrements |

Analysis & Desian

Implementation
Test |
Deployment |

Configuration
& Change Mamt

Prcne::t Manacmment | ._—;_.-—-...—-..._______—“ I

Environment L__ __ F-— |
| Initial ||Ela|: #1| Elab #z| Cunst Cnnst | || Tra
Iteratlons

Figure17 General Schema

For completeness we list below some of the Inception phase artifacts (in order of
importance), providing a brief description for the most important. They are:
Vision document: This defines the stakeholders view of the product to be developed,
and captures very high-level requirements and design constraints to give the reader
an understanding of the system to be developed. Moreover, it serves as input to the
Use Case Model
Business Case: This provides the necessary information from a business standpoint
to determine whether or not the project is worth investing in, also establishing its
economic constraints. It represents an economic plan for realizing the project, as
presented in the Vision document, which must be approved at the lifecycle
milestones, and updated at further milestones
Risks Lig: Thisis designed to capture the perceived risks to the success of the project
and is one of the Project Manager’ s responsibilities to maintain and keep it updated.
In particular it identifies, in decreasing order of priority, the events that could lead to
a significant negative outcome and serves as a focal point for project activities and
the organization of the iterations.
Software Development: This is a comprehensive, composite artifact that gathers all
information required to manage the project and is again the responsibility of the

71 3. A Little Bit of Modelling Basics

Project Manager for its completion and updating. It describes the approach for the
development of the software, and is the top-level plan generated and used by the
managers to direct the development effort. A key discrimi nator of a good Software
Development Plan is its conciseness, lack of philosophy, and focus on meaningful
standards and procedures.
Development Case: This describes the development process to follow for the
individual project and it is changed based on the lessons learned at each iteration.
Iteration Plan
Use-Case Model (10-20% complete)
Prototypes

The Inception phase ends, as shown in Figure 16, with the Lifecycle Objectives
Milestone which foresees the evaluation of the objectives of the project, and the
decision either to proceed with the project or to cancdl it.

3.2.3.2 Elaboration

The Elaboration phase is the most critical phase of each evolution cycle; its goals
are to baseline the architecture of the system and provide a stable basis for the bulk
of the design and implementation effort in the Construction phase. The architecture
evolves considering the most significant requirements (those that have a great impact
on the architecture of the system) and the assessment of risks. As for the Inception
the Elaboration phase is not a requirements or design phase; rather, it is a phase
where the core architecture is iteratively implemented, and high-risk issues are
mitigated.

In particular, the stability of the architecture is evaluated through one or more
architectural prototypes with the purpose of: ensuring that the architecture,
requirements and plans are stable enough, and the risks sufficiently mitigated to
determine the cost and scheduling for development completion; addressing all
architecturally significant risks of the project; establishing a baseline architecture,
expressed with significant scenarios, which will support the system requirements at a
reasonable cost and time; producing the prototypes to mitigate specific risks such as:
design/requirements trade-offs, component reuse, product feasibility.

For completeness we list below some of the Elaboration phase artifacts (in order
of importance). Excluding those described in the previous phase, we provide for the
most important a brief description. They are:

72

Prototypes. They show something concrete and executable to users, customers and
managers for reducing uncertainty surrounding the stability or performance of key
technology, the understanding of requirements and the usability of the product. The
prototypes produced are divided into two groups, depending on what they explore
and their outcome. In the former group belong the behavioural prototypes which
focus on exploring specific behaviour of the system and the structural prototypes,
which explore severa architectural or technological concerns. To the latter belong
the exploratory prototypes which are thrown away when done, also called
throwaway prototypes, and the evolutionary prototypes, which gradually evolve to
become the real system. The exploratory and behavioura prototypes are intended to
very rapidly try out some user-interfaces and rarely evolve into resilient products.
Risk List defined previously

Development Case defined previously

Software Architecture Document: It is the responsibility of the software architect
who establishes the structure for each architectural view: the decomposition of the
view, the grouping of elements, and the interfaces between these major groupings.
Therefore the Software Architecture Document provides a comprehensive
architectural overview of the system which uses a number of different architectural
views to depict various aspects of the system. In particular the use-case view must be
considered before the other views, because the use cases drive the development. The
process and deployment views are also considered for systems with alarge degree of
concurrency and distribution.

Design Model: The software architect is responsible for its correctness. He/she
verifies whether the Design Model realizes the functionality described in the use-case
model, and whether the architecture fulfilsits purpose. It is therefore an object model
describing the realization of use cases. The Design Model serves as an abstraction of
the implementation model and source code and it is conceived as document for the
design of the software system. It therefore encompasses all design classes,
subsystems, packages, collaborations, and the relationships between them.
Implementation Model: The software architect is responsible for the integrity of the
implementation model, ensuring its correctness, consistency, readability and the
achievement of its purpose. The Implementation Model is a collection of the
components and the implementation subsystems that contain them. Components
include both deliverable components, such as executables, and components from
which the deliverables are produced, such as source codefile.

73 3. A Little Bit of Modelling Basics

Vision Document defined previously

Use-Case Model: This is a model of the system's intended functions and its
environment and serves as a contract between the customer and the developers. In
particular it is an essential input to activities in analysis, design, and test. The Use
Case Model is used by: the customer who approvesiit, i.e. the system is what he/she
wants, the user for better understanding the system, the software architect for
identifying architecturally significant functionality; the designers for getting a system
overview. It isused early in the Inception phase to outline the scope of the system, as
well as during the Elaboration phase. It is refined by more detailed flows of events
during the Construction phase.

The Elaboration phase ends, as shown in Figure 16, with Lifecycle Architecture
Milestone which foresees the examination of the objectives and scope, the choice of
architecture, and the resolution of the major risks. The project may be aborted or
considerably reconsidered if it fails to reach this milestone.

3.2.3.3 Construction

The goals of the Construction phase are to clarify the remaining requirements and
completing the development of the system based upon the baseline architecture. This
is mainly a manufacturing process, where emphasis is placed on managing resources
and controlling operations to optimise costs, schedules, and quality. In particular the
Construction phase is a transition from the development of intellectual property
during Inception and Elaboration, to the development of deployable products during
Construction and Transition. The main activities of this phase are:

Minimizing development costs by optimising resources and avoiding

unnecessary scrap and rework,

Achieving adequate quality and useful versions (alpha, beta, and other test

releases) asrapidly asis practical,

Develop iteratively and incrementally a complete product that is ready to make

the transition to its user community. This includes the description of the

remaining use cases and other requirements, the completion of the
implementation, and the testing of the software to decide if the software, the sites,
and the users are al ready for the application to be deployed.
We list below some of the Construction phase artifacts (in order of importance).
Excluding those described in the previous phases we provide a brief description for
the most important. They are:

74

Deployment Plan: This describes the set of tasks necessary for installing and testing
the developed product so that it can be effectively transitioned to the user community
and provides a detailed schedule of events, persons responsible, and event
dependencies. The Deployment plan is begun in the Elaboration phase and is refined
in the Construction phase.
Implementation Model: defined previoudly.
Test Suite: The Test Designer is responsible for this artifact, who has two sets of
responsibilities. The primary set consists in implementing each Test Suite according
to defined standards; identifying opportunities for reuse and simplification; managing
all subsequent changes to it. The secondary set consists in identifying for each Test
Suite its needs and the requirements, and ensuring that the Test Suite encompasses a
collection of test cases that are useful to validate together. A package-like artifact is
used to group collections of Test Scripts. Sometimes these groups of tests can refer
directly to a subsystem or other system design element; other times they relate
directly to quality dimensions, requirements compliance and so on.
Training Materials. They refer to the material that is used in training programs or
courses to assist the end-users with product use, operation and/or maintenance. The
purpose is to teach users how to use, operate or maintain the product. The training
Materials are needed if there will be formal education of users or system operations
staff.
Design Model: defined previously.
Development Case: defined previously.
Data Model: This is a subset of the implementation model which describes the
logical and physical representation of persistent data in the system. It aso includes
any behaviour defined in the database, such as stored procedures, triggers,
constraints, and so on. The Data Model is specifically needed where the persistent
data structure cannot be automatically and mechanically derived from the structure of
persistent classes in the design model

The Construction Phase ends, as shown in Figure 16, with the Initial Operational
Capability Milestone. At this point it is necessary to decide whether the software, the
gites, and the users are ready to become operational without exposing the project to
high risks. All functionality has been developed and all alpha testing (if any) has
been completed (see Chapter 2). In addition to the software, a user manual has been
developed where there is a description of the current release.

75 3. A Little Bit of Modelling Basics

3.2.3.4 Transition

The focus of the Transition phase is to ensure that software is available for its end
users. The Transition Phase can span severa iterations, and includes testing the
product in preparation for release, and making minor adjustments based on user
feedback. By the end of the Transition Phase the project should be in a position to be
closed out. In some cases, the end of the current life cycle may coincide with the start
of another lifecycle on the same product, leading to the next generation or version of
the product.

For completeness we list below some of the Transition phase artifacts (in order of
importance). Excluding those described in the previous phases for the most important
we provide a brief description. They are:

Product Build: This is the packaging of a product for market. In particular a
product can contain multiple deployment units, and may be accessible as a
downloadable commoadity, in shrink-wrap or on any digital storage media formats.
The Product is defined as a Deployment Unit that has been packaged for sale and
distribution. Typically the product is released to manufacturing in the late Transition
iterations. By that time the software has undergone internal and beta testing, and is
sufficiently mature for mass production.

Installation Artifacts. They refer to the software and documented instructions
required to install the product. These artifacts are needed if installation programs will
be used to configure the system in the deployment environment. If the software is
deployed only once (as is the case with many systems built by a company for internal
use on a corporate server), installation artifacts may be omitted. In a system where
the end user is expected to install the product, the Installation Instructions can be
included in the user's guide.

Training Material defined previously

End-User Support Material: It consists of the user manual and provides instructions
for using the software. In particular it provides the basis for test plans and test cases,
and for construction of automated test suites. This is typically required for any
system that has a user interface; systems that have little or no user interface may omit
it.

The Transition phase ends, as shown in Figure 16, with the Product Release
Milestone. At this point, it is necessary to decide if the objectives were met, and if
they should start another development cycle. In some cases this milestone may
coincide with the end of the Inception phase for the next cycle. At the Product

76

Release Milestone, the product is in production and the post-release maintenance
cycle begins. This may involve starting a new cycle, or some additional maintenance

release.

Summary

We have provided in this section basic knowledge about both UML and RUP,
necessary for the comprehension of the methodologies presented in this Thesis.

PART 2:
A SOLUTION FOR TEST PLANNING MANAGEMENT

4 The Propean Approach

Preface

In this Thesis we consider the overal testing process starting from its initial
stages, i.e. the definition of the Test Development Plan including the resource
estimates (specificaly time, staff, and development environment costs in particular)
up to the effective Test cases execution.

In this Chapter we start our journey in the testing phase, discussing an original
methodology, the Propean approach, useful for Test Development Plan definition.
Specifically the Propean intent is to propose a valid and reliable solution to the
managers to support the decision-making process in a multiproject management
environment.

From this perspective, in this Chapter we describe the Propean approach, Section
4.4 and the application of Propean to support the decision to release a product, based
on the analysis of trouble reports (Section 4.5).

However, the use of Propean methodology is not limited only to testing
management, but can be adopted in every development phase as well as for the
organization of the entire development process for defining the Software
Development Plan. In Section 4.6 we show the application of Propean to a case study
encompassing the modelling of the entire Rational Unified Process.

4.1 Propean Scope

Planning the testing phase is a difficult and critical task for project managers,
which requires evaluating whether the resources assigned to a specified task are
adequate or whether under the existing organizational schemes the predicted time
schedules will be met. Making such decisions is very complicated, because the
processes involved are highly complex: the influencing factors (both human and
technical in kind) are many, and in most cases not easily measurable or predictable.

We present the Propean methodology, Project Performance Analysis [BMMO3],
which relies, as the name implies, on Software Performance Engineering (SPE)

80

[SM90, SWO01] and queueing networks models [LA83]. Specifically following the
metaphor that:

Project teams correspond to the processing resourcesin performance models,

Project activities are the tasks to be performed within established time intervals.

We readapt in Propean the performance analysis methods for: assessing the time
to completion of specified testing activities or the overall testing phase, handling
personnel multitasking during different projects, optimising the workloads
distribution.

For modelling the testing phase and obtaining the required estimations we
embrace the trend of using UML as input modelling notation [FR99, JSW99, EPQO,
MAOQO, NLSO2] (specifically we adopt the standard RT-UML specialized profile
[UMLP]) and performance techniques for system evaluation [WO00, WO02, CM02].
As a result we obtain an integrated approach that alows the managers to: use
familiar notations and tools to define models of the flow of testing activities to be
performed and of the tasks to be distributed among personnel; express their expertise
by tuning the input models with the proper parameter values, automatically derive
measures of interest which rely on a solid mathematical background and have a
statistical validity.

Actually the idea of using performance techniques in project management is not
completely new, but applications so far have been limited to a single project at a
time, as for example in [AMNO95], or have been developed to handle specific
situations, as in [ACLO1] for simulating the performance of geographicaly
distributed cooperating maintenance service centres, and not as a genera approach.
In contrast, Propean provides a generic solution which can handle multiple projects
and can be applied to any situation and workflow of activities.

4.2 Related Works

Extensive literature about project management and development can be found,
but little of it treats the problem of multiproject planning and people multitasking on
several parallel projects. In this context the Software process simulation modelling is
one of the widespread techniques used for strategic management of software
development, supporting process improvement and training of software management
[KMR99]. In particular a software simulation model represents some specific aspects
either of the current implemented or of the hypothetical future implementation of
process. We report here a brief survey of maor related studies and of the more

81 4. The Propean Approach

widespread decisional tools. We refer to [KUO1] for a more complete review of the
research on the decision in product development and tofKMR99] for an introduction
of the software process simulation modelling.

Two crucial aspects of project management during development are resources
distribution and activity planning. These issues belong to a more general research
field which is Concurrent Engineering (CE) [SM97]. This discipline became popular
with the studies of Imai et a. [IKT85] and Takeuchi and Nonaka [TN86] and has
greatly influenced oth the academic and the industrial approaches to production.
However, these works focus mainly on organizing tasks within a single project,
taking into account the decomposition of a complex product design into smaller
activities and their subsequent coordination.

Considering the distribution of resources in a multiproject environment, PERT
(Project Evauation and Review Technique) [KA86] and CPM (Critical Path
Methods) [DE85] are probably the first proposed methods. They describe an
idealized flow of project activities, in which no new project is introduced over time
and activity durations are treated as deterministic. Markov chain models [KUO1,
WES86], which assume an exponentially distributed activity time and use matrix
methods for deciding the task time order in development [BFS90] were the natural
subsequent evolutions.

The work presented here is close to that of Adler et a. [AMNO95]. These authors
study the problem of personnel organization and resources distribution among
several projects developed at the same time, and like us use queueing networks and
stochastic processing network models to represent product development and identify
the bottlenecks in task scheduling. However the authors focus on five basic process
elements. jobs, tasks, procedure constraints, resources, and flow management
control. In particular, a single process may need to handle a variety of job types,
which in turn are divided into tasks (i.e., activities or operations). Tasks are
connected by precedence relations. The resources are engineers and technicians, who
are the units that execute the tasks. The flow management control represents how the
resources executed a job’s constituent tasks. Lock [LO98] identifies a sixth element
consisting of the assessment of individual contributions.

Recently queuing theory has been applied to model requirement management
[HRNO1], software maintenance requests [PMB99], [WC99], [RAO0] and to
management planning [ACLO1]. Specifically, the latter case presents a queueing
based approach for staffing process management and evaluating service levels. The

82

nodes of a multi-stage, multi-centre queueing model are associated with the different
maintenance phases. Each stage is considered in series and each entering request is
subjected to a sequence of activities before leaving the system.

4.2.1.1 Decisional Tools

The decisional support that managers can use is generally of two kinds. One
consists of techniques or methods that visualize resources and personnel and
distribute them among the phases of project development. Examples are represented
by the traditional Control Charts or Gantt Charts [BO96], or the more innovative
Design Structure Matrix (DSM) [BR0O1] which can display the interactions between
different teams with the process activities. Tools may support these methods, which
are extremely intuitive, but generally the validity of the plans depends strictly on the
subjective skill of the managers. Besides, the use of these techniques in a
multiproject context could be rather difficult.

The second kind of decisional support consists of specialized tools for managers.
Microsoft Project Tool [MPT] or the Kerzner Project Management Maturity Online
Assessment Tool [KPM] represent some examples of specific tools which provide a
valid aid in maintaining an updated database of available people and resources, and
for producing and visualizing a project plan.

Recently, the idea of readapting existing tools for management purposes is
becoming more common for economic aspects as well and some proposals can be
found in the literature. An example is the work of Dickinson et al. [DTGO01], which
shows how to use Dependency Matrix in combination with the existing Portfolio
tools to support the decisional process, analyse the interdependences between
projects and combine them. Another solution is presented in [BLPO1] where the
authors propose a tool for production management optimisation using Gantt Charts
and PERT diagrams for visualizing the obtained results.

However, most existing tools consider only a specific aspect of managenment,
focusing for example either on the completion time or on personnel distribution and,
more importantly, they cannot explicitly manage several contemporaneous projects.
Finally, the majority of available tools apply ad hoc algorithms for simulating project
evolution, based on some parameter values introduced by the user. Some of those
tools generate approximate predictions without any guarantee of statistical
significance.

83 4. The Propean Approach

Thus the approach presented here attempts to overcome the mentioned limitations
of the existing tools, proposing an innovative solution for project management.

4.3 Background Knowledge

In this section we briefly report the background information necessary for
understanding the Propean methodology. In particular in Section 4.3.1 we present the
basic concepts of performance engineering, in Section 4.3.2 the RT-UML profile and
specifically the Performance Analysis Profile.

4.3.1 Basic Concepts of Performance Engineering

We provide here the definitions and the basic concepts of performance
engineering used in the development of the Propean Methodology, without aiming to
supply a complete documentation.

Generally the application of performance techniques has, as its main objective,
the quantitative evaluation of the system under development. Specifically its
performance can be expressed in different ways including: response time,
throughput, or constraint on resource usage [SM90]. The response time is typically
one of the main elements characterizing the quality of a system and is described from
a user perspective, for instance the number of seconds it takes to respond to a user
request. It is conditioned by a number of factors such as the execution time of the
device, the entity of the requests, and the number of simultaneous users. This last
factor in particular mainly complicates the evaluation of the response time due to the
management of the queue of requests for the same device.

Therefore, a performance model must be developed for evauating the
performance of a system. Solving this model much information can be derived such
as the mean response time and the identification of devices representing bottlenecks
for the system performance.

Different approaches can be used for generating a performance model but we
only consider those based on the Software Performance Engineering (SPE) presented
first in [SM90]. This is a systematic and quantitative approach for constructing
software systems, which is based on the careful and methodical assessment of
performance issues throughout the lifecycle, from requirements and specification to
implementation and maintenance. The SPE process includes the following steps
[SwO01, SEO02]:

84

1. Assess Performance Risk establish the effort to put into SPE activity, i.e., the
level of risk and itsimpact on system performance

2. ldentify Critical Use Cases. determine which use cases are most important either
for operation of the system or for responsiveness or scalability for the user(s) of
the system

3. Select Key Performance Scenarios. identify for each use case the most important
scenarios, i.e., those which are executed frequently or that are perceived as
critical to the performance

4. Establish Performance Objectives for each key performance scenario specify
guantitative criteria for evaluating its performance characteristics and the
conditions (workload mix and intensity) under which the performance objective
should be achieved

5. Construct Performance Models: explained in detail below

6. Determine Software Resource Requirements identify the amount of processing
and software resources required for each scenario step

7. Add Computer Resource Requirements: include the resources and devices to be
used by scenario steps. Computer resource requirements depend on the
environment in which the software executes.

8. Evaluate Performance Models: using the model and the selected analysis
method, compute the performance predictions. Whether there are not problems,
proceed to solve the execution model. Otherwise two alternatives are possible:
modify the product concept choosing the most promising design approach and
evauate the effect on performance; or revise the performance objectives to adapt
them to the new redlity

9. Veify and validate the models: these activities proceed in parallel with the
construction and evauation of the models themselves and have the purpose of
verifying the accuracy of the predictions
Considering the construction of the performance model (activity 5), the SPE basic

concept is the separation of the Software Model (SM) from its environment (i.e.,
hardware platform model or Machinery Model, MM). This distinction, on the one
hand, allows for defining software and machinery models separately and solving
their combination, on the other improves the portability of the models (e.g., the
performance of a specific software system can be evaluated on different platforms,
and the performance of a specific platform can be validated under different software
systems).

85 4. The Propean Approach

The SM captures the essential aspects of software behaviour; we represent it by
means of Execution Graphs (EGs) (Appendix A). An EG is a graph whose nodes
represent software workload components and whose edges represent transfer of
control. A software workload component can be a single instruction or a whole
procedure, depending on the granularity adopted for the model [SM90]; this feature
makes EGs suitable for modelling software at different levels of detail.

EGs include several types of nodes (or blocks), such as basic, cycle, conditional,
fork and join nodes. In Appendix A we give a brief description of each of them while
Figure 6 and Figure 7 show examples of EG. Each node is weighted by use of a
demand vector representing the resource usage of the node (i.e., the demand for each
resource).

The MM model is the hardware platform and is based on the Extended Queueing
Network Model (EQNM) [LA83]. To specify an EQNM, we need to define: the
components (i.e., service centres), the topology (i.e., the connections among centres)
and some relevant parameters (such as job classes, job routing among centres,
scheduling discipline at service centres, service demand at service centres).
Component and topology specification is performed according to the system
description, while parameters specification is obtained from information derived by
EGs and from knowledge of resource capabilities. In particular an EQNM is
characterized by nodes and arcs, which connect the nodes. To in case of branching to
each arc is associated value, called routing probability, representing the probability
that a job will cover that path. Obviously the sum of the values associated to the
outgoing arcs of a branch must be equal to 1. In Figure 8 an example of an EQNM is
reported, whilein Appendix A we discuss the Queuing network in detail.

Once the EQNM is completely specified, it can be analysed by using of classical
solution techniques (ssimulation, analytical technique, hybrid simulation [LA83]) to
obtain performance indices such as the mean network response time or the utilization
index.

4.3.2 RT- UML.: the Performance Analysis Profile

Although UML is generally recognized as a useful tool for modelling the
functional characteristics of a system (e.g.,, see papers in [UMLOO, UMLOL,
UMLO2]), historically it had ignored nonfunctional requirements, such as response
time, availability, throughput and bandwidth. These constitute important system

86

features, nowadays often referred to in abstract as the QoS (Quality of Service)
characteristics.

By general consensus the UML lack of a quantifiable notion of time and
resources was felt to be “an impediment to its broader use in the real-time and
embedded domain” [SEO1]. As reported in [SEO1], in 1999 to cope with the needs
from this key area, the Analysis and Design Platform Task Force of the OMG issued
an explicit request for proposals (RFP) for a UML domain-specific interpretation (to
be fully conformant with the UML standard) capable of dealing with non-functional
requirements.

In response to the OMG RFP, a working consortium of OMG member companies
proposed a UML Profile for Schedulability, Performance and Time (RT-UML),
which has been recently adopted as an OMG standard profile [UMLP].

Presenting a detailed overview of the RT-UML profile is beyond the scope of this
Thesis; we provide here only the essential background necessary for understanding
the RT-UML features we use in the Propean methodology. For major details we refer
the reader to [UMLP).

RT-UML is not an extension of the UML metamodel, but a set of domain profiles
for UML allowing for the construction of models that can be used to make (early in
the life cycle) quantitative predictions regarding the characteristics of timeliness,
schedulability, and performance. In particular, effort has been spent both to enable
predictive quantitative analyses (e.g., the ability to determi ne the schedulability of a
planned piece of software or its response time), and to model QoS aspects, such as
deadlines and priorities.

The idea underlying the RT-UML is to import, as annotations in the UML
models, the characteristics relative to the target domain viewpoint (performance,
real-time, schedulability, concurrency), in such a way that the various (existing and
future) analysis techniques can usefully exploit the provided features,

Generaly domain viewpoints are not often used in practice because they require
great expertise and specialized knowledge. The intent of RT-UML profile is to
overcome this problem by providing a single unifying framework to encompass the
existing analysis methods, while leaving enough flexibility for different
gpecializations. At the core of the profile is the general resource modelling
framework, which provides a common model of resources and of their QoS
attributes. Then, based on this common framework, more specific sub-profiles are
defined, i.e., “profile packages dedicated to specific aspects and analysis techniques’.

87 4. The Propean Approach

Their purpose is to specialize the generic concepts to better represent the needs of a
specific domain, i.e., to derive a conceptual domain model.

The general resource modelling framework itself consists of three sub-profiles
dealing respectively with resource modelling, concurrency and time-specific
concepts. In the next section, we focus in particular on the RT-UML sub-profile we
usein Propean, i.e., the Performance Analysis (PA) profile.

The PA profile is specifically designed for capturing performance requirements
and specifying the QoS characteristics or execution parameters. At a high level of
abstraction, the concepts characterizing the PA profile are:

The scenarios, i.e.,, ordered sequences of steps, describing various dynamic

situations involving the use of a specified set of both processing and passive

resources under specified workloads (i.e., the load intensity and the required or
estimated response times for the scenario). In particular we can distinguish
between: a closed workload, in which afixed number of requests cycles while the

scenario is executed, and an open workload, in which the requests arrive a a

given (predetermined) rate.

A step in ascenario is characterized by its mean execution number (i.e., the mean
number of times it is repeated when executed) and the host execution demand (i.e.,
the execution time taken on its host devices) and might involve multiple concurrent
threads, due to forking.

The resources, i.e, the servers in a performance model that can be active or

passive. The active resources are usually servers characterized by the service

time, i.e., the execution demand of the steps that are hosted by resources, while
the passive resources can be acquired and released during scenarios and are
characterized by the holding times.

The performance measures of the system that include: resource utilizations,

waiting times, execution demands, and response times. Each of these values can

be: derived from the system requirements or performance constraints (e.g.,

response time for a scenario); estimated on the basis of experience or previous

knowledge (e.g., execution demand); directly measured or simulated.
The RT-UML PA profile provides UML extensions to deal with the above notions of
scenarios, resources, and workloads and the associated attributes (in the following,
PA attributes), so as to allow for extensive and wide-ranging performance analyses.
In our methodology, we are actually interested only in a small subset of these
extensions.

88

PA scenarios can be modelled following either a Collaboration-based approach or
an Activity-based approach (as in [PS02]). In the tradition of [CM02], we take here
the former approach, and represent a scenario by an annotated Sequence Diagram.
The use of Activity graphs might present some advantages in expressiveness
[UMLP] (modification of the Propean approach to allow usage of Activity graphsis
part of our future plans).

We report below a short description of the subset of PA annotations we use in
Propean. They concern the workload, the steps and the resources involved in the
scenario considered. For each annotation we specify the associated stereotype, the
attributes and the UML extensions (PA attributes) used for representing these domain
concepts (for more detail see [UMLP). In particular:

closed workload: a fixed number of jobs cycles indefinitely in the scenario, and

spends an external delay period. The stereotype used is <<PAclosedl oad>>

- Attributes and associated PA attributes:

- Population: the size of the workload, i.e., the number of jobs involved
(PApopulation)

- - Responsetime: the delay between the instant in which the scenario starts
and that in which itis completed (PAresptime)

Step: each increment in the execution of a scenario that can involve the use of

resources is a step. The granularity of a step depends on the level of abstraction

associated with the scenario. The stereotype used is <<PAstep>>

- Attributes and associated PA attributes

- Repetition: the number of times the step is repeated (PArep)

- HostExecutionDemand: the total execution demand of the step on its host
resources, i.e., the service demand necessary for accomplishing the request
(PAdemand)

Resource: This can be passive or active and can participate in one or more
scenarios. The former is generally protected by an access mechanism and can
represent either a physical device or a logically-protected access. The latter can
be a processor, an interface or a storage device and is characterized by the
processing steps allocated to it along system deployment. The stereotype used is
<<PAresource>>

- Attributes and associated PA attributes

- Utilization: this is usually the result of an analysis and represents the
computed utilization of processing resources expressed as a percentage.

89 4. The Propean Approach

For a passive resource in particular it represents the mean number of
concurrent users of the resource (PAutilization)

- SchedulingPolicy: the policy that controls the resources, i.e., the rules for
assigning the resources to a set of steps (active resource) or the access
control policy for handling requests from scenario steps (passive
resource). The scheduling policy can be for example FIFO (first-in- first-
out), PS (processor sharing), LIFO (last-in-first-out) and so on
(PASchdPalicy)

- ProcessingRate: (only for active resources) the relative speed factor of the
processor, expressed as a percentage of some normative processor
(PArate)

- IsPreemtable: (only for active resources) the possibility for the resource to
be preemptable or not, once it starts the execution of an action
(PApreemptable)

- Throughput: the rate at which the resource performs its function
(PAthroughput)

The numerical values associated with the PA attributes may have different
interpretations; for example, they may represent a fixed value, a variable to be
estimated, an average value or a distribution, or else they may be a prediction, a
measure or a requirement. To model PA vaue semantics, RT-UML follows a
predefined syntax, whereby it is possible to specify all the desired characteristics (for
an example of application see Section 4.5).

4.4 The Method

The method presented in this section provides for the manager a sound, reliable
solution supporting the decisional process in multiproject management, by the use
and readapting of the techniques of Software Performance and queueing networks™.
In particular starting from the metaphor of Section 4.1 and using the above SPE
concepts, we capture in the SM those aspects relative to the activity planning, while
in the MM those relative to people (over/under) utilization and distribution.

! These are in fact the most widespread methods in the performance field, but the application of other
approaches, like Petri nets [L198], LQNs or process agebras [HRO1] could be used instead, by
applying the appropriate transformation rules from the UML diagrams to these notations [UMLQO,
UMLO1, UML02, WO00, WO02].

90

In particular, we apply the method proposed in [CM02] extended to the RT-UML
profile (Section 4.4.1), for the derivation of performance models based on SPE
techniques, starting from a set of UML diagrams. Precisely, the SM is derived from a
Sequence Diagram (SD), and the MM from a Deployment Diagram (DD). The
method then extracts from these diagrams the main factors affecting system
performance and combines them to generate a performance model.

In Figure 1 we outline the basic steps of the Propean methodology (and who isin
charge of each of them) that will be detailed in the following of this section. We refer
to the case study of Section 4.5 for a more detailed description.

1. Anaysis: definition of project activities (manager)

2. Modeling: definition of the SDs and the DD (manager)

3. Model annotation: specification of proper parameters and values
(manager)

4. SPE models generation: derivation of the SM and MM models
(automatic)

5. Model evaluation: resolution of the EQNM and derivation of the
relevant predictions (automatic)

6. Analysisof results: evaluation of the results obtained (manager)

Figurel The Propean application steps

1. Manager: Analysis

In this step the project manager defines the project activities under consideration.
In particular he/she has to associate with each activity an estimation of the time and
resources necessary for completing it and the roles of the people involved? In
organizations with stable processes, this information can be derived from previous
experience on similar projects.
2. Manager: Modelling

The results of analysis in Step 1 have to be modelled as RT-UML diagrams. In
particular the manager should describe, in one or more SDs, the scenario(s)
representing the adopted release process. In the SDs the objects represent the teams
involved, and the messages represent the requests of execution of a set of activities or
correspond to information/data exchanged between the teams. Moreover the manager

% Note that thisis a classic manager duty and not a specific request of the proposed method.

91 4. The Propean Approach

should construct a Deployment Diagram (DD) modelling the resources available and
their characteristics. In this case the nodes of the DD can be associated with: classic
resources (device, processor, database), different project teams, communication
means such as, for example, the intranet device. The links between the DD nodes
represent the communications between the teams or the documents exchanged inside
the organization. We note that the manager does not need to repeat this step from
scratch each time he/she needs to make estimations about a project. In a mature
organization, for similar products, the effort needed to derive this reference structure
will be made only the first time. The same diagrams can then be re-used for
subsequent similar applications, by possibly updating the associated parameters, as
will be described in the next steps.
3. Manager: Model annotation

The two types of diagrams developed in Step 2 must be annotated with the proper
values and parameters. The project manager should express, by using a comment-
based annotation, the attributes associated with events and actions of the diagrams. In
particular, referring to the attributes relative to the PA profile described in Section
4.3.1 the PA attributes of the closed workload will be associated with the initial
action of the SD; those of the steps will be linked to each of the subsequent message
activations; those of the resources will be related to each of the nodes of the
Deployment Diagram. In Figure 4 and Figure 5 we report an example of the resulting
SD and DD. The details of these figures will be described in the next section.
4. Automatic: SPE models generation

By applying the method proposed in [CM02], and described in Section 4.4.1, it is
possible to derive a model for the planned activity (the SM based on EG) and a
model for the involved teams and resources (the MM based on EQNM).
5. Automatic: model evaluation

The EQNM obtained in the previous step, which represents the teams and
activities, can be solved to obtain relevant results such as: the predicted completion
time for the project (or for a single phase), the resource utilization rate, the best
resource distribution with respect to a given completion time, and so on.
6. Manager: analysis of results

The results automatically obtained in Step 5 are analysed by the project manager
and, if different from those expected, he/she can go back to Step 1 (or 2), make some
modifications © the diagrams or to the assigned parameters, and repeat the process
until the desired results are obtained.

92

4.4.1 EG and EQNM Derivation

With reference to Step 4 of the Propean methodology described above, we
explain here the process applied for automatically deriving the EG and the EQNM.
In short it consists of the analysis of the SD and DD designed by the project manager
as described in the following phases.

1. Analysisof the SD

In this phase we analyse the SDs separately and in particular the messages
exchanged between objects considering their respective lifeline. In particular in each
SD we associate with every interaction atuple (I, A, Ao, PApar) where:

| isthe label of the SD interaction arrow,

A isthe name of the object from which the arrow starts,

A isthe name of object at which the arrow ends,

PApar represents the performance annotation of <<PAstep>>

The SD is now trandated into a high level EG (called meta-EG). Each node in the
EG identifies an interaction, and corresponds to the set of operations performed in
relation to that interaction. Every node in the meta-EG is labelled with the tuple (I,
A, A, PApar) that characterizes the translated interaction. Figure 2illustrates the
skeleton of the algorithm used for the EG generation with proper labels for a very
simple SD.

[a] [k]
m1(A 4
i R D| (m1(), a,b,PAclosedload, Nusers)
7 77— -- }- {PApopulation=NUser s}
m2(
AN v
o <<PAStep>>
| tPArep=Nrep (m2(), b,c, Nrep, PAdemand(ts))
PAdemand=(req’,
'mean’,ts)}

Sequence Diagram Labeled Meta-EG

Figure2 Labeled Meta-EG generation
Depending on the degree of detail the manager adopts, the SD may be too
complex to alow the generation of a unique comprehensible software model (EG). In
this case before generating the EG it would be convenient to check if there are parts

93 4. The Propean Approach

(operations in the SD) that can be grouped together. For example, we could
aggregate a set of operations that is repeated many times in the SD, or that belongs to
the same process phase. In this case a high-level EG is generated and expanded,
when necessary, into sub- EG.

The Execution Graph (called meta-EG) obtained in this step includes only five
types of nodes. basic, branching, cycle, fork and join [Appendix A, SM90, SWO01].
Each basic node is labelled with the tuple (I, A, A, PApar) identifying an
interaction, and corresponds to the set of operations that are carried out by
component A, before interacting with A, through (I, A, A, PApar). This set of
operations is translated into an EG node and possibly connected to another node by a
pending arrow. In case of multiple interactions, a fork node is placed before
considering the sequence of the outgoing interactions. The multiplicity of the fork
node determines the number of pending arrows associated with it and is obviously
equal to the cardinality of the multiple interactions (i.e., the number of different
threads originated by this interaction). Figure 6 and Figure 7 show respectively the
high level EG obtained from the SD of Figure 4 and a sub-EG relative to the block
problem analysis.

2. Analysisof the Deployment Diagram

The use of the information contained in the Deployment Diagram is twofold. On
one hand, tailoring the meta-EG to the specific platform can be performed, thus
obtaining an EG-instance; on the other hand an Extended Queueing Network Model
(EQNM) can be obtained representing the hardware platform hosting the software
system.

We start by describing the stepwise process adopted for deriving the EG-instance.
In our case the nodes of the DD does not represent the hardware resources, but the
different teams. The components inside a node represent the tasks that the team must
perform (obviously, a team can be composed of one or more people). Project phases
can be carried on with the collaboration of components living inside different nodes
of the DD. Specifically the names of the interacting components within the meta-EG
block labels are substituted with the names of the team that accomplishes the
operation and the values of the relative PAattribute. Furthermore, when the names of
the interacting components are different in the label, an overhead delay due to
coordination among project teams (e.g., team meeting) is added to the performance
model. In this way the node label in the EG-instance corresponds to the demand
vector, which specifies for each team the work-demand relative to the modelled

94

operation. Figure 7 shows an example of an EG-instance, including the demand
vector specification.

The EQNM topology can be derived in a straightforward way from the
information collected in the DD. As aready stated, in our case the service centres
model the project teams involved in the software processes, so the number of service
centres in the network correspond to the number of teams. The connections between
different service centres are derived from the communications represented in the DD.
The values of the attributes associated with the different nodes of the DD are used to
better specify the characteristics of the EQNM service centres.

Subsequently by using well-known performance techniques [CM02, SM90,
SWO01], the obtained EG-instance is combined with the EQNM to achieve the
complete definition of the queueing model, as in the traditional SPE approach. The
obtained model is then solved by use of the classic solution technique and tools
[LA83, SWO01] to obtain the performance indices of interest.

4.4.2 Architecture of the Propean Tool

The final goal of this research is an automated environment that the manager can
easily consult in hig’her everyday activity to obtain advice for sound decision
making. With reference to the stepwise procedure described in Section 4.4, this
environment should incorporate a tool fully automating steps 4 and 5 (the SPE
related computations), and provide support to the other steps pertaining to the
manager as well, facilitating the RT-UML modelling of the workflow and the
resources according to the required formats.

Currently we have already available some small pieces of such atool (which we
used to process the case study presented here), while further implementation work is
ongoing to complete the platform. In this section we overview the architecture of the
Propean tool. To make the SPE calculations, Propean transforms the UML model
annotated with performance information into an Extended Queueing Network
performance model [LA83]. Following [UMLP] the input to our transformation
algorithm is a file containing an annotated UML model trandated in XML format
according to the standard XMI interface [UMLP], and the output is the
corresponding EQNM model description file, which can be read directly by existing
EQNM solvers [LA83]. The tool architectureisillustrated in Figure 3. A UML tool
(such as Poseidon [POS]) processes the input diagrams and generates the XML file.

95 4. The Propean Approach

The UML to EQNM transformation component takes as input the XML file and
produces as an output a file describing the performance model.

Specifically, the EQNM model structure is generated from the high-level
software architecture described in the DD indicating the alocation of software
components (in our cases the activities) to hardware devices (in our case the teams).
The EQNM model parameters are obtained from detailed models of key performance
scenarios, represented in the SDs. The derived performance model goes to a
performance model solver (EQNM analytical solver or simulator) which derives the
performance analysis results. Finally the Results Convertor analyses the performance
results and convert them back in the UML model as constraints on some PAattribute,
thus completing a round-trip tour.

Analysis of

UML Model

(XM1) Performance

) 1

UML
tools

Results convertor

Performance

EQNM
UML to EQNM solver
component

Figure3 Propean Tool Architecture

The policy we are pursuing in the implementation is that, where available, we use
existing tools, and integrate them into the Propean tool. For instance, we obviously
do not want to develop a new UML tool. In this regard, we notice that the release of
the RT-UML profile has occurred quite recently and there are not yet commercia
tools specifically handling it or supporting the Performance profile.

Therefore, the XML files must be processed to “attach” the tagged values
associated to different model elements with the stereotypes.

96

4.5 Propean for Managing the Testing Phase

In every process development, as best practice before facing any of the
development phases is to establish an accurate and truthful Development Plan in
which the required resources are assigned and the people scheduled. Considering in
particular the testing phase, Propean methodology, by applying the well-known
techniques from the field of computer performance engineering, can facilitate the
definition of the Test Development, providing the managers with sound and reliable
solutions. Performance analysis techniques are used to predict the outcomes that will
result from manager’s assumptions and to figure early out whether under the current
workflow the settled objectives will be met. In particular, Propean provides managers
with both the resources distribution (i.e. people assignment) and the prediction about
the completion time of the processes under development. Specificaly, as stated in
the preface the Propean as support for the manager’'s decisional process in
multiproject management can be useful at any stage of development, as soon as the
project manager is called to dynamically make the most appropriate decision based
on the actual project status and the emerging circumstances. We will show an
examples of thisin Section 4.6.

4.5.1 Case Study

We investigate here the release decision for a software product driven by product
quality, measured in terms of bugs found. More precisely, we suppose that, as usua,
the testers report each failure found during the test execution in a form, called the
trouble report, and that the product will be released only after the testing is
completed with no trouble report left open.

We consider that at the beginning of the test phase the manager faces either of
two different situations:

i) considering the actual personnel availability, he/she wants to early predict the
expected time until release;

i) for a fixed release time, previously established on the basis of customer
exigencies, he/she wants to decide the most adequate personnel configuration to
respect the time constraints.

In this section we illustrate the use of Propean for pursuing either goal (i) or (ii)
considering a simplified case study derived from [KFN99], to which we refer for
further detail.

97 4. The Propean Approach

As afirst step, we model the organization structure of the company considering
the testing stage and the management of reported problems (we disregard the teams
not directly involved in these activities). The organization is composed of a project
manager PM, atest team T (1+3 people), a development team D (2+4 people) and the
system architects SA (1+2 people).

The testers begin to execute the planned test cases and every few days (we
assume 3 in this example), they insert the trouble reports in an on-line database,
called the tracking system TS, which only the testers and the project manager can
modify.

At each TS update, the PM analyses the trouble reports and seek the proper
solutions for each reported problem. We consider three possible outcomes from
his/her analysis:

The problem must be fixed: the PM classifies the problem as “open” and passes it

on to the developers. In this case study for ssimplicity we assume no prioritisation

politics among failures, i.e., al reported problems are assigned the same severity

(different priorities could also be handled, but the example would be more

complicated).

The problem can be deferred. The PM chooses to |eave the problem in the current

version of the product and to fix it in a subsequent release. The problem is

classified as“deferred”.

The problem is not recognized as such. From the trouble report analysis the PM

concludes that it is not a real problem, because the program was actualy

supposed to work in that way. The problem is classified as “as designed”.

The TS update with the problem classification as “deferred” or “as designed” by
the PM closes the trouble report (at least for this product release). If instead the
problem is classified as “open”, further actions must be taken as described below.

On receiving the open problem reports from the PM, the developers first analyse
them to check whether they have enough information to fix the problems or need
further explanation from the testers about the failure symptoms. In the latter case, the
workflow may include an interaction cycle with the testers. Occasionally, the
developers may realize that the fix requires a mgjor design change and so inform the
PM, who may require the intervention of the software architects to modify the
design, after which the devel opers modify the code accordingly.

After every problem fix, the testers have to retest the modified parts of the
program (regression test). Thus they either classify the problem as “closed”,

98

consequently updating the associated trouble report in the TS, or possibly generate

further trouble reports containing the new problems found during the test phase.

Given this abstract workflow of the activities and personnel involved, the project
manager can periodically analyse the status of the TS in order to:

Casei) estimate the expected time at which the product can be released, that is
when the TS only contains problem reports classified as “deferred” or “as
designed’, i.e., there are no remaining “open” problems;

Caseii) derive the most efficient personnel organization for releasing the product
within the established time constraints.

In Case i), if the estimated release time is too late, for example with respect to
market demands, the PM has to take the proper corrective actions. For instance, the
PM could increase the number of people involved in the development or test phase or
else decide to pursue a later release date. Alternatively, if the involved personnel are
handling severa projects simultaneously, the PM could decide to temporarily divert
the people from one or more of the concurrent projects to focus on this one. Similar
considerations can be made for Case ii). In both situations, it is very important that
the PM base his/her resolution on a reliable estimate, not on a subjective guess, and
that he/she can objectively take into account all the likely combinations of events.

This is the purpose of the methodology presented in the following section: we
intend to supply the project manager with a tool that uses performance engineering
techniques to:

Predict the release time, aso allowing for multiproject management, i.e., the

teams are not dedicated full-time to asingle project

Identify (by looking at the personnel rate of utilization) the component that

represents the bottleneck and is mainly responsible for the release time delay

Identify the most convenient team composition in order to ensure that all the

projects are released within the deadline agreed upon with the customer, or

within the budget allowance.

4.5.2 Details of the Methodology

In this section we describe the application to a case study of the Propean
methodol ogy (Section 4.4).

1. Analysis: In this case the project manager decides to focus analysis on the
testing phase. During this step he/she has mainly to define the boundary conditions,
such as for example the resources involved and the strategy to adopt for project

99 4. The Propean Approach

release, and to establish which parameters (symbolic expressions) are relevant for the
estimation, possibly postponing their evaluation to Steps 5 and 6.

2. Modelling: during this step the manager develops the SD and the DD
representing respectively the sequence of the activities performed during the testing
phase and the overall organization of the different teams. These two diagrams are
presented respectively in Figure 4 and Figure 5; the meaning of the stereotypes and
tagged values of RT-UML will be explained in the next step.

3. Model annotation: The SD and the DD developed must be annotated with the
proper parameters.

Considering the SD, the attributes relative to the closed workload are associated
with the first action of this diagram. The note must report the name of the stereotype
(<<PAClosedLoad>>) followed by the parameters associated with the PA attributes
which are:

PApopulation = $Nuser that represents the number of jobs in the scenario: in our

context, the number of projects contemporarily under testing. The symbol $

indicates that $Nuser is a variable that the project manager will instantiate with
an appropriate value before starting the automatic derivation of the required
estimations.

PAresptime = (‘msr’,"mean’, $t to_release) that represents the completion time

and is one of the expected results. It is modelled as a measured (‘msr’)

distribution whose mean is expressed by the variable $t_to_release.

The other steps of the SD are annotated with the stereotype <<PAstep>>
associated with different PA attributes, depending on the activity considered.

Considering the second and third step of the SD, every three days (Nrep) the
testersinsert in the database a certain number of trouble reports (denoted as $N). The
insertion has a mean value equal to ts. In other words, $N and ts are the values to be
estimated by the project manager, possibly with the help of testers. They are
associated with the PA attributes asfollows:

PArep = Nrep number of insertions in the data base

PAdemand = (‘req’,’mean’, ts) the execution demand of this step on its host

resource, i.e., the time necessary (‘req’) for the testersto insert atrouble report in

the database, follows a distribution whose mean is given by ts.

When the Project Manager analyses the trouble reports, he/she observes a
variable number of bugs reported ($N). The value to be associated with this variable
generally depends on the project typology and can be estimated for a family of

100

similar products. The Manager can classify each bug as “open”, “deferred” or “as
designed” with a given probability (denoted as p_fix, p_def, p_des, respectively) and
gpending a certain amount of higher time (denoted as t fix PM, t def PM,
t des PM, respectively). The Project manager must estimate the associated values
based on hig’her experience. For example let us considering the deferred bugs. the
value $N*p_def will give the number of bugs classified as deferred among the $N
reported and t_def PM*$N*p_def will represent the time necessary for the project
manager to deal with them. The situation described is simply modelled by
associating with the relative step the stereotype <<PAstep>> with attribute:

PAdemand = (‘req’,’mean’, k) where k can assume values t_fix PM*$N*p fix,

t def PM*$N*p_def, t des PM*$N*p_des depending on the considered SD step.

It represents the time necessary (‘req’) for the project manager to deal with the

different trouble reports and follows a distribution whose mean is given by k.

Similar consideration can be also done for the other steps of the SD, annotating
each step with the parameters of interest and estimating the required values.

Considering the DD, its nodes can refer to both classical resources (device,
processor, database) and people teams. Moreover, the DD also models the
communication nodes. for instance, the Intranet to access the database TS and a
meeting room symbolizing a “communication channel” between different teams.
Each node represents a kind of resource and therefore it is necessary to associate
with each resource a stereotype <<PAhost>>. Then, depending on the resource
considered, the associated PA attributes are:

PAschdPolicy=P where P can be equa to FIFO, PS or PR and models the

strategy by which the resource handles the different jobs.

PApreemptable= Yes In the case study it is supposed that only the System

Architect team can be interrupted during his/her work.

PAutilization=3Util represents the rate of utilization of the different resources.

The value associated with this variable is an analysis result.

PArate=1 the resource works full-time on the assigned job.

Pathroughput=Np represents the amount of work provided per unit of time (a day
in the case study) by a person belonging to a certain team. This value is normalized
to 1 in case of asingle person, 2 when two people work together, and so on.

101

4. The Propean Approach

: Trackin Teder : Development &
rogram S Iean Tean Architedts
flanager
1. Softwareto test
1.1 Problem Report
I..I <<Padosdload>>
{PApopulation=$Nuser
2 Problem Reguest PAresptime{'ms’, mean’ $_to_release))
<<PAgep>>
\\ {PArep=Nrep
o PAdemand=(reg', mean' ts)}
S
21 Data <<PAgep>>
{PArep=Nreg.
PAdemand=("req’, 'mean’ t9)}
)‘ <<PAgeg>>
| {PAdemand=(req,'mean’,t_def_PM*$N*p_de}
3.BugDeferrec
i
P <<PAdep>>
{PAdemand=(req','mean’,t_as des PM*$N*p_as des)]
4, Bugasdesignec l
i <<PAstep>>
D\ {PAdemand=(req’,'mean’, t_fix PM* $N*p_fix)} j
5.Bugtofix
s _ |<<PAstep>>
51 Regression Test 1) —— — |{PAdemand=(req’, mean’, t_fix DV*$N*p_fix)]
5.1.1. Problem Report Closure 1IN ‘
N
lr N [<<PAsep>>

6. Bug tofix

{PAdemand=(req’, mean', t_fix_T*$N*p_fix)]

6.1 info request

6.11 infc

6.2.1. Problem Report Closure

62 Regression Test

A

"

7.Bugtofix

7.1 Bug Fix Review

711 Design Re

Figure4

711111 Problem ReportClog

71111 Regression Test

7111 Desgn Implement

Lire

I

Sequence Diagram

102

4. SPE model generation: Following the steps described in the previous section,
the corresponding EG and EQNM can be automatically derived from the annotated
SD and DD. Figure 6 and Figure 7 illustrate the high level EG and one of the low
level EGs obtained from Figure 4 and Figure 5 respectively, while Figure 8 shows
the EQNM with a team composition made of: 1 project manager, 1 software
architect, 1 tester and 2 developers (1PM, 1SA, 1T, 2D).

With respect to the SD and the DD, in this step we have made the following

choices:

i. The database TS and the connected Intranet have not been modelled, because
the times involved in the TS accesses are orders of magnitude less than the times
required by the activity steps (msecs vs. days);

ii. The meeting room has been introduced as a delay centre modelling the
communications with the manager.

T< {PAschedPolicy=FIFO
q PArate=1
—— PAutilization=$util

| PAthrougput=tp

PACIXISVT=('est’,'mean’ 1, ms)}

{PAschedPdlicy=FIFO
PArate=1 N
AN
N

PAutilization=Sutil}

g

Intranet

PArate=1

{PAsthedPalicy=FIFO

PAthrougput=1
PAutilization=$util}

Figure5

{PAhedPolicy=PR D

PApreemtable=yes

PArate=1
PAutilization=$util}

PAschedPolicy=FIFO
PArate=1

PAthrougput=1
PAutilization=$util}

N PAthrougput=2

{PAschedPolicy=FIFO
PArate=1
A4
\ PAutilization=$util}

{PAschedPolicy=PS
PArate=1

PAutilization=$util}

Deployment Diagram

103 4. The Propean Approach

Figure 6 represents an EG at a high level of abstraction modelling the main
activities of the testing phase without details, while Figure 7 shows the details of the
block named “problem analysis’, by illustrating several activities modelled in Figure
4. Moreover, the demand vector for each block is derived by combining information
coming from annotations in the SD and in the DD.

Start
Test 3days

Test 3/6 days | | | | || Problem
analysis

Problem
analy5|s

Figure6 High level EG obtained from SD in Figure4

For example, the first block is called “3+4” because it models the interactions 3
and 4 in the SD; its associated demand vector represents the service demand to the
resources involved in the scenario for the management of bugs that are deferred or
classified “as designed”. In such a ase only the manager is involved and his/her
service demand can be derived from the annotated SD as

(t_def PM* $N*p_def + t_as des PM*$N*p_as des).

Note that the different kind of projects (depending, for example, on the test
duration or on the number of bugs) generate different instances of the demand
vectorsfor the EGsin Figure 6 and Figure 7, and therefore different routing chainsin
the EQNM. The possible choices lead generating different models to be evaluated in
the next step.

5. Model evaluation: several analyses can be done by assigning different values
to parametersin the EQNM. Examples of various model evaluations are illustrated in
the next section.

104

(0, t_fix2_DV*$N*p_fix2, 0,0,0)

Demand vector:
(d_PM,d DV,d_T,d _SA,d_MR)

(t_def_PM* $N*p_def +
t_as_des_PM*$N*p_as_des, O, 0, 0,0)

(t_fix1_PM* $N*p_fix1, t_fixl_DV*$N*p_fix1,
t_fix1_T*$N*p_fixL, 0, t MR)

(t_fix2_PM* $N*p_fix2, 0, 0, 0,0)

(0,0, t2_T*$N*p_fix2*p_T, 0,0)

Problem analysis. details
3+4
5+51+5.11
6
6.2 6.1.1
6.2.1

7+7.1+7.1.1+ 7.1.1.1+
71111+7.11111

(0,0, t_fix2_T*$N*p_fix2, 0,t_ MR)

(t_fix3_PM* $N*p_fix3 + t3_PM* p_fix3,
t_fix3_DV* $N*p_fix3 +t3_DV*p_fix3,
t_fix3_T* p_fix3, t_fix3_SA*p_fix3,

t MR)

Figure7 Thelow level EG for “problem analysis’ block obtained from SD in Figure4

MR

v

Figure8 The EQN Model obtained from SD in Figure 4 and from DD in Figure5

105 4. The Propean Approach

6. Analysis of results: the manager can make several kinds of decisions by analysing
the results obtained in the previous step. Again, an example of this anaysis is
illustrated in the next section.

4.5.3 Discussion and Results

It is important to point out that on the manager’s side the effort required to
employ the methodology is to explicitly derive in a SD (such as the one shown in
Figure 4) a high level model of the activity workflow and in a DD (as in Figure 5
the organization structure. He/she does not need to know al the other details on how
such models are then transated into SPE models and then solved.

We understand that even the derivation of the RT-UML diagrams could be felt at
first impact to be an undesirable extra burden for the already overloaded manager.
However, objectively it should not take much effort: if one has a clear view (as
plausibly the manager must have) of how the development process is structured and
which activities are to be accomplished, and their mutual influences, deriving the
RT-UML diagrams that depict them at a high level of detail should not take much
labour, especially with the support of an appropriate interactive tool. Besides, we
expect that the returns make it worthwhile.

In fact, once such diagrams have been derived, various interesting analyses can
be conducted in completely automated way. The manager can make different
assumptions on the parameters of the modelled scenarios and automatically obtain a
reliable prediction of what will be the outcomes consequent to each assumption.

We present in the following two orthogonal applications of Propean to the
described case study, illustrating for each of them the parameters to be introduced
and the kind of estimations that can be derived. We consider the two situations in
which: (i) the manager wants to predict the completion time of the testing phase
(Section 4.5.3.1); or (ii) he/she wants to derive the most efficient personnel
distribution for completing the testing phase within a fixed time deadline (Section
4.5.3.2).

Generally for each diagram several parameters can be varied, depending on the
desired prediction. We have considered the following parameters: the estimated
duration of the test period, the number of registered trouble reports, the composition
of the involved teams, and whether they are fully dedicated to the examined project
or instead are contemporaneously handling other projects.

106

45.3.1 Estimating the Completion Time

Considering the case study described in Section 4.5.1, we illustrate some
plausible situations. in Propean, each different situation corresponds to a variation in
the parameter values in SD and DD. For example a possible situation could be
represented by the following assumptions:

The planned duration for the test phase of a given product is six days

(considering the attribute PArep in the second step of the SD, the parameter Nrep

isset equal to 2);

For the type of project under test, based on his/her experience, the manager

assumes that the number of trouble reports issued will be equal to 10 (considering

the attribute PAdemand in the third step of the SD, the parameter $N is set equal

to 10)

The personnel in charge for the test and debug phase consists of one tester, two

developers and one software architect (plus of course the manager): this

configuration is denoted as 1PM, 1SA, 1T, 2D; (asillustrated in the considered

DD)

The tester and the two developers are in paralel engaged in another project (the

parameter $Nuser of the SD isinitialised to 1).

For each parameter configuration, using Propean the manager can thus obtain,
early in advance of the testing phase, a prediction of the time in which the product
will be ready for release (i.e., no more open trouble reports exist).

Planned Test Duration=3 days | Planned Test Duration=6 days | Planned Test Duration=9 days

T&D D T&D | T&D | T&D D T&D | T&D | T&D D T&D | T&D
Project | Full | Share| Share| Share | Full | Share| Share| Share | Full | Share| Share| Share
#Bugs | Ded di di d3 Ded di di d3 Ded di di d3

1PM
2 5 6 8 13 8 10 14 25 11 13 17 28
1SA
T
D 10 9 10 11 17 12 13 17 29 14 16 20 31
20 14 15 16 2 16 18 2 32 18 20 24 35

Tablel Estimated timetoreeasein days

In Table 1 we report the results obtained for different parameter values. In the
table the estimated time to release is measured in days, considering one working day

107 4. The Propean Approach

to be equal to 8 hours (optimistic bound), and the results are rounded to the closest
integer. The table shows the release time when the planned duration for the test and
debug phase is three, six or nine days (with a group of four columns for each case),
and when 2, 10, or 20 trouble reports are issued, as indicated in each row.

For each case, then, we derive the estimate when the resources (the people) are
fully dedicated to the project under exam (denoted as T& D Full Ded); the test team is
fully dedicated, while the devel opers are handling this and another project (D Shared
1); both the testers and the developers are handling this and another project (T&D
Shared 1), and finally both the testers and the developers are handling three more
projects in addition to this one (T&D Shared 3).

Going back to the situation described above, in which the test duration was
assumed equal to six days and the number of trouble reports to 10, the time necessary
for completing the testing phase is estimated to be 17 days from the start of the test
phase (2" row, 7" column). If the manager was pointing towards a much earlier
release deadline, Propean shows it is unlikely that he/she will be able to meet it. Let
us assume that the target release deadline is 12 days. Even considering the more
optimistic hypothesis that only two bugs are encountered, in the present
configuration the release time would be not shorter than 14 days (1% row, 7"
column). Thus, either the manager can accept a more relaxed deadline, or he/she
takes some countermeasure. In particular, if the project under exam has high priority,
a possible solution could be to take away from the other parallel project the resources
(the tester and the developers) that are necessary to complete this one. In this case if
they are fully assigned to the completion of the testing phase of this project, then the
predicted release time with 10 bugs is reduced to 12 days (2" row, 5™ column),
which was the target deadline. Thus, by means of simple SPE analyses, the manager
gets statistical predictions that can support his’/her decisional process.

On the other hand, adopting the latter solution results in an increased project cost,
due to the under-utilization of certain personnel categories. Another relevant
parameter the manager should consider before taking any decision isin fact the rate
of utilization of the teams involved. This analysis is automatically obtained with the
parameter assignments used for the estimation of completion time and can be very
useful not only to better administrate human resources, but also to identify the
bottlenecks when a phase takes too long.

108

Planned Test Duration=3 days Planned Test Duration=6 days Planned Test Duration=9 days
Pro | T&D D T&D T&D T&D D T&D T&D T&D D T&D T&D
ject | Full | Share | Share| Shared | Full | Share | Share | Shared | Full | Share| Share | Shared
#B Ded dl dl 3 Ded dl dl 3 Ded dl dl 3
ugs|T|D|(T|D|(T|(D| T |D|T|D|T|D|T|D| T |D|T|D|T|D|T|D| T |D
1PM 2 |21[23]|15(59|99 (55| 100 (77| 66(10|50 (56| 99| 53| 100 [76| 79| 70| 65| 54 99 | 52| 100 | 75
1SA

1T
2D 20 | 31]31]28|55|99|55(100 | 73|49|30(46(56(99(55| 100 (74 (69|23|56|55|99|55]| 100 | 76

10 | 29[29| 25| 57| 99(56| 100 | 74|56 (29| 46| 58| 99| 55| 100 | 76| 69| 16 | 59 | 56| 99 | 54 | 100 | 76

Table2 Percentageof utilization rate of testersand developers

Planned Test Duration=3 Planned Test Duration=6 Planned Test Duration=9
days days days
T&D D T&D | T&D | T&D D T&D | T&D | T&D D T&D | T&D
Project | Full | Share | Share | Share| Full | Share| Share| Share| Full | Share| Share | Share
#Bugs | Ded dil dil d3 Ded dl dl d3 Ded dil dil d3

1PM 2 5 6 6 10 8 10 12 19 11 13 14 2
1SA 10 9 10 11 14 1 13 15 2 14 15 17 24
r 20 14 16 16 20 16 17 20 27 18 19 21 28
2D

Table3 Estimated timetoreleasein days
Planned Test Duration=3 days | Planned Test Duration=6 days | Planned Test Duration=9 days
T&D D T&D | T&D | T&D D T&D | T&D | T&D D T&D | T&D

Frol Full | Share | Share | Share | Full | Share | Share | Share | Full | Share | Share | Share
ect Ded dil dil d3 Ded dil dil d3 Ded d1l dil d3
#Bu
gs [T|(D|(T|{D|T|D|T|D|T|D|T|D|T|{D|(T|{D|T|D|T|D|T|[{D|T|D
1P 5 12124 7 |59 |55|58| 76|77 |37|10(26|29|55(55 (74754 |70(34|54|55(54(70(76
M 0
1S 10 14129| 13|57 |55|56(76|75(30]|22(24|31(56|56 (75| 75|3|17|33|[56|56 (55| 72|76
A 6
o7 15130)| 14| 55|54 |55|75|70| 26|27 (2231|5657 |74|[74|3|24|28|55|56 (55| 74|74
20 3
2D

Table4 Utilization rate of testersand developers

In Table 2 we report the percentage of the utilization rate, denoted by r, for the
tester and the devel opers considering the same parameter assignment in Table 1. This
index is measured by the ratio between the frequency at which requests arrive, and
the frequency at which the processing element (in our case a team) can deliver
services. The utilization rate varies between 0 and 1, where 1 means that the resource

109 4. The Propean Approach

is saturated, and can represent a bottleneck; O meansit isidle, and a good utilization
Is somewhere in the middle.

In the initial configuration we assumed one tester and two developers, employed
in this and in another project. We can see that the bottleneck is clearly the tester, as
the utilization rate percentage is computed to be 99%, while the two developers are
well employed, with a rate of 55%. Deciding to fully dedicate one tester and two
developers to the test and debug phase allows the manager to meet the deadline, but
in such a configuration the devel opers are under-utilized, at 29%.

One further possibility to explore could be to devote one tester at full time, while
leaving the two developers on both projects. In such a configuration we would get a
release period of 13 days, but the resources are better employed (the tester 46% and
the two developers 58%).

Analysing the results in Table 1, another interesting fact can be observed:
although obviously the duration of the test and debug process can be greatly
influenced by the number of bugs found, a rational organization of the personnel is
more crucial, especially for large enterprises dealing with several development
processes in parallel. The release delay increases faster as the teams get involved in
more simultaneous projects than if we increase the estimated number of bugs.

For instance, considering a large product with a planned test period of 9 days,
when all the resources are fully dedicated the expected release time, even foreseeing
20 bugs, is 18 days, against the 20 days estimated to handle half (i.e., 10) bugs if the
tester and the developers are contemporaneously employed in another project. If we
further consider a configuration in which the tester and the developers are handling
three more projects, even though in this project we optimistically assume finding
only two bugs, handling them would take 28 days.

Another possible countermeasure when the predicted release time exceeds the
target deadline is to add more personnel to the development of product. Using
Propean, revising the estimates is immediate and again it only consists of changing
some of the configuration parameters.

Let us consider, for example, that the personnel in charge of the test and debug
phase consists of two testers, two developers and one software architect, plus of
course the PM. This configuration is denoted as PM1, SA1, T2, and D2. We report,
in Table 3 and Table 4 respectively, the estimated time to release and the utilization
rate of the testers and devel opers.

110

Considering the initial situation in which the test duration was equal to six days,
the number of trouble reports to 10 and the committed release time 12 days, even if
one more tester is added, the product would be ready in 15 days (as reported in Table
3, 2" row, 7" column), instead of 17 as with the previous configuration, but this may
not be sufficient. In this new configuration the manager would be able to meet the
target deadline only if the estimated number of bugsis two.

The utilization rate of testers with ten bugs (Table 4) is equal to 55% (instead of
99% of the previous cases). This means that personnel organization in this case is
better than before and the tester resource is no longer the bottleneck of the
development process. As shown in the table, in this case assigning the testers and the
developers full-time to the project, or even only the developers, would be
meaningless. Their utilization rates in the two cases, (30% and 22%) and (24% and
31%) respectively, reflect an under-utilization of the resources.

4.5.3.2 Deriving the Best Personnel Distribution

As in the previous section, we discuss severa situations for illustration purposes.
Considering the case study, in this section we report the results obtained under the
following assumptions:

The planned duration for the test phase of a given product is 3 days, (considering

the attributes PArep in the second step of the SD the parameter Nrep is set equal

toone);

For the type of project under test the manager assumes that the number of trouble

reports issued will be equal to two (considering the attributes PAdemand in the

third step of the SD the parameter $N is set equal to two);

The personnel in charge of the test and debug phase consists of one software

architect, the program manager, while the number of testers and developers is

variable. The configuration is denoted as 1PM, 1SA, Tt, Dd where the variables t

and d indicate the values to be established by using Propean.

More precisely, the goal of the manager, given the above parameter assignment,
is to define the values for the variables t and d, i.e. the best personnel assignment, so
that the project can be released within no more than seven days (considering one
working day equal to 8 hours, and the results rounded to the closest integer).

Table 5 reports some of the results dotained when the planned duration for the
test and debug phase is three days, and considering the testers and developers fully
dedicated to the project under exam (denoted as T&D Full Ded); the testers fully

111 4. The Propean Approach

dedicated, while the developers are handling this and another project (D Shared 1);
both the testers and the developers are handling this and another project (T&D
Shared 1), and finally both the testers and the developers are handling three more
projects in addition to this one (T&D Shared 3). In particular we suppose that when a
team (resource) receives the request for a job, the task is performed by only one of
the people available at that moment.

Configuration 1PM, Planned Test Duration=3 days
1SA, Tt,Dd T&D Full Ded D Shared 1 T&DShared1 | T&D Shared 3
#Bug2 | =1 d=2 5 6 8 13
t=2,d=2 5 6 7 10
=3, d=4 5 5 6 8
#Bugl0 | t=1,d=2 9 10 1 g
t=2,d=2 9 10 1 14
=3, d=4 9 9 10 ©2
#Bug20 | t=1,d=2 14 15 16 2
=2, &=2 14 15 16 20
=3, &=4 14 15 15 7
Table5 Estimated completion timeat variousconfigurations
Configuration 1PM, Planned Test Duration=3 days
1SA, Tt,Dd T&D Full Ded D Shared 1 T&DShared1l | T&D Shared 3
T D T D T D T D
#Bug? | =L,d=2 | 24 24 15 60 9 56 100 76
=2d=2 | 12 24 0.7 60 55 58 76 77
t=3,0=4 | 0.7 2 0.6 3 E3) 30 60 52
#Bugl0 | =1,0=2 | a0 29 % 57 %9 55 100 74
=2,0=2 | 15 29 12 57 55 56 76 75
t=3,074 | 10 15 0.9 30 3] 30 60 50
#Bug20 | t=1,0=2 | a1 30 27 55 %9 55 100 75
t=2,d=2 | 16 30 14 54 5 56 76 76
t=3,d=4 | 10 15 0.9 30 33 30 61 50

Table6 Utilization rate (%) of testersand developers

Therefore, if the estimated number of trouble reports is equal to 2 and the target
release date is 7 days, from the analysis of Table 5, a good configuration could be
one tester and two developers completely dedicated to this project, one tester and two
developers with developers handling this and another projects, or, alternatively, two

112

testers and two developers engaged at the same time in another project. The other
configurations can be immediately excluded because beyond the deadline.

The manager can also derive a more precise evauation of the cost of project
realization, by using the utilization rate of the people involved. For this reason in
Table 6 we report the corresponding percentage of the utilization rate of the tester
and developers, while a more thorough discussion of the project cost is deferred to
Section 4.5.3.3.

An aternative situation is that when a team (resource) receives the request of a
job, the task is performed by all the people available in that moment. This means that
if two people are available, they will work in parallel to complete the job. Table 7
and Table 8 report the estimated completion time for the different configurations and
the percentage of utilization rate of the testers and developers. The different policy of
job completion is incorporated by the resulting uilization rates of the testers and

developers.
Configuration 1PM, Planned Test Duration=3 days
1SA, Tt, Dd T&D Full Ded D Shared 1 T&D Shared 1 T&D Shared 3
#Bug2 | t=1,d=2 5 7 8 15
t=2, d=2 4 6 8 14
t=3,d=4 4 5 6 8
#Bug 10 t=1, d=2 7 10 1 17
t=2, d=2 7 9 11 16
t=3, d=4 6 7 8 10
#Bug 20 t=1, d=2 12 14 15 21
t=2, d=2 11 12 13 19
t=3, d=4 9 10 10 13

Table7 Estimated completion timeat various configurations

45.3.3 Cost Estimation

Achieving the target deadline is certainly important. However, another relevant
factor that the manager must also consider is the associated cost. For each selected
configuration we can derive a rough estimation of cost denoted as Cg(i), i=1, ..., N¢
(total number of configurations), and computed as follows:

Cali) = d(i) * Skt ¢rop [(Pu(i) * c/si(i)]

Where: d (i) denotes the working days for configuration i

p«(i) is the number of peoplein team k
Ck isthe cost associated with each person in team k

113 4. The Propean Approach

s«(i) isthe number of projects shared by team k in configurationi

Configuration 1PM, Planned Test Duration=3 days
1SA, Tt, Dd T&D Full Ded D Shared 1 T&D Shared1 | T&D Shared 3
T D T D T D T D
#Bug?2 [t=1,d=2 26 28 13 59 9 56 100 Va4
t=2,d=2 14 29 60 52 57 76 V4
t=3,d=4 1 18 35 33 32 61 53
#Bug 10 | t=1,d=2 4 35 26 62 9 60 100 78
t=2,d=2 19 38 13 64 56 7 78
t=3,d=4 16 25 14 40 42 65 56
#Bug20 | t=1,d=2 36 37 31 62 % 61 100 78
t=2, d=2 20 40 17 63 56 62 7 78
t=3,d=4 17 26 16 40 42 39 63 54

Table8 Utilization rate of testersand developers

For example let us compare, the configurations aand b (ab T {1,..., N}),
where

a corresponds to: 6 days of planned test duration, 10 bugs, T&D sharedl, 1PM,
1SA, 1T and 2D

b corresponds to: 6 days of planned test duration, 10 bugs, T&D sharedl, 1PM,
1SA, 2T and 2D.

Co@) =d@ * Sciroy [(P@) * c/sd@)] = 17 [(1*cr)/2 + (2*Co)/2]

Ca(b) =d(b) * Ski (.o [(Pu(b) * c/s(b)] = 15[(2*cr)/2 + (2*co)/2)]

Let us suppose, for the sake of simplicity that cr= cp= ¢, we obtain:

Cg(@) = 17*c*3/2=25.5*C

Cg(b) =15*c*2=30*C

Therefore the manager should decide by comparing configuration a and b,
whether the increase in the project cost isjustified by areduction by only two days of
the completion time.

Other information that can aid the manager in decision-making is the
computation, based on utilization rate, of a so-called “waste” factor, which is the cost
of people under-utilization, as follows:

Wali) = d(i) * Syi .0y [(Peli) * &t (17 9)/s()]

Therefore for configuration a and b above, we can compute

114

We(@ = 17* [(1 * ¢*(0.01))+(2*c*0.45)/2]=17*c*0.46=7.82*C

Wg(b) = 15* [(2* ¢*(0.44)/2)+(2* c*0.44)/2]=15*c*0.88=13.2*C

Note that, by use of the attribute PArate we can aso give an idea of the expertise
of people belonging to the team, with PArate T [0,1], where 1 denotes a highly
skilled person, while O denotes a beginner. So, we can weight the cost ¢ by use of
PArate to take into account the cost of different people. Obvioudy, the other
parameters such as the centre service time modelling people work also should be
weighted by the PArate value. In the examples above we have supposed, for
simplicity, PArate equal to one.

Note that currently, due to restrictions imposed by the PA profile, it is necessary
to suppose that all people in the same team have the same skill and cost (an average
value can be taken, if thisis not the case).

4.6 Propean Applied to RUP

The Propean methodology is not limited to the testing phase, but can be also
adopted for managing the other development phases as well as the entire life cycle as
described in [BBMO02a, BBMO3]. In this section we present a more genera case
study encompassing the modelling of the whole Rational Unified Process (RUP) (see
Chapter 3), which is one of the emerging processes adopted in the industrial context.
In particular exploiting the RUP peculiarity of letting its regular updated exactly as
the software products, [KROQ], our intent is to augment RUP with the capability of
producing reliable schedule and resource utilization estimates useful to RUP decision
makers[BLMO2].

If the goal of RUP is to produce high-quality software within predictable
schedule and budget, we need a means of reliably drawing such predictions. for
instance, how long will RUP take to process a certain project? How will RUP utilize
the available resources? How is the RUP schedule affected by the concurrent
processing of several projects? In this section we answer such questions on rigorous
grounds, equated RUP to a product, of which we analyse the performance by
applying the Propean methodology, just as we do with any other critical product.

As stated in Section 4.4 for this purpose it is recessary first of all to derive the
RT-UML diagrams that model the RUP process as configured to fit the needs of the
specific organization under exam. This phase pertains to the manager, who has to
model the process and the workflows to be instantiated. This may seem to be a heavy

115 4. The Propean Approach

requirement; in practice, the UML process model can be derived once for an
organization, and then at each new application of the technique to a specific project,
the manager only needs to update the parameters in the diagrams (such as the number
of people involved, and the estimated duration of the single activities). The derived
diagrams are then processed to obtain the performance estimations.

In the next section we discuss the steps necessary for applying the Propean
methodology while in Section 4.6.2 we present the case study provided by Ericsson
Lab Italy (ERI). Finaly in Section 4.6.3 we present some results and discussions.

4.6.1 Details of the Methodology

In this specific case the Propean application to RUP is divided into two steps. The
first, called RUP modelling (Step 4.6.1.1), consists of the description of the
functionality and architecture of the RUP product by means of UML diagrams
appropriately annotated according to the RT-UML profile. The second step, called
RUP customisation (Step 4.6.1.2), represents the core of the Propean application. The
UML diagrams developed in the previous step are refined and completed by the
manager, accordingly to personnel availability and process exigencies. In the next
subsections the main aspects of the two steps will be briefly described.

4.6.1.1 RUP Modelling

In this section we present a brief description of the procedure we used to
represent RUP applying Propean. As for the development of any other software
product, the first step is to describe the system functionalities (i.e. the process
activities) in terms of Use Cases (UCs). This description follows an iterative process,
incrementing a each iteration the level of detail of the system functional
specification. We begin therefore by representing the interaction of the external
actors (in our case, End User, Customer and Stakeholder) first with the different RUP
phases (Inception, Elaboration, Construction and Transition), and then with the
single workflows. The description is further refined representing the interaction of
the external and internal actors (one actor specification per role) with the workflow
activities in the different phases. Finally for each activity an annotated Sequence
Diagram (SD) representing the roles interaction is developed. Figure 9 reports an
example of the SD used.

116

. Project : Project
Manager reviewer

1. Identify and assess Risks

17 % 1.1. Risk list
T
- Ie
// AN
<<PaclosedL oad>> < \\
{PApopulation=NPr oj ect \\
PAresptime(‘msr’, * ' $t_to_rel :
e R AT L SO e 2. De %]op Businnes Case <<PAstoP>
| {{PAdemand=('req', 'mean’,ts)

2.1. Business Case
v
// (}\\

<<PAstep>> /// ~ <<PAstep>>
{PAdemand=('req’, 'mean’ ts)} L_| {PAdemand=('req’, 'mean’ ts) }

3. Projéct Approval Review

[~

N
~

4. (Initiate Project NJ<<Pastep>
{PAdemand=('req', 'mean’ts)

d=—

-

//

<<PAstep>> //

{PAdemand=('req’, 'mean’ ts)} ‘;j:l

|

|

1
Figure9 Activity “Conceiveanew project” of theworkflow Project Management.

The Propean modelling of RUP proceeds with the identification of the
organizationa structure of the system, i.e., architecture definition. As for system
functionality, the architecture definition follows an iterative process describing the
decomposition of the system into parts that interact through interfaces, relationships,
and constraints. First of all we therefore describe as subsystems the Roles Set called
Analysts, Managers, Developers, Testers and Additional Roles and we define the
interfaces they use. In this case, the attributes of the interfaces are the set of
exchanged documents.

The subsystem definition is then refined associating a class to every role and
describing the interfaces they use. For every class the attributes represent the
artifacts, and the methods are the activitiesin which the role isinvolved.

The UML description of RUP derived so far represents only the static structure of
the process and is the common starting point for applying Propean to different red
dgtuations. The Propean user, typicaly a manager, starting from this process
framework, must adjust and characterize it with respect to the specific needs,

117 4. The Propean Approach

peculiarities and constraints of Hs/her organization. In particular, as described in the
next section, he/she has to identify the dynamic structure of the process and express
the sequential flow of activitiesin the different RUP phases.

4.6.1.2 RUP Customization

In the previous section we briefly explained the incremental process adopted for
deriving the UML model of the static structure of RUP. Here we discuss the required
modifications to the steps of the Propean procedure presented in Section 4.4 in order
to customize the RUP process to the specific organization needs, and to derive
successively a gueueing network based model for making predictions.

1. Manager: Analysis

For every phase of the RUP process (Inception, Elaboration Construction, and
Transition) the manager, with reference to the UML static model described in the
previous section, must specify the flow of the activities involved using the Activity
Diagrams (ADs). In each of these diagrams, the decisions and conditions as well as
the parallel execution of the activities must be shown. In particular the manager
should decide: to possibly suppress some of the RUP activities of entire workflows
according to the specific development needs of his/her organization, or to specify
how many iteractions must be performed for each phase. In Figure 10 we report an
example of a developed AD. In this case the activities of the different workflow,
each one associated to a representative SD, are considered to be a sort of “building
bricks’ that the manager fits into the activity diagrams for describing the overall
structure of the devel opment process.

2. Manager: Modelling

As mentioned in Section 4.4, the manager must describe the organization
structure in a Deployment Diagram, DD in which the nodes refer to both classical
resources (device, processor, database) or personnel team. Figure 11 shows an
example of an annotated DD.

In addition the manager must also specify the associations between roles and
personnel. The RUP modelling supplies the manager with a Class Diagram with roles
specialization; therefore he/she has only to reorganize the association between the
different classes according to the organization exigencies. For examplein Figure 12
is the class “designer” is associated which a real person (therefore it becomes a
superclass) who can also assume the roles of Design reviewer, Database designer and
so on (the subclasses)

118

Managers Analysts Developers Testers

define a candidate
architecture

Analyze the
behavior

Prepare guidelines
for an iteration

Prepare environment
for project

Manage the scope
of the system

/
manage changing
requirements

Understand
stakeholder needs

o
D
E]
g
S
@
=3

Refine the
system definition

Design componen]
for RT

implement the
component

database

he te

Integrate the
systmem
the test

Execute the testin
integration test stage)

execute thestestin
system test stage he te

Noiteration < k i

Figure 10 Activity Diagram relativesto the Elaboration Phase
3. Manager: Model annotation

In this step the manager must better specify the activities belonging to each
Activity Diagrams developed in Step 1. Every activity is in fact associated with an
annotated SD; therefore, the manager has only to refine the parameters or values of
the stereotypes of the SDs description as mentioned in Section 4.4. The Figure 9 isan
example of an annotated SD.
4. Automatic: SPE models generation

The SPE model is derived as explained in Section 4.4.1 considering the Activity
Diagrams as well. It includes a model for the planned activities obtained by each

119 4. The Propean Approach

involved SD and Activity Diagram (the SM based on EG), and a model for the
involved teams (the MM based on EQNM).

{PAschedPolicy=FIFO LY
PArate=1 I
PAutilization=sutil} |

PArate=1 |
~ PAutilization=gutil} |

~~.
~.
~<
~.

R — o

{PAschedPolicy=FIFO 1, {PAschedPolicy=FIFO 1
|
|
|
|

NPArate=1

PArate=1
PAutilization=$util}

PAutilization=$util}

(PAschedPolicy=FIFO 1, Room {PAschedPolicy=FIFO &
= PArate=1

PArate=1 |) PAutilaation<Sutil

PAutilization=$util } ! b utilization=$util}

PArate=1
PAutilization=%util}

Figure 11 Deployment Diagram
5. Automatic: Model evaluation

The same of Section 4.4: the EQNM obtained in the previous step can be solved
to obtain the desired results
6. Manager: Analysis of results

The same of Section 4.4: the results obtained in Step 5 are analysed by the
manager, who can decide to go back to the previous steps.

4.6.2 An Example of Propean Application

To see how Propean works, we will apply it here to a case study consisting of a
hypothetical project development. Although this example is built ad hoc for
illustrative purposes, its organzation and the assigned parameters (people involved
and planned time for the composing steps) faithfully reflect the management

120

practices of a real-world organization. We describe the project here and in the next
section provide the results obtained by applying Propean.

The system to be developed is composed of two large subsystems, A and B.
Subsystem A consists of three components, and subsystem B of two components. For
clarity, the development process of this system is represented in Figure 13 by means
of an Activity Diagram.

Any worker

Developers Diy\

Testers Managers Additional Workers

AN S Wi

Implementr | | Designer |- [™gyem negrator PrjectNerage External worker

Analysts

System analyst

Test designer || Tester

Code reviewer ? v\ /V v\
Architecture reviewer Deployment manager Yrmect TEvEner System administrator

Req 7613/:«& Avchitect \ \

Business-Process analyst T0cess engineer

Change Control Manager Technical writer
Use Case spec/\er Business madwewewer Database designer Configuraion Manager \
\ Course developer

Business designer Capsule desiger

User Interface designer

Figure12 Classdiagram relativeto the Roles distribution

To apply Propean, we have modelled the process parts relative to every node of
this AD using the “bricks’ methodology overviewed in the previous section. Each
node is detailed into the RUP activities referring to it and modelled by means of one
or more SDs. The various activities corresponding to the nodes of this AD are
distributed among the four phases of RUP, and associated with the activities forming
the various workflows. For instance, considering the AD of Figure 10, the activity
“Define the system” in the Analysts swimlane implements the activity “System
Design” of the AD of Figure 13. In other words, we tailored the generic RUP model
in Propean to the specific needs of this project, which is a small one, and therefore
we obtained a rather simplified RUP configuration. Then, according to Step 3 we
annotated the SDs with the estimated duration of each activity. The estimations were

121 4. The Propean Approach

made by an industrial manager as an average “guess’ based on ERI standard
parameters, assuming: the size (in terms of code lines) of the components as small, a
medium system complexity, the existence of a design basis, a well-known
technology, and medium competence of project team. Moreover, we assigned the
personnel who will have to carry on the planned activities.

System Design

Test Spec Test Spec Subsystem A Subsystem B Test Spec
System Subsystem A Design Design Subsystem B

Design, Code,
BT comp BA

Design, Code,
BT comp BB

Design, Code, Design, Code, Design, Code,
BT comp AA BT comp AB BT comp AC

Test Execution Test Execution

Test Execution
System

Figure 13 Development process representation
Specifically, we assumed as the initial configuration for anaysis the following,
referred to as Conf_|:
1 Project Manager (PM)
1 System Anayst (SA)

122

1 Designer (D)

1 Implementer (1)

1 System Integrator (SI)
1 Test Designer (TD)

1 Tester (T)

1 Externa Worker (EW)

Note that thisis the initial configuration; during the analysis with Propean it may
be the case that the hypothesized configuration shows itself as inappropriate and
aternative configurations are found to be more effective. One of the objectives of
Propean is to assess whether the personnel utilization is adequate with respect to
project needs.

4.6.3 Analysis of Results

Here we show and comment on some of the estimations that can be automatically
obtained by means of Propean.

At a first run, we derived the expected time to completion for the initia
configuration Conf_| shown above. The estimated times for the four RUP phases
considering the development of the system stand aone, i.e., without any concurrent
project development which could compete with this for resources, are given in the
first column of Table 9. Conf_| results are given in the white part of the table.

But the real potential of Propean is that we can also make estimations in the more
realistic hypothesis that people are not dedicated full-time to this project, and that
other RUP processes are going on concurrently.

For instance, in the table, we also show the estimated time to completion of each
process, assuming that two or three processes are concurrently running; we can also
make hypotheses on how the processes are interleaved. So for instance we
considered the case that the 2 or 3 processes started contemporaneously (0 days of
displacement), or that a process starts 30 days after the preceding one started (30
days of displacement). The times are given in days for one process.

As is plausible, we find that the concurrency among more projects brings large
delay on the schedule: a project alone takes 188 days to complete, but if there are two
projects to manage contemporaneously, it will take ailmost 90 days more; this delay
is a little diminished if some displacement is inserted between them, so that people
can finish one task on a project before being engaged in the other one; but as the
Elaboration phase in this project is very long, then we see that the advantage is not

123 4. The Propean Approach

big and involves the first period of the project. Things get worse if we add more
projects in parallel. The other interesting feature of Propean is that we can look at
how the involved teams are charged, and identify the bottlenecks in people
configuration.

Number of Concurrent Projects

Phases 1 2 (0 daysdispl.) 2 (30 days displ. 3 (0 days displ. 3 (30 days displ.
Conf_| (8 pp) Inception 28,81 44,72 40,25 57,63 54,33
1PM,1SA Elaboration| 104,58 155,76 141,35 194,21 187,23
1D,11,18 Constructiol 29,56 35,54 35,79 6 44,32
1TD,1T Transition 25,33 38,30 36,68 49,5 48,61
1EW Tota 188,54 275,14 254,62 349,67 337,25
Conf_A (8 pp) Inception 28,89 43,42 40,18 56,58 50,38
1PM,1SA Elaboration| 91,88 127,06 120,24 156,63 142,82
2D,11,098 Constructiol 25,73 33,36 33,26 42,04 40,97
2TD,0T Transition 25,88 37,96 36,53 50,16 47,08
1EW Total 172,53 241,49 230,62 308,02 283,07
Conf_B (6 pp) Inception 28,81 431 40,08 56,94 50,84
1PM,1SA Elaboration| 104,58 152,57 142,96 190,43 179,26
1D, 11,08l Constructior 29,56 37,72 36,03 47,85 45,46
1TD,0T Transition 26,18 18,14 36,26 49,5 47,79
1EW Total 189,38 271,41 255,88 349,47 325,02

Table9 Propean estimated times (in days) for the RUP phases

In Table 10, we report the utilization rate of people (in the interval 0-1, where O
means idle and 1 means the person time is saturated at its maximum). We can see
that in the planned workflows, the System Integrator SI and the Tester T are idle
most of the time, as their utilization rate is very low compared to the other people
involved. Therefore, we analyse how the RUP performance would change if we
decide to assign different activities to these two people: in the light grey part of the
two tables we report the results obtained assuming a different configuration, called
Conf_A, in which the person who acted as a System Integrator before is now
assigned part of the activities of the Designer, while the person acting in Conf_| asa
Tester is given a Test Designer role here. As is obvious, we are aso trying to
consider the expertise of people, and we are reconfiguring them accordingly. The
reconfiguration allows the manager to save 16 days in the schedule for the stand-
alone project, and even more days in the multiproject scenarios. Moreover, if we now
look at the utilization rate of people, we seein Table 10 that the effort is more evenly
distributed among people.

124

Number of Concurrent Projects
Personnel 1 2 (0 daysdispl.) 2 (30 daysdispl.) 3 (0 daysdispl. 3 (30 daysdispl.)
PM 0,09 013 0,13 0,15 0,15
SA 033 045 0,44 0,55 0,52
D 044 0.6 0,59 071 0,68
| 031 044 042 055 0,51
S 0,005 0,006 0,007 0,009 0,008
TD 0,25 034 0,33 0,4 0,38
T 0,06 0,09 0,09 011 01
EW 013 017 0,16 0,2 0,19
PM 010 015 0,14 018 0,17
SA 0,36 052 0,47 0,62 0,59
D 024 0,35 0,33 04 04
D 024 034 0,32 043 0,39
| 0,340 0,49 047 0,58 0,57
TD 0,16 0,24 0,22 0,28 0,28
TD 0,16 024 0,23 0,29 0,27
EW 013 019 0,18 0,23 0,22
PM 010 014 0,13 016 0,15
SA 033 046 043 054 0,52
D 044 0,62 0,59 0,71 0,69
| 0,310 044 0,42 053 0,51
1D 032 044 0,42 051 05
EW 012 017 0,16 0,2 0,21

Table10 Propean estimated utilization rate of peoplefor the RUP phases

We have aso investigated a different hypothesis, called Conf_B: given that Sl
and T are not doing much, we move them away from this project, redistributing their
tasks to the other people (Sl task to D, and T task to TD) i.e., we only assign 6
persons to the process. In this case the results are shown in the dark grey part of the
two tables. We still get a more even distribution of effort among people, while the
time to completion remains quite smilar to that of Conf_| (i.e. we get almost the
same time with less cost).

Thus in conclusion the results of Propean analysis for this case study leave the
project manager with either of the alternatives. getting the project completed in a
shorter time and more rational employment of resources with 8 people, or getting it
completed in almost the same time of the initial configuration, but employing only 6
people. Clearly that the initial configuration is not an effective choice. In addition,
Propean provides quite reliable estimates of schedules, based on the manager
estimations for the single activities.

Summary

In this section we present an innovative approach called Propean, useful for
defining a suitable test plan in a multiproject environment in which resources and
personnel are shared among products. Propean constitutes an integrated approach in
which managers, by using familiar notations and tools, can both define UML models

125 4. The Propean Approach

of the flow of activities to be performed during the development and of the tasks to
distribute among personnel, and automatically derive the measure of interest.
Propean trandates the developed models in a format that is processable by standard
performance analysis agorithms, so that a solver of these last can be applied to
obtain the desired results.

Therefore we presented the procedural steps required for applying the Propean
methodology and showed how the well-known techniques from performance analysis
can be usefully and quite naturally adapted to tasks of relevance for software
managers. assessing the time to completion of specified activities, handling
personnel multitasking during different projects, optimising the workloads in
development cycles, deciding about product release, and similar issues.

We demonstrate also how the use of Propean methodology can be extended to
management of the other development phases as well as for the organization of the
entire development process.

PART 3:
STRATEGIES FOR TEST CASE GENERATION

5 An Automated Approach to UML-Based
Testing

Preface

The testing phase is an expensive but essential part of development, which must
be well-organized and defined. Unfortunately often due to time or cost constraints it
is not developed properly or is even skipped. Therefore methods and tools that
facilitate and reduce the effort (time and/or cost) due to the management and the
control of this critical phase are necessary. In the previous Chapter we presented the
Propean approach, which automates the definition of a Test Development Plan
before the effective launch of the testing phase. This document establishes the time-
scheduling of the different activities and the resources and personnel assignment to
the different tasks of the testing phase.

Then when the testing phase effectively begins, based on of the financial plan
established, the test cases must be defined and distributed among the functionalities
of the system to be tested, and subsequently executed. This is another critical point
for the testing phase management. Generally, it is not easy to decide both the
functionalities on which the testing effort should be concentrated and the amount of
test cases to dedicate to each of them. Wrong decisions could increase the overall
cost of the testing phase and the time required for its completion considerably.

We propose for this reason, in this Chapter an integrated, practical and automatic
approach called Cow_Suite, which is prototyped in a tool, for generating and
planning a suitable set of test cases, starting from the UML documentation.
Cow_Suite includes both a method for deriving the test cases from the UML system
specification and a strategy for distributing test cases among system functionalities
(test cases prioritisation and selection).

One of the peculiarities of Cow_Suite is that it can be applied to real-world
projects not only during the testing phase but, more importantly, from the early
stages of system analysis and modelling, as soon as some UML diagrams have been

130

defined. Managers can therefore derive estimation, in terms of the number of test
cases to be executed, of the effort required for completing the testing phase very
early in the development process. Cow_Suite can thus be used in combination with
Propean to derive the estimation values required for the application of this approach.
However in this Chapter we concentrate mainly on the use of Cow_Suite alone, only
suggesting in certain sections when integration with Propean could be possible.

In this Chapter we present the outline of the Cow_Suite approach (Sections 5.4,
5.5) and a brief description of the prototyped tool in its current status (Section 5.6).
In particular we describe the Cow_Suite application in two case studies, one taken
from the literature (Section 5.7) and the other provided by a real software devel oper
(Section 5.8).

5.1 Cow_Suite Point of View

In this Chapter we concentrate on the methodologies for conformance testing
from UML models. Until very recently UML-based testing has not received the
attention it deserves and few methods have been proposed so far. In particular many
of them demand too much on the developer’s side and cannot be easily adapted to a
real industrial context. They require either arigid and meticulous modelling process,
or often address a low-level test stage, or cannot scale-up to deal with large system
portions. The reason is that UML was not created with testing purposes in mind, and
does not readily allow for the rigorous analysis that is needed for automatic test
derivation. This issue is referred to as the UML testability question in [BLO1]. For
test engineering a trade-off must be found between test thoroughness and cost.

Our response to this problem is an integrated, practical and automatic approach to
the generation and planning of UML-based test suites, which can be applied to real-
world-sized projects since the early stages of system analysis and modelling
[BBMO2]. To this end, we have developed a methodology and a prototype tool,
called Cow_Suite, for COWtest pluS UIT Environment. As the name implies, the
methodology implemented by Cow_Suite combines two original components. a
method for deriving the test cases, called UIT (Use Interaction Test) [BBOQ], and a
strategy for test prioritisation and selection, called Cowtest (Cost Weighted Test
Strategy) [BBMO1]. These two components work in agreement, as Cowtest helps
decide which and how many test cases should be planned from the universe of test
cases that UIT could derive for the system under consideration. UIT automatically
generates test suites for the highlevel test stages, encompassing system and

131 5. An Automated Approach to UML-Based Testing

integration testing at various levels. Each generated test suite focuses on a functional
portion of the system, as interactively selected by the tester on a structure of the
suitable UML diagrams.

Thus Cow_Suite takes different position from other approaches, and proposes a
pragmatic way of conceiving UML-based testing. This position of Cow_Suite can be
summarised by its features of usability, timeliness, incrementality and scale, which
we have pursued in an organic manner since the very inception of the approach. We
explain one by one the meaning of these four features:

Usability: where other methods require to augment the UML specifications with
specific annotations to facilitate the test derivation, or to trandate the UML
diagrams into an intermediate notation that the methods can process (see next
section), the leading principle of the Cow_Suite approach is to use exactly the
same UML diagrams developed for analysis and design for test planning, without
requiring any additional formalism or ad-hoc effort specifically for testing
purposes. For us usability means that it is the test methodology that, as far as
possible, adapts itself to the modelling notations and procedures in use, and not
viceversg;
Timeliness: according to the good software engineering principle that test
planning should start as early as possible in the development cycle, a restricted
set of minimal preconditionsis assumed in order to start applying Cow_Suite (see
Section 5.3.1). Typically, in the early design phases not all relevant scenarios are
yet specified and the UML diagrams are defined at a high abstraction level, with
several of them sketchy yet. While other methods require a complete and quite
detailed set of UML diagrams, Cow_Suite can already begin outlining a test plan
even at these early stages. Of course, the plan will be as abstract as the processed
diagrams and is progressively refined as the diagrams are enriched with more
information (see also the incrementality feature below);

Incrementality: Cow_Suite was conceived for system and integration testing,

(Chapter 2), which are typically conducted in an incremental fashion, considering

progressively larger parts of the system and addressing, at each incremental step,

the functionalities and the interactions that are relevant at the level considered. In

Cow_Suite, the tester interacts with the tool in order to determine the integration

stage for which the test suite should be derived (or, which elements of the UML

model should be tested). Then, taking as a reference the corresponding UML
diagrams, the UIT method derives the test cases at a specification granularity

132

corresponding to the degree of detail a which the considered diagrams are
modelled. We are not aware of other UML-based test methods explicitly
addressing incremertal testing

Scale: Cow_Suite trades thoroughness for comprehensiveness. as we intend to
address UML-based testing of real-world systemsin a practical, efficient way, we
provided the capability to manage big test suites, keeping their sizes and
functional coverage under control, via the Cowtest component. Other authors
have proposed thorough and meticulous algorithms for deriving detailed test
cases (see next the section), but often these methods either cannot scale up to
handle the many big UML diagrams that are needed to model huge, complex
systems, or would result in an unfeasibly large set of test cases. In contrast, the
combined usage of Cowtest and UIT permits to derive a feasible number of test
cases while keeping the coverage of functional areas as wide as possible

5.2 UML Testing: an Overview of the Literature

Even though UML is widely employed in industry and research, very little of the
literature so far has addressed its use in the testing phases. In [WI99] the author
brought up several possible issues that should be solved for effectively applying
UML for testing purpose such as lack of detail and features of the UML models
developed during the design and implementation phase. In particular in [EWO03], the
authors focus attention on the improvements of the UML requirement models to be
used for testing purposes. We provide here an overview of the literature, presenting
the solutions derived both from the academic and commercial environment
(respectively Section 5.2.1 and 5.2.2), with the aim of placing the Cow_Suite tool in
this context.

5.2.1 Academic Response

In this section we briefly present the approaches and tools available in the
research area for the UML testing. In particular we differentiate them into two
groups. those which require trandation of the UML diagrams into an intermediate
formal description (Group A) and those which requires annotation of the UML
diagram with further (formal) information (GROUP B).

As stated in the previous section Cow_Suite differentiates both types of approach,
because it does not require any additional formalism or ad-hoc effort specifically for
testing purposes.

133 5. An Automated Approach to UML-Based Testing

5.2.11 GROUPA

UMLAUT (Unified Modelling Language All pUrposes Transformer) [JGP98]
[UMLA]: it derives tests by trandating the UML diagrams into an intermediate
formal description, which can be processed by tools aready constructed for
different methodologies and adapted to the UML specifications. In particular
UMLAUT transforms the UML representation of the system into a form suitable
for validation within their VALOODS framework (VALidation of Object
Oriented Distributed Software), which comprises a validation engine that will
exercise the actual validation.

Offutt and Abdurazik approach [OA99]: in this specific case the UML State
Diagrams are trandated into formal SRC specifications, from which input data
for unit testing are automatically generated The same authors have presented in
[OA0Q] amodel for performing static analysis and generating tests inputs from a
formal design description of collaboration diagrams specifications. The paper
novelty was that tests could be generated automatically from the software design,
which is also the leading criterion of the Cow_Suite tool, rather than the code or
the specifications. Moreover the authors defined both static and dynamic testing
criteria of specification-level and instance-level collaboration diagrams. These
criteria alowed formal integration tests to be based on highlevel design
notations.

Liuying and Zhichang approach [LZ99]: the authors propose deriving test cases
from UML Statecharts, exploiting a formal semantic constructed for UML
Statecharts. The method presented can automatically generate and select test
cases from UML Statecharts in the context of object orientation, which will
detect errors early in order to improve software quality. It is based on the Wp-
method [FBK91], which deals with hierarchy and concurrency in structura
context.

Kim et al. approach [KHC99]: the author discusses the application of UML
state diagram for class testing. To this purpose a set of coverage criteria is
proposed based on control and data flow in UML state diagrams and the
generation of test cases satisfying these criteria from UML state diagrams is
shown. In particular they propose a transformation method from state diagram
into extended finite state machine and flow graph. The transformation consists of
flattering the hierarchical and concurrent structure of states and eliminating

134

broadcast communications, while preserving both control and data flow in the
UML state diagram

Tsai et al. approach [TSP99]. This approach is focused on class testing. The
method utilises state machines in order to produce threaded multi-way trees,
which are referred to as inspection trees. Inspection trees can be used to generate
test cases and parse test results files. This alows the authors to determine
whether the classes under test contain errors. The agorithms for the creation of
inspection trees and the examination of the test results file using an inspection
tree are described.

SCENT (SCENario-based validation and Test of software) [RG0OQ]. This is a
method supporting requirements elicitation, analysis and definition by creating
scenarios in a structured way, validating the scenarios with the customer/user and
formalizing them into statecharts. From the statecharts, test cases, specificaly
designed for integration and system testing, are derived in a systematic manner
by covering every transition.

Mayrhauser et al. approach [MFS00Q]: The authors describe an approach to
black-box test-generation in which an Al (artificial intelligence) planner is used
to generate test cases from UML Class Diagrams. In particular these diagrams are
used to derive test objectives and a domain theory which are then transformed to
planner representations and given as input to the planner. The planner uses the
problem description to generate a test suite that satisfies the UML-derived test
objectives.

Graubmann and Rudolph [GROO] the authors show that the UML-Sequence
Diagrams can be seen as an object-oriented variant of the ITU-T standard
language Message Sequence Chart (MSC) which is very popular mainly in the
telecommunications area. Therefore, they include the MSC inline expressions
and High Level MSC (HMSC) into Sequence Diagrams. In this approach the
High Level MSC are used for formalizing and structuring the construction of
scenarios for use cases in the form of HyperMSC, and then also employed as a
basis for the specification of test cases.

Chevalley and Thévenod-Fosse approach [CTOL]: the authors proposed a
probabilistic method, called statistical functional testing, for the generation of test
cases from UML state diagrams, using transition coverage as testing criterion. In
particular the emphasis is placed on defining an automatic way to produce both

135 5. An Automated Approach to UML-Based Testing

the input values and the expected outputs. The technique is automated with the
aid of the Rational Software Corporation’s Rose Real Time tool [RSC].

Antoniol et al. approach [ABPO2]. This paper is focused on state-based class
testing. The authors, considering the derivation of test sequences by covering all
round-trip paths [BI199] in a finite state machine (FSMs), investigate this strategy
when used in the context of UML statecharts. In particular, based on a set of
mutation operators proposed for object-oriented code, the authors seed a
significant number of faults in an implementation of a specific container class
and investigate on its effectiveness in detecting faults

Harel and Marelly approach [HMO3]. The authors described a powerful
methodology for scenario-based speci?cation of reactive systems. The approach
is supported and illustrated by a tool (a play-engine). As the behaviour is played
in, the play-engine automatically generates a forma version in an extended
version of the language of live sequence charts (L SCs). Asthey are played out, it
causes the application to react according to the speci?cation. In particular the
Play-in is a user-friendly high-level way of specifying behaviour while the play-
out is way of working with a fully operational system directly from its inter-
object requirements. This approach can be applied to many stages of system
development, including requirement engineering, speci?cation, testing, analysis
and implementation.

5212 GROUPB

Hartmann et al. approach [HIMOQ]. This is a Siemens Corporate Research
approach where the developers first define the dynamic behaviour of each system
component using Statecharts; the interactions between components are then
specified by annotating the Statecharts. Test cases are then derived from these
annotated Statecharts using a test generation engine, and executed with the help
of atest execution tool.

TOTEM Testing Object-orienTed systems with the unified Modelling language)
approach [BLO1]. It supports the derivation of functional system test
requirements, which are then used to then to derive test cases, test oracles and
test drivers. The approach is mainly based on the use case sequences and uses the
sequence or collaboration diagrams associated to each use case, transforming
them into regular expressions, and the class diagram. In this process class

136

invariants and a detailed formal description of UML as well as a rigorous use of
OCL notation are required.

SCENTOR [WMO01]. This is a research prototype aimed at supporting the
generation of scenario-based testing using Junit as a basis. SCENTOR assumes a
software engineering approach where lightweight UML modelling is part of the
design process. Tests generated by SCENTOR are based on sequence diagrams
contained within the UML model of the system. In particular this tool maintains
the Extreme Programming focus on the production of source code. One of the
purposes of SCENTOR, like Cow_Suite, is to reduce the required formal
descriptions in the development process.

Latella and Massink approach [LMOQ1] the authors propose a formal testing
framework for a behavioural subset of UML Statechart Diagrams (UMLSDs). In
particular they define a new formal operational semantics and some proper
testing pre-orders and equivalences which allow one to equate/distinguish
systems on the basis of their interaction with the surrounding environment,
abstracting from their interna structure. The purpose is to provide a way for
effective automatic verification of testing equivalence of the statecharts, based on
existing techniques and tools.

AGEDIS: Automated Generation and Execution of Test Suites for Dlstributed
Component-based Software [AGE02] was developed in European project
managed and coordinated by the IBM Israel Haifa Research Laboratory. Like
Cow_Suite AGEDIS purposes are the automation of software testing, improving
software quality, and reducing of the expense of the testing phase. In particular,
for tests generation and execution it is firstly necessary to model the application
under test in UML by the support of the tool Objecteering UML editor [OBJ]
together with the AML (AGEDIS Modelling Language) profile for that tool.
Then, annotate the model with further testing information, such as the coverage
criteria, specific test purposes, and testing constraints.

Riebisch et al. approach [RPGO02]: The authors scenarios and use cases,
enriched by detailed behavioural information, for stetistical test case generation.
In particular they introduce an approach for generating systemlevel test cases
based on use case models and refined by state diagrams. These models are then
transformed into usage models to describe both system behaviour and usage. The
method is supported by a XM L-based tool for model transformation.

137 5. An Automated Approach to UML-Based Testing

Pickin et al. approach [PJT02] the authors investigate the use of formal
validation in a UML-based development process. They present a method and a
tool for automated synthesis of test cases from generic test scenarios and a design
model of the application. The underlying “on the fly” test synthesis algorithms
are based on the input/output labelled transition formalism.

SeDiTeC [FLOZ]: thistool uses UML sequence diagrams, that are complemented
by test case data sets consisting of parameters and return values for the method
calls, as test specification. SeDiTeC supports specification of several test case
data sets for each sequence diagram and automatically generates test stub for the
classes and methods whose behaviour is specified in the sequence diagrams.

5.2.2 Industrial Response

We report here two commercial tools applicable to the UML documentation for
different testing purposes. They range over many fields and are not specifically
developed for integration testing.

- TheRational tools [RSC]. The Rational Software Corporations provides various
testing products which allow testers and developers to create robust software for

a wide range of industries and platforms and enable them, by the use of

automation and good practices. To create high quality software. One of them is

Rational Suite® TestStudio® which automates functional, regression, unit, and

performance testing and provides a seamless testing process, defect and change

tracking, runtime analysis, software configuration management, requirements
management and test management.

Analyst Pro - Powerful UML Tool [ANA]. This is a tool for specification,

analysis, design and testing of systems. Analyst Pro alows both specification of

UML diagram as well as storing diagrams created with other tools. The test cases

are generated from use cases and eventually update in case of changes in use case

during the design.

5.3 Cow_Suite Methodology

The Cow_Suite approach consists of two components, working in a combined
way: the Cowtest strategy, and the UIT method that will be described respectively in
Sections 5.4 and 5.5 Here we present the minimal necessary requirements for
Cow_Suite application and general schema of Cow_Suite utilization (Sec. 5.3.2),
which shows how the two components, Cowtest and UIT have been integrated.

138

5.3.1 Prerequisites for Applying Cow_Suite

The leading criterion of Cow_Suite is the use of the same UML diagrams
developed during specification and design, without imposing on the UML designers
any additional formalism, or ad-hoc effort. The approach can be used in al the
phases of the software development process, even though some diagrams have yet to
be completed or refined. Of course, like any other test strategy, Cow_Suite needs to
refer to a documented and systematic design process and for this reason we set some
minimal requirements. However, they are very basic requirements, in no way test-
gpecific: they establish a minimum discipline in design documentation that should be
enforced in any standard software engineering process, and not only for the sake of
testers.

Depending on their granularity, first we depict the more general prerequisites and
then those strictly related to the development on UML documentation. In particular
the latter are mainly inspired by the best practices and guidelines of the RUP process
development [RUP, KROO].

General Requirements:

1. Cow_Suiteis mainly based on the analysis of the Use Cases (UCs) and Sequence
Diagrams® (SDs). In particular for organizing the UML element in a sort of
hierarchy it is necessary to explicitly define associations and relations among the
developed UCs, and between Actors and UCs, such as, for example, “uses’ or
“generalization” relationships.

2. Itisimportant to keep track of how a UC is refined in the low-level design; this
means specifying how a high-level UC, i.e., system functionality, is realized
within the packages of the design model.

3. Asthe UIT method is based on an analysis of the SDs, the description of relevant
scenarios are of course essential.

However, in early design phases, it is plausible that the UCs are defined at a high
level, and many of them have to be completed; similarly not all relevant scenarios are
elicited or documented. The Cow_Suite approach can be also useful under these
conditions, because it can highlight points of weakness in the reference
documentation. Specifically, it provides a picture of the project level of completeness
and prompts the user for the revision or the completion of the unfinished diagrams.

! Collaboration Diagrams are also usable because, for our purposes, they contain the same information
of Sequence Diagrams. Nevertheless, we only refer hereto SDsanalysis.

139 5. An Automated Approach to UML-Based Testing

Detailed Requirements:

1. The design elements, such as Actors, UCs, SDs, CDs, defined during the
requirement phases, and represented in the Use Case View, should not be
designed alone, but in relation to other elements of the same view, for example
by means of associations or relations.

2. Every UC defined in the Use Case View (high level UC) (Chapter 3), must have
a corresponding UC in the Logical View (Chapter 3), stereotyped as <<use case
realization>> with a dependency (stereotyped «realize») on the Use Case. This
represents the refinement of the high-level UC in the lower-level design
diagrams. SDs or CDs should be used for this purpose.

3. Every UC stereotyped as <<use case redlization>> must be collected, in the
Logica View, in a package caled “Use Case Redlizations’. This in turn should
contain a Class Diagram called “Traceability” in which the associations between
the UCs and their realizations are defined. Referring to RUP the separation from
the UC and its realization is necessary in order to alow the changes of the use
case implementation without affecting the baseline use case.

4. Every Use Case Redlization should contain references to the package/s that
represent the implementation of the relative UC (referring to RUP the packages
of the Analysis Model or the Design model). We suggest collecting them into a
package called “Design Link” package, as will be explained in detail in Section
54.1.2.

5.3.2 Cow_Suite Usage

The application of Cow_Suite begins early in advance from the code definition
from the analysis and design phases, and proceeds in parallel with them by analysing
the UML project description for the derivation of the test cases. In this way, as the
design evolves, a more refined and complete test plan is automatically derived. In
this section we briefly present the steps leading from analysis of the UML
description to test cases derivation. In particular we report in Figure 1 an Activity
Diagram describing the actions required for the application of the Cow_Suite tool.
This diagram is a sort of roadmap for following the application of the tool. The
details of the various steps will be presented in the different sections.

In the figure the different colours of the activities show the separation between
the test strategy (Cowtest) and the method used for deriving the test cases (UIT):
respectively from Activity 0 to Activity 8 and from Activity 9 to Activity 12.

140

CowSuite tool User

Activity 0: Acquisition of
UML Specification

Activity 1:Nodes and
arc identification

es

Activity 2: Application of the .
DFS_Mod ODeslgn Inadeguate

Activity 3: Tree
selection

Yes

Required Modification
Yes Activity 6: Weighted

tree Derivation

\ ? Activity 7: Test

strategy selection

Activity 8: SDs/CDs
Selection

Activity 10: Test
Procedure Specification

Activity 5: Integration
stage selection

no

C no :
> Activity 9: Test Cases

Generation

Test Plan update

— . Activity 11: Test
ACt'V.'ty 12:Test Procedures Generation
Suite artifact

Choices /Constraint$ update

Figurel TheActivity Diagram of the Cow_Suiteusage

As shown in the diagram the activities from O to 2 focus on the acquisition of the
UML project specification and on the organization of the design elements in a well-
defined structure. This will be the basis on which the Cowtest strategy relies. The
activities are completely automated by the Cow_Suite tool, which uses specific
procedures and algorithms for the structure derivation (See Sec. 5.4.1.3).

From Activity 3 to Activity 9 user interaction is required both for assigning
several specific parameters values and selecting the testing strategy to be applied.
The Cowtest strategy can be applied into two different conditions: either the testing
must respect a certain resource investment, which we trandate in practice into fixing
a number of test cases to be executed; or the testing has the purpose of covering a
fixed percentage of system functionalities and therefore the test cases must be
concentrated on them (See Sec. 5.4.3)

The UIT methodology is then applied for deriving the test case frameworks
(Activity 8 and 9) (See Sec. 5.5). In particular, by using the information provided by
the user the final test specifications, called Test procedures, are derived (Activities
10, 11 and 12).

As shown by the activity diagram, every step can be repeated severa times
during project development and consequently the final test procedures can be
specified at different degrees of detail. Thus the proposed stepwise methodology can

141 5. An Automated Approach to UML-Based Testing

be an effective support for test scheduling and planning which proceeds along with
project development.

5.4 The Cowtest Strategy

In the following subsections we present a stepwise description Cowtest (Cost
Weighted Test Strategy) which is a practical aid to managers for test planning. In
particular, we distinguish two different test planning schemes: testing must respect a
certain resource investment, which we trandate in practice into fixing the number of
test cases, or the test cases must cover a fixed percentage of functionalities.
Accordingly, the Cowtest strategy can implement two approaches: a fixed number of
tests or fixed functional coverage. The choice between either of the two is performed
in Section 5.4.3 while in the next section the procedure adopted for deriving the basic
structure on which the strategy relies is described.

5.4.1 Deriving The Basic Structure

A UML design consists of severa diagrams containing various model elements,
and forming the different views of the system. In this section we explain the
procedure applied for organizing the model’s elements into a defined structure. In
particular the analysis starts from the diagrams collected in the Use Case View,
considering in particular their mutual relationships, and proceeds with those of the
Logical View. Referring to the activity diagram in Figure 1 in this section we
describe the activities 0, 1 and 2.

5.4.1.1 Use Case View Analysis

As described in Section 3.1.2.1 the Use Case View is the main representation of
the system, even if the coarser in terms of architectural description. Its purpose isthe
depiction of functionalities that the system must perform and the explanation of the
interactions between the system and the external world. We begin the analysis of the
Use Case View from the main Use Case Diagram, considering its design elements
(Actors, UCs, SDs, CDs), and we proceed in an ordered way, with the other diagrams
(if any) of this view. The purpose is to collect the design elements and the relations
between them into two different sets, called “V” and “E”, respectively. In particular
every UC, Actor, SD or CD, is associated to a different node (also called “vertex”)
and is name inserted in the set “V”. Contemporarily, every relationship, such as
generalizes, extends, uses, etc., between the nodes is related to an oriented arc and

142

put in set “E”. The orientation of each arc follows the semantic relationship between
the elements involved (not the graphic notation). For instance for the generalization
relationship the arc orientation is from the parent to the child (as reported in the
UML 1.4 semantics [UML]), i.e. in the opposite direction with respect to the
associated arrow.

The nodes and the arcs are then organized into an oriented graph MG (V, E),
called the Main Graph, representing a global description of the project. It may not
aways be possible to represent the design description with only a single graph.
When some connections between the different model elements are missing, or there
are some holes in the design, the vertices of the set V are split up into digoint subsets
and the Main Graph is disconnected into more subgraphs.

5.4.1.2 Logical View Analysis

As described in Section 3.1.2.2 the Logical View is mainly an architectural view
of the system which constitutes a basis for its structure and organization. We wse its
information for three different purposes as described below: completing the Main
Graph, defining a new graph caled Design Graph, and introducing a specific
package, called Design Link.

Completing the Main Graph

Coming back to the test strategy, the information contained in the Logical View
is used to upgrade and extend those collected during the analysis of the Use Case
View. Therefore we first consider the Use Case Realizations package (Sec. 5.3.1),
which may be created in either the Analysis Model or the Design Model or both. In
particular we focus on the use case readlizations belonging to its class diagram
"Traceabilities" (Sec. 5.3.1), which are strictly related to the UCs of the Use Case
View. Each of them in fact describes how the UC is realized within the Logical View
in terms of collaborating objects. In particular, use case realization shows the
implementation of the UC by creating a group of classes working together to
describe the behaviour of the UC, and a set of SDs and CDs which explicitly show
how the interaction among these classes evolves. The focus of the use case
realization is therefore to separate the specifications of the system at requirements
level, i.e. UCs of the Use Case View from the architectural design of the system.

In our test strategy we use these new design elements to augment the set V of the
Main Graph definition. A different node is associated to each use case readlization, or
every SD/CD linked with it, and inserted in the set V. On the other hand each

143 5. An Automated Approach to UML-Based Testing

relationship or <<realize>> dependence, between these design elements is related to
an arc and inserted in the set E of the Main Graph definition. Asfor the relationships
individuated during the Use Case View analysis, the arcs orientation follow the
semantic relationship between the elements involved.

The Design Graph Definition

The remaining design elements (packages and their components) of the Logical
View are then analysed from a different perspective, for defining a new oriented
graph called Design Graph. Thisis a graph DG(V’, E’) in which the set of vertices
V'’ consists of all the developed packages or components and the set of arcs E
represents the dependences between these elements. The Design Graph is sructured
following a process similar to that used for the Main Graph. The construction starts
from the Design Model package and proceeds in an ordered way, with the analysis of
its packages, excluding the previously considered Use Case Readlizations. In
particular the design elements considered during this process are:

The packages, each one associated with a different a node of set V'. If a package

is further subdivided into sub-packages a node for each of them is also inserted in

V’. Moreover, an oriented arc (from the high level package to the sub-package) is

inserted in the set E’ for each of the sub-packages.

The SDs linked to the packages. A nodein V'’ isinserted for each of them and an

arc from the package to the SD isdefined in E’.

The package diagram, if any representing the dependences among packages. In

this case a node of the set V' is associated to each of the involved packages (if

not jet included in V') and an oriented arc, representing the dependences between

the packages, isinserted in the set E'.
The Design Graph is therefore an oriented graph, showing the hierarchy and the
dependences between the different packages or SDs. In other words it represents the
organized structure of the components, sub-system, and other parts that will represent
the architecture of the system to be developed. However, as already indicated for the
Main Graph, it is possible that the Design Model anaysis produces a disconnected
Design Graph with sub-graphs or isolated nodes. Once again this is due to the
incomplete or badly-defined UML project specification and it is not imputable to the
process used for deriving the graph.

The Main Graph and the Design Graph differ as to the model elements they
consider, but especially in the kind of information they collect. The Main Graphiis, in
fact, a high-level representation of the system: the UCs represent the functionalities

144

or the sub-functionalities of the system and the SDs the description of how the UCs
are realized by the interaction between objects and actors. The Design Graph,
instead, provides a lower-level description of the system, the packages represent the
components or sub-components that will be implemented and the graph structureis a
mapping of the project architecture.

Design Link Definition

It would be extremely important to be able to connect the information contained
in the Main Graph with those of the Design Graph. Considering a UC of the Use
Case View representing a high-level requirement, it is generally extremely difficult
to individuate the components, in the Logical View, that implement it. The problem
is accentuated in the presence of dependences between packages or between the
elements inside the packages themselves. In other words, considering the two graphs
there is alack of connection between the nodes of the Main Graph associated to the
UCs and those of the Design Graph representing the packages or components, which
implement them. It is worth noting that this deficiency is not due to the procedure
adopted for deriving the two graphs but is imputable to the UML project
specification. The compact description of the UML design provided by the Main and
the Design graphs only further emphasizes this lack of information.

In the literature, this problem has already arisen and some solutions provided. In
the ICONIX process [RS01], Rosenberg and Scott close the gap between the
requirement level view and the detailed design view by introducing a new kind of
diagram, called “Robustness Diagram”. This was originally introduced by Ivar
Jacobson work’ s [JCJ92] which included it in the UML standard as an appendage. It
was depicted as an UML collaboration diagram, showing both the objects that
participate in a scenario and how they interact with each other. In short, the
Robustness Diagram as adopted in ICONIX is instead a class diagram, which shows
object instances rather than classes and contains three kinds of objects:

The boundary objects, which actors use in communicating with the system
The entity objects, which are usually objects from the domain model
The control objects which “connect” boundary objects and entity objects

We do not wish to provide a complete description of the Robustness Diagram
here, preferring to refer the reader to the book of Rosenberg and Scott [RS01] for
more details. However, inspired by the ICONIX process, we propose a solution
compatible with the procedures adopted for the Main and Design Graphs derivation.
Therefore we suggest including in each use case redlization a specialized package

145 5. An Automated Approach to UML-Based Testing

diagram, called the Design Link, collecting the list of the packages of the Logical
View that implement the UC associated to the use case redlization considered. The
Design Link is therefore intended to fill the gap between the requirements and the
detailed design. It represents a useful piece of documentation for both the people
involved in the design and those who will implement the system.

When the Design Links are available, during the definition of the Main Graph, a
node is associated to each of them and inserted in the set V; the same is done for the
packages referred in the Design Link. Contemporarily the arcs, representing the
connection between the use case representation and Design Link and the Design Link
and these subpakages, are inserted in the set E.

Thus the Design Link and its packages represent the “glue” between the
information of the Main Graph and the Design Graphs, which associate each
requirement to the relative system components.

5.4.1.3 Trees Derivation

In the previous section we have described the necessary steps for deriving the
Main and the Design Graph from the analysis of the UML documentation. Here we
show the procedure adopted for deriving the basic structures of our strategy
application (Activity 2 of Figure 1). It is worth noting that the analysis of the Design
Graph is ailmost the same as those applied to the Main Graph; therefore we describe
only the latter in detail. We want to isolate each interaction of the external
environment with the system for the purpose of testing it separately. In the Main
Graph this is trandated into associating to each actor, responsible for one or more
external stimuli, a different tree, which expresses the way in which the interactions
are implemented in the system.

The trees derivation is performed by using a modified version of the Depth-First
Search agorithm [CLRO1] called DFS _Mod showed in Figure 2, which produces a
forest of severa Main Trees. In this section we describe only the main characteristic
of the algorithm applied for the Main Trees derivation, since that for the Design
Trees is almost the same. The trees obtained constitute a detailed documentation of
what has been developed so far, highlighting the structural decomposition of the
functions. Therefore considering the Main Graph G(V,E), obtained as described in
the previous section, the DFS_Mod derives trees with these peculiarities.

146

The root is always represented by an actor, who is a person (or external system)
interacting directly with the system. The actor requests are therefore the
functional stimuli for the system.

The UCs at the first level represent the requirements, each associated with a

different functionality that the system must realize. In particular a functionality

could be in turn specialized or refined into sub-functionalities, which correspond
to the UCs at the second level in the tree.

The SDs/CDs (if any) at the second level of the tree describe the interactions and

the exchanged messages among the objects belonging to one of the UCs at first

level.

Considering the i-th level of the tree, the UCs represent the description or the

realization the sub-functionalities at upper level and the SDS/CDs the description

of the objects’ interaction of the UCs at (i-1)-th level.

Some parts of the tree are opportunely replicated or marked: they belong to other

trees or to repeated nodes and are signals of the presence in the Main Graph of

cycles or of elements reused in more diagrams.

The trees derivation can aso be applied in the anomalous situation in which the
Main Graph is not connected. In this case the DFS_Mod algorithm produces a set of
“anomalous trees” which can for instance either be represented as a single node
(model element), or as a tree rooted in a UC instead of an actor. These trees,
classified as “Not Linked”, are not used in the strategy application. In Figure 6 we
show a Main Tree, the Design Tree and the set of Not Linked elements derived by
applying the Cow_Suite tool to a case study.

The advantages in reorganizing the design element in this hierarchical structure
are numerous; we list some of them below:

Complete view: Each of the derived trees (Main Trees, Design Trees) describesto

the people involved in the development (specifically the project managers) the

level reached in the functionality implementation. Considering for instance a

Main Tree, the paths from a UC to the leaves represent the specification of the

UC and describe its level of implementation in the design. The SDs encountered

in each path depict, at different levels of detail, the behaviour of the functionality

associated to the UC and specify the required interactions among the involved
design objects.

147 5. An Automated Approach to UML-Based Testing

Let G(V, E) and oriented graph were V isthe DEF-Vist_Mod (u)
<t of vertex and E the st of arcs. A
1Colorfu] ~ GRAY2Foreechv | Adi[u]
DFS Mod(G) 3. If vl Actar[G] then
~ 4 v = NewActorGeneration(V)
1 For eechvertex vl V[Q 5, p[V] - u
g doooi')c[’h[]“]:N\I’XH'TE 9%The DEF-Visit Mod ends at this step
- 6. de=
4. Foreschvetexul AcordG] - -
5, do DEFVist Mod (u) ; D‘ik';f‘,")‘;:/[]"]ﬂ UWH'TE
% Thevidit garts only fromthe actors nodes 9. DFSVist_Mod(v)
R 10. dse
6. Foreachvertexul V[G\Actord G| .
8 then DEF-Vidst Mod (1) 12. p[v']-u
13. if i Predecessorqu,v] then
14. TreeDuplication [V' V]

15. color{u] ~ BLACK

Figure2 TheDFS Mod Algorithm

Incompleteness of the design: The Not Linked elements evidence some
incompleteness or weakness in the UML design. This could happen either if some
parts of the UML design are not yet completely developed at the time of the tree
derivation, or if some relation between the design elements has been forgotten or
not specified during the analysis or design phase. In both cases, the set of Not
Linked elements clearly reveds this situation to the people involved in
development so that they can immediately take proper corrective actions.
Estimations for management: One aim is to provide a strategy which can be
applied at any time during the software development. Thus, if necessary, the
people involved in development can automatically derive the different trees and
therefore have a complete vision of what has been developed so far. This could
be used for a rough estimate of the effort and time required for completing the
project specification.

Organized documentation: The derived trees represent an ordered and organized
documentation continuously updated with the latest changes and complete in

every part.

148

5.4.2 Defining a “Testing Profile”

So far the basic structure on which the Cowtest strategy relies, has been
automatically defined by the Cow_Suite tool. Now the user must interact with the
tool to specify the parameters or choices useful to adapt the test strategy and the test
cases derivation to his/her needs. Referring to Figure 1in this section we describe
activities 3-6 which mainly consist of selecting one of the developed trees, assigning
the weights to its nodes (Sec. 5.4.2.1) and choosing the proper the integration stage
(Sec. 5.4.2.2). As in the previous section we discuss in detail only the steps for the
Main Trees because those for the Design Trees are nearly the same.

54.2.1 Assign Weights to the Nodes.

Generally the various system functionalities do not have the same “importance”
for overall system performance or dependability, and the testing effort should be
planned and scheduled accordingly. Different criteria can be adopted in order to
define what “importance” means for test purposes, e.g., component complexity, or
usage frequencies (such as in reliability testing [M1087]). Often, these criteria are
not documented or even explicitly recognized, but their use is implicitly left to the
sensibility and expertise of the managers. The basic Cowtest idea is that we ask
managers to make explicit these criteria, and we provide them with a systematic
strategy in order to use such information for test planning.

In particular, for each of the derived (Main) trees, managers are requested to
annotate the nodes level by level with a value, belonging to the [0,1] interval,
representing its relative “importance” with respect to the other nodes at the same
level. This value, called the weight, must be assigned in such a manner that the sum
of the weights associated to al the children of one node is equal to 1; the more
critical a node the greater its weight.

Severd criteria for assigni ng the importance factors could be adopted. Obviously
this aspect in the proposed approach remains highly subjective, more in the realm of
expert judgment than mechanisable methods, but here we are not going to provide a
quick recipe on how numbers should be assigned. We only suggest expressing in
guantitative terms the intuitions and information about the peculiarity and
importance of the different part of the system to be developed, considering that such
weights will correspondingly affect the testing stage. In our intuition, that only
empirical evidence from the strategy usage history can legitimate, we believe that the
strategy should be robust enough to moderate deviations.

149 5. An Automated Approach to UML-Based Testing

However it is worth noting that the process of node annotation implies a
beneficial side-effect: for assigning the appropriate values, the people involved in
development are forced to reflect on the relative complexity of each functionality
with respect to the context in which it is inserted. Consequently, they pay attention to
the parts where problems could be more critical and become conscious of the
importance of each node for the system devel opment.

5.4.2.2 Integration Stage Selection and Weighted Trees Derivation

The Cowtest, and mainly the UIT method, are specifically developed for
integration testing; thus before any test strategy, it is necessary to define the
integration level at which the testing will be performed. Considering the previously
trees derived, this means deciding which nodes to analyse for testing. Each level in a
specific tree shows a different degree of detail of the system functionalities
implementation and consequently a specific level of integration. Thus by excluding
the root of the tree that for each Main tree is always an Actor node, we introduce the
concept of anintegration stage:

Thefirst integration stage is represented by the UCs connected to the root node
and the SDS/CDs (if any), which are the children of that UCs (hence they are at level
2 of the tree).

Thei-th integration stage is represented by the UCs at the i-th level of the tree
and every SDS/CDs, children of these nodes, situated at i+1-th level.

We decided to include the SDs at level i+1 within the i-th integration stage,
because they represent the interaction between the different components that realize
the functionalities described in the UCs at i-th level of the tree.

Before applying any of the proposed test strategies, it is necessary to determine
the integration stage at which the testing will be performed on the selected tree.
Fixing the integration stage therefore means deciding which kind of information
(nodes) to consider for deriving the test cases. Consequently the node selected will
be: the nodes belonging to the fixed integration stage plus all nodes at higher levels,
and in particular the leaves of the latter.

Having fixed an integration stage, it is now possible to use the weights assigned
to derive for each node a relative importance factor, caled final weight, in terms of
how risky is that node and how much effort should be put into testing.

The final weight of every node is then computed as the product of the weights of
al nodes on the complete path from the root to this node. It is the reference index for

150

choosing which tests to execute as will be described in the next section. Note that the
sum of the final weights of the leavesis still equal to one.

In Figure 7 the numbers in square brackets are the final weights computed for the
Main Tree of Figure 6.

5.4.3 Cowtesting

Following the steps described so far the trees structure has been defined; for
each of them a (different) integration stage has been selected and the final weight of
each node calculated. Now it is necessary to determine test strategy to adopt for test
case derivation. Referring to Figure 1 in this section we explain activityies7-8

We consider two different situations: either a certain number of tests is fixed, or
the percentage of functional coverage is chosen as a stopping rule. The first is the
case in which a certain test budget is available, which we translate in practical terms
as a fixed number of test cases. In such a case, Cow_Suite allows us to derive the
most suitable distribution of the available test cases among the functionalities
developed. The second situation considered occurs when a certain percentage of
functionalities must be covered for testing purposes. In this case using the toal, it is
possible to determine by which functionalities are to be covered and the minimum
number of test cases to execute. In both circumstances, an entire collection of test
cases is automatically derived from each SD/CD by applying the UIT methodology
as explained in Section 5.5. Here we present the strategy used for test selection and
prioritisation in the two situations, respectively.

Similarly to the previous section we discuss only the procedural steps adopted for
the Main Trees because the main difference with respect to the Design Treesisin the
typology of the obtained test cases. Considering the Main trees, the test cases will be
specifically designed for system or highlevel subsystem integration testing
(occasionally even for component testing). Those obtained by the Design Trees will
be suitable for the low-level subsystem and component integration testing (rarely for
unit testing). Therefore the test cases will reflect the degree of detail of the
information collected in the different trees.

Cowtest_ing with fixed number of tests

If anumber NT of test casesis fixed (or, more plausibly, only atest budget up to
NT tests can be afforded), our strategy can be used to select NT test cases out of the
many test cases that could be conceived. In fact, using the final weight, called nw,

151 5. An Automated Approach to UML-Based Testing

associated to each SD, the number nt of tests to be selected can be easily derived as:
nt = gw* NT +0.5(

Clearly, a prediction of the number of test cases is just one half of the task. To
make a more practical prediction in terms of man/hours, or required budget for
testing, it would be necessary to estimate the cost of the various test cases, which is
clearly not inconsiderable.

Cowtest_ing with fixed functional coverage

Let us now consider the alternative case in which a certain percentage of
functional test coverage (e.g. 80%) is established as an exit criterion for testing. In
this case Cowtest can drive test case selection, by highlighting the most critical
system functionalities and properly distributing the test cases.

For each SD representing a leaf & the chosen integration stage, its final weight,
nw, is calculated as above. Then considering the fixed coverage C, the selection of
the functional test cases to be run can be derived ordering in a decreasing manner the
nw* 100 values and adding them together, starting from the heaviest ones, until C is
reached.

Moreover using the final weights of the selected leaves, normalized so that their
sum is still equal to 1, it is also possible to derive the minimum number of test cases
required to reach the fixed coverage.

Considering that each test case required a certain amount of time, t, to be
executed, this last feature was particularly useful in the early stages of the process
development when Cow_Suite was applied in combination of the Propean approach,
(Chapter 4) to estimate the overall duration of the testing phase.

5.5 Use Interaction Test

UIT, largely inspired by the Category Partition method briefly described in
Section 5.5.1, was originally conceived for integration testing in order to
systematically test the interactions among the objects, or object groups, involved in a
SD/CD [BBO00]. Within the Cow_Suite approach, we have integrated a modified
version of the UIT method (for clarity referred to as UIT_sd), by which test
derivation was carried out once for each SD/CD as a whole and not separately
considering the objects involved. In this section, we only concentrate on the UIT_sd
methodology, referring to Appendix B for mode details on the origina UIT.
However, before presenting it some definitions are necessary. Inspired by the RUP
process [RUP] we distinguish between Test Cases and Test Procedures.

152

A Test Caseis the set of actions performed to test a possible objects interaction,
with associated test inputs and execution conditions.
A Test Procedure is a set of detailed instructions for setting up, executing, and
evaluating the results of agiven Test Case.
The final output of the UIT and UIT_sd methodologies, is therefore a set of Test
Procedures, derived exclusively by the UML documentation without requiring to
introduction of additional formalisms. It is worth noting that, in the following
sections, we detail the Test Case and Test Procedure derivation only in for the SDs
because the application of the two methodologies for the CDs is nearly the same

5.5.1 Category Partition Method

The Category Partition (CP) is awell-known and quite intuitive method proposed
in the late 1980's [OB88] to derive functional tests from the specifications written in
structured, semiformal language.

CP provides a systematic, formalized approach to partition testing that is one
standard functional testing methodology. Generally speaking, partition testing is
based on the simple idea that the input domain is first divided into severa
equivalence classes (also called partitions, although in order to be true partitions
these should be non-overlapping, which is rarely the case in practice); then one or
few tests are selected from within each of the identified partitions, as representative
of the behaviour of the entire class.

The first step of the CP method is to analyse the functional requirements in order
to divide the analysed system into functional units that can be tested separately. A
functional unit can be a high-level function or a procedure of the implemented
system. For each identified functional unit, the tester identifies the environmental
conditions (the required system properties for a certain functional unit) and the
parameters (explicit inputs for the unit) that are relevant for testing purposes: these
are called the categories. The test cases are then selected by taking the significant
values of each category, which in CP are called the choices. A complete set of test
cases is obtained by taking all possible combinations of choicesfor all the categories.
To prevent meaningless combiretions or pairs of contradictory choices, the
categories can be annotated with constraints, e.g., in a test case a choice from one
category cannot occur together with certain choices from other categories.

The CP method has been implemented by Siemens in the TDE tool, that
automatically constructs the test cases from the specifications expressed in a

153 5. An Automated Approach to UML-Based Testing

dedicated semi-formal specification language, called TSL. The CP method has
encountered wide interest in the literature, and has inspired the further development
of a large number of test methodologies, also using forma languages such as Z
[SP99].

5.5.2 UIT sd

UIT_sd, similarly to the UIT method, constructs the Test Procedures using solely
information retrieved from the UML diagrams. UIT_sd is an incremental test
methodology; it can be used at diverse levels of design refinement, with a direct
correspondence between the level of detaill of the scenario descriptions and the
expressiveness of the Test Procedures derived. All the SDs relative to a selected
integration stage constitute the basis for the UIT_sd method. For each selected SD,
the algorithm for Test Procedures generation is the following:

1. Define Messages Sequences. Observing the tempora order of the messages
aong the vertica dimension of the SD, a Messages Sequence is defined
considering each message with no predecessor association, plus, if any, al the
messages belonging to its nested activation bounded from the focus of control
region [UML]. A Messages Sequence represents a behaviour to be tested and
describes the interactions among objects necessary for realizing the
corresponding functionality.

2. Analyse possible subcases the messages involved in a deived
Messages Sequence may contain some feasbility conditions (eg., if/lelse
conditions). These conditions are usually described in the message notes or in the
message specification and are formally expressed using the OCL notation
[WK99]. If these feasibility conditions exist, a Messages Sequence is divided
into subcases, corresponding to the different possible choices.

3. ldentify Settings Categories for each resulting Messages Sequence, we define
the Settings Categories as the values or data structures that can influence its
execution. In detail, they can be determined:

From all the messages involved, by considering their input parameters;

From the analysis of possible Class Diagrams to which the messages belong,
by examining the attributes and data structures that can affect the observed
interactions.

4. Determine Choices. for each Settings Category and for each Message belonging
to aMessages_Sequence, the possible choices are identified as follows:

154

for the Messages, they represent the list of specific situations, or relevant
cases in which the messages can occur;

for the Settings Categories, they are the set or range of input data that
parameters or data structures can assume.

5. Determine Constraints among choices. the values of different choices in a
Messages Sequence may turn out to be either meaningless or even contradictory.
To avoid this, the Category Partition methodology suggests introducing
constraints among choices. These are specified by assigning to choices certain
Properties used to check the compatibility with other choices belonging to the
same Messages Sequence, and by introducing the IF Selectors, which are
conjunctions of previously assigned properties.

6. Derive Test Procedures a Test Procedure is automatically generated for every
possible combination of choices, for each category and message involved in a
Messages Sequence. For each analysed SD, a document, called the Test Suite,
collects al the derived meaningful Test Procedures grouped by

Messages Sequences.

X O

: Student : MainApplicationForm :__LogonForm ~Securellser
| 1 start() | 1.1. open() |
T 2. entefUserName(uid)
3. entefPassword(pwd) ITI
4 loginUser()

4.1. validateyiser| DPassword(uid, pwd
IZI if (login ﬁ

successful)

else j 4.2. setyy Qpr‘urityco/n@g(/)/
4.2.—1. newUser|D()

4.3/.|/oseLogi nSection()]_]

Figure3 Sequence Diagram “Login-Main Flow” from CRS example of Section 5.7.1

155 5. An Automated Approach to UML-Based Testing

Below, we report an example of UIT_sd application to the SD Logi n- Mai n
H owof Figure 3. Following the sequencing of messages along the vertical axisit is
possibleto initially define (Stepl) four Messages Sequences (M_S) such as:

M_S1: 1.start()
1.1.0pen()

M_S2: 2.enterUserName(String)

- M_S3: 3.enterPassword(String)

M_$4: 4.loginUser(),
4.1validateUserl DPassword(String, String),
4.2.setupSecurityContext(),

4.2.1.newUserID(),

4.3.closel oginSection()

As described in Step 2, a feasibility condition in messages 4.2 and 4.3 can be
observed: the value of | ogi n successful determines the execution of messages
4.2.1 or 4.3 so that Messages Sequence 4 is split into two different subcases:

- M_$A1: 4loginUser(),
4.1.validatel DPassword(String, String),
4.2.setupSecurityContext(),
4.2.1.newUserlD()
- M_$4.2: 4loginUser(),
4.1.validatel DPassword(String, String),
4.3.closel oginSection()

For each derived Messages Sequence, the Setti ngs Categories can be identified
(Step 3). In M_$A4.1, for example, the categories are: ui d and pwd, representing the
parameters of the messages involved. Then for each message and for each Settings
Category it is necessary to determine the Choices(Step 4). Figure 4 shows the
definition of Choices for M_S$4.1 and the Constraints values (Step 5) associated to
the Choices in square brackets. Finally, as described in Step 6, the relevant Test
Procedures are generated; the fixed amount of Test Procedures (as imposed by the
strategy application) is randomly extracted from the potentially derivable ones. In
Figure 8 we report, for the SD Logi n-Mai n H ow, the Messages Sequences and
the Test Procedures as derived by the tool Cow_Suite. A detail of one of the latter is
shownin Figure5.

156

Choices values for Messages_Sequence 4.1

Settings Categories: Messages:

uid Loginuser ()
m.Jeckson accessrequest of anew user [Property new]
f_gmith access request of aregistered user [Property registered]
paul_white access request of anot allowed user [Property notAllowed]
s 71whatson access request of an expired account user[Property expiredAccount]
! validateuser | DPasswor d(uid, pwd)
mb56jkrm accessvalidation of anew user [IF new]
annamaria access validation of aregistered user (correct uid and pwd) [IF registered]
p71271 access vaidation of aregistered user (wrong uid or pwd) [IF registered]
12273 access vdidation of anot dlowed user [IF notAllowed]
__________ access vaidation of an expired account user [IF expiredAccount]
setupSecurityContext()

successful access of aregistered user [IF registered]
successful access of anew user [IF new |

newUser | D()
access of anew user [IF new |

Figure4 Choicesvaluesfor Messages Sequence4.1

Test Procedure
loginUser()

access request of aregistered user
validateuser| DPassword(uid, pwd)

access validation of aregistered user (correct uid and pwd)

setupSecurityContext()

rID()

access of anew user
uid

f_smith
pwd

mb56jkrm

Figure5 Test Procedureexample

5.6 Cow_Suite Tool

The Cow_Suite approach can be naturally adopted and automated by industries
using any UML design tool. We have implemented it in the Cow_Suite tool, in
particular designed to be compatible with Rationa Rose [RRT], one of the most
widely used commercia tools for UML design. The existing Cow_Suite version
retrieves the information extracted by Rose from the UML design using the REI

(Rational Rose Extensibility Interface) libraries.

157 5. An Automated Approach to UML-Based Testing

The Cow_Suite tool consists of three working windows: Cowtest, UIT and Test
Specification, implementing respectively the Cowtest approach, the methodology
UIT_sd and the Test Procedures generation.

[aWTaBijur | Tes spechiceion |

Lo Tises
¥ [1.0D00] Eiling Syskam [i]
[1.0000] Pegiztrar ®- [0 Froosss Madal
£ [1.0000) Swckent =L Design kol
5 [0.2000] Wiaw Fepor Card & 0 User Ineriace
@ [03000] Login 7 [Busir=ss S=rdces
= [1.0000] Login #-—L Businags Obyects
B [014000] Logsin - Main Fiow <[Micdigwers
¥ [03000] CourseCatalog - getlfenngs B CO0oDamMS
1 [0.3000] CoumeCaialog - geltiedngs M Fersiglgncy QODEMS Craste
H— 2 [05000] Fagistariar Coursas B Perpstancy OODERES Lipdats
R [0.7000] Cowrsa Catsiog W Fersistancy QODEMS Dalets
< [0. B0] RegisiEr [or Coureed M Fereisiency QODEMS Ralleve
~— i [02500] Fegrter For Coureas -hain Flow [Pet 3 - Completion) {0 Figlarional BBMS
W [02600] Flegisher ForCourses - Mein Flow [Pad 1 - Serlp) (B System Layar
¥ [01500] Aegisker For Courses - Wein Flow [no dishibutian) 7 3 Sy=iem Layer

- [V D00] Sk g vy s e il e
W [0.2500] Regeter For Coursas - Main Fiow [Pt 2 - Course Selection])
[1.0000] Professce
[1.0000] Course CebEog

=
| LEVELD 7 B Persistency ADEMS Creole

[Bass Rewsa
[jevwan

+

3

= & LEVELY B Parsistency ADBEME Delots

4% LEVELZ ® Parsistency RDEME Retrievs
~—dl LEVEL 1 £ M Parsisitency ADAMS Updais

¥ Parsigtency 0 0DEMS Create

B Paisistency ODDEMS Updala

B Parsistency 00DDAMS Delata

I Persistency 00DEMS Felrieve

B SefllpRemoteConnaction

Ohganear

B Secure User Setlp

[Secune Diject Acce s

e B L Rt 1O Laal

Figure6 Main Cow_Suitetool window with Main Trees, Design Treesand Not Linked
elements

The execution starts by analysing the Rose .mdl file (the internal representation of
the parsed UML diagrams) and proceeds with the construction of the Main Trees and
the Design Tree. Figure 6 shows a representation of the Main Trees, the Design Tree
and the list of “Not linked” elements?. Observing this figure, we notice that , as the
design evolves, the tool continuously provides a complete overview of the
specification status of the diverse system functionalities.

Considering every Main Tree, the tool, by default, distributes the weights in a
uniform way (Sec. 5.4.2.1) among the nodes at the same level of integration.
However the user can always modify any of the assigned weights, and the values of
the other nodes are automatically normalized. Following the step described in Sec.

% Thisfigure, likes the othersin this section, refers to the case study that will be presented in the next
section

158

5.4.2.2, the user selects an integration level on a Main Tree and directly chooses the
test strategy to use in a dialog window. For each selected integration stage, the tool
directly derives aweighted subtree according to the chosen test criterion. In Figure 7,
an example of the UIT Tree is reported. In particular the SD nodes keep track of the
number of Test Procedures that must be developed according to the test strategy
selected. In Figure 7, the left window shows the selected subtree, while, on the top
right, all the SDs are collected together. In the bottom right window only the user
selected SDs are listed.

(B8 Coner Suite - O SO Marza 2005 Exeg | Exe

LML
FILE 21 LET 14 ¥ {

crseRegistrationsysteml L 2000 mdl

CowTadt (UM | Tast S pscieston |
sesuenceligpuams

£ [0 B00iy Sides I]<® CACORA Mt o A0 EE saimpd VE sl
3 [l Z000) Wiew Pepod Card (RTPI000 H o B 02000 Loges - bain Flow [
o DR CEON0) L v O [(e.0900] CourssCalolneg - gl
S [BAD00] Lugis § o Ol [0.0900] Course Callug - gl
B [91200] Loges - kmn Flow [[MTFEE]) 4 S [R000] Fesgister For Cosse
£ [80900] Coarsa Cainbog - geiCtanings ((NTP4S]) & [[9.1000] Ragister For Coisas
B [BNE00] Cos “mindng - geiCifesings ((NTP455) w1 [80R00] Feagister For Comse
1 O3 [RE000] Fogisies for Cownos u ERE [9.0400] Bubocribog and g
2 [Einn0) Cowrse Golodog (TP S8 s B [2.1000] Pasgintur For Gowess
= [EAUN] Heqisles Bor Coseses
M [1000] Fagigier F Ourgo-s - Mass Flos (Pad 3 - Complotan] ([RTP:RE0)
B[R 1000] g m F -4 AN
#i [B0E0N] P 4

Bk [B0400] Suls 1
B [#1000] Fegister For Courses - ks Flos (Po 2 - Courss Ssiecion)) ((87P-560)

| | H
ﬂ, 4 COr A o T IR E orrgod | E sacami pl L1
S B [88200) Legin - Main Flow (M1
o B [RNO00Y Fegisies For Courses
v B [EEA00) Bubscibes aad Obaer

Lavmrvess waights sum 1 Mumber of Test Procecures: 5110

Figure7 UIT Window with thederived UIT Tree, theset all SDsfound and the selected
SDs.

Then, for each selected SDs, the Cow_Suite tool automatically constructs the
Messages Sequences applying UIT_sd. On the left Figure 8 shows an example of a
list of Messages Sequences. Each Messages Sequence contains the lists of all
Messages and the Settings Categories involved plus its feasibility condition (where
existing).

After Messages Sequences derivation, the user, using several dialogue windows,
can interact with the tool for inserting the Choices values, after which the Test
Procedures are automatically derived. As explained in Section 5.5.2, the tool
automatically excludes the combinations of parameters that result contradictory or

159 5. An Automated Approach to UML-Based Testing

meaningless. On the right Figure 8 shows some of the fina resulting Test
Procedures.

So far the Test Suite document is a text file document, but the Test Procedures
final format can be easily adapted to become the input format of a particular Test
Driver. In this regard, we remark that the Cow-Suite tool does not execute the
derived Test Procedures. for this purpose Cow_Suite should interact with a test
driver, to which the derived tests should be passed to be automatically launched.

FLE ™ Z53% v 1 Nmm_saammm Test Progedres Ereralon Frink
CowTasr| LT [Tast Spathcaiin |
e
SO0 Login - Mmin Flow [88 =
5 A Maspnges_Begeence 1 [12) TertProcechme (S01341_1
i
- [:::J':imn;q“;l wvaldeteusedDPasswodiuid : Shing ped : Sinng)
A [P—— non® (13 acres s validston ol & egists e s erlcomect uid snd ped)
I _ G i
A Massnans nead {12 ﬁudale-rseﬂnpaem-dluﬂ SHing rwd - SHRQ
= r':]l-leu-u.ges_Seqnnﬂ A {24 T_amdih
5 T Mesteges_Hogeasos 41 [12) T
* [l keginlizei)
B % [47] valcemuccd DFssowanciurl | SHng, pwil : Sng)
& ud TastFrocackie (201541_2
g gp_ﬂ 2Hng wvaldete e AP ssward|uid : Sting, mwd : Sting)
T acoea s validation ol & et alowsd usar
B rndackean vl detausedDPasswodfuid : Siing ped : Sinng)
B smih uid
B e whis Fesul_white
,i‘ 5_7 lwhestzon
& pracd
T 5
Ling C.Em:?' nno TastFrocachm (3017413
8 scone valiiaton o anew user el data s D Passwamfuid | Exing e - Swingl
B accass validaion of a egstered usen comact uid and pwd] | - e ualidstion of = not slowed user
B coacs waliokdon of & egetened uesnwoni ud anmd (w] LwfdmausanDPasssamuid: Sting mad : Sring)
B sce=ssysldsion ofs nol alowed user il
B accass valickadon of & g red aocount usar mdeckeon
¥ [4%] sewpSecuntConted] 1— F (login successiu)
* 42 1] neewllgai)
= 3 Messages_Segeemce 42 (12)
* [kginlloaili [Festocachm 20 S L o
* [11]smbdsirusedLPasswnmdid - Sting. ped : Srng) waldnleise D Passwan i - Sring red - Sring
% [43] cisciogrSackon - FLIE ncoen s validaian ol m e user
Wy Z02 Pagesier For Courses - Mo Flos (Past 3 - Complesos) (60} wal dakaine iDPasawandfuid : Eving, pwd - Sring)
EDI Subscritivs end Dbsensar [29) uid
pesil_whits i

Figure8 Messages Sequences, Choicesand Test Proceduresfor the SD Login-Main Flow

5.7 Applying Cow_Suite to Course Registration System

In this section we present the application of the Cow_Suite methodology to a case
study, the Course Registration System [CRS]. In particular we discuss the Cowtest
application and the integration with this strategy with the UIT methodology.

5.7.1 Course Registration System

The Course Registration System (CRS) is afictiona project to develop an on-line
course registration system for Wylie College, and is well-known in the UML

160

literature [CRS]. The project is intended to replace the existing procedure for courses
registration, which is based mainly on the personal interaction of the registrar with
the students and professors and only support access through the clerk in the
Registration Office. The new system will therefore enable professors and students to
access the system using PCs connected to the Wylie College computer network and
by any personal computer connected via the Internet.

The main problem with the existing system was the limited flexibility in the
procedure followed by students for registering to the courses. They had to complete a
course registration form and submit it to the registrar, who took up to 2 weeks just to
examne the form and another week to send the confirmation back to the students.
Instead, with the new system the CRS users, students, professors and a registrar can
access the system via a login function through PC clients and quickly find the
required informetion like the course availability and assignment. Briefly the main
requirements for the new system will be:

A student can either register for courses belonging to the current semester
course catalogue or view his’her own data relative to the previous semester.

A professor can select the courses he/she wants to teach from the course
catalogue, aso defining the dates and times the specific course will be given,
and submit the grades.

A registrar is in charge of professors and students information. He/she
maintains and verifies the data and course registrations, checking that there
are enough people per course, and notifies the students in case the required
courses are cancelled.

The CRS aso interfaces with two existing system: the Billing system, which
keeps track of each registered student in each course offering that is not cancelled, so
the students can be billed, and the Course Catalog System that represent the database
of the course information.

Typically in rea project development not all the system functionalities are
devel oped contemporaneously or are specified at the same level of details. Thisisthe
Stuation we consider as well. We assume that the software developer concentrates
first on the realization of the student system interaction, represented by the system
functionalities called: Login, used by the students to log into Course Registration
System; View Report Card, that allows the students to consult their report cards for
the previously completed semester; and finally Register for Courses, that allows the
students to register to courses in the current semester. In particular the Course

161 5. An Automated Approach to UML-Based Testing

Catalog System provides alist of all the course offerings for the current semester, so
that the students can a'so modify or delete previous course selections, if the changes
are made within the add/drop period at the beginning of the semester.

5.7.2 Cowtest Application

The Cowtest application begins with the analysis of the UML documentation
available fro the CRS case study. In particular, as described in Section 5.4.1 the first
representation of the Main Graph is derived by using the information of the Use Case
View. We show in Figure 9 the Main Graph obtained. In this example, the UCs are
quite ssimple not further refined into sub-UCs, therefore only a level of UCs is
derived.

This graph is then integrated, as described in Section 5.4.1.2, with the
information of Logical View when it is available. In Figure 10 we report the
upgraded Main Graph in which both the information of the Use Case View and the
Logica View are integrated. The UCs with a dotted edge represent the use case
realizations.

It is worth noting that the CRS is a fairly ssmple example, which nearly has a
UML project specification complete in every part. As result the Main Graph obtained
is connected but generally thisis not atypica situation.

As discussed in Section 5.4.1.2, once the Main and the Design Graphs were
completed, it was not possible, only using the information of the UML specification,
to link the data of the former with those of the latter. Specifically, considering for
instance the Login function of the Main Graph, it was very hard to individuate in the
Design Graph the packages that realized this functionality. To overcome this
problem, even if we didn’t know the real association between UCs and packages, we
tried to derive a probable and sufficiently realistic Design Link at least for the Login
function by consulting further documentation. The obtained result is shown in Figure
11. Asexplained in Section 5.4.1.2 the Design link collects the list of the packages of
the Logical View that implement the UC associated to the use case realization
considered.

The derived graphs are then used for the application of the DFS_Mod agorithm,
as described in Section 5.4.1.3, to obtain the Main Trees and the Design Trees. To
this purpose, considering the Main Graph shown in Figure 10, we report in Figure 6
the structure of the Main Tree rooted at the actor Student. This tree is only focused
on the interaction of the system with this actor, excluding al the other system

162

functionalities not directly involved, because the purpose is to test this collaboration

Separately.
As shown by the figure the tree presents some marked parts due to the presence

in the Main Graph of nodes connected to more than one design elements. For
instance the UC node Logi n at first level is filled (and labelled with a “R” not
visible in the figure), because it is a multiply used functionality, i.e. more than one

actor is assod ated to it, as shown in the Main Graph.

% Wiewr Beport Card
(froam Tse Cases)
Smdent
[from Actors) QRN
Fegister for Courses
(froem e Cages)
Course Catalog

elect Courses to Teach

(froan ee Cases)

G

Submit Grades

ifrorh ze Cages)

%ﬂaﬁtaﬁl Professor Information / gt

\lﬁmn Tse Caces) Eilling System
Pecist © [from Actors)
istrar
(from Actors)
aintain Student Informatidn
(ffoan Tse Cases)

D

Close Eegistration
Ttk Tze Cases)

Figure9 TheMain Graph after theanalysis of the Use Case View Data

Professor

[from Actors)

163

5. An Automated Approach to UML-Based Testing

Student

(from Actors)

Select Courses to Teach

(fr07< Use Cases)

X

Course Catalog

View Report Card

Sequence Diagram: Register
for Courses / Subscribes and
Observer

(from Actors)

Sequence Diagram: Register for
Courses/ Register For Courses
- Main Flow (Part 3 -
Completion)

T

Register for Courses

Sequence Diagram: Register for
Courses/ Register For Courses -
Main Flow (no distribution)

(from Use Case Realia\ions)

7

Sequence Diagram: Register for
Courses/ Register For Courses-

Registrar
(from Actors)

\

Close Registration

(from Use Cases)

i \Mainta‘n Professor Information
Maintain Student Information
(from Use Cases)

Login N
Main Flow (Part 2 - Course
Use Cases) Selection)) Sequence Diagram: Register for
Courses / Register For Courses-
Professor \ Main Flow (Part 1- Set-Up)
f A -~ A
(from Actorg) ; \
~ /\
~ — - - -
Sequence Diagram: Login /
Login CourseCatalog - getOfferings
(from Ufecase Realizations)
Submit Grades Sequence Diagram: Login / Login
(from Use C: - Main Flow Collaboration Diagram: Lf)gln/
CourseCatalog - getOfferings

>

from Use Cases) %

Billing System

(from Actors) | Sequence Diagram: Close
Registration / Close Registration -

Main Flow (close offerings)

T

Close Registration Sequence Diagram: Close

Sequence Diagram: Close Registration /
Close Registration - Main Flow (bill
students)

Registration/ Close Registration -
Lessthan 3 students

]

|s(lrom Use Case Redlizations)

Figure 10

Main Graph of the Course Registration System

Once the Main Trees have been defined it is necessary to assign the importance
values to each node as described in section 5.4.2. To this purpose, considering the
CRS case study, we assume, for example, that during its development, the Logi n

and Regi ster for
while Vi ew Report

Cour ses must be completely defined and implemented,
Car d is an dready developed functionality. It is important

to specify that thisis just one of the possible cases considered to show a criterion to
assigning the weights, it is not the real situation encountered during the CRS

devel opment.

164

Consequently in our example Logi n and Regi ster for Courses are new
system functionalities, and therefore we assigned to them a greater weight than that
associated to the aready built Vi ew Report Card. In particular Regi st er
for Cour ses ismore complex, in term of implemented features, than Logi n, so
its testing must be more accurate. Based on these considerations we assign the val ues
0.50, 0.30, 0.20 to Regi ster for Courses, Login and Vi ew Report
Car d, respectively. In Figure 6, the weights assigned to each node are represented
by the numbers reported in square brackets close to the node name.

4 Rational Bose - Coursedegs irationSysteimPackages, mdl - [Class Dagrane Use Case Realiz alions / ClassDiaorain]
[B Rz B4t Vew Format Erowse Rl Gaery Took AJS Widow Hep
DEWd "&f (8O BDREORD @ 0 e

m-L0 etlmersd Swstem Lagmr =
= [Liees e Promend irmin s T
Eh Trecanbikias |~
-] 1 S S pnbeyebam® &
] ComseCatalog |
2-8 Chen Contoler (Erem Business Cbjeces))
5B ClemiCounecfanngs — 3
5 B ClantIokecdik
& B ChentSden
7 H2) MeindtdenFom
. B Meinmin
- 2 Schacka
#-* Clome Aesgeimbhon
Z: Login
B ClessDisgan

Bz =

[frem Busness Sapncasy
| Temerimartfacn |
ifram Busmess Objeces]) |

|

B Login-Y0FC e
W Logn ke Flow
thelogin [Login)
£t Faakter Tof Coumes
- Antiinn
+ [eiymrrs Userinkerace
- | mhhuwﬁmmw-ﬁ‘ad'uqemd?wrlrﬂ
4] 1 "

=

FOFGEESS @M Dl S 3 4m?

a2l . 4
Figurell Design Link Package for the Login function

Then the nodes at lower levels are considered from time to time and the weights
assigned. For example, considering Figure 6, for the node labelled “ Logi n” at the
second level, that is the use case redlization of the use case “ Logi n” at level one,
the weights assignment of its children is: 0.4 to the Logi n- Mai n Fl ow because it
is the SD representing the main behaviour of the login functionality, 0.3 to the others
because they represent the minor interactions between the objects involved.

The weights assignment is then used to derive the final weight of each node after
the integration stage selection, as described in Section 5.4.2.2. To this purpose we

165 5. An Automated Approach to UML-Based Testing

report in Table 1, considering the tree rooted in the Student node of the CRS
example, the nodes that belonging to the different integration stages and in Table 2
the corresponding final weights when the 2" integration stage is selected. In
particular Table 2 is organized in the following manner: the first and second columns
hold respectively the integration stage, and the names of all tree leaves considered.
The third column shows the leaves critical profile, i.e., the importance val ues of each
node visualized as the weights in square brackets in Figure 6. For example, the final
weight of the SD Regi ster For Courses — Main Flow (Part 1 -
Set - up) iscaculated as0.1 = 0.25*0.8*0.5.

Integration stage | Tree nodes

1% int. stage View Report Card, Login, Register for Courses

2" int. stage Login, Login-Main Flow, CourseCatal og—getOffering, CourseCatal og—
getOffering, Course Catalog, Register for Courses, Register For Courses
Main Flow (Part 3 Compl etion), Register For Courses-Main Flow (Part1 Set-
Up), Register For Courses-Main Flow (no distribution), Subscriber and
Observer, Register for Courses-Main Flow (Part 2 Course Selection)

3% int. stage Login-Main Flow, CourseCatalog—getOffering, Register For Courses-Main
Flow (Part 3 Completion), Register For CoursesMain Flow (Partl Set-Up),
Register For Courses-Main Flow (no distribution), Subscriber and Observer,
Regi ster for Courses-Main Flow (Part 2 Course Selection)

Tablel Integration stages

In Figure 7 we report the final weights of the tree rooted in the Student as derived
by the Cow_Suite tool.

For example the assigned number of tests for Regi ster For Courses -
Main Flow (Part 1 — Set-up) isgiven by 50=|500*0.1+0.5].

Instead, taking into account the second test strategy proposed, i.e. Cowtest ing
with fixed functional coverage, the final weight of every leaf can be used to select
among them those on which concentrate the test effort. Referring to the CRS
examplein Table 3we report in details some results obtained considering the second
integration stage and several coverage degrees.

The table is organized in the following manner: the first and second columns hold
respectively the names of all the tree leaves and the their relative weights at the
second integration stage. The remaining columns are divided into two parts showing,
respectively, the normalized final weight, nwf, and the minimum number of tests
with respect to the fixed coverage percentage.

166

Integration | Leavesnames Critic | 2" Stage/NTest
Stage al
profile

1% Stage View Report Card 0.2 0.2 100
Login 0.3
Register for Courses 0.5

2" Stage Login 1
Login-Main Flow 04 012 |60
CourseCatal og-getOffering 0.3 009 |45
CourseCatd og—getOffering 0.3 009 |45
Course Catdog 0.2 0.1 50
Register for Courses 0.8
Register For Courses-Main Flow (Part 3 Completion) |0.25 0.1 50
Register For CoursesMain Flow (Partl Set-Up) 0.25 0.1 50
Register For Courses-Main Flow (no distribution) 015 |006 |30
Subscriber and Observer 0.1 004 |20
Register for Courses-Main Flow (Part 2 Course 025 |01 50
Selection)

Table2 Test casesdistribution at different integration stages

L eaves names 2" Stage | 70% coverage| 80% coverage/ | 90% coverage/ | 100% cover age/
weights nwf /NTest | nwf /NTest nwf /Ntest nwf /NTest

View Report Card | 0.2 027 |2 0.2469 2 02222 |2 0.2 5

Login-Main Flow 0.12 0.1667 | 1 0.1481 1 01333 |1 0.12 3

Course Catalog 0.1 0.1389 | 1 0.1235 1 01111 |1 0.1 2

Register For 0.1 0.1667 | 1 0.1235 1 01111 |1 0.1 2

Courses-Main Flow

(Part 3 Completion)

Register For 0.1 013891 0.1235 1 01111 |1 0.1 2

Courses-Main Flow

(Partl Set-Up)

Register for 0.1 0.1389 | 1 0.1235 1 01111 |1 0.1 2

Courses-Main Flow

(Part 2 Course

Sdection)

CourseCatalog— 0.09 0.1111 1 0.1 1 0.09 2

getOffering

CourseCatalog— 0.09 0.1 1 0.09 2

getOffering

Register For 0.06 0.06 1

Courses-Main Flow

(no distribution

Subscriber and 0.04 004 1

Observer

Table3 Leavessdection on thebaseat different values of functional coverage

In this case considering Table 3, if we wish to cover 80% of the functionalities
available it is sufficient to include the nodes: M ew Report Card, Login- Min
How Gourse Catal ogue—getfering, Gourse Catal og, Register for

167 5. An Automated Approach to UML-Based Testing

Qourses, Register For Qourse-Miin How (Part 3-Conpletion),

Register For (ourses—Main How (Part 1 Set-Uo), Register For

Qourses—Mvain How (Part 2-Course Selection). The sum of their fina
weights times 100 is equal to 81. Moreover, using the final weights of the selected
leaves, normalized so that their sum is still equal to 1, it is also possible to derive the
minimum number of test cases required to reach the fixed coverage. In this case the
minimum number of test cases is 8, one test per leaf except M ew Report Card
which required 2 tests cases.

5.7.3 Combining UIT_sd and Cowtest

We do not describe here the Test Cases and Test Procedures derivation by
applying the UIT_sd methodology, since it has been already described in Section
5.5.2. For this purpose, some of the Test Procedures derived form SD Logi n- Mai n
H ow of the tree rooted in the Actor Student, are shownin Figure 8. Here we mainly
concentrate on explaining the integration of the Cowtest with the UIT methodology
and for this purpose we dightly modified the UML design of the quite simple CRS

case study.

- Any User

: LoginForm

: 1. // login user() :

=T
11
Ll

2. I enter user name and pasgword()

=

2.1. // validatg yusername and password()

——— D e e

—————— [T T —
N

|

|

|

.

—_—————

Figure12 SD labelled L ogin — BasicFlow
Generdly from the UML designs of the real world projects more complex trees
with a higher number elements can be derived. In these cases the differences between

168

the test cases, derived from the SDs associated to diverse integration stages, become
more evident with respect to CRS, as well as the relation between integration stage
and level of integration testing exercised.

The changes of the UML documentation consist of linking to the UC labelled
Login of the Use Case View, the high level SD called Login-BasicFlow reported in
Figure 12. Thisisavery simple SD, which describes the functionality represented by
the UC.

Naturally the addition of this SD modifies the structure of the derived Main
Trees. Figure 13 shows the changes relative to the tree rooted in the actor Student of
the CRS. It is beyond the scope of this section to discussion about the new
assignment of the weights to the nodes, we therefore adopted the uniform
distribution.

As discussed in section 5.4.2.2 the selection of an integration stage corresponds
to determining the amount of information to use for integration testing and hence the
structure and granularity of the Test Cases derived applying UIT_sd.

L L e R k=T L

[1.0000] Student
O [013333] Wiew Pepont Card
e [EI 3333] Login

B C) [EI 3333] ReglsterfDrCDurses
peee % [0.B000] Course Catalog
[EI h000] Register for Courses
el [0.2000] Register For Courses - Main Flow (Fart 3 - Completion)

''_' [0.2000] Register For Courses - Main Flow (Part 1 - Set-Up)
d § [0.2000] Register For Courses - Main Flaw (no distribution)
]
]

ity [0.2000] Subscribes and Observer
b f) [0.2000] Register For Courses - Main Flow (Part 2 - Course Selection)
£ 1000 Prnquan

Figure 13 Thetreerooted in the Actor Student modified with the addition of L ogin-Basic
Flow

Specifically, assuming the adoption Cowtest_ing with a fixed number of test
cases, if in the above tree the first integration stage is selected only the newly added
SD (Login-BasicFlow) will be considered for the UIT_sd application. Figure 14
shows the set of derived Test Cases derived applying the Cow_Suite tool. Observing
their structure, it is evident that the Test Cases only have the purpose of verifying the
correctness of interactions among the components that will realize the functionality

169 5. An Automated Approach to UML-Based Testing

described in the UC Login. The degree of detail is voluntarily high and reflects the
granularity of information of the selected integration stage.

Sequence Diagram " Login — Basic Flow”
Test Casel Test Case2
Description: Description:
Precondition: Precondition:
Flow of Event (Messages _Sequence): Flow of Event(Messages Sequence):
loginUser Enter user name and password
Categories: Validate user name and password
Settings Categories: Categories:
Users DataBase Settings Categories:
Interactions Categories: UserNames Database
LoginUser Passwords and User Name Lists
Post Condition: Interactions Categories:
Enter user name and password
Comment: Validate user name and password
Post Condition:
Comment:

Figure 14 Test Casesderived by the SD L ogin-Basic Flow

If instead the second integration stage is selected, assuming again adoption of the
Cowtest_ing with a fixed number of test cases, the SD Login —Main Flow is also
selected (Figure 3). It represents the description of al the necessary operations (i.e.
messages that the different objects exchange with each other) to implement the
functionality described in the UC Login. In this case Figure 15 shows the set of Test
Cases derived with the Cow_Suite tool. Comparing them with the Test Cases derived
from the SD Login-Basic Flow several differences are revealed:

The objects involved are detailed at various levels of description. In the SD

Login — Basic Flow the LoginForm is only the high level description of a system

component that will be realized by the objects of the SD Login-Basic Flow.

The operations in the Test Cases derived from the SD Login-Basic Flow are

more detailed, focusing on implementation and specific for the integration test at

low level.

In both cases the Test Cases structure depends only on the Messages Sequences

individuated in the SDs. Therefore, it is not possible to relate a Test Cases of the

SD Login — Basic Flow to one of the SD Login — Basic Flow.

170

As revealed by this smple example, the higher the integration stage selected for
applying the different test strategy the more detalled is the level of integration
verified by the derived Test Cases.

Sequence Diagram " Login — Main Flow”
Test Casel Test Case?2 Test Case3
Description: Description: Description:
Precondition: Precondition: Precondition:
Flow of Event Flow of Event: Flow of Event:
start() EnterUserName() EnterPassword()
open() . |
Categories: Categories: Categories:
Settings Categories: Settings Categories:. Settings Categories:
uid pwd
Interactions Categories: Interactions Categories: | Interactions Categories:
Start() EnterUserName Start()
Open() Open()
Post Condition: Post Condition: Post Condition:
Comment : Comment: Comment:
Test Case4.1 Test Case4.2
Description: Description:
Precondition: Precondition:
IF (login successful) ELSE
Flow of Event: Flow of Event:
loginUser() loginUser()
validateuser| DPassword(uid, pwd) validateuser| DPassword(uid, pwd)
setupSecurityContext() closel oginSection
newUserl D
Categories: Categories:
Settings Categories: Settings Categories:
uid uid
pwd pwd
Passwords and UserNames Database Passwords and UserNames Database
Interactions Categories: Interactions Categories:
LoginUser LoginUser
Validateuserl DPassword Validateuserl DPassword
SetupSecurityContext Closel oginSection
NewUserlD
Post Condition: Post Condition:
Comment: Comment:

Figure 15

Test Casesderived by the SD Login —Main Flow

171 5. An Automated Approach to UML-Based Testing

5.8 Comparing Manual vs. Automated Test Case
Derivation.

As observed in the preface of this Chapter, Cow_Suite can be applied during the
development process either combined with Propean approach (Chapter 4) to derive
parameters of interest, or in isolation to derive ameaningful Test Plan. In this section
we focused in the latter aspect, describing the application of Cow_Suite to a real-
world case study provided by Ericsson Lab Italy (ERI) [BILO3]. Using our tool we
derived a detailed test case plan, called UIT test plan for the Integration Testing of
some new functionalities to be added to an existing system. The UIT test plan was
automatically derived outside the production processes, exclusively using the UML
diagrams developed during the analysis and design phases. The ERI personnel had
independently derived another test plan (the “official” one), called ERI test plan, for
the same functionalities. The ERI test plan was developed manualy, following
standard in-house procedures at ERI and was based mainly on the personal expertise
of the people involved and their knowledge of the system. In the following sections
we report the description of the case study and two test plans (Sections 5.8.1, 5.8.2,
5.8.3) and their qualitative and quantitative analysis (Section 5.8.4).

5.8.1 Case Study

The case study concerned a project whose aim was to develop an |P Telephony
system to support GSM communications based on H.323 architecture [H323].
Although the system was not wholly under ERI responsibility, a significant number
of independent subsystems were managed and developed in-house by ERI. The
subsystems under ERI's control regarded mainly H.323 gatekeeper functions
implemented by the Sitekeeper and User Agent subsystems. The Figure 16 depicts
the entire system, together with the subsystems under ERI responsibility SK, UA,
H.323 proxy and the associated plug-in.

172

Figure 16 Dexcription of the system

Table 4 provides a brief description of some of the system components shown in the
above figure.

The specific feature used to compare ERI's manual vs. UIT-based automated test-
case definition was the Basic Routing Enhancements (BRE).

This feature represents an improvement of the routing functionality in the GSM
on the Net system, which is a new multimedia system based on IP protocol The
upgrade mainly regards extension of some tables through the addition of new
parameters, the implementation of new functionalities for determining the enterprise
or the User Agent Group associated, giving a certain number.

As proper implementation of BRE implies modification of the Site Keeper, SK,
and User Agent, UA, an accurate and specific test plan was needed.

173 5. An Automated Approach to UML-Based Testing

BTS the usual Base Station for GSM radio
transmission

A -Bis the component that packs the GSM

Gateway messages into | P packet, to allow

(AGW) transport over the IP network

Terminal the component that allows all terminals

Agent H.323 compliant to access the system

(TA)

Access acontrol node for the GSM terminals. It is

Node composed of:

Radio Network Server (RNS): provides
the radio network management and the
traffic functions

Network Access Controller (NAC): a
Terminal Agent for the GSM terminals. In
th e NAC the system provides the protocol
tranglation between GSM proprietary

protocols
Service is the main component of the system. The
Node (SN) SN is composed of:

User Agent (UA): inthe UA are
implemented all the users system
functionalities. In particular: User
Service Agent (SA): in the SA there

the implementations of supplementary
services, such asVirtual Private Network,
Calling Line Identity
Presentation/Restriction, Call Forwarding.
SiteKeeper (SK): inthe SK isthe interface
between the SN and the system access
provider. All terminals (if necessary
converted to H.323 by an access agent)
enter the SN through the SK. The SK
performs the routing for calls and

resources management.
Manageme the component for efficient management
nt System of the system
SS7 the gateway dedicated to PLMN interface

Gatewav

Table4 Description of components

5.8.2 ERI Test Strategy

To better illustrate the test strategy adopted by ERI, a brief description of the
project's scope is in order. The project had to implement eleven features, which after
careful analysis we discovered to be nearly all independent. Therefore, due to the
project's short timeframe, a parallel development life cycle was adopted rather than

174

an incremental one. Although the features were independent, all components were
affected by more than one feature. For this reason, the project involved identification
of specific test strategies for each feature with the aim of covering the feature
reguirements as well as the architecture of the system as awhole.

Testing Characteristics Responsability
Activities

Class Test Executed both in static and dynamic mode Design Team
Component White Box, aiming at testing the interfaces Design Team
Test WB among classes, described in a specific Test Plan

Component Black Box, aiming at testing in a simulated Design Team
Test BB environment the functions implemented by the

component and its behaviour, described in a
specific Test Plan

Node Test WB | White Box, aiming at testing the interfaces Design Team
among components, described in a specific Test
Plan

Node Test BB | Black Box, aiming at testing in a simulated Design Team

environment the functions implemented by the
node and its behaviour, described in a specific
Test Plan

Feature Test Functional test in simulated environment using | Design Team
Pre-Integration | the real code, described in a specific Test Plan.
The Test Plan is derived from the detailed
requirements. The main purpose of the
preintegration is to deliver to the Integration &
Validation team a feature running and clean
Feature Test Functional executed in the target environment., | Integration &
described in a specific Test Plan. The Test Plan | Validation

is derived both from detailed requirementsand | Team

main requirements
Regression Mandatory at the end of each feature delivery 1&V Team
Test
Performance Described in a specific Test Plan 1&V Team
Test,

Stability Test,
Negative Test,
Overload Test,
Characteristic
Test,

Capacity Test

Table5 Description of testing activities

The test strategy defined by the project comprises nine different testing activities
asdescribed in Table 5.

Nevertheless, not al the activities were mandatory; each feature had its own Test
Strategy defining the test activities to be performed. The purpose of having a specific

175 5. An Automated Approach to UML-Based Testing

test strategy for each feature was to arrive at the best trade-off between quality and
time. In particular the BRE test strategy was to perform five different testing
activities (the last common to all the features): Class Test; Feature Test Pre
Integration; Feature Test; Regression Test (twice); Performance Test.

For the illustration purposes, herein we concentrate on the Pre-integration Test
and present and compare the two different test plans with regard to this aspect of the
BRE testing.

5.8.3 Test Plans Description

In this section we briefly describe the structure of two derived Pre Integration test
plans. Specifically, in Section 5.8.3.1 we present the “official” test plan, (which we
refer to as ERI_TP in the following), developed by ERI following standard in-house
procedures, and in the Section 5.8.3.2, the UIT Test Plan, (henceforth referred to as
UIT_TP), derived applying the Cow_Suite tool, based exclusively on UML-
diagrams.

5.8.3.1 ERI Test Plan

The ERI_TP has been defined specifically for testing the BRE functionalities.
Essentialy, it is a natural language document describing the test cases configuration,
as well as the test results expected in terms of checking that the BRE requirements
have been fully covered. In drawing up the ERI_TP, the ERI staff bases their
decisions solely on their personal knowledge, both for definition of the test cases and
validation of their accuracy with the respect to the requirements.

The test plan was obtained wholly independently of the UIT_TP, without
reference to the UML system description. Moreover, no tool or automatic device was
applied for deriving the test cases. The test specifications were in fact defined
“manually” according to the standard in-house procedures at ERI.

Once the test cases were defined, each test was then assigned to a specific test
group representing high-level system functionality. The Project Manager uses such
test groups to check requirement compliance.

In greater detail, each test case is divided into three separate parts. Description,
Precondition and Procedure.

The Description defines the goal of the test cases. Moreover, it provides a

description of the environment, the entities involved in the test and the specific

conditions under which the test should be run.

176

TEST GROUP 1. CALL ESTABLISHMENT WITH ENTERPRISE INFORMATION
Thistest group aimsto verify that the Control Node is able to establish different kinds of
calls using the Enterprise information.

TC 1: Basiccal from internal user to External Network, Enterprise with public numbering
plan, Enterprise determination based on €164 alias

Description

Thistestismadeto verify that thetypical call case from user to External Network works
properly using the information of the Enterprise the user belongs to.

The needed Enterprise determination is performed using the €164 alias in the incoming
SETUP message.

Precondition

* Thefile MasterRoutes.def must contain arow looking like this:
1 (=UA) UAGname 1 (=e164 Route Type) EnterpriseName Digits 0
Anexamplecouldbe: 1 UAGxxx 1 FEricsson 39067258 0
The Enterprise (in our example “Ericsson”) must be present in thefile Enterprise.def
No Number Modification will be configured for the TA the calling user belongs to.
A GW isto be added to the Network Topology; this Access Agent must be associated
(viaaproper Access Group) to asuitable route (let’s make it for example “39068") and
to the Enterprise the user belongs to. Thefile MasterRoutes.def could contain for
example arow looking like this:
1 Agxxx 1 FEricsson 39068...
Ancther GW isto be added to the Network Topology; this Access Agent must be
associated (vi aaproper Access Group) to the same above route but to adifferent
Enterprise (let’s call it for example “Nokia’). The file MasterRoutes.def could contain
for example arow looking like this:
1 Agyyy 1 Nokia 39068...

Procedure

Action:

Make aca Il from the user belonging to the first Enterprise (in our example “Ericsson”) to
the above GW. Thefirst digits of the dialed number must match the above route (in our
example a suitable Called Party Number could be “39068xxxx”).

NB: please notice tha t the originating SETUP message MUST contain in the source address
an €164 alias matching with the one defined in the table Master Routes.def (in our example
the alias could be “390672580001").

Result:

Thefinal result isthe call termination towardsthe G W reserved for the Enterprise the user
belongs to (in our example to the GW inthe AG “AGxxx”, not “AGyyy”).

Comment:

Only the GWSs reserved for the Enterprise can be used for routing calls.

Figure 17 ERI_TP Test case description

The Precondition delineates the data structures involved in the test case. In
particular, the values and the types of information they must cntain are listed
explicitly. Often, the precondition part also provides a natural language
description of the behaviour that the test case must exhibit, the actions it is to
perform and the conditions required for test execution.

The Procedure part is in turn divided into three sections: Action, Result and
Comment. The Action consists of a brief description of the steps necessary for

177

5. An Automated Approach to UML-Based Testing

constructing the test case and assigning values to its variables. The Result section
describes the expected outcomes of the test case. Finally, the Comment section

may contain some notes or suggestions for proper execution of the test case.
In Figure 17 one of the ERI_TP developed test cases is reported.

5.8.3.2 UIT Test Plan

The UIT_TP is derived by applying the Cow_Suite tool to the UML description
of the system. In particular, we distinguish two level of detail: the UIT_TP including

only Test Casesor UIT_TP in which the Test Procedures are specified.

1. SETUP(A,B)

A O

1.1. DetermineEnterprise(A)

1.2. HRA()

2. SETUP(A,B,Enterprise)

2.1. LRQ(A,B,Enterprise)

2.1.1. GRA(B, Enterprise)

if (GRA lj
Successful)
\]\e,_LCF()

else
4. LRJ()

s O A

- UA_Qriginati

3.1. SETUP(A, B, Enterprise)

4.1. RELEASE()

3.1.1. LRA(B, Enterprise)
3.1.2. SETUP(A, B

Figure 18 Sequence Diagram “ Call user to External Network”

178

Depending on the degree of detail chosen, some evident differences result,
regarding both the people involved in test plan specification, and the period of
software development during which the UIT_TP can be derived.

Considering the UIT_TP at Test Cases level, it can be derived during the early
stages of software development, long before the testing phase. Test Cases
construction does not require any specific knowledge of the system, because it is
derived automatically from the information in UML diagrams. In Figure 18 and
Figure 19 respectively we show one of the SDs avalable and some of the
individuated Setting and Interaction Categories. These data have been used for
deriving the Test Cases of Figure 20.

Test Specification for "UA_QOriginating”
Settings
A

E164 phone number
email [F Ericsson Enterprise]

B
E164 phone number
Enterprise
Ericsson Property Ericsson Enterprise]
Nokia PropertyNot (Ericsson Enterprise)]
Siemens RropertyNot (Ericsson Enterprise)]
M aster Route.def
array of MasterRoute records
Network Topology files

Interactions
Setup(A, B, Enterprise)
call from a GON user to an external network when
a correct association in MasterRoute.def exists
call from a GON user to an external network when
a MasterRoute.def association does not exist
LCF ()
call from a GON user to an external network when
an association for B exists in MasterRoute.def
LRJ()
call from a GON user to an external network when
an asociation for B in MasterRoute.def does not
exist

Figure 19 Settings and I nteractions Categories Specification for UA_Originating

As shown by this figure each Test Case contains information useful for
determining the interactions of the units involved and how to test them. Once
derived, Test Cases are grouped into Use Case Test Suites (UCTS), which represent

179 5. An Automated Approach to UML-Based Testing

the actions necessary in order to check correct performance of the functionality
described in the UC. Figure 20 shows an exanple of UCTS corresponding to test
group 1 of the ERI_TP reported in the Figure 17.

USE CASE TEST SUITE 1

Sequence Diagram “BRE-Stepl: Call User to External Network;
Originating Case/Terminating Case”

Test Case 2

Description:

Precondition:
Flow of Event:

Test Case 1
Description:
Precondition:
Flow of Event:

SETUP(A,B) SETUP(A, B, Enterprise)
DetermineEnterprise(A) LRQ(A, B, Enterprise)
HRA () GRA (B, Enterprise)

Categories:
Settings Categories:
A

Categories:
Settings Categories:
A

B B
MasterRoutes.def Enterprise
Enterprises.def MasterRoutes.def
Network Topology Enterprises.def
Interactions Categories: Network Topology

SETUP(..,..,..) Interactions Categories:
DetermineEnterprise(..) SETUP(..,..,..)
HRA() LRQ(.., .., ...)
Post Condition: GRA(.., ...)
Comment: Post Condition:
Comment:
Test Case 3.1 Test Case 3.2
Description: Description:
Precondition: Precondition:
Flow of Event: Flow of Event:
[if (proper Enterprise)] [else]
LCF() LRJI()
SETUP(A,B, Enterprise) RELEASE
LRA(B, Enterprise) Categories:
SETUP(A,B) Settings Categories:
Categories: MasterRoutes.def
Settings Categories: Enterprises.def
A Network Topology
B Interactions Categories:
Enterprise LRJ()
MasterRoutes.def RELEASE
Enterprises.def Post Condition:
Network Topology Comment:
Interactions Categories:
LCF()

SETUP(A,B, Enterprise)
LRA(B, Enterprise)
SETUP(A,B)

Post Condition:

Comment:

Figure 20 Use Case Test Suitedescription

By interacting with the Cow_Suite tool, the test plan derived so far is then
specified at the Test Procedures level, later in the design development, as described
in Section 5.5.2. The designer can define the values of the choices and constraints for

180

al the Setting and Interaction Categories of the Test Cases, so that the Test
Procedures, structured as in the Figure 21, can be automatically derived. In this case,
a good understanding of the system and its details, characteristics and behaviours, is
clearly required.

Finally, for each Test Case, a document called Test Case Procedures Set isdrawn
up delineating the set of the meaningful derived Test Procedures.

e Procaaure

SETUP(A B, Enterprise)
cdl from aGON use to an externd network when a
correct associdion in MagerRoutedef exigts
LRQ(A, B, Enterprise)
cdl from aGON user to an externd network when acorrect
asxcidion in MagerRoutedef exigts
GRA(B, Enterpris9)
cdl from aGON user to an externd network when acorrect
assodation in MagterRoutedef exigts
A
emal
B
el64
Enterprise
Ericsson

M agter Routesdef table
Network Topology files

Figure2l Oneof thederived Test Proceduresfor Test Case 1

5.8.4 Comparison of Results

In this section we report the results of the comparison, with respect to both
contents and development effort, between the two test plans focusing in particular on
their peculiarities, strengths, and weaknesses It should be stressed that we do not
evaluate the effectiveness of the two plansin terms of fault detection or time required
for the real execution of test cases. When this experience was performed the test
cases of ERI_TP had aready been executed by ERI testers during the BRE pre-
Integration testing and this phase closed. Hence we were not able to compare the
ERI_TP and the UT_TP on the basis of test results. We report only the pros and
cons of the Cow_Suite in test generation, proving that it can be considered a valid
instrument for defi ning test plans in the industrial environment.

181 5. An Automated Approach to UML-Based Testing

However, due to the similarity of the tests (as detailed in the previous section) it
has been possible to determine degree to which the requirements would be covered
by the execution of the UIT_TP Test Procedures.

5.8.4.1 Comparison of the Contents of the Test Plans

In this section we compare the two test plans with regard to the following aspects:
the degree of requirements coverage, and the expressiveness and the degree of detail
of test cases derived for the same functionality.

Considering the requirements coverage, the two test plans achieve quite simlar
results, though some differences deserve note. The ERI_TP is surely the more
accurate, because its test cases have been specifically constructed to cover all BRE
requirements. Covering al requirements is assured by the thorough system
knowledge of those who construct the test plan.

On the other hand, the degree to which UIT_TP covers the systems requirements
is strictly linked to the SDs construction and information content. As described in
Section 5.5.2, the UIT method can derive Test Cases only when well-formed, proper
SDs have been furnished; the lack of SDs specifications prevents complete
requirement coverage from being achieved.

Fortunately the case study analysed here had a quite complete UML system
description; consequently, as seen in Table § UIT_TP provides ailmost the same

requirement coverage as ERI_TP.
TGl TG2| TG3] TG4| TG5JUCTS1JUCTSAUCTSJUCTHAUCTSHUCTSE{UCTS7IUTC!

RS BRE1 X

RS BRE2|| X X X X X X X
RS BRE3|| X X X X X X
RS BRE4|| X X X X
RS BRE5|| X X X
RS BREG|| X X X
RS BREY X X

RS BRE8|| X X X X
RS BRE9|| X X X
RS BRE10O|] X X X
RS BREL11 X X

RS BRE12] X X

Table6 Requirement Coverage Matrix of ERI_ TPand UIT_TP

Specifically in Table 6 considering the requirements d the BRE functionality,
the columns labelled TG1.TG5 represent the different test cases groups in ERI_TP,
while those labelled UCTSL...UCTSS8 are the Test Cases set derived from the SDs
associated with a specific UC (UCTS stands for Use Case Test Suite).

182

As shown by this table, the test cases both covering the RS BRE1 or the
RS BRE3 requirement in the TG2 group (3 row, 3° column) of ERI_TP are not
derivable via the UIT method due to the absence of the relative SDs. Actually these
test cases were based mainly on the designer’ s experience and were built explicitly to
test some exceptional conditions or anomal ous system behaviours.

On the other hand, use of the Cow_Suite tool reveals some test cases not
provided for in the ERI_TP (for instance RS BRE3 requirement in the UCTS2
group, 4™ row, 8" column). These Test Cases were derived from two SDs that
describe the same objects’ interaction from two different points of view. In this case,
these Test Cases do not increase the requirements coverage of the UIT_TP, but
represent a different way of testing the same functionality. One may choose between
these equivalent Test Cases as necessary, for example by ease of implementation.
Thus the two test plans show differences in expressiveness and degree of detail of the
test cases

Table 7 shows a comparison of the two test plans in terms of derived test cases:
the rows contain the ERI_TP test cases subdivided into groups, and in the columns
the UIT Use Case Test Suites. An "X” in the cell signifies equivalence of the test
cases based on the two methodologies. In particular, the UCTS7 and UCTS8 Test
Cases are an alternative to the UIT derived Test Cases while test cases TG1-TC6 and
TG5-TC2/3 are not provided for in UIT_TP.

Regarding the details of the two types of test cases, other differences can be
noticed, in expressiveness and in the amount of information contai ned.

The ERI_TP test cases are clearly more thorough and detailed than those of
UIT_TP. This is mainly due to the fact that it is an experienced designer who
provides the ERI_TP descriptions. In writing such a document these experts draw on
al their experience with and knowledge of the system components and interactions,
and can therefore specify in detail the steps necessary for executing the test cases and
providing a complete description of the environment and expected results.

On the other hand, as stated in Section 5.8.3.2, two different levels of detail can
be distinguished in UIT_TP. The detail of UIT_TP a the Test Cases leve is
automatically derived using the information in the SDs; hence, the Test Cases
contain only specifications of the operations without any reference to the
environment or necessary preconditions.

183 5. An Automated Approach to UML-Based Testing

UIT TP - Use Case Test Suites
|UCTSl UCTS2 |JUCTS3 |JUCTSHA |UCTS5 |JUCTS6 |UCTS? |[UTCS8

TG1 TC1
TC2
TC3
TC4
TCS X
TC6
TG2 TC1 X X
TC2 X
TG3 TC3 X
TG4 TC1
TC2
TC3
TG5 TC1 X
TC2
TC3

XXX X
XXX X

p and Test Cases

XXX

ERI_TP - Test Grou

Table7 Comparison Matrix for Test Coverage

UIT_TP Test Cases are subsequently refined at the Test Procedures level by
insertion of the Setting and Interaction values. In this way, the resulting UIT_TP is
quite ssmilar to the ERI_TP. However, the Test Cases lack of complete description
contained the fields labelled “ Description”, “ Precondition”, *Postcondition” are still
apparent. The input of such information therefore requires specific intervention on
the part of designers when they apply the UIT method. The UIT_TP specification at
the level of Test Procedure is automatically derived with minimal interaction by the
developers involved in the project. When the aforementioned fields are completed,
the UIT_TP represents a detailed and complete reference document with the same
expressiveness asthe ERI_TP.

5.8.4.2 Comparison Relative to the test Plans Development

In this section we compare the time (considering an 8-hour working day) needed
to formulate the two test plans and the effort required to transform the test cases into
executabl e testing procedures. Moreover, we shall aso consider the degree of system
knowledge required to develop the two test plans and the software development
stages in which they may be completed.

Considering ERI_TP, an evaluation of the time necessary to completely specify
such documents is provided directly by the ERI Project Manager and the designers
involved in the project. According to such assessments, 5 working days are necessary
to complete an ERI_TP description, the work being divided into three separate parts:

184

The first is test-case definition, which requires one day (8 hours) and involves
only the designer. This phase consists mainly of analysing the system
components in order to identify the possible test cases. The designer therefore
constructs a testing schema for each interaction that should be tested.

The second part is Procedures definition, which requires two days (16 hours).

The designer must specify al the steps and actions necessary in order to check

the system's interactions, particularly the description of the environment and

definition of parameters.

The ERI_TP definition ends with the refinement and completion of

documentation. This two-day stage (16 hours) involves the designer and project

manager, who must review the ERI_TP and correct any errors or inaccuracies.

The main advantage of the UIT_TP-based approach is that it is not necessary to
spend time on formulating Test Cases, these are in fact derived automatically from
UML design descriptions using the Cow_Suite tool. By simply executing the tool
with the UML diagrams as input, the first part of the ERI_TP development cycle is
completed immediately.

Completion of the UIT_TP, and therefore derivation of the Test Procedures,
requires specification of the values of choices and constraints. We asked an ERI
designer to work interactively with the Cow_Suite tool to insert the required
information; this took two hours for data input. Therefore, deriving the executable
Test procedures using the UML-based UIT methodology took two hours, as opposed
to the 24 hours needed to complete the corresponding ERI_TP work.

At this point, the designer and Project Manager need only check the correctness
of the derived Test Procedures and choose those to be actually run. The time
necessary for these operations has been estineted at only one working day (8 hours).
All told, derivation of the executable Test Procedure involves only 10 hours time
(one day and two hours) with the UIT methodology, while 40 hours (5 days) are
needed for complete derivation of the ERI_TP. However, athough the UIT_TP-
derived test procedures can be passed on directly to the tester for the execution, they
still lack the specifications regarding environments and pre- and post-conditions. If
the Project Manager requires that such data be included in the UIT_TP, an additional
day's work must be accounted for. In this case, the UIT_TPisderived in atotal of 18
hours and the ERI_TP in 40 hours.

The two test plans also differ with regard to both the software development stages
in which they can be completed and the knowledge required of the people involved

185 5. An Automated Approach to UML-Based Testing

in test planning. As already stated, UIT_TP can be defined as soon as one or more
SDs have been produced, i.e., during the analysis or design stage. In this case, any
user with no particular system experience can automatically derive the Test Cases by
simply applying the UIT method with the help of the Cow_Suite tool. It is worth
noting that these Test Cases are not the fina output of the UIT method application;
they can be derived in an early stage of project development and therefore represent
a tentative test plan, useful for the Project Manager for preliminary test scheduling
and cost estimation.

As a matter of fact, Project Managers can construct a detailed preliminary test
plan for pre-integration and other testing stages, both off-line and without designers
assistance. In particular, they can make decisions regarding the type of testing
strategy to adopt, focusing on such strategies to fulfil requirements, provide code
coverage or concentrate testing on the more peculiar functionalities. Moreover, by
observing the types and structures of the Test Cases, Program Mangers can make a
first prioritisation or even select some specific cases and thereby make an initial
estimation about the number of Test Gases to be implemented during the actual
testing phase.

During project development, when more detailed SDs and specific values for
choices and constraint are available, the UIT_TP can be further refined via definition
of Test Procedures. Specification of Test Procedures requires specific knowledge of
the system generaly available only to designers, who must specify the values for the
Settings and Interactions Categories during the analysis or the design phase.

Regarding the ERI_TP and its description, two specific ERI staff members are
involved: an expert designer, who is responsible for test-case derivation, and a
Project Manager, who acts as supervisor and ultimate decision-maker with regard to
acceptance of a Test Plan. The designer, on the other hand, must possess the
necessary expertise to properly describe the test cases, therefore, an in-depth,
thorough understanding of the system components and their behaviours is essential.
Thus, the ERI_TP can only be drawn up at the end design phase, just before the
testing phase, because a final, detailed description of all system components is
required. In this way, only when the testing plan is completed can the Project
Manager verify the degree of requirements coverage attained or the significance of
the test cases derived and above al decide whether the test strategy adopted is
suitable, or not. In the latter case, a different strategy must be adopted and
consequently, a new testing plan prepared. From the point of view of the tester, the

186

two test plans differ from each other also in the degree of detail of the two types of
test procedures. In fact, ERI_TP that requires the tester decide what the appropriate
values are for each test procedure in order to attain requirements coverage, and
therefore determine how many tests to run.

As areference point, it is important to mention that the development and testing
processes adopted in ERI are quite mature and well-established. ERI has been
certified at CMM level 3 [PCC93]; therefore the test strategies that we compared to
the Cow_Suite are effective and well-established.

5.8.5 Lesson Learned

This experience brought us to some interesting conclusions about the efficacy of
the Cow_Suite Application. The main advantage was felt to be the fact that the
Program Manager can exploit the provided UIT_TP as a baseline to adopt the most
appropriate test selection strategy. UIT already provides the Project Manager with a
detailed test plan aready during the analysis or design phase, i.e., early with respect
to the testing stage. Therefore, the Project Manager can get a redlistic evaluation of
the requirement and functional coverage that can be reached. If the values predicted
are not satisfactory, corrective actions can be taken or a different choice of the proper
test strategy for the testing phases can be considered. Moreover, the automated
derivation of UIT_TP alows considerably reduction of the time necessary for test
plan completion. In the proposed case study, we estimated a reduction of the time
needed for the UIT_TP derivation of four times, while obtaining the same level of
requirement coverage of the ERI_TP.

On the negative side, we observed that the automatic derivation of test cases
failed to include the exceptional test cases, i.e., test cases to handle abnormal system
behaviour. In particular, the UIT_TP missed two exceptional test cases, provided
instead within the ERI_TP. Therefore, it would be opportune that before deployment,
the UIT_TPischecked by an expert and additional test cases are possibly included to
cover these special situations. This necessity is indeed common to any other
automatic test case derivation method.

Concluding, the Cow_Suite tool has been quite favourably received within the
ERI company which intents to apply the methodology in other test phases.

187 5. An Automated Approach to UML-Based Testing

Summary

In this Chapter we presented an original approach, Cow_Suite implemented in a
prototyped tool, useful for deriving and prioritising test cases starting from the UML
specification. Cow_Suite integrates. a test strategy, Cowtest, which provides a
practical help to managers for test planning both in case of fixed umber of test cases
to be performed or fixed percentage of functionalities to be covered; a method,
UIT_Sd, which constructs the Test Case and Test Procedures using solely the
information retrieved from the Sequence and Collaboration diagrams available in the
UML documentation.

Both for Cowtest and UIT_sd we detailed in the Chapter the requirements for
their application, the procedural steps performed, the necessary user interactiors, the
typology of obtained results, and possible improvements. In particular we compared
the Cow_Suite with the other similar approaches taken from the literature evidencing
its main advantages. the use of exactly the same UML diagrams developed for
analysis and design, the derivation of a test plan as early as possible in the
development cycle, even during analysis or design phase), the definition of the Test
Cases and Test Procedures in an incremental way refining them each time the degree
of detail of UML diagrams considered increases, the capability to manage big test
suites keeping under control their sizes and functional coverage.

We reported here our experience in the application of the Cow_Suite to two case
studies, one taken from the literature and the other from areal industrial context. In
particular the latter highlighted the usefulness of the Cow_Suite approach in test plan
definition, giving in advance to the Project Manager a realistic evaluation of the
requirement and functional coverage that can be reached during the testing phase in
one-fourth of the time needed for the test plan derivation using of the conventional
approach.

PART 4.
MEASUREMENTS FOR TESTING PHASE

6 Methodologies for Failure Prediction

Preface

In the previous Chapter we presented an automatic approach (Cow_Suite) which
is useful, during the development process, for the testing phase organization. It is
able to derive a Test Plan even from the UML documentation produced during the
early stage of development, so that managers using Cow_Suite can schedule the cost
and the effort required for the testing phase in advance.

Then, once the UML specification is completed and the testing phase effectively
starts, the derived Test Plan can be completed and executed. This means running the
derived Test Suites and collecting he test results, failures or successes.

At this point, it would be important to have methods for predicting during the
execution of the tests, the final number of failure experienced up to the end of testing
phase. Each failure requires meticulous extra work for finding and correcting the
causing fault(s), which could lead to an enormous increase in the final cost of the
testing phase. Knowing in advance the number of failures expected to occur up the
end of this phase will permit swift corrective action, thus avoiding unpleasant
surprises.

In this Chapter we focus our attention on the failure prediction, proposing new
methodol ogies applicable in different situations. Specifically we concentrate only on
non operational the test stage, i.e. excluding the results derived for instance from the
beta or operational test (Chapter 2). We refer to Chapter 7 for more details
concerning specific test phases.

6.1 Motivations

In spite of great advances in the software engineering field since complaints of a
software crisis began to spread in the mid-seventies, the state of the art in software
development is still such that producing defect-free code remains only wishful
thinking. On the contrary, coping with software failures both during development

192

and after release, is one of the most difficult tasks of managers, while testing,
debugging and maintenance activities still consume the major part of development
effort and resources. For these reasons, methods for estimating the defects contained
in software are of great interest for managers and testers.

Researchers have devoted much attention to this problem and have proposed
many models for quantifying faults and failures, classified as “static” or “dynamic”
approaches (see Chapter 2). Briefly, looking at properties of the present or past
products, and/or at parameters of the development process, the former use these
observations for estimating the total number of defects, or faults, in the current
product. To this purpose a novel approach is presented in [CDMO02], where the
concepts and techniques from control theory are used for modelling the system test
process and predicting its behaviour.

The latter observe defects, (or, more properly failures), as they show up in
testing, and use statistical inference procedures to predict the number or the time of
failures expected in future tests or in operation [BS96].

Thus, for prediction purposes, the static models are attractive to managers,
because they provide "numbers’, which the managers are eager for, very early in the
process in comparison with dynamic models. These can only be used late in the life
cycle, i.e., during the testing phases, when it may be too late to efficacioudy re-direct
development efforts. However, as mentioned in Chapter 2, the correct view is that
static and dynamic models are both useful because they can be used in combination;
i.e., the former in the front-end phases of the life cycle to allocate development time
and resources, the latter in the final stages of development in order to evaluate the
degrees of disturbance of the defects that inevitably remain, and to decide whether
the product is ready for delivery’. To this purpose [CA98] proposed a model for
predicting the remaining number of defects in the code based on the failures that are
observed in testing, which is in a sense a hybrid approach between static and
dynamic models.

Indeed, whether many or few, some defects will inevitably escape testing and
debugging, so that, in the end, the only important measure for deciding whether a
product can be released is software reliability [LY96]: i.e., the number of failures,

! To this purpose we refer to the Propean approach presented in the Chapter 4, which could be avalid
aid in managing the testing phase organizations in terms of resources scheduling and personnel
assignment.

193 6. Methodologies for Failure Prediction

and not of remaining defects, must be estimated. Unless they cause failures,
remaining defects trouble neither customers nor producers.

However, in this Chapter we do not consider the reliability estimations for the
motivations depicted below, but focus on dynamic models in order to evaluate the
number of failures expected to be observed in future tests, based on the failures
observed so far. In Chapter 7 the assessment of software reliability through testing is
treated in detail.

Industrial test processes commonly undergo several subsequent steps (from unit
to subsystem, and to system testing see Chapter 2) and eventually start operational
testing only when the software configuration and behaviour are fairly stable. In
particular industries have rarely applied the latter for testing single modules, or small
subsystems, since identifying the required operational profile is quite difficult ad
expensive, and perhaps not sensible at all. They generally prefer to adopt the
commonly used and less expensive test methods, e.g., branch coverage (Chapter 2),
whose failure results do not comply with the underlying assumptions of the model
for reliability predictions: i.e., if the test cases are randomly drawn from the
operational profile, and as defects are found and removed, reliability will exhibit an
increasing trend. However, even in the first stage of the operational testing both
assumptions are hardly satisfied.

These are the underlying motivations for the work presented in this Chapter. In
particular we develop some dynamic models that can be applied to predict the
expected number of remaining failures in early test phases, without making
assumptions as to how tests are selected.

The most attractive feature of these models is their smplicity: they merely
require collecting the time intervals between subsequent failures. No estimation of
parameters of the product or of the development process is needed, as will be
described in Section 6.3. In particular, these models could be applied in combination
with the Cow_Suite approach described in the previous Chapter, to evaluate the
efficacy of the Test Suite execution in finding failures. However, here we present a
more general description of these methods without referring to any particular strategy
of test generation.

In the next section we present the basic idea used for the model definition: to
predict the cumulative number of failures at the end of the testing phase by using the
data collected during the testing phase itself.

194

6.2 Starting Point

In measurement, one tries to map observations of the empirical world to
mathematical entities that can be formaly manipulated. Models are defined
attempting to capture one's intuition and understanding of the real world; indeed,
"intuition is the starting point for all measurement” [FP97]. In this section we present
the intuition underlying the dynamic models we have developed.

Originally the stimulus came from the analysis of the test results collected during
several projects by a software producer, Ericsson Lab Italy in Rome (ERI). For each
product this producer routinely logs the failures observed since early test phases until
beta testing, and is interested in finding more effective ways to use these data for
project management and product control. In particular the developer, who has a well-
established and formalized test process, required that the model be compatible with
its trouble-logging procedures, since it would have been difficult and expensive to
modify them. It must be clarified beforehand that this producer was not looking for
new testing methods to apply, that would facilitate failure predictions (as for i nstance
would be the case if fault seeding approaches were applied). On the contrary, this
producer wanted efficient metrics that could be applied to the data collected. It is
plausible to assume that to a certain extent this proviso would be the same for many
other producers.

So far, the data collected are used to derive measures of failure density, i.e., the
ratio between the cumulative number of failures observed in a given time period and
the product size, expressed in lines of code. Specifically, with regard to the results
from beta testing, which is operational, standard approaches for reliability estimates
and predictions can be applied, as described in detail in Chapter 7. In that Chapter a
case study provided by the same producer is used for illustrating the application of
software reliability engineering techniques.

As previousdy mentioned the models were developed considering the trouble-
logging procedure used by this producer for data collecting, which registered the
failure reports on a daily basis. Therefore we decided to group the failure data into
test intervals (TIs), each one a daylong® In particular a Tl in which at least one
failure is observed is caled a failed test interval (FTI), otherwise it is called a
successful TI. Note that no matter how small a test interval is chosen, until this

% The length of a Tl depends strictly on the type of data collected and on the required granularity of the
failure predictions. However if the failures are collected at intervals of length | a Tl cannot be shorter
that |.

195 6. Methodologies for Failure Prediction

remains larger than a single test, there will always be a chance to observe more than
one failure within.

In ssimple words, the basic idea of the development of the models is that if n
failures are detected after t Tls, this information can be used for estimating the
cumulative number of failures at the end of test phase, assuming that we continue to
test in the same way. In particular we suppose that the prediction may be different if
the failures are uniformly distributed over the t Tls, or if instead al the failures are
discovered in thefirst Tl, and then the remaining (t - 1) Tls exhibit no failures.

Thus the time distribution of failure discoveries is hence a fundamental element
for the models development. If in fact a priori knowledge or estimation of the failure
detection rate is assumed over the sequence of Tls, say fdr, and t denotes the total
number of TIs scheduled, obviously the expected number of failures f would be
estimated by:

Eq. (1) f=t-fdr

Of course this formula is rather naive and cannot be used in practice in this
simplistic form, because the failure detection rate in testing can never be established
with certainty; instead it is a random variable, for which a distribution should be
identified. For each new product being tested, the empirical distribution of the failure
detection rate can only be precisely drawn only after the testing is completed.
However, if we could assume that, after having observed the test results for some
time it stabilizes (i.e., it can be used as an approximation of the real, yet unknown
distribution, to predict future behaviour), then a formula generalizing Eq. (1) could
be used.

For deriving the cumulative number of failures at the end of test phase two
different approaches have been implemented. The first, called the “One-Step
Method”, estimates the failure detection rate, using a statistical prediction method;
that is to say, the fdr in Eq. (1) is treated as a random variable D, and uses an
estimation of it to predict the expected number of failures NF (Section 6.4).

In the second approach, called the “ Two-Steps Method”, the expected number of
failures NF is estimated in two subsequent steps: first we predict NFTI, i.e., the
expected number of FTIs; second, from this estimation, we derive the expected
number of failures NF. Correspondingly, at each step we introduce a random
variable, for which an estimator has to be defined. This nmethod was suggested from
analysis of available data, and in particular from the observation of their variability
(Section 6.5).

196

For prediction purposes, with for approaches (One-Step, Two-Steps), we have
used a Classical estimator, i.e., relying on a frequentist interpretation of probabilities,
and also an dternative, Bayesian estimator (Section 6.3.1), of a "subjective’
interpretation of probabilities.

Finally the two methods were compared using a real case study and the results
reported in Section 6.6. In particular we noticed that both the approaches perform
better when the rate of detection of failures in testing remained more or less stable.
This condition is clearly in contrast with the assumption underlying the models for
reliability prediction. In this sense the approaches proposed in this Chapter are
complementary to these and should be used when they cannot yet be applied.

Here, as previously indicated we want to provide methodologies for the early test
phases, and in general to all those situations in which failures are found with some
regularity, and remains valid only for limited periods. This means up to the point in
which the rate of occurrence of fallures starts to decrease, as a result of having
removed alarge number of faults.

It is worth noting that the predictions provided by the estimators are meaningless
without a reference to control parameters over the development process. For
instance, suppose that prediction brings to our attention an unexpectedly low
predicted number of failures with respect to standard figures. This can be due either
to an ineffective test process (bad news), or instead to a very good development
process (good news). However in this Chapter we do not discuss the strategies that
could be applied for discerning between these two situations since we focus mainly
on prediction. However a possible solution is to incorporate the collection of useful
invocation from similar projects, within the global strategy of project control and
management, so that historical data can be used to set reference/target measures

when necessary.

6.3 Background Knowledge

In this section we briefly present the fundamentals of the Bayesian theory
(Section 6.3.1), used in the definition of the two methods (One-Step, Two-Steps),
and the original Bemar model as presented in [Bm98] (Section 6.3.2), which was the
starting point for the Two-Steps Bayesian approach. In Section 6.5.3 we show how
the Bemar model has been included.

197 6. Methodologies for Failure Prediction

6.3.1 Bayesian Approach

Bayesian probabilities [GCS95] are attempted to describe an observer's
subjective knowledge of yet-unknown events, and how this knowledge evolves as
new events are observed. The Bayesian probabilistic ideas have been around since
the 1700s. In 1713, Bernoulli recognized the distinction between two interpretations
of probability:

as the frequency of occurrence of an event in a sequence of repeated experiments,

the commonly used interpretation in the frequentist (classical) theory;

as a measure of the plausibility of an event about which knowledge is

incomplete, the one that will be used in the Bayesian approach.

Therefore in the Bayesian framework an interval for an unknown quantity is
directly related to the probability of containing the unknown quantity, while a
frequentist interval can only be interpreted in relation to a sequence of similar
experiments (but it does not give any esimation of the unknown quantity).

The basic idea of the Bayesian theory is due to Thomas Bayes, who in 1763
formulated the well-known Bayes Theorem:

P(Y 1X)>P(X)
P(Y)

Eq. (2) P(X|Y)=

Hence given an occurred event Y, and the conditional probability of event Xon'Y,
denoted by P(X]Y), the posterior probability is calculated using:

the probability of event Y, denoted by P(Y);

the conditional probability of event Y given that event X occurred, i.e., P(Y|X),

called the likelihood probability , and

the prior knowledge about the probability of event X, i.e., P(X), called the prior

probability.
To apply the Bayesian approach, first of all it is necessary to make explicit the prior
belief into a prior probability distribution. In general, this is a difficult task, which
also generates some perplexity about the usefulness of the Bayesian method [BS96].
The Bayesian method tells us how to treat observed data in order to derive the
appropriate posterior distribution, but the identification of an appropriate prior
distribution must come from outside. However this is the weakness as well as the
strength of the Bayesian approach. The prior distribution expresses any desired prior
state of knowledge, ranging between the two extremes of a virtual ignorance, called
also non-informative prior or least informative priors, and highly informative

198

knowledge or conjugate priors. Conjugate families are those distributions for which

the prior and the posterior distribution are members of the same family®. In this case,

computing the posterior probability is usually trivial. We report in Section 6.3.1.1 the

Gamma Poisson Model which is one of the conjugate families used in the rest of this

Chapter.

Generally the choices for deriving a prior distribution can be summarized as the
following possibilities:

1. if evidences or data are not available, the prior probability can give equal
probability to each possible value (for example by using a uniform distribution).
In this case, the prior probability is a non-informative prior;

2. if acertain amount of data has been previously collected, it is sometime possible
to derive the prior probability directly from them (for example by associating a
suitable normal distribution);

3. if there is a strong belief in certain homogeneity in the way in which the priors
probabilities change as more evidence is acquired, afamily of conjugate prior can
be used for the posterior probability computation.

In contrast, the Classical approach has a broad field of application and can be used

whatever is the behaviour of the product being tested. But thisis also a limitation of

the method, because it does not allow us to exploit the evidences of collected
historical data collected which could contribute to more accurate predictions.

In this Chapter we use both the Classical and the Bayesian approach in the
models definition. In particular we compare these models on the prediction of the
cumulative number of failures at the end of testing phase. The purposeisto verify if
the Bayesian estimators could perform better than the Classical because they need
fewer data to obtain valid predictions, and exploit the available knowledge about the
rate of occurrence of failures.

6.3.1.1 The Gamma Poisson Model

Sometimes it is possible to assume that the failure will occur “purely randomly”,
i.e. in a ssimple Poisson Process of rate | . In this case the number of failures, R, at
timet, has a Poisson distribution [LO87]:

(It)ye'

P(R=r)= 0

3 Formally if F denotes the family of probability density functions (pdfs) f(x|q), afamily P of prior
distributions for q is called a conjugate family for F if the posterior distribution for g isin the classP

199 6. Methodologies for Failure Prediction

and in particular P(R=0)=¢"".
The conjugate family here is the Gamma. Thus if we represent a priori belief

about the failure rate | by Gamma(a,b) with expected val ue a/b, the posterior for |
after seeing r faillures during time t is Gamma(a+r,b+t):

(b +t)a+r| a+r-1e-(b+t)l
Gla+r)
with expected posterior value (a+r)/(b+t), where G(a+r) is the gamma function
defined as

f(I [r,t,ab)

¥
G(a+r) =)<*" e dx

0

6.3.2 Bemar Method

The Bemar model, presented for the first time in [BM98] derived the cumulative
number of failures at the end of the testing phase in two steps: first the number of
failed test intervals, Net,, is derived and then, from this number, the number of
failures Ng iscalculated.

Considering the testi ng phase established to be NTI test intervals long, a random
variable T, taking discrete values within the interval [1, M] (where M is the
maximum value), denotes the distance (in terms of TIs) between two subsequent
FTls. Precisely, for each i within [1,M], the associated probability mass function
[LO87], (pmf), pr(i) = P(T=i), gives the probability that the next failure will be
observed after i™" Tl is a FTI). Denoting the expectation of ther.v. T by

M
E[T]=Q P (i
the following formula holds®:

Ba- () Nmio=N,, <E[T]

and solving it for Nep;, we obtain:

foral f1 F,adl priorsinP,andall x.

* Actualy, this formula holds precisely if it can be assumed that the |ast test interval is a failed one.
Otherwise, the left-hand side should be decreased by the number of test intervals occurring between
thelast FT1 and the last test interval .

200

Eq.5) Nen TEM

It is worth noting that this formula requires a procedure to derive E[T] for
instance based on data collected from similar products. In the Bemar model a
Bayesian approach is used for this purpose. As mentioned in the previous section, in
the Bayesian framework, probabilities are meant to describe an observer subjective
knowledge of yet-unknown events. This knowledge evolves as events are observed.
In this context, the pmf of T pr(i) istaken asthe prior knowledge about the behaviour
of a product under test, i.e., pr(i) is taken to model a tester's subjective belief about
the rate of failure detection before some evidence (the test results) about the product
under test is observed.

In particular the redlization of a sequence of test intervals with and without
failures during the testing phase is observed. Thanks to this evidence, the tester's
knowledge about this product evolves and the posterior distribution for the pmf of T
can be derived. Denoting by Fyx the sequence of observed outcomes
(failed/successful) for the first k Tls, the posterior distribution p'rk(i), is derived as
P(T=i |), i.e, it is the update of pr(i) after having observed the sequence F.
Applying Bayes formulawe obtain:

' Pio(T=D)P(F [T =i
Eq. (6) prx()=(P(T=i|F)) = pnor(NP(F, | i)

P(Fk |T = j)Pprior(T = J)

Qo=

j=1

The term P(Fk|T=i) corresponds to the likelihood function and can be derived
considering, if T=i, then the probability of observing a failure in the next test interval
islh,i.e:

1 if F, isfaled
Ea.(D pEgt=n={ T, '
(1——i) if F,issuccessful

201 6. Methodologies for Failure Prediction

Substituting this in Eqg. (6), and iterating the same reasoning also to the
subsequent test intervals, we finally obtain™

f

% }ok f

(I) e|ﬂe |ﬂ

Eq. (8) pr.i(i) =

which gives the posterlor pmf for the random variable T, after observing k test
intervals, out of which f were failed. Thisformulais used for deriving the E[T].

By using the Eq. (5) it is possible to then derive Ne i, i.e., the number of FTls
expected after NTI test intervals, using the test information collected during the first
K test intervals.

From Ner i the total number of failures Ne now needs to be estimated. This
clearly depends on how many failures on average are observed within aFTI. We can
again define arandom variable F to represent the number of failures observed within
aFTIl, and then derive Ng from Nej, with Ng= Neqp- E[F]

The empirical pmf for F can be derived by considering the results from the first k
Tls as well as the maximum number of failures per FTI, caled MF. From the
distribution of the number of failures within a failed test interval, we are able to
calculate the expectation:

EQ-9 gr=4 p(F=i)

Therefore, after having observed k TIs, the number of failures that a product will
show at the end of the functional test is:

Eq(lo) Nex = Neg o« P El[F]

The Eq. (5) and Eq. (10) are to be used incrementally during the testing phase,
i.e.,, considering each time a greater value for k, and adjusting the pmfs involved
correspondingly. In this way, the prediction about the total number of failures for a
product as testing proceeds will increasingly precise.

®In the generalization of this formula from the case k=1 to larger values of k, we have in reality used
some relaxed assumptions, which could raise some objection to its vaidity from a purely theoretical
viewpoint. However, applying this formula to different cases study we notice that it performed better
than other theoretically stronger models.

202

6.4 One-Step Method

In this section we present the One-Step method [LPM99, BMMO02a] as described
inthe main stepsin Figure 1. Thisfigureisvalid for the one-step method based both
on aClassical approach (Section 6.4.1) and on a Bayesian approach (Section 6.4.2).

As indicated in Section 6.2 we estimate the number of failures over a fixed test
period, specifically after NTI test intervals. Therefore the first steps in both models
are collecting data and then defining a random variable D to denote the daily failure
detection rate. Using a valid estimate D, of D, we obtain the estimated number of
failures, over aNTI long period of test intervals, as NF =D, - NTI

Group and
classfy data

Estimation of Di
for each group

Estimation
of De

[Not acceptable estimate]

[Acceptable estimates]
Number of failures
egtimation

Figurel Main stepsfor the One-Step method

6.4.1 One-Step Classical

Referring to Figure 1, after data collection we decide to group the test intervals
into separate sets containing the same number t of Tls . Different possibilities can be

203 6. Methodologies for Failure Prediction

evaluated depending on the typology of the data collected and on the desirable
granularity of the final predictions. For instance if the Tl corresponds to an hour a
possibility is to group the test intervals into a daily base (considering a working day
of 8 hourslong we set t =8 and therefore we put 8 TIsin each group). Otherwise, if a
Tl isequal to aworking day, as our origina data, we can divide the TIs in groups of
5 test intervals, corresponding to one calendar week of testing. In the former case we
will upgrade the predictions of the final number of failures at the end of the testing
phase daily, in the latter weekly.

We assign then to each group of test intervals an increasing identification number
k and for each of them we derive the number of failures experienced within thet Tis.
To this purpose for each group we define an estimator D; of the failure detection rate
of the Tls in that particular group (e.g. per hour failure detection rate if the Tls
correspond to one hour, daily failure detection rate if Tls are equal to aday), whichis
calculated as D; = (number of experienced failures within the group i)/ t. To derive
the estimator D, after having observed k- t Tls we use the sample mean of the values
D;, D,Dy, i.e., De(k)= Ex [D], which is as an unbiased, consistent, and the
minimum variance unbiased estimator of D [AL90]. The estimate obtained is
evaluated by the confidence interval, that is a probability judgment about the
accuracy of the estimate delivered.

We continue repeating the steps described above, i.e.,, we wait for the data
relative to another group of t Tls, increment k and repeat the above procedure, until
the desired level of accuracy is reached.

Assuming this happens after a certain number k' of groups of t Tls, we can use the
estimated failure detection rate D¢(k') to make the predictions, i.e., after NTI test
intervals, the global number of failures expected at the end of testing phase can be
obtained by Ne .« = Dg(K')- NTI.

The main limitation of this approach liesin the fact that alarge amount of data is
necessary in order to derive sensible confidence intervals. Oftentimes the value k™ of
groups of Tls guaranteeing the desired level of accuracy can be so high that it makes
thiskind of approach impractical.

6.4.2 One-Step Bayesian

In the One-Step Classical approach, we assemble the test intervals in groups of t
and assign to each group an increasing identification number k. In this case after

204

observing the k-th (current) group of failure data, we compute the cumulative (i.e.,
from group 1 to group k inclusive) number of failures.

To derive an estimation D, of the failure detection rate, we use this value as a
parameter of a suitable statistical model (Gamma/Poisson see Section 6.3.1.1), by
which we cal cul ate the expected cumulative NF over afuture period of testing. In our
specific context the Gamma/Poisson model results the most suitable statistical
method, but depending on the data available, it is possible either to use other
conjugate families of distribution, or apply one of the methods described in Section
6.3.1. Using the Gamma/Poisson model, as described in Section 6.3.1.1, if
Gamma(a,b) represents the prior belief (for some suitable choice of the parameters a
and b) the posterior belief about the failure rate D is represented by Gamma(atx,
b+t), where x isin this case the number of failures observed in atime interval t.

We then use the relative error between two subsequent estimates to evaluate the
accuracy of the estimate obtained. Until the desired level of accuracy is not reached,
we wait for the data relative to another group of t Tls, increment k and repeat the
steps described above.

We then use the outcomes collected during the first n', i.e. k- t, test intervals to
derive E+[D], i.e. the posterior expectation of D after n' Tls. This is taken as the
estimator Dg(n') to derive N, i.€., the predicted number of failures after NTI test
intervals.

6.5 Two-Steps Method

The Two-Steps method predicts the number of failures at the end of testing phase
in two steps by applying the statistical control procedure described below [LPM99,
BMMO23]. In particular we first predict NFTI, i.e., the expected number of FTIs,
then from this estimation, we derive the expected number of failures NF.
Correspondingly, at each step we introduce a random variable, for which an
estimator must be defined. Figure 2 shows the main steps of the applied statistical
procedure, which will be described in detail respectively in Section 6.5.2 for the
method based on a Classical approach, and in Section 6.5.3 for that based on a
Bayesian approach.

205 6. Methodologies for Failure Prediction

6.5.1 Prediction Procedure

We use a random variable Q to denote the probability that the next Tl will be a
failed one and derive a valid estimate Q. of Q. Over a NTI long period of test
intervals we then obtain the number of failed test intervals as. NFTI = NTI- Q..

Once avaue for NFTI is thus estimated, the total number of failures will clearly
depend on how many failures on average are observed within a FTI. Therefore we
introduce another random variable F to represent the number of failures observed
within aFTI, and then using avalid estimate F, of F we derive NF from NFTI simply
as NF=NFTI- -Fe.

Groupand
dassfy data

Derivecumul.
noof FTls

Edtimation
of Qe

Estimation
of NFTI

Derivecumul.
no of failures

Estimation
of Fe

[Not acceptable estimate]

[Acceptable estimates]

Number of failures
estimation

Figure2 Main step for the Two-Steps method
As concerns the estimation of F., one possibility is to adopt the classical
estimator E[F], based on the sample mean (also called arithmetic mean) of the

206

observed failures over the number of observed FTls, which for large samples, has the
property of consistency and unbiasedness [AL90]. Of course other possibilities can
be launched, depending on the typology of the data available. In this section we
decided to adopt the sample mean because when we applied the Two-Steps method
to the available case study, it was the one that first stabilized.

Asfor the One-Step Bayesian method, we consider the test intervals assembled in
groups of t and assign to each group an increasing identification number k. After
observing the k™ (current) group of failure data we derive two different values: the
cumulative (i.e., from group 1 to group k inclusive) number of FTls and the
cumulative number of failures. These values are used as parameters of different
statistical models to derive: an estimation Q. of the probability that the next test
interval will be a failed one; an evaluation F. of the number of failures in each test
interval; the predictions of global NFTI and global NF over afuture testing period.

We use classical statistical techniques (e.g., confidence interval, relative error) to
evaluate the accuracy of the estimates obtained. As above, until the desired level of
accuracy is not reached, we wait for the data relative to another group of t TIs,
increment k and repeat the procedure described.

6.5.2 Two-Steps Classical

To derive the probability Q that the next Tl is failed, given asample of NTI, we
based the Two-Steps Classical on the maximum likelihood estimate [AL90, LO87].
The idea underlying the maximum likelihood estimate of a parameter is to choose that
parameter value which makes the observed sample values the most probable.

In this case the sample to be analysed is formed by sets of test intervals of size n
(with n=5, 10, ..., NTI) with or without failures. We can depict the sample as a
sequence of Bernoulli trials [LO87] with probability Q of failure on each trial (note
that in such a way we are assuming independent TIs, which is reasonable for the
approach followed in test selection).

Thus, if the observed number of failed Tis is f, then the maximum likelihood
estimate of Q isgiven by [AL90, LO87]:

Eq.(11) 1(Q=Q'a-Q"'

The maximum likelihood estimate of Q is that value of Q which maximizes the
likelihood function I, or its logarithmic form. Solving for Q yields the maximum
likelihood estimate results:

EqQ.(12) Qen)=f/n

207 6. Methodologies for Failure Prediction

It can be proved that such is an unbiased, consistent, and the minimum variance
unbiased estimator of Q [AL90].

To complete the statistical control procedure, we associate to each Qe its
confidence interval. As in the One-Step Classical method, the study of the
confidence intervals leads us to determine that, after a certain number n” of Tls, the
desired level of accuracy is reached. We in fact are dealing with a random variable,
so we cannot predict with certainty that the true value of the parameter, Q, iswithin
any finite interval. However we can construct a confidence interval, such that thereis
a specified confidence or probability that the true value Q lies within that interval. Of
course for a given confidence level the shorter the interval, the more accurate the
estimate.

It can be proved [AL90]. that, for a sample of large size n, an approximate 100(1-
a)% confidence interval for the Bernoulli parameter Q is given by:

Eqg. (13) Q.(nN)-z,

Q.(m@- Q.(n))
\/ - <Q<Q,(N+z,

\/Qe(n)(l- Q.(n)
n

where Qc(n) is calculated as described previously and values for the parameter
Z,, are found in statistical reference tables [LO87]. Therefore once a confidence
level is fixed (90%) according to the producer exigencies, it is possible to associate
to each Qe(n) the relative confidence interval estimated after n TIs. The study of the
confidence intervals leads us to determine that, after a certain number n of Tls, the
desired level of accuracy is reached. Therefore we can use the estimate Qq(n’),
obtained after n” Tls, to make predictions After NTI test intervals, the number of
failed test intervals NFTI is obtained as NF Tl = NTI- Qo(n').

As afina step we obtain the total number of failures expected at the end of the
testing phase as NFp« =NF Tl - Fe .

Again the main limitation of this approach lies in the fact that a large amount of
data is necessary to derive significant confidence intervals. Consequently the value
n" of TIs guaranteeing the desired level of accuracy can be quite high.

6.5.3 Two-Steps Bayesian

The Two-Steps Bayesian is basically the application of the Bemar model
described in Section 6.3.2. In this case the random variable Q denoting the
probability that the next Tl is failed, corresponds to the variable T mentioned in the
Bemar model. Here we only report the formula used for the posterior distribution of

208

the random variable Q, in which we denote with F,, the sequence of observed
outcomes (failed/successful) for the first n Tls, and with f the number of FTls
observed in the sequence F,,

0’5 Lo"
g Prio0d s s e gi' i2
Eq. (14) Parg g™ Y A5 o 16
a Rrioo & & g?'_ T
o) €ig ejge o

As described in the prediction procedure (Section 6.5.1), we use this updated
distribution to derive, E,[Q], i.e. the posterior expectation of Q after n observed Tls.
This is taken as the estimate of Qe(n) to derive NFTI,, i.e., the predicted number of
FTls expected after NTI test intervals, based on the test outcomes oollected during
the first n test intervals, and on the prior expectation about Q. From NFTI, the
expected number of failures can then be derived in the same way as in the Two-Steps
Classical method.

6.6 Application Results

The One-Step and the Two-Steps methodol ogies can be applied without referring
to any particular test strategy. The failure data therefore could be obtained from the
execution of the Test Suites derived by the Cow_Suite tool (see Chapter 5) aswell as
other specific methodologies. In particular, here we report the application of the One-
Step and the Two-Steps approaches to a case study provided by the Ericsson Lab
Italy in Rome (ERI) and described in the next section. The purpose in this case was
to increase the ERI capabilities in statistical process control and in prediction
methods. We describe the results obtained from this case study in Section 6.6.2.

In the preface of this Chapter we specified that the methodologies presented here
were specificaly built for dealing with non-operational data. However, their general
nature also led usin the application of the Two-Steps Bayesian methodology to some
operational results provided by ERI. We report the description of this experiment in
Section 6.6.3. Naturally this type of data is more suitable for the application of the
models for the reliability predictions, aswill be discussed in detail in Chapter 7.

6.6.1 Case Study

In agreement with the ERI producer, we first selected a set of strategic processes
to be used for the application of the One-Step and the Two-Steps methods [LPM 99,

209 6. Methodologies for Failure Prediction

BMMO02a]. Of course, applying statistical process control techniques to all
development processes was not economically feasible. Therefore, the Function Test,
which is one of the four test phases in ERI test strategy (namely Basic Test,
Integration Test, Function Test and System Test (Chapter2)), has been identified asa
strategic one in order to meet commitments to customers with respect to quality
objectives. In particular, the Function Test is the phase in which the system
functions are verified.

One ERI objective is to reduce by a determined amount the failure density in
operation, which is obtained by monitoring the first six months of operation of
released products. Failure density is measured by the ratio between the cumulative
number of failures observed by the client in those six months and the product size,
expressed in lines of code.

Root Cause Analysis (RCA) of reported failures is routinely performed, to track
back failures to their causes, the faults, and to the phase in which the latter
originated. An important finding of RCA for ERI products was that a high
percentage of failures (48%) corresponded to software faults that could have been
discovered during the Function Test phase. Therefore one of the actions to reduce
failure density is to decrease the number of failures “dlipping through”, i.e. the ratio
between the number of failures found during first six months, and the sum of failures
found during Function Test and the first six months.

Currently, Function Test is performed accordingly to afunction test specification,
with the goal of testing conformance of the target function to its specification.
Testers derive test cases manually, by making a systematic analysis of the
specification documentation and attempting to cover al the specified functionalities
(or use cases). This means that the test cases are deterministically chosen by
examining the functional specifications before test execution starts (which aso
implies that the number of tests to be executed is decided in advance).

Function Test execution is organised in a specified number of stages. The tests
are executed during working days (i.e., five days a week) and 8 hours per day. All
the failures discovered within a test stage are logged and reported to software
designers, who trace failures back to the code and correct them. A new software
version is then released, which is resubmitted to testing in the next test stage. For
each project, the information registered consists of the Start and End dates of the test
phase, and of the calendar day (but not the time of day) of discovery of each failure.

210

Therefore, for our purpose we collect the failure data of several projects subjected
to the Function Test process and use them to apply the One-Step and Two-Steps
prediction method. The size of the software under test varies from project to project
(minimum 50 kloc, maximum 150 kloc), and the failures in the data sets cornsidered
were classified as priority B (major failures).

For each project the failure data observed in the first part of the test process,
grouped into test intervals (T1s) each one aday long, are used to predict the expected
cumulative number of failures over the planned period of Function Test. This in
particular stops when all the test cases defined in the test case specification have
been successfully performed, either at the first try or after fault repair. Specific exit
criteria related to the measured rate of failures detected over the testing period were
not explicitly considered in the test process before this experience, and no estimation
of the remaining number of faults was performed. It is worth noting that a very
important property of prediction systems is the speed of convergence of estimates.
With respect to this, we compare the performances of the estimates of the One-Step
and Two-Steps methods (Sections 6.6.2 and 6.6.3).

Parameter s Setting

Some historical data, derived from similar products subjected to the same
Function Test process have been used to set the various parameters required by the
models considered. Specifically considering the One-Step Bayesian, from an
accurate analysis of the failure behaviour of severa products we observed that we
could group the products in classes depending on the average failure rate D they
exhibited at the end of the test phase. We could thus derive the proper parameters (a,
b) of the prior Gamma distribution for each group.

In the Two-Steps Bayesian, when analysing the failure data we noticed that the
distance between subsequent FTIs was not greater than 20; therefore we considered
that the variable Q could take discrete values within the interval [1,20]. In particular
aproper prior distribution was obtained observing that for al products considered the
distribution of Q concentrated for most of its realizations on the three same
consecutive values, while very rarely took the other possible values.

6.6.2 Result Analysis

In this section we provide a few examples of the results obtained from the use of
One-Step and Two-Steps methods as described in the Section 6.5. We do not report
in the following figures the results of the application of the One-Step Classical

211 6. Methodologies for Failure Prediction

method, because in this particular context this approach required too many data for
producing acceptable estimates.

In the following diagrams, on the horizontal axis we put the number of elapsed
groups of Tls. On the vertical axis we put the cumulative number of failures over
completion of the scheduled test period (for confidentiality reasons, we omit the
actual numbers). When a prediction becomes acceptable based on the confidence
interval or the relative error, as described in the prediction procedure, we stick to it
and the prediction curve becomes a straight line. We check a posterior the prediction
of the models against the actual number of failures observed at the end of the test
period (the dotted horizontal line) (of course this knowledge is in no way used to
make the prediction). The strip marked with vertical segments around the latter
indicates the zone where the relative error of the prediction would be below 10%.

In Figure 3 we show the results for Project 1. In particular the curve labelled
“Gamma/Poisson Model” corresponds to the result obtained for the One-Step
Bayesian method, the one labelled “Our Bayesian Model” to the Two-Steps
Bayesian, and the one labelled “MaxLik (Classical)” to the Two-Steps Classical.

Analysing the curves obtained it is possible to observe that the maximum
likelihood method produces a valid prediction after 14 groups of Tls (70 testing
days); the Two-Steps Bayesian model and the Gamma/Poisson model anticipate the
prediction, respectively of as many as four and two groups. That is a very good result
from the manager's point of view. With regard to the outcome of prediction, both
models produce valid estimates (for us, this meant within the 10% error strip).

In a second project considered, as shown in Figure 4, we can see, that both the
estimates produced with the Gamma/Poisson and the Classical model models are
outside the 10% error strip. In general we could see that the effectiveness of the
Gamma/Poisson model is greatly dependent on the choice of the parameters (a,b).

We must add, for thoroughness sake, that unfortunately the Bayesian models
(One-Step and Two-Steps) did not consistently work better and faster for all data
sets. In a few circumstances the Classical model performed better. Finaly,
sometimes it was quite difficult to either find a suitable prior distribution or proper
parameters (a,b) of the Gamma distribution.

212

Project 1

Number of failures

Gamma/ Poisson M odel
—— Our Bayesian Model
----MaxLik ("Classical")

« Observed

Figure3

Mumber of Failures

Figure4

Prediction resultsfor Project 2

3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24
Grouped Tls
Prediction resultsfor Project 1
Project 2
- - L] L] - - - - » L] L] L] L]] - - 1‘ - L] L] L 3 L 3 - -
Gamma/Poisson Model
COur Bavesian Model
—— MaxLik ("Classical™)
* Ohserved
3 4 '.- 1] E3 g 1 M 12 I.'.l I::- '-:l: 1E 0 N 22 13 M _=.5 [.".a-'
Grouped Tis

213 6. Methodologies for Failure Prediction

Previous Knowledge

Daa Collected from Smilar Produas

y A

Parandersfor Sedfic
Set. Modés Bit Qit eria
)" ‘."».,\‘ . ‘
Function Test
N | Cdletionof TetData | |

'

A| Appli caionof Sa. Modds |

/

Aralyss of Irfared Regits ~ [A

OK Qu of Limits
A A A
Continue as BadcTest BExendthe
Planned inPardld Function
Ted Prase

Figure5 Main steps of the statistical process control strategy

So we took the approach of applying al the estimators in parale (this can be
done cheaply by a tool) and choosing the one that first reaches a valid prediction.
From our perspective, such models provide the project management team with an
effective and inexpensive means to take corrective actions when causes of variation
are identified with respect to the Function Test process performance baselines (e.g.,
minimum and maximum failure density computed on historical data in the same
product line), and with respect to meeting ERI “dipping through” objectives.

As for the other methods proposed in this Thesis, (Propean in Chapter 4,
Cow_Suite in Chapter 7) aso in this case in the definition of the One-Step, Two-

214

Steps models does not require any unnecessary additional work from the people who
are going to use the proposed strategies, e.g. testers. On the contrary we try to
conform as much as possible the models to the existing data collection procedures.

Our philosophy is aways to propose methodologies that are easy to use and
readapt and that require any, no or at least low cost and effort to be applied in the real
industrial context.

The implementation of appropriate corrective actions (such as executing an
extended Basic Test in parallel to the Function Test, or postponing the end date of
the Function Test) can mitigate the risk of failures dlipping through the Function Test
during the first six months in operation, thus reducing reworking and maintenance
costs. In Figure 5 we illustrate the main steps in the application of the statistical
process control techniques discussed here.

6.6.3 Two-Steps Bayesian Model with Operational Data

As mentioned in the introduction of this Chapter, the Two-Steps Bayesian model
has also been applied to some operational test results collected by the same producer
during beta testing (for which we did no expect the model to work as well as for
functional testing). We selected the Two-Steps Bayesian because it was the model
that performed better in the majority of the cases during the functional test phase of
several products. The intent was discovering if and how the Two-Steps Bayesian
model could be applied either, as a complementary approach to reliability growth
models, or in those situations in which the failure data relative to operational testing
did not show areliability increasing trend (see Chapter 7).

One of the major difficulties in applying the Two-Steps Bayesian model to this
kind of data was the definition of the prior probabilities. In fact we were deficient in
operational test results collected previously on similar projects. In this Stuation we
could not apply the criteria described in the previous section for the selection of a
prior pmf of T; we thus decided to adopt a uniform prior distribution.

For the rest, the approach of applying the Two-Steps Bayesian model to the data
collected during the operational phase is the same as that described in Section 6.5.2.
Also in this case the failure data was collected on a daily basis, therefore we again
grouped the test intervals into set of 5 Tls corresponding to a week of testing. We
report the results in the figure below where in this case k indicates the different Tis.

As shown by this figure the performance of the model becomes acceptable after
110 Tls, over an overall e period of 180 TIs. In this case we do not stick to this value

215 6. Methodologies for Failure Prediction

as in the previous examples, because we were aso interested in the general
behaviour of the Two-Steps method as the testing proceeded. We want to analyse the
improvement of the prediction as more data failure data become available. As shown
in Figure 6, after the 125 TIs the prediction stabilized between the 5% error strips.
This represents a valid result from the manager’ s point of view, and we would expect
better results using an informative prior probability.

To compare our results with those provided by the standard models for reliability
prediction, we attempt to use the latter with the same data set. Unfortunately we were
not successful; the problem was that the reliability did not regularly increase, as
required by those models (see Chapter 7). Thus we expect a worse performance of
the Two-Steps Bayesian model with data that exhibit consistent reliability growth.

project 4

48
46 1

42
40
387

o LI LT L
*el LTI T T T T e AT T

Figure6 Prediction of the Two-Steps Bayesian model for beta testing

To verify this hypothesis we have tried the model on a set of data taken from the
literature [ACL96]. These data are reported as execution times in seconds between
successive failures; therefore, in order to apply our model, we grouped the failure
data into test intervals of 600 seconds. Also, in this case we used a uniform prior
distribution because we had further information about the failure behaviour.

The results are shown in Figure 7 where k indicates the corresponding group of
Tls. As expected, the results became acceptable only late in the operational phase,
therefore the predictions provided by the Two-Steps Bayesian model are not very
useful.

216

From this experience, we can conclude that the Two-Steps Bayesian model could
represent a complementary approach to reliability growth models when the
hypothesis of applicability of the |atter are not verified.

operational data

150 T
145 A
140 A
135 1
130 A
125
120 A
115 A
L 110
105 A
100 7

so | [TTTLTTTLOTTTTTLETT T T LI I NI L]
JENNRRNARARRINRRRRARARRAR N

0§ [N

80 ¥

75 1

70 T T T T T T T
5 15 25 35 45 55 65 75 Si 95 105 115 125 135 145 155 165

Figure7 Prediction of the Two-Steps Bayesian model for operational testing
Summary

In this section we presented two dynamic methodologies, the One-Step and the
Two-Steps Method, useful for predicting the cumulative number of failures at the
end of the testing phase by using the data collected during the testing phase itself.
The most attractive feature of these models is their simplicity: they only require
collecting the time intervals between subsequent failures. No estimation of
parameters of the product or of the development process is needed.

For prediction purposes in both the One-Step and the Two-Steps Method we used
a Classica estimator and an alternative Bayesian estimator comparing their
respective performances in the overall estimated number of failures by using a
industrial cases study. As a result we conclude that the Bayesian approaches usually
achieve better results with respect to the Classical also because the latter may require
too much data to provide meaningful predictions.

Although we focused our attention on the non-operational test stage, due to the
general nature of the proposed methods we also tried to apply them to operational
data. For this reason we have reported here the results obtained by using an industrial
case study.

217 7. Reliability Models Application

7 Reliability Models Application

Preface

In this Chapter we continue the exploration of the testing phase, considering now
its final stages, i.e. the operational testing. So far we have proposed only methods
and approaches which can be applied: before beginning the testing phase, to schedule
the time and effort required for its development (Chapter 4); till the release in
operation of the final products, for deriving and prioritising the test cases (the
Cow_Suite methods of Chapter 5) and for predicting the overall amount of failures
discovered at the end of testing phase (Chapter 6). In particular, the latter models
have been specifically created to deal with non-operational failure data even if some
of them could represent a complementary approach for failure rate estimation.

Now we want to concentrate on the operationa testing, which is the final test
action prior to deploying the software. Thus by using the data collected in this stage,
we want to apply the commonly-used methods (the reliability growth models) for
evaluating some characteristics of the products as the level of reliability achieved.

In this Chapter we provide an introduction the Software Reliability Engineering
(Sections 7.1) and a brief description both of the operational testing and the models
applicable to reliability prediction (respectively Sections 7.2 and 7.3, 7.4). Findly,
we report our experience in applying these last to a real case study provided by an
industrial software developer (Section 7.5).

7.1 Software Reliability Engineering

Since the 1980s, with the increasing in the use of software systems in everyday
life, a large part of software engineering has focused its attention on the quality of
software components, and on the methodologies for controlling and evaluating them.
In particular the range of the research included both the specification of a proper
development process and the analysis of the software applications themselves. A
“mature” and well-established development process can contribute to the quality of

218

its products but cannot completely guarantee about reliability level. Therefore the
application of techniques for quantitatively evaluating and predicting the level of
quality attained are necessary, especialy in the situation in which it is crucia to
confirm that a particular program has achieved its reliability goa before use. Often
the developed systems are used in situations where failures and incorrect outputs can
cause annoyance, loss of money, or even loss of human life. In literature there are
several examples in which software failures caused dramatic disasters or killed
people, such as the case of the Therac-25 radiation therapy machine [L192]. These
experiences have contributed to the birth and the diffusion of Software Reliability
Engineering (SRE) which concentrates mainly on a very important software
attribute: reliability. This is only one of the attributes of a software product and
belongs to the specification of the general terms of dependability ([LA92], [LA93]).

Reliability, which is formally defined as ” the probability of failure-free software
operation for a specified period of time in a specified environment” ([A191]), in
particular represents quantitatively the “quality level” reached by a software product.
Observing a program performing failure-free for a long enough period (or if a
sufficiently small number of failures are observed during along period of operation)
it would be reasonable to accept claims that it is sufficiently reliable for its intended
purpose. Unfortunately with some systems, specifically the critical ones, red
operations cannot be used to obtain this kind of measurement and other methods for
estimating their reliability must be used instead.

Before continuing it is important to specify that when referring to SRE the
attention is focused not on faults but on failures i.e. the deviations of the delivered
service from the functions for which the program was intended (Chapter 2). SRE is
therefore not concerned with how many faults remain in the software product, as
much as they are, but with how often the product will fail, and the impact such
failures will have on the job they must do. However generally speaking about testing
it is sometimes wrongly though that the more faults are identified, the greater the
increase in reliability after their removal.

Unfortunately, the commonly used testing techniques stress the software in a
different way with respect to the real uses to which the software will be subjected
during operation, hence they do not provide a guarantee of the reliability attained. A
classic example is reported by Adams [AD84]: he found that some of the 30% of the
faults found in the system he studied would each show up less than once every 5000
years of operational use. Clearly, any testing procedure that was efficient at finding

219 7. Reliability Models Application

these very “small” faults, but inefficient at finding “larger” ones (causing failures

with higher frequencies), would not allow us to increase reliability efficiently. Thus

conventional testing approaches can increase the reliability of the products, but they
do not provide any fina measure of what has been achieved.

In literature there are various works which try either to compare the reliability
obtained by applying widely used testing techniques (for instance branch or data
flow coverage (see Chapter 2)) and the methods based on the operationa profile
[ST97], [FHL98] [FYO0OQ], or to combine diverse software detection techniques to
improve the final reliability [MZ98], [FOO00], [LPS00], [LPS01a/b].

Regarding SRE, it is formally defined as the quantitative study of the operational
behaviour of software-based systems with respect to user requirements concerning
reliability [LYO02]. SRE involves the entire process of development, from the
feasibility to the maintenance phase, with the main intent of predicting, modelling,
estimating and measuring the reliability of software products. In addition SRE
defines the attributes of interest and the metrics applicable during the development
process for measuring the products reliability, and specifies the different
devel opment phases as well as the system architecture.

Thus SRE attempts both to satisfy the customer’s needs and to define a proper
plan and schedule of testing phase. The specification of precise reliability
requirements facilitates the system tester, to verify that the developed system meets
the requirements, and ensure to the customer the acquisition of the committed
product. Moreover, the time dedicated to the testing phases is exactly what is needed
for reaching the required reliability and the involved resources are only focused on
the high-usage functions or operations avoiding energy waste. The main steps
identified by SRE are:

a) Define and quantify product usage. Measuring reliability depends on the
observation of the product behaviour in operation, and is strictly related to the
environment in which the product will be inserted. In many cases, i.e. critical
systems, the smulation of the product usage in the testing environment is
necessary. This means specifying how the customer will use the various system
features and which environmental conditions will influence the process. Testing
by ssimulation of operational usage is known as operational testing or statistical
testing or software reliability engineering testing (SRET). Aswill be specified in
detail in the next section the key idea is that the selection of the test cases is
carried out in such away that the probabilities of selection are the same as those

220

in real operation. Consequently, any statistical estimation of reliability in the
testing environment can aso assumed to be as characteristics of operational
reliability.

b) Define quantitatively the reliability goals with the customer. This is useful not
only for providing the information necessary for demonstrating that the reliability
requirement has been achieved, but also to maximize customer satisfaction and
resolve any possible contractual controversy.

c) Track the reliability of the product during testing by executing the proper test
cases. In operational testing the test cases are executed in random order, but
based on usage probability. Hence those runs, which are of the greatest
importance to the customer, are likely to occur more often.

d) Measure the reliability, i.e., interpret the test results obtained. There are two
different testing behaviours as will be better discussed in the next section: testing
to certify the reliability or testing to improve it. In the former case when failures
are discovered during the testing phase they are left in the code (life testing)
because the purpose is deciding whether the software is acceptable or not
[ABK94]. In the latter the corresponding faults are removed, hence a sequence of
programs is obtained showing (possibly) a growth in reliability which is in turn
measured by the application of the Reliability Growth Models.

7.1.1 Achievable Reliability

In [PSMO02] the authors anayzed the practical implications of varying
probabilities of failure over input subdomains of operating regimes, and evaluated
the possibility of estimating useful upper and lower bounds on the reliability of a
two-versions system. Of coursg, it is very attractive for the customer requiring high
reliability for the products he/she is going to acquire. Unfortunately the difficulty of
achieving and demonstrating reliability is strictly related to the level of reliability
required [LS00]: for instance if a reasonable failure probability is 10° per unit time,
it is necessary to run at least 1000 test cases. Of course, the situation is more critical
in case of safety critical systems developed for managing and controlling aircraft,
industrial plants, railway and air traffic for which the reliability requirements must be
very high. For instance, as reported in [LS93], in civil transport airplanes the quoted
requirement is failure probability of at least 10°° per hour of operation; in the U.S.
Federal Aviation Administration's Advanced Automation System (for air traffic
control), the required failure probability was at least 107, i.e. 3 seconds per year.

221 7. Reliability Models Application

These stringent requirements, called 'ultra-high reliabilities” [LS93], appear very
difficult to reach and demonstrate by using available means. reliability growth
models, testing with stable reliability, structural dependability modelling, as well as
more informal arguments based on good engineering practice. In [LS93] and [LS00]
the authors provided some rigorous arguments about the limits of what can be
validated with each of such means. In particular they show that only combining
evidence from these different sources it is possible to raise the levels that can be
validated and reaching consequently ultra-high reliability. Recently alternative
studies demonstrate that the use of Bayesian networks [MW82] can also be used for
reaching this target [NFFO3] and [NKFO3].

The proof that high software reliability is attainable comes from earlier systems,
which reach this level during extensive operational use. For instance the AT&T
telephone system historically exhibited very high quality-of-service measures,
achieved by focusing not only on component reliability [HMWO1] but also an
extensive redundancy, error detection and recovery capabilities.

Recently, with the increasing of the use of Component-Based software, the target
of the literature has been partially oriented to the measurement and achievement of
the overall reliability of an integrated software system [LRM97, LRM02, LHKO02,
YLKO2]. Some interesting results are: [STO0] which focuses on the problem of
component re-use, and [PO02] which treats an important problem in many safety-
related industries, the reliability assessment of upgraded legacy systems.

As shown in this short, and not exhaustive overview of the literature, achieving
an established level of reliability is not a trivial problem and many solutions have
been provided over the years. Generally the topic of reliability is extensively treated,
leading to the diffusion of the software reliability engineering practice in many
fields. Examples of successes obtained are found in [MUOQ3], which provides a
complete list of published articles and papers, written by practitioners who have
applied software reliability engineering to their projects and described their
experiences resulting.

7.2 SRET

Software reliability is a measure of the probability that software will execute
without failure for a specified time period within a specified environment. A key step
in SRE practice is to quantitatively define the quality objectives of the development

222

process, which embraces all phases in the software life cycle, from the feasibility and
requirement stages up to maintenance after delivery.

This section mainly focuses on the application of SRE activities to the testing
stage. In mid-1990s, Musa introduced the Software Reliability Engineered Testing
(SRET) methodology, whereby "SRET is testing guided by reliability objectives and
expected usage and criticality of different operationsin the field" [MU98].

In particular SRET can be applied in two different manners for debug testing and
for acceptance testing as mentioned in the previous section. In the former, the metric
estimated and tracked is failure intensity, i.e. failures per unit execution time. System
testers use failure intensity to guide the bugs' correction process. Acceptance testing,
on the other hand, does not involve fault removal to resolve failures, but enables an
overall “accept” or “reject” decision.

In the following sections we briefly report the five principa activities of the
SRET approach, referring the reader for more details to [LY96, MU93, MU96,
MU98, MUO3].

7.2.1 Defining the Reliability Objectives

Asfor the other requirements, the reliability must be specified in strict agreement
with the customer. It provides the information necessary not only for later
demonstrating that the requirements have been fulfilled, but also for resolving any
possible contractual controversy, in the case of failure.

The first step for defining the reliability objective is to establish which
operational modes need reliability verification. Specifically an operationa mode is
defined as a distinct pattern of system usage likely to stimulate different failures, or
rarely-occurring failures with critical impact, and hence needing separate testing.

Many factors may contribute to individuate an operational mode, such as system
maturity or overload, critical events and © on. [LY96, Chapter 5]. In the distinct
modes of operation it is then necessary to define possible failures and identify their
potential impact on users, i.e. the severity classes. Some classification criteria can be
adopted for this purpose such as the human life impact, the cost impact as the loss of
present or potential business or the service impact. Generaly there are four levels of
severity classes ordered in a decreasing manner and defined as:

Severity 1. Complete unavailability to users of essential services

Severity 2: Degraded availability to users of essential services

Severity 3: Unavailability to users of services, but workarounds available

223 7. Reliability Models Application

Severity 4. Unavailability of capabilities that do not affect users
The last step is defining the reliability level to be achieved for each operational
mode and severity class.

7.2.2 Developing the Operational Profile

The reliability of a product depends on how the costumer will use it; therefore the

operational profile is the key notion in evaluating software reliability, and is what

distinguishes operational testing form traditional debug testing.

Musa defines an operational profile as “ the set of operations and their probability of

occurrence’ [LY 96, Chapter 5], where an operation is a complete task performed by

the system. To obtain the list of operations, a stepwise procedure can be followed.
First step: the identification of different customer types, i.e. the initiators of
operations. An operation can in fact be initiated by a user, a transaction, another
system, or the system's controller, thus it is first of all necessary to group the
users, who utilize the system in similar ways, into user types. These are then
refined for identifying all the modes in which a user can invoke the system.
Second step: the enumeration of the operations that are produced by each
initiator. For each initiator, by using the documentation available such as system
requirements, draft users manuals, a list of operation is produced. This will be
further refined as requirements, design and implementation proceed. Specifically
it could be the case either of dividing an operation into two or more, if the
processing results substantially different in several cases, or reducing the number
of operations for aless fine-grained representation of use.
Sometimes, focusing only on testing purposes instead of defining the list of
operations for each initiator, it is preferable to define the set of test inputs that
will be used for exercising the software under test. A test input or an input point
is defined as a set of values, one for each of the variables that affect the behaviour
of the software under test.
Hence an input point could take different forms depending on the software
considered; for instance:
° For aprogram, which receives all its input information at the beginning of its

execution, the input variables form an input point, also called input vector. In
this case al the possible values of an input vector form a set of input points.

224

° For a program having an internal state, which changes as consequence of a
receiving input, each input point also includes in its variable the state
variables with their initial values.

Third step: determine the occurrence rates of each operation. For this purpose it

is possible to either use existing field data from similar systems or to simulate the

system behaviour, i.e. determine arrival rates of events that invoke different
operations, or make estimates.

Fourth step: determine occurrence probabilities by dividing occurrence rate by

total occurrence rates. At this step a functional profile is defined, i.e. alist of the

functions needed by the user in each mode and their occurrence probability.

Fifth step: define the operational profile from the user’s point of view. This must

be converted to the operational profile, which is system oriented.

If in the second step the set of inputs has been defined, the operational profile
consists in determining the probabilities of selection of the different inputs, and
hence the fourth and fifth step are unified. Generaly, the set of input pointsis very
large (or even infinite); therefore it is not possible to enumerate each point with its
probability. Three practical methods can be defined and possibly combined, for this
purpose:

a) Specifying the probabilities as mathematical functions;

b) Subdividing the input space into a manageably small number of subsets, and

specifying alist of probabilities, one for each subset;

c) Instead of specifying the probabilities, specifying the process for producing
the input, if it exists, according with the intended distribution. This process
could be a pseudo-random process, a simulation of the environment
knowledge, the use of test operators, or of recorded input data set.

7.2.3 Preparing the Tests

In this step the test cases to be executed and the scripts for automatically
launching them are prepared. In particular,

A test case is specified by an operation and its complete set of input variable
values and environment. Once the set of test cases is established they must be drawn
randomly following the operational profile using specific test procedures, i.e. the
statistical specification of the set of runs associated with an operational mode, made
by providing values of operation occurrence rates. The process for preparing test
cases involves three steps:

225 7. Reliability Models Application

First step: Estimating the number of test cases, i.e., runs from the amount of
testing scheduled and allocating them among the different operational modes. It is
worth noting that the same test case can be executed in different test procedures
and results in different test runs. Therefore the minimum number of test cases
required is equal to the maximum number of runs allocated to an operational
mode. In this manner in fact it is possible to avoid a useless waste of testing
resources due to the duplication of runs. Executing the same run with exactly the
same values for al input variables is only required for collecting more data,
verifying that a failing run now operates successfully, or conducting a regression
test.

Second step: Specifying the test cases, i.e., selecting the operation with a
probability equal to its occurrence probability in the operational profile and
selecting the run with equal probability from all possible runs of the operation.
Third step: Preparing the test procedure scripts, i.e. the procedure used for
calling the test cases. Due to the generally large number of tests to be run the
execution of the scripts should be automated whenever possible.

7.2.4 Executing the Tests

In operational testing, the test cases are executed in random order, but based on
usage probability. Hence, those runs which are of the greatest importance to the
customer are likely to occur more often. Statistical testing in particular depends on
running large number of tests. Roughly for a reasonable chance of finding afault in a
program with failure probability g, or to demonstrate a failure probability of the
order of q, it is necessary to run at least a small multiple of 1/q test cases. For
instance if a reasonable failure probability is 10° per unit time, it is necessary to run
at least 1000 test cases.

Considering this order of test cases, manua testing becomes a labour-intensive
activity. It requires a human tester to select the test cases that appear useful, running
them through the software under test, and analysing the result for failure. Therefore
the execution of test cases must be automated with the use of a test management
system. Thisis responsible for setting up, executing test procedures scripts, capturing
input and output, and cleaning up. Specifically it should implement a mechanism to
automatically record execution parameters, results, failures, and their severity and
time of occurrence. A set-up for automated testing is shown in Figure 1.

226

Control and A
measurement -
\ N
\ RN N
Software
;gﬁgrg?or | ;J;Sotler ORACLE

Figurel Thetesting environment

As shown by this figure, an important part of the test automation is the oracle.
This name indicates any mechanism used to decide whether the program behaves
correctly on a given test. The oracle decides about the test outcome for example by
analysing the behaviour of the program against its specification. One of the main
qualities of the oracle is having a high coverage defined as: the probability that the
oracle regjects a test run, given the correct probability distribution of the inputs and
given that the test runisafailure.

Having a good oracle is therefore an important and difficult to achieve objective
in operationa testing, because if failures pass undetected, software reliability cannot
be increased and its assessment will be misleading. Also undesirable, even if less
dangerous, are false alarms, because resources will in wasted to diagnosing inexistent
failures. Here we do not extensively treat the problem or oracle definition referring
the reader for more details to [MIO87, LY96 Chapter 5]. We limit ourselves to
provide some useful guidelines for automatically checking the test results:

Specification checks. The definition of a correct result comes from the

specification by using assertion or formal executable language. For instance: for a

program which has to find the solution of an equation, the check may consist of

substituting the results back into the original equation.

Back-to-Back testing. Any time a reference system is available, such as a

previous version of the software, it is possible to compare its results with those

produced by the program under test. The discrepancies may not always be due to
bugs, as differences between the two versions may be alowed by the
specification

Reversal checks. When feasible, the oracle can compute the inverse function of

the produced output and compare it back with the input.

227 7. Reliability Models Application

Suspicious behaviours. The oracle can be designed to look for illegal or
unreasonable values of the variables, that are a necessary, although not sufficient,
condition for failure.

7.2.5 Interpreting Test Results.

Failure data collected during test execution are interpreted differently depending
on whether the objective is to resolve the detected failures or not, as in debug testing
or acceptance testing. In the former case the goal is to increase product reliability;
therefore during system testing, as the fault are removed, periodic estimates of failure
intensity are made from failure data. Typically these estimates are computed by using
a suitable reliability growth model, as will be described in the next section. The test
stops when the reliability objectives are reached, i.e. for each severity class the
established failure intensities are achieved.

The acceptance testing goal is to decide whether a product is acceptable or not. In
this case the test consists in smply evauating the product failure behaviour against
the required reliability levels. Depending on the failure intensity achieved it is
therefore possible to accept or reject the software being tested or continue testing.

Musas SRET approach has been successfully applied to many projects with
documented strong benefit/cost ratio results. Asan example AT& T Bell Laboratories
is currently applying SRET in a substantial number of communications software-
based systems, and specifically in the Operations Technology Center of the Network
Services Division, developers have used it on over 20 projects; the National Security
Agency is now embracing the technology to build communications system software
where security and reliability are logical and required ingredients.

7.3 Reliability Theory: Some Basic Definitions

In the previous section, some important concepts such as reliability and failure
rate were mentioned without a rigorous definition. Before presenting the reliability
growth modelling it is necessary to fill this gap by introducing key concepts,
referring the reader to [Ly96 Appendix B] for more details. In reliability theory,
interest is focused on a random variable T, representing the time to fallure, and the
probability that T isin some interval (t, t+Dt):

Eq. (1) PE<T<Lt+Dt)= probability that &<T< t+Dt

If f(t) indicates the density function and F(t) the distribution function the previous

formularesults:

228

Eq.(2) P(I<T<L t+Dt)=f(t)Dt=F(t+Dt)-F(t)
Then considering that T is defined only for the interval 0 to +e and

F(t) = éf (x)dx
From Eq. (2) results:

- F(t)=POET £1) = §f (x)dx

The reliability function, R(t), representing the probability of success at time t, is
therefore defined as the probability that time to failure is larger than t (that is T>t),
ie.,

e ROSPI>D=1-F@O= Of (x)dx

In practice the density function f(t) is not used very much because the data
observed are relative to the failures occurrences, and the failure rate function (or
hazard function) is preferred instead. Explicitly the failure rate is defined as the
probability that a failure per unit time occurs in the interval [t, t+Dt], given that a
failure has not occurred beforet. That is:

_ PEET <t+DCt|t>T) _PCET<t+DCt) _ F(t+Dt)- F(t)
Failure rate= Dt DIP(T > t) DtR(t)

The hazard rate is instead the instantaneous rate of failure at time t, given that the
system survives up to t and is defined as the limit of the failure rate as the interva
approaches zero, (At—0). That is:

m =
®0 DIR(t) R(t)

As shown by these formulas, the function f(t), F(t), R(t), and z(t) can be
transformed one into another. Just for instance, for any timet results:

E0.5))= F(t+Dt)- F(t) _ f()

229 7. Reliability Models Application

Another important measure for characterizing a failure model using a single
parameter is the mean time to failure, (MTTF). This is defined as the expected time
during which the system will function successfully without maintenance or repair.
That is:

Eq. (7) MTTF = E[T] = (‘Stf (t)dt = (5 R(t)dt

where f(t) isthe density function and R(t) is the reliability function.

Finally other important functions in reliability theory are the failure intensity,
| (t), and the mean value function for the cumulative number of failuresnt).
Supposing that M(t) is a random process defining the cumulative number of failure
by timet, m(t) is defined as the mean value function, i.e.: M(t)=E[M(t)]

The failure intensity | (t), is defined as the instantaneous rate of change of the
expected number of failures with respect to time, and derivesfrom m(t) as derivative:

dn(t) _

d
S+ EMO)

The software reliability theory is mainly based on the application of reliability
growth models to evaluate reliability measures; it is therefore important to define
exactly what this means.

Generally considering the successive interfailure times, Ty, To, ...T,, agrowth in
reliability can be experienced if the successive intervals tend to become larger, i.e.
Ti,< T, for al i<j. Precisaly P(Ti<v)= P(T;<v) for v>0. Otherwise, if Fy(X) is the
cumulative distribution function of T, the growth in reliability is represented by:
Fri(X)> Fri(X) for all i<j and x>0[ACL86].

7.4 Reliability Growth Models: an Overview

The software reliability models appeared for the first time in the 1970s with the
pioneering works of [MJ72, SH72] and have been the most successful achievement
in recent years for estimating and predicting the reliability of the systems. Nowadays
there are dozens of these models, each one with its particular assumption. Basically
the main characteristics of these models are [M1087]:

Predictive validity: the capability of the model to predict future failure behaviour

from present and past failure behaviour (that is, data). This characteristic is

significant only when some changes in the failure behaviour can be experienced,

230

as should occur when applying an operational test in which faults are repaired

when detected.

Capability: the ability of the model to estimate with satisfactory accuracy

quantities of interest that could be for instance the present reliability, mean time

to failure (MTTF), or the expected date of reaching a specified reliability.

Applicability: the ability of a model to be applied in different conditions across

software products that could vary in size, structure, or functions implemented. In

particular, it is very important that a model is not dependent on development or
operational environments.

Smplicity: a model should be smple under three different aspects: in collecting

data, which must be ssmple and inexpensive; in its concepts, i.e. anyone without

extensive a mathematical background should be able to understand the model and
its assumption; in its implementation, so that the model can be rapidly and
inexpensively applied.

Indeed the reliability evaluation is a difficult task, mainly because it deals with
software failures, caused by design faults, which revea themselves only under
appropriate operationa circumstances. Generally, software reliability modelling is
described as a set of techniques that apply probability theory and statistical analysis
to predict software reliability, or also the modelling of past failure datafor predicting
the future system behaviour.

The approaches proposed are divided into two distinct categories, depending on
the data used for the derivation of the stochastic process useful to reliability
estimations: the number of failures discovered per time period, or the time between
failures measured aswall clock or execution time.

It is worth noting that the accuracy of data collection can have a fundamental role
in the reliability predictions obtained. Considering for example the first group, if
during the development of the operational test for each failure only the date, and not
the exact hour in which the failure occurs was reported, the unit of time will not be
shorter than the day, and the reliability estimations will consequently have the same
granularity. Moreover it is fundamental to consider only the period in which the
operational test has been developed, otherwise the predictions should not be true. For
instance, if the test is conducted only during working days at least Saturday and
Sunday must be eliminated from the data collected

Referring to the second group, a peculiar situation is when the failure time is
expressed in execution time, i.e., the failures are registered considering the time in

231 7. Reliability Models Application

which the operational test is running on the CPU. In this case, the time between
failures registered corresponds exactly to the period in which the operational test has
run CPU. The same cannot be true when the clock timeis collected. It is possible that
the clock time between two successive failures is equal to one hour but due to
internal problems the operational test has run on the CPU for only a few minutes.

Generally, with the proper information, the failure per time period data can be
transformed into time between failures and vice versa. It is also possible to smulate
this transformation by distributing the failures on the test period in a random or in a
uniform manner.

Usually an informa description of the reliability growth modelling, start
considering a program under debugging in which the execution time between
successive failures, t;. b. ...ti3, can be experienced [ACL96, BCL90, BL92]. This
represents the raw data that will be used for defining the stochastic process. In this
perspective it is assumed that each time a failure is observed the fault causing it is
fixed, but varying this hypothesis can derive different models [ACL96, MIO87]. The
time between failures observed is thus considered to be realizations of random
variables, Ty, T,, ...Tj.1, and used for predicting the future behaviour, T. Ti;... (note
that even the current reliability T; resultsin a prediction).

For this purpose different prediction systems are developed and compared, where
aprediction system is defined as[ACL 96, BCL90, BL92]:

1. The probabilistic model which specifies the distribution of any subset of Ti's

conditional on an (unknown) parameter a
2. a dtatistical inference procedure for a involving use of avalable data

(redizations of T;'s)

3. a prediction procedure combining 1) and 2) for making probability statements

about future T,'s

It is worth noting that having a “good’” model is not enough for truthful
predictions; the three points mentioned are strictly related. For instance, in the
models considered the random variables used are not identically distributed,
therefore it is not possible to analyse the models performance with the traditional
“goodness-of fit” method [LO87, HSM02]. Moreover, generally the representation of
the software engineering process is a difficult task and requires complex models;
therefore, it is not possible to choose a priori in favour of one model instead of
another. The selection of the model, which better represents the software engineering
process requires an accurate analysis, as will be explained later in this section.

232

In the following we present a brief summary of the software reliability growth
modelling, referring to [LY 96] for a more detailed documentation.

7.4.1 Model Classification

To simplify the model selection, and in particular an accurate model organization,
Musa and Okumoto [MUS83] present a model classification schema, based on the
different attributes of each model which are:

1. Time domain. Wall clock versus execution time

2. Category. This represents the total number of failures that can be experienced in
infinite time, which can be either finite or infinite.

3. Type. The distribution of the number of the failures experienced by time t is
considered

4. Class. This attribute is characteristic only for the finite failure category. This
expresses the functional form of the failure intensity expressed in terms of time.

5. Family. This attribute is characteristic only for the infinite failure category. This
express the functional form of the failure intensity expressed in terms of the expected
number of failures experienced.

Generally the attributes considered most frequently for grouping the different
models are category and type. Considering the former, if m(t) indicates the mean
value function for the cumulative number of failures, as defined in the previous
section, the models are divided into two basic groups, depending on nt):

the finite failure models subgroup if !j@Tn(t) <¥

the infinite failure models subgroup otherwise.

The type attribute instead categorizes the types of data the model uses. In

particular two subsets can be individuated, even if there are models that can handle
either groups.
First group: This is represented by all models that use as input data the observed
number of failures discovered per time period. Generally distribution of the number
of the failures experienced by time t is considered to be the Poisson type [HSMO02].
In this caseif the interval [0,t] isdivided into n partition such that t,=0, ty,...t,=t and
m(t) indicates the mean value function for the cumulative number of failures, each of
the f; independent Poisson random variables has:

mean value E[f;] = nr(t;)-nti.1)

probability density function P(f, = x) =g (™)-mt-2)

for x=0,1...

[(m@,)- m(t,.)]"
X

233 7. Reliability Models Application

Second group: This is characterized by the models that use as input data the
observed time (actual wall clock or some measures of computer execution time)
between software failures. In this case the distribution of the number of the failures
experienced by timet is considered of the Binomial type [HSMO02].

Combining the two attributes a classification of some of the existing reliability
models can be made, as shown in the table below.

Failure per time period Time between failures
Finite failure category Infinite failure Finitefailure Infinite failure
category category category
Books and Motley[BM80] | Duane model [DU64] | Jelinski and Moranda Geometric [MO75]
[MJ72]
Nor-homogeneous MusaOkumoto Noq—homogeneous MusaOkumoto
Poisson process
Poisson process[GO79] | Logarithmic Poisson [GO79] L ogarithmic Poisson
[M1087] [M1087]
Schneidewind’s model Musabasic [MI087] | Littlewood and Verrall
[SCT75] [LVT73]
Y amada S-Shaped
[YOO083]
Hyperexponential
model [OH84]

Tablel Classification of the Reliability Growth Models

7.4.2 Reliability Growth Model Selection

Every reliability growth model (RGM) is characterized by accurate applicability
conditions and a mathematical specification. In this section we mainly concentrate on
the former aspect referring the reader to [LY96, Chapter 3] for an exhaustive
mathematical description of these models. In particular, we report the three common
assumptions, generally called Standard Assumptions, which are fairly standard for
each of them. They are considered fundamental preconditions for applying every
model.

Al. The software is operated in a manner similar to that in which reliability
predictions are to be made.

A2. Every failure within a severity class has the same chance of being encountered
as any other in that class

234

A3. Thefailures, when the faults are detected, are independent.

The first assumption ensures that data used for deriving model estimates are
collected in an environment that can be assumed equal to that in which the reliability
projections are to be made. Any significant discrepancy between the two
environments could in fact invalidate the predictions obtained. The second assures
that different severity classes may have diverse failure rates, and therefore require a
separate reliability analysis, but the failures in the same severity class must have the
same distributional property. The latter assumption allows simplicity in deriving the
estimates, as the maximum likely estimates [HSMO02].

A major step in predicting software reliability is to decide which model is the best
for predicting reliability in a specific context, since there is not a model which
performs better than the othersin any case.

The procedural process for deciding which RGM should be applied for obtaining
truthful reliability prediction has three main steps:

First step: Verify the Standard Assumption at least for A1 and A2. These are
fundamental prerequisites for applying any model.

Second Step: Selecting the set of RGMs that can be applied. On the bases of the
typology of the data collected, i.e. failures per time period or time between failures, a
first choice of the models applicable for obtaining prediction can be derived, as
reported in Table 1.

Third Step: Evaluating the specific requirements of any model. Among the
models chosen in step wo, a refined selection can be performed by analysing their
specific assumptions or mathematical definition. For instance some models assume
either that the number of faults in the software has an upper bound, or a perfect
debugging. If testing is performed when the software is still immature, i.e., it is still
possible to make many and significant changes to the software under test, it would be
more appropriate to choose those models that do not assume an upper bound to the
number of faults (eg. Musa-Okumoto Logarithmic Poisson model or Littlewood-
Verrall model). Otherwise, it would be more appropriate to choose a model that
belongs to the finite failures category (e.g. Non-homogeneous Poisson Process
(NHPP) model or Musa basic model). Moreover, if previous experience on similar
projects indicates that a significant number of repairs results in new faults being
inserted into the software, it would be more appropriate to choose from those models
that do not assume perfect debugging (e.g. Littlewood-Verrall nodel). Otherwise, it

235 7. Reliability Models Application

would be more appropriate to choose a model such as the NHPP model or Musa
L ogarithmic Poisson model.

Therefore the RGM can be differentiated by the assumption regarding testing and
defect repair, even if, it is important again to stress that currently there is not a
known method for determining a priori which model will prove optimal for a
particular development effort. To this purpose in [WO97] the author tries to evaluate
the effect of violation of the models' assumption on the inaccuracy of the model
predictions.

Fortunately, recent theoretical advances in the field have largely eliminated some
difficulties that arose in the choice of these models for a specific case. As will be
better described in the next section, in fact, from the practitioner’s perspective
several software reliability tools are available today which facilitate the automatic
execution of Step 3. These tools help users to make the choice of a model without
requiring extensive knowledge of the mathematical aspects of the RGM. In
particular, they let the user readily apply the best known software reliability models
to higher set of falure data and then choose the model that gives the best
predictions, by analysing the produced results.

7.4.3 Survey of Reliability Estimation Tools

Generally the tools for reliability estimation by using the results of operational
testing are divided into three categories: the steady-state reliability estimation, which
is mainly based on the Markov model [KA86] and represents the system behaviour
as a set of mutually exclusive system states, the modelling of system reliability based
on component reliability, in which the system is decomposed into functiona entities
consisting of units or subsystems, and the reliability growth models, which are those
presented in this section.

For the first two categories many tools exist that were developed outside the
software domain and can be conveniently be used for modelling software reliability
as well. Without claiming to be exhaustive, here we extend and update the survey of
the available tool for reliability estimation presented in Lyu’s book [LY 96, Appendix
A], accompanying each of them by brief description.

SMERFS (Statistical Modelling and Estimation of Reliability Functions for

Software) a portable (written in FORTRAN 77), menu-driven tool developed by

the U.S. Naval Surface Weapons Centre. The tool provides the statistical

modelling estimation of reliability function [SME96].

236

CASRE (Computer Aided Software Reliability Estimation) developed at JPL
which is a PC-based extension of SMERFS meant to provide a more user-friendly
interface, more input data manipulation capabilities and the possibility of
combining models to obtain different models which may provide better
predictions [CASOQ].

SoRel developed at LAAS-CNRS in Toulouse, a Macintosh-based program with
features similar to SMERFS, and also providing trend tests [SOR93], [KKL97].
AT&T Software Reliability Engineering Toolkit developed for the first time
by AT&T in1977 is a MS/DOS or UNIX® operating system implementing the
Musa basic and the Musa/Okumoto logarithmic Poisson execution time software
reliability models [LY 96].

SRMP (Statistical Modelling and Reliability Program) developed in 1988by the
Reliability and Statistical Consultants, Limited of the United Kingdom, is a
command-line-oriented tool for an IBM PC/AT or UNIX® operating system with
characteristic similar to SMERFS[LY 96].

ESTM (Economic Stop Testing Model Tool) implemented by ESTM System in
1992 in a command-line-driven system for UNIX® operating system, that can be
used to help decide when to stop testing [LY 96].

M-élopée developed in the 1996 by Mathix for France Telecom is a PC-based
tool which facilitates the direct import of input data and their manipulation. It
implements several reliability growth models and the trend test [MEL].
FRestimate developed by SofRel Company 2000, Sugar Land, Texas is a PC-
based tool which allows the prediction of software defects, failure rate, MTTF
and reliability before the testing. It also has estimation models to be applied
during testing for reliability prediction [FR02].

Goel-Okumoto Software Reliability Model: This is an automated version of
the Goel-Okumoto Nonhomogeneous Poisson Process Software Reliability
Model which runs on an IBM-PC or compatible under MS-DOS 2.11 or higher
distributed by DACS (Data & Analysis Center for Software) Rome, NY. This
tool also provides the Kolmogorov-Smirnov statistic and different estimations
about fault and failure [GOEL].

Reliability & Maintenance Analyst distributed by the Engineered Software,
Inc. Belleville, MI Thisis aPC-based reliability analysis software package which
permits the life data analysis [REMA].

237 7. Reliability Models Application

PRISM is an IBM PC, or compatible, Reliability Analysis Center (RAC)
software tool that links together several tools into a comprehensive system
reliability prediction methodology. It permits combining together different factors
that influence system reliability [PRIS].

SREPT Software Reliability Estimation and Prediction Tool. This is a unified

framework containing techniques (including the architecture-based approach) to

assist in the evaluation of software reliability in all phases of the software life-
cycle [RGKOQ].

Here we only discuss the characteristics of CASRE and SoRel, which are those
applied in the next section with the case study considered. The main result the tools
calculate is product reliability (present reliability as well as future predictions of
reliability) as a function of test time. For this purpose the tools allow the analyst to
choose the model parameter estimation method: either maximum likelihood or |east
squares [HSMO2]. In particular the tool CASRE can represent the product’s
reliability in terms of several interrelated reliability measures, such as cumulative
number of failures, failures per time interval, and the product’ s reliability function.

Moreover, for each model the tools CASRE automatically compute the
prequentia likelihood function (PL) [BL92], which is a general means of comparing
the accuracy of predictions provided by more models when applied to the same
failure data set. In particular, the best model is characterised by the highest value of
PL (we must specify that for convenience many times the tools compute -In(PL), so
in this case the best model is that showing the lowest value).

Regarding the tool SoRel, we must specify that it is the only one that alows
severa reliability trend tests such as. the arithmetical test, the Laplace test, the
Kendall test, and the Spearman test [KKL97]. These tests alow an analyst to identify
whether the reliability function is increasing, so that an appropriate model can be

applied.

7.4.4 Using the Tools for Predictions

In this section we describe a stepwise procedure useful for predicting the
reliability of software starting from a set of failure data collected during the
operationa testing. In particular we details the use of two tools, CASRE [LN92] and
SoRel [KKL93].

For simplicity’s sake as input data set, we consider only the observed number of
failures discovered per time period (The steps considering as input data the observed

238

time between failures are similar). This allows immediately a preliminary selection
among models that can be applied for prediction. Specifically, the reliability growth
models usable with the tool CASRE are only: Brooks and Motley model,
Generalized Poisson model, Nor-homogeneous Poisson model, Schneidewind
model, Y amada S-Shaped reliability model.

7.4.4.1 First Step: Applying SoRel

A basic assumption for using reliability growth models is that the failure data
exhibits a growth in reliability; otherwise is quite difficult to obtain useful
predictions [KKL97]. The first step is therefore to verify if the set of data available
has this property, i.e. verify their trend. Generaly there are two typologies of tests,
called trend tests, applicable: the graphical test or the analytical test.

The former is very informal and consists in plotting the failure data, interfailure
time or number of failures per unit of time, versustime in order to visualize the trend
displayed. The latter has as principle the test of null hypothesis Hy versus an
aternative H; [HSMO02]. Usually Hy is assumed that the process is a homogeneous
Poisson process and H; that the process undergoes monotonic trend, that is to say
that the data exhibit only an increasing (decreasing) interfailure times or decreasing
(increasing) failure intensity.

Regarding the analytical tests previous studies have shown the Laplace test to be
optimal within the framework of the most famous software reliability models
[GA92]. Briefly, this test consists in computing the Laplace factors u(i), expressed
according to the failure data available (interfailure times or number of failures per
time period) for the observation period [0, T] (for further details we refer to
[KKL97]). In particular dividing the interval [0, T] into k units of time of equal
length and letting n(i) the number of failures observed during time unit, it is possible
to calculate the Laplace factors as:

8 (- pngiy- &)an(l)
u(k) = 4% 2
Eq. (9) \/k

—a n(i

> ql (i)
The meaning of these valuesis:

a) A negative u(k) suggests an overall increase in reliability between dataitem 1
and dataitem k and thus decreasing failure intensity.

239 7. Reliability Models Application

b) a positive u(k)suggests an overall decrease in reliability between items 1 and k
and thus and increase in failure intensity.
C) Values oscillating between -2 and +2 indicate a stable reliability

The tool SoRel permits the automatic derivation of the Laplace factors displaying
the numerical results and the visualizing the corresponding curves. This shows the
trend over a given interval of time - the global trend — highlighting the regions in
which there is or is not an increase in reliability in the failure data. In particular the
graphical representation can illustrate information about the local behaviour of the
failure intensity, represented by the region in which there is a change in the trend. In
fact the intervals in which there are decreasing Laplace factors indicate a local
decrease in failure intensity or local increase in reliability. Intervals in which there
are increasing Laplace factors suggest a local increase in failure intensity or a local
decreaseinreliability.

Considering that the reliability growth models may be applied when the data
exhibits a growth in reliability, the local behaviour is useful for choosing the proper
time origin or end within the global observation period, so that the subinterval of data
considered has this property. The change in the time origin does not result in a
simple trandation. It is important to specify that sometimes it is possible to gply
severa reliability growth models even if there is a stable reliability in the failure
data, but this strictly depends on the data available. In the next section we present an
application of areal case study.

In the literature, studies for relaxing the assumption of a growth in reliability for
the application of the RGMs have been performed. In Chapter 6 we also face this
problem, proposing a Bayesian model for predicting the final number of failures at
the end of the testing phase. The impossibility of RGMs usage is a critical problem
mainly in the early phase of testing when the process of failure detection is not fairly
stable and a large number of failures are experienced. In these conditions it is very
difficult to experience a growth in reliability. Some research solutions are found in
[KM91] in which the authors predict the number of failures occurring during a finite
future time interval from the number of failures observed during an initial period of
usage by using the RGMs; [XHW97] in which an approach using information from
similar projects in order to obtain an early estimation of the model parameter for a
current project is studied; [MD97] in which the authors estimate priori values that
can serve as a check for the values computed at the beginning of testing, when the
test datais dominated by short-term noise.

240

7.4.4.2 Second Step: Models Running

The second step consists in deciding which modél is the best one for predicting
reliability, considering the particular context. Sometimes it is possible to discard a
model a priori, but generally is easier to apply all the models available to the failure
data with the help of the tools, and then decide which is the best. In our case, we
adopted the tool CASRE reporting here the main actions for using it. Further details
arein [LN92].

1. Environment set: Before applying the models to the failure data it is necessary to
set up the environment that consistsin:

a. Choosing the maximumtlikelihood or least-squares parameter estimation.
For maximum likelihood estimation, the parameter estimates are such that
the value of the joint probability density of n random variables (called the
likelihood function) is maximized. For least squares, regression
techniques are used to find estimated values of model parameters.

b. Specify the range of failure data over which software reliability models
will be applied. On the bases of the Laplace trend test it is possible to
discard failure data belonging to an initial or afina period (or both) and
thus specify the proper data range that will be used as input to the models.
The default data range is the entire data set.

c. State clearly the interval over which the initia estimates of model
parameters will be made. By default, the first half of the entire data set is
used to make the initial estimates.

d. Specify for how long the models have to predict the failure counts (for
example for the next k>0 test intervals after the last point in the data
range used as input to the models)

2. Models running: The models used for software reliability estimation may be
chosen and run using currently-open failure data as model input. The model
results are displayed in the graphical display window for analysis. In particular
for each model, different views can be derived:

a. Time between failures. for the failure count data, the time between
failures for each test interval is taken to be the length of the test interval
divided by the number of failuresin that interval.

b. Failure counts: the failure data is in the form of failure counts and test
interval lengths. For the raw failure data, this display shows the number
of failures encountered during each test interval. When showing model

241 7. Reliability Models Application

results in this way, the plot shows the number of failures the model
estimates in each test interval, as well as the number of failures the model
predicts will appear in the future test interval.

c. Failure intensity: For failure data and models results, this plot shows the
number of failures per unit time.

d. Cumulative failures: the plot shows the cumulative number of failures as
afunction of test interval number.

e. Reliability: this display shows the reliability indicated by the model
results. For each observation in the raw failure data, a hazard rate can be
computed. If we cal the hazard rate h and the time interval is t, the
reliability of the software is given as €™. The plot shows the way in
which the software reliability changes as failures are observed and faults
are corrected.

7.4.4.3 Third Step: Models Selection

So far the different reliability growth models have to be run to obtain specific
results, now the one providing the best estimation must chosen. For this, some
mathematical analyses can be performed.

Thefirst is the goodness of fit test, which is useful for deciding when a theoretical
distribution can be used to correctly represent a given empirical distribution. The
most popular are the Chi-square test and the Kolmogorov-Smirnov test. The former
is applied when the failure data are relative to discrete random variables, as in the
case of number of failures per time period, the latter to continuous random variables,
as for the interfailure time. We briefly report here only the details of the Chi-Square
test, referring to [LY96], [GA99] for more details. This test assumes that the
distribution considered can be approximated by a multinomia distribution. In
particular considering X the r.v. with distribution F(x), such that p; = F(x) - F(X.1) is
the probability that a failure isin the interval [, %], n the number of observations,
N; the observed number of times that the measured value of X takes valuei (i.e. a
binomial variable with parametersn and p;), the Chi-square can be calculated as:

& (Ni - npi)2

2 _
Eq.(10 G« TA T

where df are the degrees of freedom, i.e. if kisthe number of possible values for
the variable X then generdly df = k — 1. In particular, for the approximation to be

242

accurate, each n-p; value should be moderately large (n-p; = 5) otherwise some
observations must be combined. In such a case if h is the number of grouped
observations, df = k -h-1. This value can be measured in terms of statistical
significance if c?y it is seen as the value of a random variable Xg4. The boundary
value, or critical value, of the acceptable range c?,(df) is chosen such that: P(Xqs
> c?,(df))=a where a is called significance level of test. Thus the null hypothesis Hy
isrgjected if ¢y > c2,(df). Usudly a is chosen to be 0.05 or 0.1.

Applying the tool CASRE a table of goodness of fit statistics for all models that
have been run is automatically displayed. These values are used in conjunction with
the table of percentage points for the Chi-Square distribution to determine the
significance level at which the model estimates fit the data. The models for which the
Chi-Square value is not within the specified interval are discarded. Specifically the
significance level is identified considering the degrees of freedom that the tool
CASRE has calculated for each model (df), and finding in the table of percentage
points values x; and X,, which have the coordinates x, = (df, 0,05) and x, = (df, 0,95)
that correspond to a significance level is 0.95%. Hence all the models for which the
Chi-Square statistic is not within thisinterval [x;, X;] are not considered.

The best model is finally chosen from those that have passed the Chi-Square test,
considering other evaluations, the prequential likelihood (PL) and the prequential
likelihood ratio (PLR) [BL92]. Briefly, if nisthe number of observations, the former
is calculated considering the cumulative distribution F(t), derived for the reliability
prediction by using the first j-1 failure data collected, j=1...i-1, and in particular the
correspondingly probability density function f;(t) with the formulas:

L
Eq.(11) PL =0 fit)
i=j+1

The prequentia likelihood function evaluates the differences from the sequence
of predictor densities and the true (unknown) distribution of the failure data, also
revealing the situation in which the prediction values are very noisy even if their
expectation is close to the true one. In both cases the PL assumes small values. It is
worth noting that since PL tends to become very small the natural logarithm of the
PL is calculated instead. Hence the best model is characterised by the highest value
on PL or the lowest -In(PL).

243 7. Reliability Models Application

The prequential likelihood ratio is used instead to compare the performance of the
different models. Two prediction systems A and B can be evaluated via their
prequential likelihood as:

A

O A(t)
Eq.(12) PLR =5——

O f°(t)

i=j+1

Inthiscaseif PLR® 8 asn® 8 then the system B is discredited in favour of A; if
PLR exhibits neither upward or downward trends nothing can be said about the
superiority of one system over the other.

The tool CASRE automatically calculates the PL for the different models,
displaying in a plot the way a model’s prequential likelihood statistic (CASRE
computes -In(PL)) changes with time. Moreover, given two models, CASRE also
computes their prequential likelihood ratio useful for how much more likely it is that
one model will produce more accurate estimates than the other.

In the next section an application of this evaluation to a rea case study is
presented. In the case in which the failure data are relative to the interfailure time
other estimations can be used for choosing the best model such as the U-plot and the
Y-plot [BL92], [CAG99].

Briefly, the U-plot is a general technique for detecting systematic objective
differences between predicted (Fi(t)) and observed failure behaviour. If the predictor
system is working well the u;’s (ui= Fi(t)) look like a random sample of the uniform
distribution on (0,1), U(0,1). In particular this verification is performed plotting the
sample cumulative distribution function (cdf) of the u’ s and the cdf of U(0,1): if the
U-plot is above the line of unit slope then the predictions are too optimistic,
otherwise the predictions are too pessimistic.

Instead the Y-plot is useful for examining the u;” strend. For this purpose the KS-
distance analysis is used which measures the max vertical deviation from the line of
unit slope to the Y-plot. If the KS-distance is not statistically significant the errorsin
the predictions are in some sense stationary. In this case it might be possible to
correct the failure predictions (Recalibration Technique) [LY96 Chapter 4],
[BCL9O], [BLA9S]. If the predictions show an evident and constant bias is possible
to use this information to recalibrate the future raw prediction in order to eliminate
such errors.

244

Briefly, the steps for the recalibration procedure are:

1. Andyze the U-plot and verify if there is an (approximately) constant

relationship between prediction and through

2. Obtain the raw prediction at step i of the distribution of the time to next

failure

3. Caculate the recalibrated prediction as discussed in detail in [LY 96]

4. Repeat this at each stage i. In this way a sequence of recalibrated predictions

will result.

Even if the CASRE do not implement the recalibration procedure, in literature
there are successful examples of the application of these techniques [BCL90],
[BLA98] so that the same authors also suggest applying the recalibration to all
software reliability predictions.

7.5 The Application Results

Here we present the application of reliability growth modelling within the context
of Ericsson Lab Italy (ERI in the following), with the intention of improving the
capabilities of this organization in statistical process control and in prediction
methods [BLM98]. In particular, the objective is reducing below a determined value
the fault density figures, that are obtained by monitoring the first six months of
operation of released products. Recalling what was explained in Chapter 6, Section
6.6, the fault density in the ERI context is measured by the ratio between the
cumulative number of failures observed in that period over the product size,
expressed in lines of code. Root Cause Analysis (RCA) of reported failures is
routinely performed, to track down failures to the phase in which they originated.

In this section we focused on reducing the fault density figures in the Function
Test phase (Chapter 6) by introducing explicit reliability objectives to guide it. For
this, a baseline project has been selected for applying reliability testing techniques, as
described in Section 7.2 and performing the test selection so as to reproduce the
expected usage of the system in operation.

7.5.1 Case Study

The project used as a base to evaluate the SRET approach (Section 7.2) is the
‘CTM project’. The CTM project implements the service Cordless Terminal Mobility
(CTM) in the Ericsson AXE architecture. CTM is a service that allows users of
cordless terminals to be mobile within and between networks. Where radio coverage

245 7. Reliability Models Application

is provided and the cordless ermina has appropriate access rights, the user will be
able to make calls from, and to receive calls at, any location within the fixed public
and/or private networks, and to move without interruption of a call in progress. The
solution adopted by Ericsson is to connect the mobile terminal to the fixed network
viaa Central Control Fixed Part (CCFP), whose main aim is to concentrate the traffic
towards the CTM Exchange in a more capacious link called a ‘device’. All the
devices between a CCFP and a CTM Exchange are grouped, for administrative
reasons, in an entity called a ‘route’. The Ericsson CTM architecture is shown in
Figure 2 The baseline project consists of the administration functionalities of the
links between CCFP and CTM Exchange.

= ... CT™M .. N';'“’,(Vedk
CCFP l -------------------- Exchange or

Figure2 Ericsson CTM ar chitecture
The steps of the Musa's SRET approach have been applied to the baseline project
as described below:

1. Definition of the required reliability. The ERI improvement objectives require
that fault density, i.e., the number of the failures found in the first six months of
operation over the product size, is reduced to less than 0.15. We have estimated
that only 1% of the activity of a CTM-AXE10 switching is spent for
administrative functions, which are those in the baseline project. From this, we
estimated that the reliability required for the system under test is on the order of
107 failures per hour of operation.

2. Déefinition of the operational profile. Actualy this is because never before had
reliability modelling been attempted within ERI. Consequently on some
occasions during the implementation of the SRET process we found ourselves in
role of pioneers, having to decide on acceptable engineering compromises, where

246

part of the information or the background required was missed. In particular
operator manuals and previous experiences in similar systems were used as input
to derive the operational profile. In the following tables we describe the results of
the profiles obtained, according to the SRET approach. Regarding the operational
profile, we used an implicit approach, i.e., the profile is represented by a
behavioural tree. In Figure 3 we show only one branch of this tree. The severity
of the failuresis considered when assigning the probabilities.
. Test case definition. We used the test instructions prepared according to the
standard Function Test process
. Set-up of the test environment. We integrated a proprietary Ericsson tool, called
‘AUTOSIS, with an ad-hoc developed tool *STUT’. AUTOSIS is atool used for
testing any system provided with an interface for mantmachine interaction. The
test is performed by sending commands towards the test object and by analysing
the printouts obtained. The instructions to perform the test are supplied in the
form of AUTOSIS test instructions (T1s), which are written prior to execution. A
Tl contains AUTOSIS instructions interpretable by AUTOSIS and commentary
text. The tool generates two output files:
a. A log file, with the execution trace, to be used in the debugging of errors;
b. A report file, recording the execution time and the result of each test case.
AUTOSIS has been extended in order to handle random variables with the
integration of STUT. STUT is a tool that was developed to select the test cases
according to the SRET approach. It generates a file specifying the test
instructions to be used as input to AUTOSIS by processing the following input
information:

The operational profile and the related test instructions for each leaf of the

tree;

The definitions of the random variables;

Therequired reliability value.

247 7. Reliability Models Application

Customers profile
Customer Probability]
Telecom Operator 100%
Usersprofile
User Probability]
Operator 100%
Systemmodes prafile
Mode Probability]
Installation 10%
Operation 90%
Functional profile
. Installation-mode | Operation-mode
Function Probability Probability
Definition of aroute 26,2% 14%
Deletion of aroute 0,78% 7%
Change of route parameters 1,56% 14%
Print of route parameters 31,4% 21%
Connect adeviceto aroute 28,8% 17%
Disconnect adevice from aroute 0,78% 7%
Print device data 5,24% 10%
Print device connections data 5,24% 10%
Thissituation
Thereisno
room for R
2%
No syntax errorg Risalready
have been dong defined System restart during
98% command execution
95% 1%
Definition Thereis 5,49%
of arouteR room for R
5% 99% System small restart aftg
% command execution
Syntax errors Risnot
have been dong defined 1%

System large restart afte
command execution

89,59

Normal command
execution

Figure3 Operational profilefor ‘Definition of aroute inthe* Installation’ system-mode

248

The use of STUT does not require any specific training for ERI testers, because
the structure of the input file is quite similar to the structure of the AUTOSIS
input file.

5. Execute the test cases. To execute test cases the following steps were performed:
a. STUT, for the selection of a set of test cases;

b. AUTOSIS, for executing the selected set of test cases. each time afailureis
observed, we fix it, update the reliability of the system under test and return
to step a).

This process was repeated until the required reliability was reached.

6. Evauation of reliability. ERI monitors and logs all failures found in the field for
the first six months of operations. At present, such data are not used directly for
reliability estimation; on the contrary, they are used to evaluate the failure
densities, and the timing of failures is thus not directly accessible. However, we
got access to the detailed failure report, including timing information, for a
completed product which is similar to the baseline product. To these data, we
applied standard techniques for reliability evaluation; the findings of this analysis
are summarized in the next two subsections.

7.5.2 Data Analysis

Asdescribed in Section 7.4.4.1, as afirst step we performed a detailed analysis of
the data available, in order to verify their suitability for applying reliability growth
models. The very first assumption for reliability assessment is that the analysed
product is exercised according to the operational profile. This is not the case for the
Basic, Integration and Function Test phases (at least, not so far). Thus, for the
product examined, only the failure data relative to the six months of monitored
operation are meaningful. For these six months, we had a reported number of 35
failures, collected over a set of five installations run in paralel. The products run
continuously and failures are reported on a daily basis. For this reason, and also to
comply with corporate established attitudes, we opted reliability growth models in
the class of number of failures per time period. The period to be considered as the
time unit naturaly corresponded to one calendar day, in turn corresponding to five
days of execution time, by considering the five plants monitored.

Another very basic assumption for using reliability growth models is that the
failure data exhibit a growth in reliability. For this we applied the Laplace test with

249 7. Reliability Models Application

help of the tool SoRel, and somewhat surprisingly, this was not the case if we
considered the data set as awhole as shown in Figure 4.

u(k)

kK
b,
1 145 151 7T 133

N

v

7
iy 3
Z

Figure4 ThelLaplacetest considered in theoverall set of failuredata
u(k)

-4

Figure5 ThelL aplacetest on theresticted set of failuredata
On closer inspection, however, we noticed anomalous behaviour in the first two
months. just two failures in the first month, and a set of eleven failures all
concentrated in the second nonth. Thus, we decided to filter the data, by discarding
the first month of operation. After this filtering, again applying the Laplace test, the

250

failure data relative to the last five months (33 failures) exhibited an increase in
reliability, although this remained very small in the whole as shown in Figure 5.

7.5.3 Model Fitting

Subsequently as described in Section 7.4.4.2, we had to decide which model was
the best one for reliability prediction in our particular context. Since there is no
software reliability model that performs better than any other one in every case e we
chose to run all the available models using the tool CASRE. In this case we were
dealt with failure per time period data, therefore the available software reliability
models are: Brooks/Motley (BM), Schneidewind (SM), NHPP (also known as Goel -
Okumoto), Generalized Poisson (PM), Y amada S-Shaped (YM).

BM bin BM pois NHPP YM SM

-In PL 36,677 45,998 36,677 42,494 36,677
© © @ 4) @

Chi-Square 4,913 4,936 4,772 26,050 4,772
©) 4 @ © @

Table2 Accuracy results

As a consequence, for each model the tool automatically computes the Chi-
Square test and the prequential likelihood function (specifically the -In(PL)), (Section
7.4.4.2). We show in Table 2 the results of the accuracy analysis obtained.

We can observe that the evauation of the Chi-Square test (in this case with 4
degrees of freedom) brings us to reject the Yamada S Shaped model (the models fit
well for the analysed data set if the Chi-Square value is within the interval [0.711,
9.49)).

Considering the value computed for (-In PL), we can see that the NHPP and SM
models gave the most accurate results for the data source. Indeed, for our data set the
observation period had the same length, so NHPP and SM were equivalent [LY 96
Chapter 3].

Finally, in Figure 6 we show the cumulative number of failures predicted versus
the raw data and Figure 7 shows the relative error, computed as:

Eq. (13) (PredictedNoFailures - Actual NoFailures)
Actual NoFailures

251 7. Reliability Models Application

From this experience some remarks from the comparison between SRET and the
conventional approach are possible, regarding in particular the effort required to
apply the SRET approach:

SRET requires extra effort with respect to the Function Test standard process, in

particular for the definition of the operational profile. If new systems have to be

modelled, it will be quite difficult to find usage data to assign the right
probabilities.

The definition of test instructions can be more difficult because in SRET they

have to be specified in a more abstract way (for the need to consider random

variables);

Eumulative failures: bmod_txt
FPlot Besults Display Settings Copy Help

+ Faw Data
| MHPP (ntervals)

35.00 =
0,00 =
25 .00 =

20,00 =

Total Failures

1500 =
10,00 -
5.00 =

0.00 = - - -

Test Interval Numher

Figure6 The cumulative number of failurespredicted versustheraw data
Considering the high number of test cases to be executed, a completely
automated environment is required. The Ericsson AXE10 target environment is
not completely automatable, so we had to limit the application of this case study

252

to the simulated environment, that is the administrative part. It was not possible
to execute some categories of test cases that require to be run on the target
system, such as tests for evaluating performance or involving traffic.

0.20

0.10

0.00
-0.10
-0.20
-0.30
-0.40
-0.50
-0.60
-0.70
-0.80

\A"”
64 74 94 104 114 124 134 144 154 164 174 184

34

Test interval number

Figure7 Therelativeerror
Concerning the beneficial aspects, the use of the SRET approach provides:
a better understanding of the function/feature in the early phase of the
development process,
a structured approach for identifying the test cases (we used a behavioural tree)
that made the identification of test cases easier.
a prioritisation of functions and test cases to shorten the lead time in date-driven
projects. In fact, the exit criterion of the standard Function Test process requires
that the entire set of test cases must be executed successfully. This criterion
involves an execution time related to the number of test cases. The introduction
of a priority criterion and a classification of incident severity levels allows a
tester to identify exit criteriato shorten the lead time in date-driven projects. This
priority criterion may be identified by using the operational profile, i.e.: the most
critical set of test cases as experienced by the customers has to be executed and
passed without any failures of major incident severity levels;
an improved work organisation between developers and testers, both involved in
the derivation of the operational profile. The close collaboration between testers,
system engineers and product users has produced valuable side benefits, such asa

253 7. Reliability Models Application

deeper understanding of user needs, less ambiguity in the specification of system

requirements, and the possibility for testersto contribute to system reviews,

expertise has been gained during this case study both with respect to the
construction of an operational model, and with the use and tuning of reliability

models, thus enhancing ERI's staff awareness of reliability issues, and allowing a

reuse of those competencies in future projects. Should the new techniques prove

successful, applying the new test technique will allow ERI to control the
reliability of its software products and the associated test costs.
Summary

In this Chapter we presented the main concepts of Software Reliability
Engineering focusing in particular on the SRET approach. We discussed the
procedural steps necessary for defining a suitable test environment, in which
operational test can be performed and reliability estimation achieved. For this we
provided some basic definition of the reliability theory and an overview of the main
Reliability Growth models.

We have pointed out the advantages and the difficulties in applying these models
for reliability prediction, highlighting the important role of the available tools in
facilitating the reliability growth model usage. For this we have discussed a
procedure which depicting the steps necessary for the integrated use of two available
tools, SoRel and CASRE, for obtaining the required prediction. Finally, once we
applied the SRET approach to a real case study, we used the described procedure
with the failure data obtained, for choosing the best reliability growth model for
reliability prediction.

254

PART 5:
POSSIBLE IMPROVEMENTS

8 Conclusions and Future Work

Preface

This is the concluding Chapter of this Thesis, in which we present the
conclusions and an ongoing experience in defining a general framework, called
“UML Combination", for enabling the validation of component-based (CB) systems
by testing them against the corresponding UML architectural specifications (Section
8.2). In particular we will readapt two previously developed tools, (Cow_Suite
presented in Chapter 5) and CDT [BPO3], which permits the codification and
execution of test cases within a CB development process.

8.1 Conclusions

In this Thesis we have presented our journey through the world of Software
Testing, ranging over many fields from definition to organization, from its
applicability to analysis of its effectiveness. Adopting as a roadmap the testing
phases subdivision of [BEO1], we began at the planning activity and we proceeded
systematically presenting new methods, approaches and tools useful to the reader for
managing, controlling and evaluati ng Software Testing devel opment.

These were the result of a strict collaboration with software developers looking
for solutions for their problems and improvements in the different activities of the
testing process. In order to respond to these needs we made a deep analysis of
literature, which provided us with hints and ideas either for the definition of new
methods and approaches, or for readapting and modifying already existing proposals.

The collaboration with industries imposed us two important constraints, which
must be always respected even at the detriment of the quality of the possible results.
These are usahility, i.e. the methodologies as far as possible must adapt themselves
to the modelling notations and procedures commonly used by industries and real
environments and not vice versa, and automation, i.e., increasing as much as possible
the mechanization in test cases derivation, execution and validation, consequently
reducing the manual labour.

258

Taking into consideration these constraints, for our proposals we adopted the
leading principle of providing readers with some easy-to-apply and low-cost
methodol ogies, which maximize the automation and minimize as much as possible
the required additional formalism or ad-hoc effort specifically for testing purposes.

Moreover for completeness sake for each topic treated we have provided both a
detailed survey of the literature useful for knowing the state of the art and for
comparing our solutions, focused on putting theory into practice, with those provided
by the research world, and the evaluation of the methods proposed by means of case
studies also taken from areal industrial context.

In the next sections we present a summary of the proposals of this thesis with
their limitations and the future work.

8.1.1 Proposals and Future Work

In this section we briefly resume the proposals presented in this Thesis, also
highlighting their general limitations starting, from the test planning to the evaluation
of test results.

Test planning: we provide an original method, called Propean, based on the
techniques of computer software performance engineering and queueing
networks for scheduling the testing activities and distributing personnel and
resources among them by considering a multiproject environment. This approach
requires users confident with RT-UML for modelling the flow of activities to be
performed during development and the tasks to distribute among personnel. In
particular for increasing the accuracy of the prediction also associating to each
activity the proper estimation, a data-base containing information derived from
similar projects is necessary.

Test Case generation: we provide atool for the selection of functionalities to be

tested and the generation of test cases, which supports the user both in the choice

of the most important software elements on which the testing effort must be
concentrated, and in the automatic generation of the appropriate test cases by
using the available UML product specification. Thus the quality and the
effectiveness of the generated tests depend strictly on the quality of the available
design: in presence of an incompleteness the approach can only highlight the
design deficiencies but not overcome them producing meaningful test cases. In
the Thesis we describe the current status of our approach but severa
improvements are possible such as: implementing other strategies for test cases

259 8. Conclusions and Future Work

selection which take also in consideration the diverse cost of each test case
providing hints or defining a common strategy for assigning the weights to the
nodes; implementing methods diverse from UIT for test cases and procedures
derivation. Notwithstanding the encouraging results obtained this approach needs
further validations with more complex case studies
Test results analysis. We consider non-operational and operational testing. In the
former case we propose two dynamic methodologies, the One-Step and the Two-
Steps Method for deriving the number of failures experienced up to the end of
testing phase, by using data collected during the testing itself. In the latter the
integrated application of different tools for reliability growth models selection
and usage. Even if both approaches are quite general, it is worth noting that the
methods for the nonroperational testing have been developed in strict relation
with the industrial partner which provided us the stimulus for model formulation
and development. Thus the procedures adopted follows the process for collecting
data of ERI which however for its ssmplicity can be considered quite general and
representative of industrial practice.

Of course, our work is not yet concluded; many other problems remain unsolved
and improvements in our methodologies are possible. The research area of Software
Testing is so vast and involves so many problems that they cannot of course be
exhausted in this Thesis. We have provided here our “little” contribution on some of
the salient points that arose during the cooperation with software devel opers.

In the future, encouraged by the positive results obtained, we wish to
quantitatively evaluate the proposed methodologies and approaches with further
industrial case studies, and unify al the proposals of this Thesis in a unique control
process useful for managing the testing phase during the entire software life cycle.

In particular in the next section we present one of the ongoing work which has
the purpose of improving the strategy of test case generation in component-based
environment

8.2 An ongoing Experience: UML Combination

Component-based (CB) development is one of the focal trends in software
production today. Although in recent years it is attracting much interest from both
academy and industry, as testified by the spreading of related events (e.g., [|CSEQ3],
[ECBS02)]), journal articles (e.g., [[EEE99], [JSSO3]), and by the market launch of
component-oriented technological products and platforms (e.g., CCM [COR], EJB

260

[EJB], COM+/.Net [NET]), research in this areais far from complete. Many topics,
such as component specification, development tools, or performance predictability,
arein fact still open.

In this research sphere, UML application for the specification of CB systems is
just beginning. Although UML was not conceived with a CB paradigm in mind, it is
very flexible and provides suitable mechanisms for extensions. To this purpose one
of the emerging references is the methodology proposed by Cheesman and Daniels
[CDO0Q], called the "UML Components’, described briefly in Appendix C which
focuses both on the representation of the conponents and on the development
process applicable for this purpose. Thus the purpose of our ongoing research is to
apply this new methodology for component testing, which needs a re-evauation to
address the peculiar characteristics of CB development as for the other development
phases [BP02].

In our opinion an important requirement is that the customer, on the basis of what
he/she expects from a researched component or architecture, and with reference to
the system specification/architecture, develops test suites easily (re)executable to
evaluate the potential candidates. To facilitate the customer in this task we are
implementing a general framework, called “UML Combination” (UML COM ponent-
Based INtegrAted Testing envirONment). The purpose is the validation of
component-based systems by testing them against the system’'s architectura
specifications. In particular, starting from the original idea presented for the first time
in [BMPO3], we are defining the UML Combination test environment, which can be
used by the software developer both for: (i) deriving the test cases and (ii) codifying
and executing them.

The methodology will be the result of the combination, with the necessary
adaptations, of two tools developed in previous projects. the Cow\ Suite, presented
in Chapter 5, which will analyze the UML components specification for selecting
and generating test cases, and the CDT ([BP0O3] [BP02a]) which codifies the test
cases and (re)executes them every time a component instance is plugged into the
system.

Therefore the main requirement for applying the UML Combination will be that,
by using the UML Components guidelines, the system developer specifies the design
architecture of the system with particular attention to the interfaces. Then by
applying UML Combination, he/she can automatically derive a meaningful set of test
cases and execute them when necessary.

261 8. Conclusions and Future Work

While the principles of integration have been settled, the combination of
Cow_Suite and CDT is currently under implementation So far, the UML
Combination has only been conceived and partially developed for testing a single
“virtual” component in isolation, i.e. the component specified at requirement level
and implemented successively by the integration of one or more real components. In
Section 8.2.1 we present the current status of the implementation. We are still
working on the extension of UML Combination to the test of a “subsystem”, i.e. an
integrated set of virtual components.

8.2.1 Proposed Approach

In this section we show briefly how we are going to combine the two components
of CDT and Cow_Suite, in order to obtain the UML Combination integrated testing
environment as schematized in Figure 1.

We discriminate in particular between two different levels of testing as will be
described in the following sections: the test of the single virtual component, which
may be obtained by one or more real components, and the test of a group of
integrated virtual components (a subsystem) in the final application environment
[BMPO3].

Using the UML Components methodology
we define the diagrams necessary to apply
the Cow_ Suite too]

UML Components
Methodology

A

Using Cow_3suite we derive
Cow_Suite suitable test cases schema that can
be codified following the CDT tools

¥

Using the CDT tools we
can execute the codified CDT Framework
fest procedures

Figurel Theoverview of UML Combination.

8.2.1.1 Test of the Single Virtual Component

At this stage each component is tested singly, by means of suitable stubs when
necessary. For each component we use its UML specification to derive, by the help
of Cow_Suite as described in Chapter 5, the set of test procedures that will be used to
verify the conformance of its instance. For this we intend to modify Cow_Suite both
in the final weights distribution and in the procedure adopted for analyze every

262

Collaboration Diagram (CD) or Sequence Diagram (SD) in which an interface,

belonging to the tested component, is involved.

Resuming what was explained in Chapter 5, starting from the main Use Case
Diagram onwards, Cow_Suite uses the developed UML diagrams, and the mutual
relationships within them, for organizing them into several oriented graphs. These
are then explored for producing the basic hierarchical structures (trees) of the
Cow_Suite approach. Every node is then annotated with its final weight representi ng
the importance of the node itself, belonging to the [0,1] interval. In the CB
environment, in the case of a single virtual component, the role of the final weights
will be improved with respect to the original release of the Cow Suite tool. They in
fact will be used for associating an importance factor to the methods of its interfaces,
as described below, and for distributing the test cases accordingly:

1. For each CD in which an interface of the specified component appears, the final
weight of the CD is distributed among the invoked methods belonging to the
considered interface;

2. For each method the sum of all the values obtained in the previous step is
derived;

3. For each interface the sum of the values associated to its methods is normalized
tol
The obtained values will then be used for applying the two different test

strategies supplied by the Cow_Suite tool: a fixed number of test cases to be

executed or a fixed percentage of methods to coverage. As described in detail in

Chapter 5 in the former the tool will select the most suitable distribution of the test

cases among the methods on the basis of their weights; in the latter it will highlight

the most critical methods the proper test cases distribution.

For automatically constructing the tests in both cases we also decided to
implement within the Cow_Suite tool the original version of the UIT methodology as
presented in [BB0OO] and summarized in Appendix B. Specifically, we first isolate the
CDs/SDs in which an interface belonging to the tested component is involved and
then by applying the original UIT, we derive from them the ordering of messages and
the feasibility conditions used in the generation of test cases. The choices, useful for
the definition of the test procedures, will be derived either as usual by the interaction
with the user or by the analysis of the contract associated to each method [BLS02].
To this purpose particular attention is dedicated to the preconditions, which can
specify parameter intervals or values useful for test cases generation.

263 8. Conclusions and Future Work

Finally the test procedures will be codified using the CDT framework, without
needing to refer to any particular rea implementation. In this framework the
invocations of the test cases refer to the interfaces of the virtual component, which
will be implemented using yet-unknown components. It is important to note that by
assembling prefabricated components to form a virtual component, it is likely that
the real implementation could supply more functionalities than those required. In this
case the established set of test cases will only stress the functionalities defined in the
UML specification.

8.2.1.2 Test of a Group of Integrated Virtual Components

We are dtill working on testing a group of integrated components, because it
brings up maor problems to maintain the original philosophy of the Cow_Suite
(Chapter 5). The main difficulty we are facing is the inability to define meaningful
test cases when there are exceptional conditions in the UCs definition. In this context
during the test cases run, it is not possible to control the path (i.e. the sequence of
invocations) that the test will follow inside the composed system.

Thus we are attempting to find solutions to this inconsiderable problem, which is
intrinsically related to the knowledge of the states in the black box component. We
present here two possible approaches which we are studying.

The first is to review the role of Cow_Suite in the integration phase, and
assuming the weights associated with the CDs/SDs as a sort of “critical profile”
indicating the importance of a particular scenario in the system. In this case the test
phase is halted only when each CD/SD has been covered for the specified number of
times but this solution is clearly in contrast with the original goal of Cow_Suite.

A second approach under evaluation is to modify the hypothesis concerning the
component model. So far we have always supposed that a real component is only
constituted by two “sets’ of signatures, respectively representing the provided and
the required services, and by a brief textual description of the functions performed. In
order to address the “control path problem”, the solution analyzed is to require that a
real component implements particular interfaces (probes) that permit investigating
the state of an instance of the components, and foresees a sort of parameterization in
the definition of the test cases.

In both cases, it can be useful for the tester team to recover the test cases
developed during the verification of the single components in order to obtain
parameters for the test procedures generation.

264

Moreover, the diagrams used to derive test procedures can be used fruitfully, also
as a guideline for the integration workflow. In this manner we obtain a functionally
driven workflow, rather than a structural one (as for instance it would be if class
diagram were used).

Appendix A. An overview of EG and QN

In this appendix we provide a brief overview of execution graph and queueing
network modelling referring the reader for more details [SM90, LZS84].

The Execution Graph (EG) represents the software execution model and provides
a graphical representation of the processing steps. Like the UML activity diagram
(Chapter 3) it consists of a set of nodes, representing the software workload
components, and a set of arcs, representing the transfer of control.

The software workload components, which can be single instructions or entire
procedures, depending on the granularity adopted for the model [SM90], allow
modelling software at different levels of detail. In particular EGs include several
types of nodes (or blocks), such as basic, cycle, conditional, fork and join nodes,
described briefly in Figure 1.

There are two restrictions on the construction of the EG which have the purpose
of simplifying the solution algorithms [SM90]:

1. Initial node restriction: there is only one initia node representing the first

processing step executed in the graph.

2. Loop restriction: al loops in the graph must be repetition loops

It is worth noting that the execution graph only models those paths fundamental
for performance and not all the possible paths, and degree of detail to represent in the
graph is left to the user. Consequently different execution graphs can model the same
software (there is not a unique representation).

Considering instead the Queueing network modelling the systems are defined by
using Queuing Networks (QNs), which are a collection of interconnected nodes
representing the service centres, i.e., the system resources, and customersi.e., the
users or transactions. The nodes (the service centre) can be [LZS84].

Single Service Centre: Customers arrive at the service centre, possibly wait in
the queue, receive service from the server, and depart. This model has two
parameters. workload intensity, i.e. the rate at which customers arrive, and the
service demand, i.e., the average service requirement of a customer. By solving this

266

model the performance measures obtained are: utilization, the proportion of time the
server is busy; residence time, the average time spent at the service centre by a
customer; queue length, the average number of customers at the service centre;
throughput, the rate at which customers pass through the service centre

Multiple Service Centres. The parameters of this model are analogous to those
of the previous but in this case the service demand, requires separate values for each

service centre.
Name Symbol M eaning

The processing step at lowest level of
detail

Basic node

Expanded Node

The processing step has been refined
and detailed in asub-EG

The following nodes are repeated n
times.

Repetition Node

Every node has specific execution

Case Node probability, and is executed according

with assnciated condition
lock-free, fork-join, send-receive,

State Node acquire-release

Split Node Attached nodes are new processing
threads. They need not all complete
hefore nroceedina

Arc The exeaution goes from the arc to

the destination node

When the operations are compl eted
the execution from the destination
come back to the origin

Cadll-return arc

e b OS]

Driver acr .
When the operations are compl eted
X the execution from the destination
$ come back to the node X
Dummy

: Thereisnot processing time
v associated to the arc

Figurel The elementsof an Execution Graph

267 Appendix A

Generally two categories of QN can be distinguished depending on the type of
transactions (users) considered. The first is the open system, in which al the users
can leave the system; the second is the closed system in which no user can leave the
system. In this case the number of usersis fixed.

In each of them a node may be a Non-Blocking (or infinite capacity) node, i.e. it
can accommodate any number of users waiting to be served. When the storage space
in front of the server is finite a node is called a Blocking (finite capacities) node, i.e.,
a prefixed limit is imposed on the number of users waiting to receive a service.
Considering the closed QN if anode can hold all the customers in the network, it can
be defined as an infinite capacity node. QN with finite capacities are used for
representing more realistic models of flow systems. Blocking arises because the flow
of users through a queue may be halted if the destination queue has reached its
capacity.

Several types of blocking may occur: Transfer Blocking, the customer after
getting service at the source node waits, blocking the server, until there isroom in the
destination queue; Repetitive Service, the blocked customer proceeds to receive
another service at the source node itself; Rejection Blocking, the customer attempting
to enter afull queueislost.

QN models of systems are useful as an analytical or a ssimulation based analysis
of their performance. In particular depending on the types of the component queues
in the network, different analytical algorithms may be used to obtain exact or
approximate results both for the performance of the individual queues and for the
overall system.

Appendix B. The UIT Methodology

The Use Interaction Test methodology, (UIT), presented for the first time in
[BBOO] is based exclusively on the analysis of SDs from which the relevant
information to automatically construct Test Cases and subsequently Test Procedures
are derived. Each SD describes a particular system scenario and explains how a Use
Case is redlized by the interactions of objects and actors. The objects involved in a
SD are the comporents that provide for and execute the functionality described in the
UC, through elaborations and message exchanges, therefore they are precisely the
elements to be tested.

Thus the core of UIT methodology is the analysis of SDs as set forth in [JGP9§],
whose authors suggest how to define tests by considering the different
Messages Sequences from a possible input state, or from a system input sent by an
actor. We report in the following the stepwise methodology applied to the SDs for
the derivation first of the Test Cases and then of Test Procedures:

1. Find out Test Units. Observing a SD along its horizontal axis, see Figure 1
arrow (a), we can identify a set Test Units. Each object, which interacts through
messages with other objects, represents an item that can be separately tested in
order to examine a possible use of the system, and it isidentified asa Test Unit.

2. ldentify Interactions Categories. All messages entering in the selected Test
Units are called Interactions Categories. In fact, as described in [UML], a
message is a communication where the sender object invokes an action, a service
belonging to the receiver object (our Test Unit), which will perform it. Knowing
the set of Interactions Categories means catching, and thus testing, all the
possible interactions among the Test Units under analysis and the other objects.
For example, if we consder the Test Unit LogonFor m in Figure 1, the
observable Interactions Categories are:

open()
enterUserName (uid)
enterPassword (pwd)

269 Appendix B

3.

loginUser()
validateuser| DPassword(uid, pwd)
setupSecurityContext()
- Student . MainApplicationForm :__LogonForm ~ Securelser
| 1. start(1.1. open() (C)
[] (a)
>
T 2. entefUserName(uid)
3. enterfPassword(pwd) Q
4{1oginUser() LJ
4.1. validatieyser| DPassword(uid, pwd)
(b) if (login ﬁ
successful)

dse 4.2, setyp! urity(:o/nta.t—ﬁ/
\ g —
4.2.1. newUserID()

4.3/4)seLogi nSection() :l- I_J

Figurel Sequence Diagram “L ogin-Main Flow” from CRS example described in Section
571

Identify Settings Categories. Besides, for the selected Test Units, we define the
Settings Categories as the values, parameters or data structures, that can influence
its interactions towards others objects. They can be determined:
From the Interactions Categories, by considering their input parameters,
From the analysis of the Class Diagram (if any) to which the Test Unit
belongs, by examining the attributes and data structures that can affect the
observed interactions.
In our example, the Settings Categories for the Test Unit LogonFor m are: ui d
and pwd.
Define Messages Sequences. Observing the vertical temporal order of the
messages along the studied Test Unit’s lifeline, Figure 1 arrow (b), a set of

270

Messages Sequences can be detected. A Messages Sequence; is the set of
messages composed of: a message entering the Test Unit, not yet involved in the
construction of other Messages Sequences, plus al the messages (if any)
belonging to its activation bounded by the focus of control region. A
Messages Sequence therefore represents behaviour to be tested and describes the
interactions necessary in order to realize specific system functionality ketween
the Test Unit and the other objects. In Figure 1the arow (c) {1.start(),
1.1 open()} represents one of the possible Messages Sequences for the
LogonFor mTest Unit.

5. Construct Test Cases. For each identified Messages Sequence, a Test Case can
be generated. It contains the list of all Settings and Interactions Categories
involved in the Messages Sequence and their values. Figure 2 shows one of the
Test Cases derived from the above example.

TestCase
Description:
Precondition:
Flow of Events (Messages Sequences):
loginUser()
validateuserl DPassword(uid, pwd)
setupSecurityContext()
newUserl D()
Categories:
Settings:
uid
pwd
Interactions:
loginuser
validateuser| DPassword
setupSecurityContext
newUserID
PostCondition:
Comment:

Figure2 An exampleof a Test Casefor the Test Unit LogonFor m
6. Analyse possible subcases The messages involved in a Test Case may contain
some feasbility conditions. These conditions are usualy described in the
message hotes or in the message specification formally expressed using the OCL
notation [WK99]. If these feasibility conditions exist, a Test Case is divided into
subcases, corresponding to the different possible choice values. Referring to
Figure 1, the condition value of | ogi n successf ul differentiates execution

271 Appendix B

of the Messages Sequence starting with message 4. In this case, if the condition
istrue we have the Test Case 1.1 with the Messages Sequence:

4.loginUser()

4.1 validateuserI DPassword(uid, pwd)

4.2 SetupSecurityContext

4.2.1 newUserID
While in the opposite case the Test Case 1.2 contains the following
Messages Sequence:

4.loginUser()

4.1 validateuserl DPassword(uid, pwd)

4.3 CloseL oginSection()

7. Determine Choices. for each Category (both Settings and Interactions)
belonging to a Test Case, the possible choices are identified as follows:

For the Interactions Categories, they represent the list of specific situations,
relevant cases in which the messages can occur;

For the Settings Categories, they are the set or range of input data that
parameters or data structures can assume. In Figure 3 we report the choices
valuesfor the Test Unit LogonFor m

8. Determine Constraints among choices: the values associated to the choices of
the setting and Interaction categories of a Test Case may turn out to be either
contradictory or even meaningless. This can be avoided by adding feasibility
conditions to the categories choices as suggested in the Category Partition
methodology. These constraints are specified, by assigning Properties or IF
Selectors to choices. Specifically the Properties are used for checking the
compatibility of a choice with the others belonging to the same Test Case, and
the IF Selectors are used to validate the conjunction of properties previously
assigned to other choices, as reported in Figure 1 in the sentences in square
brackets.

9. Derive Test Procedures: Finaly, using these choice values, a Test Procedure can
be generated for each possible combination of compatible choices, for every
category involved in a Test Case. Figure 4 shows one of the final resulting Test
Procedures for LogonFor m For each analysed Test Unit, all the meaningful
Test Procedures are collected in the Test Suite.

272

Test Unit LogonForm

open()

loginUser

uid

pwd

Interactions Categories:

access from a Student

enterUserName()

access request of anew user [Property new]

access request of aregistered user [Property registered]

access request of anot allowed user [Property notAllowed]

access request of aexpired account user [Property expiredAccount]

enterPassword()

access request with correct password [Property registered]
access request with wrong password [Property registered]

access request of anew user [Property new]

access request of aregistered user [Property registered]

access request of anot alowed user [Property notAllowed]

access request of aexpired account user [Property expiredAccount]

validateUser| DPassword

access validation of anew user [IF new]

access validation of aregistered user (correct uid and pwd) [IF registered]
access vaidation of aregistered user (wrong uid or pwd) [IF registered]
access vaidation of anot allowed user [IF notAllowed]

access validation of a expired account user [IF expiredAccount]

setupSecurityContext

successful access new user [IF new]
successful access of aregistered user [IF registered]

Settings Categories:

m.Jackson

f_smith

Paul_white

S 7lwhatson ...

m565jkrm
annamaria
p71271

12273

Figure3 Choicevaluesfor Test Unit LogonFor m

Test Procedure
loginUser()

validateuser| DPassword(uid, pwd)

setupSecurityContext()

uid

pwd

access request of aregistered user

access vaidation of aregistered user (correct uid and pwd)

rID()

access of a new user

f_smith

m56ikrm

Figure4 Test Procedureexample

Appendix C. UML Components

We report briefly the main details of methodology poposed by Cheesman and
Daniels [CDO0Q], caled the UML Components, which focuses both on the
representation of the components and on the process development applicable for this
purpose. This is an expansion of the classical notation of UML, which includes the
extensions required for specifying the components, i.e. their specification, interface,
implementations and the objects component obtained.

The idea of UML components was born in the middle of the 1990 from the
collaboration of many minds which focused attention both on the representation of
the components by using UML and on the process development applicable for this
purpose. Without aiming to present here an exhaustive survey of the literature, one of
the first works in the application of object-oriented practices is that of Cook and
Daniels [CD94] in which the Syntropy methodology was developed. This represents
a common base for many recent developments, like Catalysis [DW99] or the UML
itself, and is the direct ancestor of the Object Constraint Language (OCL) [WK99].
From Catalysis another important methodology for defining the development of the
component based systems descends, called Advisor [ADV], which largely
influences, together with the Rational Unified Process [RUP] the actual definition of
UML components.

Cheesman and Daniels attempt to unify al this knowledge and experience in their
book [CDOQ], presenting an easy-to-apply specification process for component-based
systems, which focuses only on the modeling of the software applications,
completely ignoring their final implementation.

Starting from the requirement specification, we briefly report here the main
details of the specification process adopted by Cheesman and Daniels and the UML
extensions required. The specification process is divided into different workflows
(following the definition of the RUP: a sequence of activities that produces a result
of observable value) interacting together, each one specified by using UML notation.

274

The tasks of the requirement workflow are the business concept model and the
use case model. The former is a conceptual model, which specifies the key concepts,
their relations and a common vocabulary useful for avoiding misunderstanding and
ambiguities. It is represented by a class model, but the classes involved, as well as
their associations, are only conceptual and not related to the specification.

Instead the use case model represents the interaction of the system with the
external users. It is represented by a Use Case Diagram, in which each Use Case is
related to a different requirement. The system behaviour and main exceptions are
represented for each Use Case in the associated scenario, following the textual
structure of the Cockburn's Use Cases [COO01]

The specification workflow is subdivided into three phases:

i. The identification of the components. starting from the requirements, an
initial system architecture is produced,

ii. The interactions between the components, which identify the system
operations and responsibilities;

iii. The specification of the components, which specifies the operations and
interfaces of the components themselves.

A business model, represented by a class diagram, is used for modelling the
business information. The classes involved are defined at the specification level, with
no relation to a specific language. The notation used for the component interfaces
differs from that defined in the standard UML, in which the interfaces represent
implementation constructs typical of the OO languages and that do not require
attributes or associations. In the UML Components, an interface specification
consists of: the type, the information model (the attributes, the interface roles in the
association and their types), the specification of the operation (prototypes, pre- and
post-conditions), and the invariants. All this information is grouped together in a
package representing an interface specification, which can also import information
from other packages.

In UML Components, even the concept of a component is quite different than in
the standard UML, because it is completely independent of the implementation. To
differentiate the specification of a component from its implementation or the
installed component, a new stereotype <<comp spec>> is introduced which has a set
of interface types. The ways in which the components interact via the interfaces are
finally described using collaboration or sequence diagrams.

275 Appendix C

The provisioning workflow is aimed at ensuring that the released software is
consistent with the given specification of the components. For this purpose the
components can be implemented, bought, readapted or derived from the integration
of existing ones

Finally the integration workflow connects the various components, the user
interface, the application logic and the existing software in order to obtain an
efficient application.

Bibliography

[ABK94]

[ABPOZ]

[ACLS6]

[ACL96]

[ACLO1]

[AD84]
[ADV]

[AGEOZ]
[A19]]

[AL9O]

[AMNO5]

[ANA]
[BBOO]

[BBMO1]

Ammann, P., Brilliant, S.S, Knight, J.C. “The Effect of Imperfect Error Detection on
Reliahility Assessment via Life Testing”. IEEE Transaction On Software Engineering
Vol. 20, No. 2, pp. 142-148 1994

Antoniol, G., Briand, L. C., Di Penta, M. , Labiche, Y. “A Case Study Using the Round-
Trip Strategy for StateBased Class Testing”. |EEE Int. Symposium on Software
Reliability Engineering, Anapolis, USA, 2002.

Abdel-Ghaly, A..A., Chan, P.Y., Littlewood, B., "Evauation of Competing Software
Reliability Predictions’, |IEEE Transaction on Software Engineering, Vol. 12, No. 9,
September 1986.

Abdel-Ghaly, A., Chan, P.Y., Littlewood, B. “Evauation of Competing Software
Reliability Predictions’, IEEE Transaction On Software Engineering, Vol. SE-12, No. 9,
September 1996, pp. 950-967.

Antoniol G., Casazza G., Di Lucca G.A., Di Penta M., Rago F. “A Queue Theory-Based
Approach to Staff Software Maintenance Centers”. In Proceedings of |EEE International
Conference on Software Maintenance, ICSM 2001, 610 November 2001, Florence,
Italy.

Adams, E.N. “Optimizing Preventive Maintenance of Software Products’, IBM Journal
of Research and Development, 28 (1), pp.2-14, 1984.

Sterling Software Component-Based Development Method. On line at
http://www.ca.com/products

AGEDIS. Available at http://www.agedis.de/index.shtml

ANSI/IEEE “ Standard Glossary of Software Engineering Terminology” STD-729-1991.
ANSI/IEEE 1991

Allen, A.O. “Probability, Statistics, and Queuing Theory with Computer Science
Applications’. Academic Press, 1990.

Adler, P.S, Mandelbaum, A., Nguyen, V., Schwerer, E. “From Project to Process

Management: An Empirically Based Framework for Analysing Product Development
Time’". Management Science, Vol. 42, 1995, pp.458-434.

Anayst Pro - Powerful UML Tooal. Available a:
http://www.analysttool.com/UML_Usecase.html

Basaieri, F., Bertolino, A. “A Practicadl Approach to UML-based Derivation of
Integration Tests’. Proceeding of QWE2000, Bruxelles, November 20-24, 3T.

Basanieri, F., Bertolino, A., Marchetti, E. “CoWTeSt: A Cost Weighted Test Strategy”.
Proceeding of ESCOM-SCOPE 2001, London, England, 2-4 April 2001.

278

[BBMO2]

[BBMO024]

[BBMO3]

[BCIO0]

[BCLOO]

[BE9O]

[BE93]

[BEO1]

[BEO3]

[BFS90]

[B199]

[BILO3]

[BIMO1]

[BL9Z]

[BLO1]

Basanieri, F., Bertolino, A., Marchetti, “The Cow_Suite Approach to Planning and
Deriving Test Suites in UML Projects’, UML 2002, LNCS 2460, Dresden, Germany,
September 30 - October 4, 2002, pp. 383-397.

Basanieri F., Bertolino A., Marchetti, E., Mirandola, R.” Automating the Management of
Teams and Tasks in Software Multiprojects usng UML and Queueing Networks'.
Proceedings of 3rd ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, SNPD, Madrid, Spain,
June 2002

Basanieri F., Bertolino A., Marchetti, E., Mirandola, R. "UML-based Performance
Analysis Techniques Applied to Software Multiprojects Management” ACIS
International Journal of Computer & Information Science (1JCIS), Vol.4, No.1, March
2003, pp. 1-13

Bertolino, A., Corradini, F., Inverardi, P., Muccini, H. “Deriving Test Plans from
Architectural Descriptions’. Proceeding of ICSE 2000, Limerick, June 2000, pp 220-
229.

Brocklehurst, S., Chan, P.Y ., Littlewood, B. Snell, J. “ Recalibrating Software Reliability
Models’ |EEE Transaction on Software Engineering, Vol. 16, No.4, April 1990, pp.458-
469.

Beizer, B. “Software Testing Techniques’ 2nd Edition, International Thomson
Computer Press 1990

Berard E.V “Essays on Object-Oriented Software Engineering”, Vol. 1. Prentice Hall,
1993.

Bertolino A., “Knowledge Area Description of Software Testing”. Chapter 5 of
SWEBOK: The Guide to the Software Engineering Body of Knowledge. Joint |EEE-
ACM Software Engineering Coordination Committee. (2001). On line at
http://www.swebok.org/.

Bertolino, A. "Software Testing Research and Practice”, 10th International Workshop on
Abstract State Machines ASM 2003, Taormina, Italy, March 3-7, 2003, LNCS 2589, p.
1-21.

Black, T.A., Fine, C.H., Sachs, E.M. “A Method for Systems Design Using Precedence
Relationships: An Application to Automotive Brake Systems’. M.I.T. Sloan School of
Management, Cambridge, MA, Working Paper no. 3208, 1990.

Binder, R. V. “Testing Object-Oriented Systems - Models, Patterns, and Tools’,
Addison-Wesley, 1999.

Basanieri F., lani P., Lombardi G., Marchetti E. “An industrial experience in comparing
manual vs. automatic test cases generation” Proceedings of 4th ACIS Internationa
Conference on Software Engineering, Artificia Intelligence, Networking and
Parallel/Distributed Computing, SNPD, L ubeck, Germany October 2003.

Bertolino, A., Inverardi, P., Muccini " An Explorative Journey from Architectural Test
Definition Down to Code Tests Execution”. Proceeding of ICSE 2001, Toronto, Canada,
12-19 May, pp 211-220.

Brocklehurst, S., Littlewood, B. "New Ways to Get Accurate Reliability Measures',
|EEE Software, Vol. 9, No. 4, July 1992, pp. 34-42.

Briand, L.C, Labiche, Y. “A UML-Based Approach to System Testing”. Journa of
Software and Systems Modeling (SoSyM) Vol. 1 No.1 2002 pp. 10-42.

279

Bibliography

[BLAYS]

[BLMOS]

[BLMOZ]

[BLPO1]

[BLSO0Z]

[BM80]

[BM98]

[BMBOS]

[BMMO02]

[BMMO024]

[BMMO03]

[BMPO3]

[BOSS]
[BOY6]
[BPOZ]

[BPO24]

Barghout, M. Littlewood, B., Abdel-Ghaly, A. A “NonParametric Order Statistics
Software Reliability Model” Software Testing, Verification & Reliability 8(3): 113-132
1998

Bertolino A., Lombardi G., Marchetti E., Peciola, E. "Introducing a Reliability
Measurement Program into an Industrial Context", Proc. of ESCOM-ENCRESS 98,
Roma, May 27-29, pp. 277-286.

Bertolino A., Lombardi G., Marchetti E., Mirandola R. “Performance Analysis of the
Rational Unified<<Process Product>>", In Proceedings of 12-th International Workshop
on Software Measurement, IWSM 2002, Magdeburg, Germany, October 2002

Bori S., Lores J. Pascual R. Roures E. “PROMAN, Planning Production Management
and Control System with Intelligent Interface and Advanced Forecast”. In Proceedings
of ETFA 2001, 8th IEEE Internationad Conference on Emerging technologies and
Factory Automation, Antibes (France), 15-18 October 2001.

Briand, L.C., Labiche, Y., Sun, H. “Investigating the Use of Anaysis Contracts to
Support Fault Isolation in Object Oriented Code’, Proc. of ISSTA 2002, Roma, Italy,
July 22-24, 2002, pp. 70-80.

Brooks, W.D., Motley RW. “ Analysis of Discrete Software Reliability Models’ Rome
Air Development Center Technical Report, RADC-TR-80-84, April 1980

Bertolino, A., Marchetti, E. "A Simple Model to Predict How Many more Failures Will
Appear in Testing", Proc. Quality Week Europe '98, Brussels 913 November 1998,
paper 9T.

Briand, L.C., Morasca, S, Basili, V.R. “Property-Based Software Engineering
Measurement”, |EEE Transactions on Software Engineering, Vol. 22, No 1, January
1996, pp. 68-86

Bertolino A., Marchetti, E., Mirandola, R. “Real-Time UML-based Performance
Engineering to Aid Manager’s Decisions in Multi-project Planning” in Proceedings of
Third ACM International Workshop on Software and Performance, WOSP 2002, Rome,
Italy, July, 2002

Bertolino, A., Marchetti, E., Mirandola, R., Lombardi, G., Peciola, E. "Experience of
Applying Statisticadl Control Techniques to the Function Test Phase of a Large
Telecommunications System", |EE Proc. Software, Vol. 149, No. 4, August, 2002, p. 93-
101

Bertolino, A., Marchetti, E., Mirandola, R. “Propean, a RT-UML based Approach to
Help Manager’ s Decision-making”. Technicd Report ISTI1-2003-TR-19 2003

Bertolino, A., Marchetti, E., Polini, A. “Integration of “Components’ to Test Software
Components™, in Proceedings of TACoS 2003, Workshop a ETAPS 2003, Warsaw,
Poland, April 13", 2003, pp. 51-61.

Boehm, B.W. “A spiral model of Software Development and Enhancement”. |EEE
Computer, May 1988.

Burr, A. Owen, M. “ Statistical Method for Software Quality: Using Metrics for Process
Improvement”. Int. Thomson Computer Press, 1996.

Bertalino, A., Polini, A, “Re-thinking the Development Process of Component-Based
Software” in Proceeding of ECBS April 10-11, 2002, Lund, Sweden

Bertolino, A., Polini, A., “WCT: a Wrapper for Component Testing”, Proceedings of
Fidji'2002 in LNCS 2604, L uxembourg, November 28-29, 2002, pp. 165-174.

280

[BPO3]

[BRO1]

[BRJOS]

[BS96]

[CA9S]

[CAG99]

[CASO0]

[CCTO2]

[CD94]
[CDOO]

[CDMO2]
[CDSS36]

[CLLOZ]

[CLRO1]
[CM02]
[CO01]
[COR]
[CRS]

[CTO8]

Bertolino, A., Polini, A., “A Framework for Component Deployment Testing”. In
Proceeding of ICSE2003, Portland, USA, May 3-10, 2003.

Browning T. Applying the Design Structure Matrix to System Decomposition and
Integration Problems. A Review and New Direction. |EEE Transaction on Engineering
Management (Vol. 48, 2001), 292-306.

Booch, G., Rumbaugh, J., Jacobson, 1., “UML User Guide”. Addison-Wesley Longman,
1998.

Bertolino, A.. Strigini, L. "Predicting Software Reliability from Testing Taking into
Account Other Knowledge about a Program”. 9" International Software Quality Week,
San Francisco, May 21-24, 1996, paper 5T1

Cai K. Y. “On Estimating the Number of Defects Remaining in the Software”, J. System
Software, Val. 40, No. 2, pp. 93-114, February 1998.

Crétois, E., El Aroui, M.A., Gaudoin O.: "Software reliability model selection: a new
look on the Uplot method" 5th ISSAT International Conference on Reliability and
Quality in Design, Las Vegas, USA, August 1999.

CASRE: Computer Aided Software Rdiability Estimation; Available at
http://www.openchannel foundation.org/projects CASRE _3.0/. Copyright 2000

Chan WK., Chen T.Y. Tse T. H. “An Overview of Integration Testing Techniques for
Object-Oriented Programs’ Proceedings of the 2nd ACIS Annua International
Conference on Computer and Information Science (ICIS 2002), Mt. Pleasant, Michigan,
2002

Cook S., Daniels J. “Designing Object Systems”. Prentice Hall, 1994

Cheesman, J, Daniels, J, “UML Components - a Simple Process for Specifying
Component-Based Software”, Addison-Wesley, 2000.

Cangussu, JW., DeCarlo, R.A., Mathur, A.P. “A Forma Model of the Software Test
Process’ |EEE Transactions on Software Engineering, Vol. 28, No. 8, August 2002

Conte, S.D., Dunsmore, H.E, Shen,V.Y. “Software Engineering Metrics and Models’,
The Benjamin/Cummings Publishing Co., Menlo Park, Ca, 1986.

Chai, JD., Lee, K. Loginov, A., O'Cdlahan, R., Sarkar, V. Sridharan M “Anaysis of
object-oriented programs. efficient and precise datarace detection for multithreaded
object oriented programs’. In Proceeding of the ACM SIGPLAN 2002 New York,
2002.pp. 258—269.

Cormen, T.H., Leiserson, C.E., Rivest R.L., Stein, C. “Introduction to Algorithms’,
Second Edition, The MIT Press and McGraw-Hill, 2001.

Cortellessa, V., Mirandola, R. “PRIMA-UML: a Performance Validation Incrementa
Methodology on Early UML Diagrams’. Science of Computer Programming, 44 (2002),
101-129, July 2002, Elsevier Science

Cockburn, A., “Writing Effective Use Cases’, Addison-Wedey, 2001

CORBA Component Model specifications On line at:
http://www.omg.org/technol ogy/documents/f ormal/compon-ents.htm

Course Registration System for Wylie College. On-line a
http://www.rational.com/products/rup/resourse_center/examples.jsp.

Carver R. H. Tai. K.C."Use of sequencing constraints for specification-based testing of
concurrent programs’. |EEE Transactions on Software Engineering, Vol. 24 No.6
pp.471-490, 1998.

281

Bibliography

[CTO1]

[CY96]

[DESS]
[DI70]
[DO9Y]

[DRWO2]

[DTGO1]

[DU6B4]
[DW99]
[ECBS02]

[EJB]
[ELMO1]

[EPOO]
[EWO03]

[FBKO1]

[FHL98]

[FLOZ]

[FOOO]

Chevalley. P., Thévenod-Fosse, P. “Automated generation of statistical test cases from
UML state diagrams’ 25th Annual International Computer Software & Applications
Conference (COMPSAC'01), Chicago (USA), 8-12 October 2001, pp.205-214

Chen, T.Y., Yu, Y.T.: "On the Expected Number of Failures Detected by Subdomain
Testing and Random Testing”. |EEE Trans. Software Engineering. Vol. 22, No. 2 (1996)
109-119.

Dean, B.V. “Project Management: Methods and Studies’. North-Holland, Amsterdam
1985.

Dijkstra, EW. “Notes on Structured Programming” T.H. Rep. 70-WSK(03 1970.
Available at http://www.cs.utexas.edu/users EWD/ewd02xx/EWD249.PDF

Dorling A. et al., “SPICE, the Theory & Practice of Software Process Improvement”.
|EEE Computer Society. 1999.

Dunsmore, A., Roper, M., Wood, M. “Further Investigation into the Development and
Evduation of Reading Techniques for Object-Criented Code Inspection”. Proceedings
of 24" International Conference on Software Engineering, Orlando, FL, USA 2002 pp.
47-57

Dickinson M., Thornton A.C., Graves S. “Technology Portfolio Management:
Optimizing Interdependent Projects over Multiple Time Periods’. |[EEE Transaction on
Engineering Management (Vol. 48, 2001), 518-527.

Duane, J.T. “Learning Cure Approach to Reliability Monitoring”. IEEE Transaction on
Aerospace, Val. 2, 1964, pp. 563-566

D’'Souza, D. Willis A.C. “Objects, Components, and Frameworks with UML: The
Catalysis™ Approach” Addison Wesley, 1999

ECBS 2002 “Workshop on CBSE: Composing Systems from Components’, April 10-
11, 2002, Lund, Sweden.

EJB: Enterprise Java Bean Technology. Available at http://java.sun.com/productsejb/

El-Emam K.: “Knowledge Area Description of Software Engineering Process’ Chapter
9 of SWEBOK: The Guide to the Software Engineering Body of Knowledge. Joint
IEEE-ACM Software Engineering Coordination Committee. (2001). On line a
http://www.swebok.org/.

Eriksson H.E., Penker M. “Business Modeling with UML”, Wiley Comp. Pub., (2000).

Evans, 1., Warden, R. “Focus on UML Testing Strategies’ UNICOM The Tester's
Bulletin, Seventh Issue - February 2003.

Fujiwara, S., Bochmann, G. v., Khendek, F., Amaou, M. and Ghedamsi, A., Test
selection based on finite state models, IEEE Transactions on Software Engineering,
Vol.17, no.6, June 1991, pp. 591-603.

Frankl, P.G, Hamlet, R.G., Littlewood, B., Strigini, L. "Evaluating Testing Methods by
Dedlivered Reliability," |EEE Transactions on Software Engineering (ICSE '97), V. 24, 8,
Aug. 1998, pp. 586-602,

Fraikin, F., Leonhardt, T. “SeDiTeC - Testing Based on Sequence Diagrams’ In
Proceedings of the 17th IEEE International Conference on Automated Software
Engineering, Edingburgh, September 2002

Fenton, N.E, Ohlsson N. "Quantitative Analysis of Faults and Failures in a Complex
Software System”, |[EEE Transactions on Software Engineering, 26(8), pp. 797-814,
2000.

282

[FP97]

[FRO9]
[FROO]

[FY00]
[GA92]

[GA99]

[GCS95]

[GKCO1]

[GO79]

[GOEL]

[GROO]

[H323]

[HIMOO]
[HMO3]

[HMWO1]

[HRO1]

[HRNO1]

[HSM02]

[ICSE03]

Fenton, N.E., Pfleeger S.L. “Software Metrics - A Rigorous and Practical Approach”.
Second ed. London: International Thomson Computer Press, 1997.

Franch, X., Ribo, JM. “Using UML for modeling the static part of a software process’.

Frestimate, inside the Kevin Tsui and Kelly Chan, SENG609.11 Software Reliability
Project: SoftRel, 2000. On line at http://www.softrel.com/prod01.htm

Frankl, P.G., Yuetang, D. “Comparison of delivered reliability of branch, data flow and
operational testing: A case study”. Proc. of ISSTA 2000. pp. 124-134

Gaudoin, O. "Optimal properties of the Laplace trend test for software-reliability
models' |EEE Transactions on Reliability, R 41 (4), pp 525-532, 1992

Gaudoain, O. "CPIT goodness-of-fit tests for reliability growth models' in Statistical and
Probabilistic Modelsin Reliability, D. C. lonescu & N. Limnios eds, Birkhaliser, Boston,
pp 27-37, 1999.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. “Bayesian data analysis’. Chapman &
Hall ,1995.

Garlan, D., Kompanek A.J, Cheng.SW. “Reconciling The Needs of Architectura
Description with Object-Modeling Notations.” Wiley Encyclopedia of Software
Engineering, J. Marciniak (Ed.), John Wiley& Sons, 2001.

God., A.L. Okumoto, K. “Time-Dependent Error-Detection Rate Model for Software

and Other Performance Measure’. |EEE Transactions on Reliability. Vol. R-28, No.3,
August 1979, pp. 206-211

God -Okumoto Software Reiability Model Available a
http://www.dacs.dtic.mil/about/services/goel .shtml

Graubmann, P., Rudolph, E. “HyperMSCs and Sequence Diagrams for use case
modeling and testing” "UML" 2000 - The Unified Modedling Language. Advancing the
Standard. Third International Conference. Proceedings (Lecture Notes in Computer
Science V0l.1939), 2000, Pages 32-46

H.323 Standard. Available at:

http://www.microsoft.com/windows/NetM eeting/Corp/reskit/Chapter11/default.asp

Hartmann, J., Imoberdof, C., Meisenger, M. “UML-Based Integration Testing”. ISSTA
2000, Portland, August 2000.

Harel D., Marelly, R. "Specifying and Executing Behavioura Requirements. The Play
In/Play-Out Approach", Software and System Modelling (SoSyM), 2003

Hamlet, D., Mason, D., Woit, D. "Theory of software reliability based on components’
Proceedings of the 23rd international conference on Software engineering July 2001. pp.
361-370

Herzog, U., Rolia, J. “Performance Vdidation Tools for Software/hardware Systems”,
Performance Evaluation, July 2001.

Host M., Regnell B., Natt och Dag J., Nedstam J., Nyberg C. “Exploring bottlenecks in
market-driven requirements management processes with discrete event simulation”.
Journal of System and Software Vol 59 pp. 323-332, 2001

NIST/SEMATECH eHandbook of Statistical Methods, October 2002. Available at:
http://www.itl.nist.gov/div898/handbook/, date.

ICSE ““Workshop on CBSE: Automated Reasoning and Prediction”, Portland, Oregon,
USA, May 3-4, 2003.

283 Bibliography

[IKT85] Imai, K., Nonaka, I., Takeuchi, H. “Managing the New Product Development Process:
How the Japanese Companies Learn an Unlearn” in Clark, K., b., Hayes, R., H., Lorenz,
C. (eds.). Theuneasy Alliance. Harvard Business School Press, Boston, 1985.

[I[EEE93] |EEE Standard for Software Unit Testing | EEE Std. 1008-1987 (R1993)

[IEEE98] |EEE Recommended Ractice for Architectural Description, Draft 3.0 of IEEE P1471,
May 1998. Available at http://www.pithecanthropus.com/~awg/

[IEEE98a] |EEE Standard: Guide for the Use of IEEE Standard Dictionary of Measures to Produce
Reliable Software” |EEE Std. 982.2-1998

[IEEE9Q9] |EEE Computer, July 1999, Vol. 32, No.7.

[IEEEOL1] IEEE Recommended Practice for Architectura Description of Software-Intensive
Systems (IEEE Std 1471) IEEE Architecture =~ Working GrouP
http://ww.pithecanthropus.com/~awg

[JBR98] Jacobson, |., Booch, G., Rumbaugh, J. “The Unified Software Development Process’.
Addison-Wesley, 1998

[JCI92] Jacobson, J., Christerson, M. Jonsson, P. Overgaard, G. “Object-Oriented Software
Engineering”: A Use Case Drive Approach”. Addison Wedley, 1992.

[JGPI8] Jézéquel, JM, Le Guennec, A., Pennanech, F. "Vadlidating Distributed Software
Modeled with UML". Proceeding of UML98, in LNCS 1618, pp. 365-376.

[J095] Jorgensen,P. C., “ Software Testing a Craftsman’s Approach”. CRC Press, 1995.

[JSS03] Journal of Systems and Software, Special Issue on CBSE, Volume 65, Issue 3, Pages
169-238 March 2003

[ISW99] Jager D., Schleicher A., and Westfechtel B.: Using UML for Software Process
Modeling. ESEC/FSE'99, Toulouse, France, LNCS 1687, Springer, (September 1999).

[JUN] JUNIT tool On-line at: http://www.junit.org

[KAB6] Kulkarni, V.G., Adlakha, V.G. “Markov and MarkowRegenerative PERT Networks'.
Oper. Res. (1986) Vol. 34, 769-781.

[KCMO1] Kim, SW., Clak, JA., McDermid JA. "Investigating the effectiveness of object-
oriented testing strategies with the mutation method” Software Testing, Verification and
Reliahility, Vol. 11 No.4 pp. 207-225, 2001.

[KCT02] Koppol, P.V., Carver, RH., Tai. K.C.n “Incremental integration testing of concurrent
programs’. |EEE Transactions on Software Engineering, Vol. 28, No 6 pp. 607-623,
2002.

[KFN99] Kaner, C., Falk, J., Nguyen H.Q. “ Testing Computer Software”, 2nd Edition, John Wiley
& Sons, April, 1999

[KGH95] Kung, D., Gao, J, Hsia, P., Toyoshima, Y., Chen, C., Kim, Y., Song, Y. "Developing an
Object-Oriented Software Testing and Maintenance Environment”. Communication of
the ACM, val. 32, no. 10, 1995, pp.75-87.

[KHC99] Kim, G.,. Hong, H.S., Bag, D.H., Cha, S.D. “Test Cases Generation from UML State

[KHGO02] Kung, D.C, Hsia, P.,, Gao, J “Testing Object-Oriented Software” Wiley-IEEE Press
October 2002,

[KKOO] Kuntzmann-Combelles, A. Kruchten, P. “The Rational Unified Process— An Enabler for

Higher Process Maturity “. (Version 1.0 2000). White Paper On line at:
http://www.rational .net/rupcenter.

284

[KKLO3]

[KKL97]
[KM90]
[KMO1]
[KMR99]
[KPM]
[KR95]
[KR98]
[KROO]
[KUO1]
[LA83]

[LAOZ]

[LAO3]

[LHKO2]

[L192]
[L198]

[LMO1]

[LMR92]

[LNO3]

Kanoun, K., Kaniche, M., Laprie, J.C., and Metge, S., “SoRel: A Tool for Reliability
Growth Analysis and Prediction from Statistical Failure Data’, FTCS-23 Proceedings,
Toulouse, France, June 1993, pp. 654-659.

Kanoun, K., Kaaniche, M., and Laprie, J. P., "Quadlitative and Quantitative Reliability
Assessment”, |EEE Software, Vo. 14, No. 2, March 1997.

Korson, T., McGregor, M. “Understanding Object-Oriented: A Unifying Paradigm”,
Communications of the ACM, pp. 40-60, September 1990.

Keiller, P. A., Miller, D. R. “On the use and the performance of software reliability
growth models’ Reliability Engineering and System Safety, pp. 95-117, 1991

Kellern, M.I., Madachy, R.J., Raffo D.M. “Software Process Simulation Modeling:
Why?What? How?” Journal of System and Software. Vol. 46, No. 2/3. April 1999

Kerzner Project Management Maturity Online Assessment Tool. Available at
http://www.iil.com/brochures’kerzner.htm

Kruchten, P. "The 4+1 view model of architecture" |EEE Software. 12(6), November
1995.

Kélling, M., Rosenberg, J. “Support for Object-Oriented Testing” in Technology of
Object-Oriented Languages and Systems (TOOLS) 28, |IEEE, Melbourne, 204-215, 1998

Kruchten, P. “The Rationa Unified Process: An Introduction”. 2" edition. Addison
Wesley, 2000.

Krishnan, V., Ulrich, K. T. "Product Development Decisions. A Review of the
Literature” Management Science, (Vol. 47, 2001), 1-21

Lavenberg, S.S. “Computer Performance Modeling Handbook”. Academic Press, New
York, 1983.

Laprie, J.C. “Dependability: Basic concepts and Terminology, Dependable Computing
and Fault-Tolerant Systems’. Vo.l. 5. J.C. Laprie (ed.), Springer-Verlag, Wien, New
York 1992

Laprie, J.C.* Dependability: From Concepts to Limits' Proc. Of SAFECOMP 93,
Springer-Verlag, Poznan, Poland, 1993, pp. 157-168.

Lo, JH., Huang, C.Y. Kuo SY., Lyu, M.R.: "Optima Resource Allocation and
Reliability Analysis for Component-Based Software Applications," Proc. 26th Annua
International Computer Software and Applications Conference (COMPSAC2002),
Oxford, England, August 26-29 2002.

Lee. I., lyer, RK. “Anaysis of Software Halts in Tandem System” Proc. Of ISSRE,
October 1992, pp.227-236.

Lindemann, C. “Performance Modelling with Deterministic and Stochastic Petri Nets’,
John Wiley & Sons, 1998.

Latella, D., Massink.M. ‘A forma testing framework for UML Statechart Diagrams
behaviors: From theory to automatic verification” In Sixth IEEE International High-
Assurance Systems Engineering Symposium. |EEE Computer Society Press, pages 11-
22,2001

Lejter, M., Meyers, S, Reiss, S.P. "Support for Maintaining Object-Oriented Programs,”
|EEE Trans. Software Eng., Vol. 18, No. 12, Dec. 1992, pp. 1045-1052.

Lyu, M.R., Nikora, A. P.,”"CASRE - A computer-Aided Software Reliability Estimation
Tool”, CASE 92 Proceedings, Montreal, Canada, July 1992, pp. 264-275

285

Bibliography

[LOS7]
[LO98]

[LPM99)]

[LPS00]

[LPSO14]

[LPSO1b]

[LRM97]

[LRMOZ]

[LS93]

[LS00]

[LTWOO]

[LV73]

[LY96]
[LYO02]

[LZ99]

[LZS84]

[MAOQ]

[MD97]

Loyd, E. “Handbook of Applicable Mathematics: Statistics’. Val. 111, IV, John Wiley &
Sons 1987.

Loch, CH. “Operations Management and Reengineering”. European Management
Journal (Vol.16, 1998), 306 — 317.

Lombardi, G., Peciola, E., Mirandola, R., Bertolino, A., Marchetti, E. “Towards
Statistical Control of an Industrial Test Process’. Proceeding of Safecomp '99, Toulouse,
September 27-19, 1999, pp. 260-271

Littlewood, B., Popov, P.T., Strigini, L. Shryane N. “Modeling the Effects of
Combining Diverse Software Fault Detection Techniques’ Transaction on Software
Engineering 26(12): 1157-1167 2000

B Littlewood, B., Popov, P.T., Strigini, L. "Design Diversity: an Update from Research
on Reliability Modelling", Proc. Safety-Critical Systems Symposium 2001, Bristol, UK,
Springer-Verlag.

Littlewood, B., Popov, P.T., Strigini, L. "Modelling software design diversity - a
review", ACM Computing Surveys, Vol. 33, No. 2, June 2001, pp. 177-208.

Lyu, M.R,, Rangargian, S., van Moorsel A.P.A. "Optimization of Reliability Allocation
and Testing Schedule for Software Systems" Proceedings |EEE ISSRE'97,
Albuquerque, New Mexico, November 2-5 1997, pp. 336-346.

Lyu, M.R., Rangargjan, S., van Moorsel A.P.A. “Optimal Allocation of Test Resources
for Software Reliability Growth Modeling in Software Development”, |IEEE
Transactions on Reliability, vol. 51, no. 2, June 2002, pp. 183-192.

Littewood, B., Strigini, “Validation of UltraHigh Dependability for Software-based
Systems’. Communications of the ACM, Vol. 36, No. 11, November 1993, pp. 69-80

Littewood, B., Strigini, L. “Software Reliability and Dependability: A Roadmap”. Proc.

of the conference on the future of Software engineering 2000, Limerick, Ireland June
2000, pp. 177-188

Labiche, Y., Thévenod-Fosse, P., Waeselynck, H., Durand M. H. “Testing Level for
Object-Oriented Software”. Proceeding of ICSE, Limerick, Ireland, June 2000, pp. 136-
145

Littlewood. B., Verdl. J “A Bayesian Rdiability Growth Model for Computer
Software”. Journal of the Royal Statistical Society, series C, Vol22 No. 3, 1973, pp. 331-
346.

Lyu M. R. (Ed.), “Handbook of Software Reliability Engineering”, McGraw-Hill, 1996.

Lyu M. R. " Software Reliahility" Encyclopedia of Software Engineering, Wiley, 2002,
pp. 1611-1630.

Liuying. L., Zhichang, Q.: Test Selection from UML Statecharts. Proceeding of 31st
International Conference on Technology of Object-Oriented Language and System,
Nanjing, China, 22-25 September 1999.

Lazowska, E.D., Zahorjan, J., Graham, G.S, Sevcik K.C. “Quantitative System
Performance Computer System Anaysis Using Queueing Network Models’ Prentice-
Hall, Inc., in 1984. Available at: http://www.cs.washington.edu/homes/lazowska/qsp/

Marshall C “Enterprise Modeling with UML: Designing Successful Software through
Business Analysis’, Addison-Wedey, (2000)

Maaiya, Y. K., Denton, J A. “What do software reliability parameters represent?’ In
Proc. International Symposium on Software Reliability Engineering, pages 124-135,
Albuquerque, NM, November 1997.

286

[MEL]
[MF96]

[MFS00]

[MGB99]

[MI087]
[MJ72]
[MOT75]

[MOS83]

[MPT]
[MU93]

[MU96]
[MU9S]

[MUO2]

[MUOS]

[MW82]

[MZ98]

[NAS97]

[NET]
[NFFO3]

M-éopée Evaluation des Logiciels depuis les Phases d'essais jusqu'en Exploitation.
Available at http://www.mathix.fr/ http:/mww.mathix.fr/

McFeeley R. 1DEAL: A User's Guide for Software Process Improvement”. Software
Engineering Ingtitut, Pittsburgh, PA, CMU/SEI-96-HB-001, 1996.

Von Mayrhauser, A., France, R.; Scheetz, M.; Dahlman, E. “ Generating test-cases from
an object-oriented model with an artificia-intelligence planning system”, |EEE
Transactions on Reliability, Volume 49, Issue 1, 2000, Pp 26-36

Mercier, F., Le Gdl, P., Bertolino, A. “Formalizing integration test strategies for
distributed systems’. Proceeding of ICSE Workshop Testing Distributed Component-
Based System, Los Angeles, May 1999.

Musa, J.D., lannino, A., Okumoto, K. “ Software Reliability — Measurement, Predi ction,
Application”. McGraw-Hill, New Y ork, 1987.

Moranda, P.L., Jelinski, X. “Final Report on Software Reliability Study”. McDonnell
Douglas Astronautics Company, MADC, Report Number 63921, 1972.

Moranda, P.B. “ Software Reliability Prediction” Proceeding of the sixth Triennial World
Congress of the International Federation of Automatic Control, 1975, pp. 34.1-34.7

Musa, JD, Okumoto, K, "Software reliability models. concepts, classification,
comparisons, and practice”, Proc. Electronic Systems Effectiveness and Life Cycle
Costing Conference, Norwich, U. K., July 19-31, 1982, NATO ASI Series, Val. F3, (Ed:
J. W. Skwirzynski) Springer-Verlag, Heidelberg, 1983, pp. 395-424.

Microsoft Project Tool. Available at http://www.microsoft.com/office/project/

Musa, J.D. "Operational Profiles in Software-Reliability Engineering”, |IEEE Software,
March 1993, pp.14-32.

Musa, J. D., "Software-Reliability Engineered Testing", Proc. of the Sth Int. Software
Quality Week, S. Francisco, USA, May 21-24, 1996, paper 2Q2.

Musa, JD. “Software Reliability Engineering: More Reliable Software, Faster
Development and Testing, ISBN 0-07-913271-5, McGraw-Hill, New York, 1998.

Muccini, H. "Software Architecture for Testing, Coordination and Views Modd
Checking" PhD Thesis, Universita degli Studi di Roma “La Sapienza’ 2002. Available
at http://www.henrymuccini.com/Research/PhD-Thesis.htm.

Musa, JD. “More Reliable Software Faster and Cheaper (Software Reliability
Engineering)” website: http://members.aol.com/JohnDMusa/

Martw, H.F., Waler, RA. “Bayesian Reliability Analysis’, New York, John Wiley &
Son 1982

Mitchell, B., Zeil, SJ. “An Experiment in Estimating Reliability Growth Under Both
Representative and Directed Testing” Proc of ISSTA 1998.pp 32-41

NASA, "Forma Methods, Specification and Analysis Guidebook for the Verification of
Software and Computer Systems’. Vol. Il. A Practitioner’s Companion, NASA GB-
001.97, 1991. http//eis.jpl.nasa.gov/quality/Forma_Methods/.

.Net resources available at: http://vwww.microsoft.com/net/

Neil M, Fenton N, Forey S, Harris R. "Assesding Vehicle Reliability using Bayesian
Networks' in Global Vehicle Reliability, Edited by J. E. Strutt and P.L. Hall.
Professiona Engineering Publishing, 25-42, 2003.

287

Bibliography

[NKFO03]

[NLS02]
[OA99]
[OAQQ]
[OB8S]
[OBJ]
[OH84]
[PCC3]

[PE9S]
[PF98]
[PJCO7]

[PITO2]

[PMB99]

[PO02]

[PS02]

[POS]
[PR94]

[PRIS]
[PSM02]
[PW92]

[PW3]

Neil M, Krause P, Fenton NE, "Software Quality Prediction Using Bayesian Networks'
in Software Engineering with Computational Intelligence, (Ed Khoshgoftaar TM),
Kluwer, ISBN 1-4020-7427-1, Chapter 6, 2003

Di Nitto, E., Lavazza, M., Schiavoni, Tracanella, E., Trombetta M. “Deriving executable
process descriptions from UML”. ICSE 2002, Orlando, Florida, (May 2002).

Offutt, J., Abdurazik, A. "Generating Test from UML Specifications’. Proceeding of
UML 99, Fort Collins, CO, October 1999.

Offutt, J., Abdurazik, A.: Using UML Collaboration Diagrams for Static Checking and
Test Generation. UML 2000, University of York, UK, 2-6 October 2000.

Ostrand, T.J, Bacer, M.J. “The Category Partition Method For Specifying and
Generding Functional Tests’. Communication of the ACM, val. 31, no.6, June 1988, pp.
676-686.

Objecteering Software. On line at http://www.objecteering.com/

Ohba, M. “Software Reliahbility Anadysis Models'. IBM Journa of Research and
Development, Val. 21. No. 4, July 1984, pp 428-443

Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V., “Capability Maturity Modd,
Version 1.1", IEEE Software, Val. 10, No. 4, July 1993, pp.18-27

Perry, W. “Effective Methods for Software Testing”, Wiley 1995
Pfleeger, S., L., “ Software Engineering Theory and Practice”, Prentice Hall, 1998

Pfleeger, SL., Jeffery, R., Curtis, B., Kitchenham, B. “Status Report on Software
Measurement”. |EEE Software VVol.14 No.2 1997 pp. 33-44.

Pickin, S., Jard, C., Le Traon, Y. Jéon, T., J6zéqud JM., Le Guennec, A. “ System test
synthesis from UML models of distributed software’ In D. Peled and M. Vardi, editors,
Forma Techniques for Networked and Distributed Systems - FORTE 2002, LNCS,
Houston, Texas, November 2002

Powdl A.L., Mander K.C.,.Brown D.S. “Strategies for Lifecycle Concurrency and
Iteration - A System Dynamics Approach,” Journal of Systems & Software, Vol. 46 N.2-
-3, 1999.

Popov, P., "Reliability Assessment of Legacy Safety-Critical Systems Upgraded with
Off-the-Shelf Components', SAFECOMP2002, September 2002, Catania, Italy

Petriu D.C., Shen H. “Applying the UML Performance Profile: Graph Grammar-based
derivation of LQN models from UML specification”. Proceedings of Performance
TOOLS 2002, London, England, April 14-17 2002, LNCS 2324, Springer Verlag

Poseidon tool. Available at http://www.gentleware.com

Pressman, R., S,, “ Software engineering: a practitioner’s approach”, McGraw-Hill Book
Company Europe, 1994

PRISM is in Rdiability Analysis Center (RAC). On line a
http://rac.dionscience.com/prism/

Popov, P., Strigini, L., May, J., Kuball, S. "Estimating Bounds on the Reliability of
Diverse Systems’, IEEE Transactions on Software Engineering, 2002.

Perry D.E., Wolf A.L. "Foundations for the Study of Software Architecture’. ACM
SIGSOFT Software Engineering Notes, 17(4): 40-52, October 1992.

Peng, W., W., Wallace D., R., “Software Error Analysis’, NIST SP 500-209, National
Ingtitute of standards and Technology, Gaithersburg, MD 20899, December 1993,
http://hissa.nist.gov/SWERROR/

288

[RAOO]
[REMA]

[RGOO]

[RGKOO]
[RIBOY]
[RPGO2]
[RRT]
[RS01]

[RSC]
[RUP|

[SBAO1]

[SC75]
[SC99]

[SCKO1]

[SDO1]

[SEO1]
[SE02]
[SH72]
[SM90]

[SM97]

Ramaswamy R. “How to Staff Business Critical Maintenance Projects’. |EEE Software
Vol. 7, 2000, pp. 90-95.

Reliability & Maintenance Analyst Available a
http://www.engineeredsoftware.com/rma.asp

Ryser, J,, Glinz M. “Using Dependency Charts to Improve Scenario-Based Testing”.
Proceedings of the 17th International Conference on Testing Computer Software
(TCS2000). Washington D.C., June 2000.

Ramani, S. Gokhale, S.S., Trivedi K.S. ‘SREPT: Software Reliability Estimation and
Prediction Tool Performance Evauation, Vol. 39, pp. 37-60, 2000.

Rumbaugh J.,, Jacobson |., Booch J. “The Unified Modeling Language Reference
Manua” Addison Wesley, 1999.

Riebisch, M. Philippow, I.;Gotze, M. “UML-based Statistical Test Case Generation”
Net.Object.Days 2002 Erfurt, Germany, October 7-10, in Lecture Notes in Computer
Science Vol. 2591, pp 394-411, 2002

Rational Rose tool. On line at http://www.rational .com/products/rose/index.jsp

Rosemberg, D., Scott, K. “Applying Use Case Driven Object Modeling With UML: An
annotated E-Commerce Example’. Addison Wesley June 2001

Rational Software Corporation’s. http://www.rational .com/

Rational Unified Process version 2000.02.10. Rationa Software Corporation. On-line at
http://www.rational .com/products/rup

Sdeh, D.,, Boujawah, AA., Al-Ddlad J. “Anomay detection in concurrent Java
programs using dynamic data flow analysis’. Information and Software Technology,
V0.43 No 15 pp 973-981, 2001.

Schneidewind, N.F. “Analysis of Error Processes in Computer Software” Sigplan Note,
Voal. 10, no. 6, 1975, pp. 337-346

Schneider S.AA. ‘Concurrent and Real-time Systems: the CSP approach”. John Wiley,
New York, 1999.

Seo, H.S, Chung, I.S,, Kim, B.M, Kwon. Y.R. “The design and implementation of
automatabased testing environment for Java multi-thread programs’. In proceeding of
the 8th Asia Pecific Software Engineering Conference (APSEC '01), Los Alamitos,
Cdlifornia, 2001 pp. 221-228.

Smith G., DerrickJ.M. “Specification, refinement and verification of concurrent systems:
an integration of Object-Z and CSP’. Forma Methods in System Design, Vol. 18, No. 3
pp. 249-284, 2001.

Selic, B. “Response to the OMG RFP for Schedulability, Performance and Time” OMG
document Ad/2001-06-14.

Sdic, B. "Performance-Oriented UML capabilities' Proceedings of Third Internationa
Workshop on Software and Performance, Roma, Italy, July 2002, ACM press.

Shooman, M.L. “Probabilistic Models for Software Reliability Prediction”. Statistical
Computer Performance Evaluation, Academic Press, New Y ork, June 1972, pp 485-502

Smith, C.U. “Performance Engineering of Software Systems’. Addison-Wedley,
Reading, MA, 1990.

Smith, R. “The Historical Roots of Concurrent Engineering Fundamentals’. |EEE
Transaction on Engineering Management (Val. 43, 1997), 67-78.

289

Bibliography

[SME96]
[SOR93]

[SP99]
[SPM]
[ST97]

[STOO]
[SWO1]
[TNS6]

[TSP9Y]

[UML]

[UMLOO]

[UMLO1]

[UMLO2]

[UMLA]
[UMLP]

[VJIBO3]

[WC99]

[WES6]

[WH92]

SMERFS; Statistical Modeling and Estimation of Reliability Functions for Systems.
Available at http://www.dlingcode.com/smerfs/. Copyright 1996

SoRdl: Software Redliability Available at: http://www.laas.fr/surf/sorel/sorel .html.
Copyright 1993

Spivey, J. M. “The Z notation: A reference manual2. Prentice-Hall, 1989.
Software Program Manager’s Network. On line at http://www.spmn.com.

Stieber, H.A. “Statigtica Quality Control: How to Detect Unreligble Software
Components’. In Proceedings of the 8th International Symposium on Software
Reliability Engineering, Albuguerque, NM, USA, November 1997, published by |EEE
Computer Society

Stieber, H.A. “Optimal Testing Strategies’ In Proceedings of the 10th International
Symposium on Software Reliability Engineering, San Jose, CA, USA, October 2000.

Smith, C.U. and L. Williams. Performance Solutions. a Practical Guide to Creating
Responsive, Scalable Software”, Addison-Wesley, 2001.

Takeuchi, H., Nonaka, |. “The New Product Development Game’. Harvard Business
Review (Vol. 64, 1986), 137-146.

Tsal, B.Y., Stobart, S., Parrington, N., Mitchdl, 1. “Automated class testing using
threaded multi-way trees to represent the behavior of stae machines’, Annas of
Software Engineering, Volume 8, 1999, Pages 203-221

UML Documentation version 15 Web Site. On-line a
http://www.omg.org/technol ogy/documents/formal/uml.htm

Evans, A., Kent, S., Sdlic B., (Eds.): «UML» 2000 - The Unified Modeling Language.
Advancing the Standard Third International Conference, York, UK, October 2000.
Proceedings LNCS 1939, Springer Verlag

Gogolla, M., Kabryn C., (Eds): UML 2001 - The Unified Modding Language.
Modeling Languages, Concepts, and Tools 4th International Conference, Toronto,
Canada, October 1-5, 2001, Proceedings LNCS 2185, Springer Verlag.

Jézéquel, M., Hussmann, H., Cook c., (Eds): UML 2002 - The Unified Modeling
Language 5th International Conference, Dresden, Germany, September 30 - October 4,
2002. Proceedings LNCS 2460, Springer Verlag

UMLAUT Available at http://www.irisafr/fUMLAUT/

UML™ Profile for Schedulability, Performance, and Time Specification. On line at
htttp://www.omg.org/cgi-bin/doc?ptc/02-03-02. pdf

Vegas S. Juristo N. Basli V.R., “ldentifying Relevant Information for Testing
Technique Sdection: An Instantiated Characterization Schema’ The Kluwer
International Series in Software Engineering, Kluwer Academic Publishers, Boston
Volume 8 April 2003.

Williford J., Chang A. “Modeling Fed Ex's IT Division: A System Dynamics Approach
to Strategic IT Planning”. Journal of Systems & Software, Vol. 46 N.2-3, 1999.

Weiss, G. “Stochastic Bounds on Distribution of Optimal Vaue Function with
Application to PERT, Network Flows and Reliability”, Oper. Res. (Vol. 36, 1986), 595-
605.

Wilde, N., Huitt, R. “Maintenance Support for Object-Oriented Programs’ |EEE Trans.
Software Eng., Vol. 18, No. 12, Dec. 1992, pp. 1038-1044.

290

[W199]

[WK99]
[WMO1]

[WO97]

[WOO00]
[WO002]

[WR01]

[XHW97]

[YLKO2]

[YOO83]

[ZHM97]

Williams, C.E. “Software Testing and the UML", Proceedings of the Internationa
Symposium on Software Reliability Engineering (I1SSRE'99), Boca Raton, November 1-
4, 1999.

Warmer, J., Kleppe, A. “the Object Constraint Language” Addison-Wesley, 1999]

Wittevrongel, J. Maurer, F. “Using UML to Partially Automate Generation of Scenario-
Based Test Drivers’. OOIS 2001, Springer, 2001

Wood. A. “Software Reliability Growth Models. Assumptions vs. Reality” Eighth
International Symposium on Software Reliability Engineering (ISSRE '97), November
02 - 05, 1997,Albuquerque, NM. pp. 136

Wosp2000, Proceedings of Second International Workshop on Software and
Performance, Ottawa, Canada, September 2000, ACM press.

Wosp2002, Proceedings of Third International Workshop on Software and Performance,
Roma, Italy, July 2002, ACM press.

Wallace, D. Reeker, L. “Knowledge Area Description of Software Quality”. Chapter 11
of SWEBOK.: The Guide to the Software Engineering Body of Knowledge. Joint | EEE-
ACM Software Engineering Coordination Committee. (2001). On line at
http://www.swebok.org/.

Xie.,, M., Hong, G.Y., Wohiln, C. “A Practical Method For The Estimation Of Software
Reliability Growth In The Early Stage Of Testing” Eighth International Symposium on
Software Reliability Engineering (ISSRE '97) Albuquerque, NM, November 02 - 05,
1997 p. 116

Yu, CY., Lo, JH., Kuo, SY., Lyu, M.R. “Optimal Allocation of Testing Resources for
Modular Software Systems” Proc. 13th International Symposium on Software Reliability
Engineering (ISSRE 2002), Annapolis, MD , November 12-15 2002

Yamada, S., Ohba, M., Osaki S. “S-Shaped Reliability Growth Modeling: Models and
Assumption”. |EEE Transaction on Software Engineering. Vo. SE-11, No. 12,
December 1985, pp 1431-14237

Zhu, H., Hdll, PA.V., May, JH.R “Software Unit Test Coverage and Adequacy”. ACM
Computing Surveys, 29, 4 Dec. 1997, pp. 366-427

