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1 Introduction 

In the twenty first Century, it seems impossible to think that less than 50 years 
ago people could live without software applications. Nowadays we have the 
impression that everything we use, every “electronic contraption” in our house, 
office or car contains a software (firmware) heart, but so is. From their first few 
months, children are accustomed using interactive or musical toys, playing 
videogames, listening to music or interacting with computers. Our kitchens are filled 
with domestic appliances; our cars are more like computers with four wheels than 
mechanical devices; very rarely does an office exist without at least one personal 
computer; even for writing this Thesis we are using a software application (indeed 
writing it without this support was unthinkable). However, these are just trivial 
examples; software systems are vastly applied in every industrial and medical field, 
they control air, sea, and road traffic and often are responsible of our lives.  

Since the 1980, the widespread use of these technologies has led a large part of 
the software engineering to focus its attention on quality, usability, safety and other 
characteristic attributes of software applications. In particular, interest was captured 
both by the process for software development and by its results. Using their 
experience software engineering researchers have gradually arrived at the conviction 
that only the joint between a mature and well-established development process with 
specific techniques for the quantitative evaluation of the attributes of interest of the 
artefacts produced can guarantee high quality and reliable applications. Therefore 
research has been split into two sets, with of course some natural intersections and 
points of contact: the former interested to the process (Software Process 
Improvement (SPI) [KK00]), and the latter focused on the product. 

Frameworks such as CMM [PPC93], SPICE [DO99], RUP [RUP] (detailed in 
Chapter 3) are the “products” of the SPI research work belonging to the former set. 
They capture the good practices for the process assessment and are de facto 
references used by thousands of organizations. 

Considering the latter set, generally the techniques applicable to the product can 
be divided into two groups: static techniques, which do not involve code execution,  
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as such for instance inspection, reviews, code reading, and the dynamic techniques, 
which instead require code running, to which testing belongs (Chapter 2). Among 
these diverse techniques in this Thesis we concentrate on Software Testing, which is 
a means applicable for both evaluating product quality and improving it indirectly, 
by identifying defects and problems. We propose a global view of the testing phase 
exploiting and unifying the knowledge both from the industrial reality and research 
context. In particular we will go offer the readers methods, tools and new 
approaches, each evaluated in terms of effectiveness, cost and applicability by means 
of case studies derived also from real industrial contexts, useful for planning, 
monitoring, and controlling the different stages of testing process. 

Software Testing concerns many related activities developed in view of specific 
purposes (Chapter 2). In particular, by the application of well-defined techniques, it 
exposes software failures that may involve the whole system, parts of it, or even a 
single module. The failures are the primary object of interest during testing activities 
and they are evaluated by measureme nt process for obtaining values of interest 
concerning the program under test. 

During recent years Software Testing has increased its role in the process of 
development. It is no longer focused on the defects detection after code completion, 
but is now an integrated and significant activity performed during the whole software 
life cycle. Its critical nature and the importance for the overall quality of the final 
products led adopting the good practice of starting its management at the early stages 
of software development during the requirements analysis and proceeding with its 
organization systematically and continuously during the entire development process 
up to the code level.  

Of course, the management of the testing activities depends strictly on the 
development process adopted for delivering the software products; however the main 
phases can be resumed in [BE01]: 

Planning: As for any other process activity, the testing must be planned and 
scheduled. Thus the time and effort needed for performing and completing Software 
Testing must be established in advance during the early stages of development. This 
also includes the specification of the personnel involved, the tasks they must to 
perform and the facilities and equipments they may use. 

Test cases generation: According to the test plan constraints a set(s) of the test 
cases must be generated by using a (several) test strategy (ies).   
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Test cases execution: The test cases execution may involve testing engineers, 
outside personnel or even customers. It is important to document every action 
performed in order to allow the experiments’ duplication and meaningful and truthful 
evaluations of the results obtained. 

Test results analysis: The collected testing results must be evaluated to 
determine whether the test was successful (the system performs as expected, or there 
are no major unexpected outcomes) and used for deriving measures and values of 
interest.  

Problem reporting: A test log documents the testing activity performed. This 
should contain for example the date in which a test was conducted, the data of the 
people who performed the test, the information about the system configuration and 
any other relevant data. Anomalies or unexpected behaviours should be also 
reported. 

Post-closure activities: the information relative to failures or defects discovered 
during testing execution are used for evaluating the performance and the 
effectiveness of the developed testing strategy(ies) and determining whether the 
process development adopted needs some improvements.  

In this Thesis, considering the above subdivision of activities, we examine 
several difficulties concerning the applicability of Software Testing in the industrial 
contest. In particular, starting from the test planning we proceed systematically with 
the analysis of the different testing stages, pointing out the characteristic problems 
and presenting our original proposal for solving them. 

1.1 Motivations and Objectives 
Software Testing is a critical part of the process of development, on which the 

quality of the products delivered strictly depends. Testing activity, as reflected in the 
above phases' subdivision, is in fact not limited to the detection of software “bugs” 
but it encompasses the whole development process. Specifically, it has been 
evaluated that testing consumes at least half of the labour (calculate in terms of 
required time/effort/resources/people) expended producing a deliverable software 
product and sometimes, in the case of critical systems, may even reach 90% [BE90]. 
Thus Software Testing must be well-planned and executed, otherwise severe 
consequences can result. Recent reports and industrial experiences are testimonies 
that an erroneous evaluation of the product’s quality, which allows the release of 
products with important residual defects, may have negative consequences with huge 
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loss of revenue and also risking the users’ safety. Unfortunately many times due to 
time or cost constraints Software Testing is not developed in the proper manner or is 
even skipped.  

The approaches and methods presented in this Thesis share a general aim: put 
research in practice. Our methods are also the fruits of many constructive discussions 
with project managers, testers and developers, who bring up real necessities not yet 
satisfied thoroughly by the researches performed so far. 

Therefore for defining our proposals the procedural steps followed were first 
going over the literature in depth, studying and evaluating the proposed solutions 
relative to test planning, test cases derivation and test results analysis. Then for 
facing industries’ needs, either readapting and improving the approaches found in the 
literature or defining original alternatives solutions, finally proposing systematic and 
rigorous procedural methods.  

For this we paid particular attention to strategies for selecting the parts 
(functionalities) of the software products on which the testing must concentrate in 
order to avoid loss of time and effort. In the literature several solutions are presented 
for generating suitable test cases, but the authors seldom concentrated on the 
methodological approaches for the selection of the functionalities to be tested. 
Generally this is a crucial aspect for software developers, which is often left to the 
intuition or expertise of the program managers or testers. Unfortunately wrong 
decisions in this contest can considerably increase the overall effort and time 
required for delivering a “good” product. Thus in this Thesis we specifically 
concentrate on this problem by proposing procedural strategies, which guide us to 
suitable testing choices from the first phases of process development. 

During the methodology development, following the principle of finding 
applicable solutions for the industrial environment, we were subjected to two 
important constraints: maximizing the usability and automation.  

Concerning usability, software developers want easy-to-use and ready-to-apply 
methodologies, which minimize as much as possible the required additional 
formalism or ad-hoc effort specific for testing purposes. In the industrial context 
these aspects are immediately translated into an increase in the cost of Software 
Testing, which is improbably justified and accepted even with the evidence of 
extremely good results and a great improvement in software quality. Therefore our 
objective was presenting systematic and rigorous methodologies, which as far as 
possible will adapt themselves to modelling notations and procedures commonly 
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used by industries and real environments and not vice versa. Of course achieving the 
optimal trade-off between usability and high-quality methodology is a difficult task, 
which may sometimes interfere with the improvements of the solutions proposed. 

The second constraint considered is automation. The increasingly strict delivery 
time imposed by the customers and markets forces software developers to accelerate 
product development as much as possible. This often is translated into reducing the 
time necessary for performing Software Testing, which is one of the most expensive 
activities of the development. Consequently the testing phase is partially skipped and 
the software products released in advance only because there is not enough time for 
testing them properly.  

One of the ways to pull down the overall testing time is to considerably increase 
if possible the automation in test cases derivation, execution and validation, thus 
reducing the manual labour. Considering these problems in this Thesis we adopt 
automation as a leading principle for our proposals. Therefore, for each of them we 
present executable prototypes or we define the potential architecture completely, 
implementing only some of the involved components. In particular, in this process 
scrupulous attention has been dedicated to the automatic selection of functionalities 
to be tested and the consequent derivation of test cases, which allowed us to 
considerably reduce the time required for the Test Plan definition. 

As a side effect the collaboration with the industrial world provides us with 
interesting case studies used for evaluating the effectiveness of the proposals of this 
Thesis. The results obtained highlighted the peculiarities and deficiencies of our 
methodologies and were the stimuli for modifications or improvements in order to 
better adapt them to the software developers’ demands. 

Thus in this Thesis we not only provide theoretical advancement, but also focus 
specifically on the definition of practical and quantitative support applicable all along 
the testing phase. As will be further detailed in the next section, our contribution 
concerns: providing an original approach for scheduling the testing activities and 
distributing people and resources among them considering a multiproject 
environment; defining a tool which supports the user both in the choice of the most 
important software elements on which the testing effort must be concentrated, and in 
the automatic generation of the appropriate test cases by using the available UML 
product specification; evaluating the effectiveness of the testing techniques applied, 
while the tests are executed, in order to decide when stop testing. In particular, we 
present for each of the topics treated a detailed literature survey and a quantitative 
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analysis of the methodologies proposed by means of their application to case studies. 
Moreover, the comparison with other alternative solutions taken from the literature is 
also provided.  

1.2 Thesis Outline 
In this Thesis we overview the different stages of the testing process from the 

planning to the effective run of test cases and evaluation of the obtained results 
considering division of activities previously presented for organizing the contents. In 
particular we have divided the Thesis into five self-contained parts, each related to a 
different testing stage, excluding the first which is an introductory section. Therefore, 
these reflect the life cycle of software and are in a temporal relation each other, even 
if several intersections and contact points exist. 

 
Part I: The first part presents a overview of Software Testing and provides a brief 
description of the Unified Modelling Language and the Rational Unified Process that 
will be used in the Thesis. This part aims to give readers the basic information they 
need for a complete comprehension of the methods and approaches presented. 
Specifically: 
Chapter 2  

We provide a comprehensive view of the Software Testing, clarifying the 
terminology that will be used and bringing the relevant issues together in a unified 
context.  

 
Chapter 3 

We provide here a brief description of the Unified Modelling Language and the 
Rational Unified Process extensively used in Chapter 4, 5 and 8. 
 

Part II: In Chapter 4 we begin our journey into Software Testing considering the 
planning activity. This must start from the early stages of requirement analysis and 
continue with further refinements during the entire development. Indeed establishing 
a suitable test plan is not a trivial task because it includes the definition, assignment 
and scheduling of resources, time, personnel and costs. This task is even more 
critical in a multiproject environment in which resources and personnel are shared 
among the various products realization. Thus, judging whether the resources 
assigned to a specified task are adequate or whether under the existing organizational 
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schemes the predicted time schedules will be met is a very difficult task also because 
the processes involved are highly complex. The influencing factors (both human and 
technical in kind) are in fact many, and in most cases not easily measurable or 
predictable. 

Our response to these problems is Propean, an integrated approach in which 
managers can define UML models of the flow of activities to be performed during 
development and the tasks to distribute among personnel by using familiar notations 
and tools and then derive automatically the measures of interest. Propean is based on 
the techniques of computer software performance engineering and queueing 
networks. It adopts the following metaphor: the project teams correspond to the 
processing resources in performance models. The process activities are associated 
with the tasks to be accomplished within established time intervals. Propean allows 
estimations of time necessary for completing the different testing activities, with 
respect to the established deadline, and the utilization rate of each resource (people). 

Contrarily to some existing tools Propean deals with multiproject environments 
and provides predictions which rely on a solid mathematical background and have 
statistical validity. Propean automatically translates the models into a format that is 
processable by standard performance analysis algorithms and applies a solver of the 
latter to obtain the desired results. In Chapter 4 we show how the well-known 
techniques from performance analysis can be usefully and quite naturally adapted to 
tasks of relevance for software managers, such as assessing the time to completion of 
specified activities, handling personnel multitasking over different projects, 
optimising the workloads in development cycles, deciding about product release, and 
similar issues.  

  
Part III. In this part we proceed with our exploration considering a subsequent 

activity: tests generation. This is one of the most expensive phases of testing 
development. On the basis of the financial plan established, the test cases must be 
defined and distributed among the functionalities of the system to be tested, and then 
executed. But deciding both the functionalities on which the testing effort should be 
concentrated and the amount of test cases to dedicate to each of them is another 
critical point for the testing management. Wrong decisions could increase 
considerably the overall cost of the testing phase and the time required for its 
completion.  
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In Chapter 5 we propose an integrated, practical and automatic approach, called 
Cow_Suite, which is also prototyped in a tool for generating and planning a suitable 
set of test cases, starting with the UML documentation. This methodology combines 
two original components working in agreement: a strategy called Cowtest and a 
method called UIT. The former provides two different test planning schemes: testing 
must respect a certain resource investment, which in practice we translate into fixing 
the number of test cases; or the test cases must cover a fixed percentage of 
functionalities. The latter automatically generates test suites for the high-level test 
stages, encompassing system and integration testing at various levels. Each generated 
test suite focuses on a functional portion of the system as interactively selected by 
the tester on a suitable structure of the UML diagrams.  

Cow_Suite has diverse and important characteristics that can be summarised as: 
usability, using exactly the same UML diagrams developed for analysis and design 
for test planning without requiring additional formalism; timeliness, starting test 
generation and selection as early as possible in the development cycle (even from 
analysis or design phases); incrementality, considering progressively larger parts of 
the system and addressing, at each incremental step, the functionalities and 
interactions that are relevant at the level considered; scale, ability to manage even big 
test suites keeping their sizes and functional coverage under control. 
 

Part IV: In this part we consider the final stages of testing: the analysis of testing 
results. Despite the effectiveness of testing techniques applied, obtaining a defect-
free code remains wishful thinking. Coping with software failures, during 
development and after release, is among the hardest tasks of managers, while testing, 
debugging and maintenance activities still consume the largest part of development 
effort and resources. Each failure requires meticulous extra work in order to find the 
causing fault(s) and correct it, which could contribute to an expected enormous 
increase in the final cost of the testing phase. Thus methods to estimate the defect 
contents of software are of great interest for managers and testers.  

Thus we focus our attention on the methods for predicting the final failure rate 
using the test results obtained during the testing execution. In particular, we consider 
two different situations: the results are relative to the running of non-operational 
testing or the failures collected are from operational testing execution. Specifically: 
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Chapter 6 
We propose two dynamic methodologies, the One-Step and the Two-Steps 

Method for deriving the number of failures experienced up to the end of testing 
phase, by using data collected during the testing itself. Having this estimation in 
advance allows the software developers to suddenly take corrective action and 
drastically reduce the extra cost of the testing phase.  

The most attractive feature of the proposed models is their simplicity: they only 
need collecting the intervals of time between subsequent failures without requiring 
estimation of parameters of the product or of the development process. Specifically, 
for prediction purposes in both the One-Step and the Two-Steps Method we used a 
Classical estimator and an alternative Bayesian estimator.  

Even if the models are conceived for dealing with non-operational test results, 
their generality also allows their application to operational failure data as will be 
described in this Chapter.  

 
Chapter 7 

In this Chapter we continue the exploration of the testing phase considering 
operational testing. The data obtained during this phase are generally used for the 
application of reliability growth models, which let the evaluation of some product 
characteristics such as the level of reliability attained. Unfortunately there is 
currently no known method for determining a priori which model will prove optimal 
for a particular development effort. Thus an important role in facilitating the 
reliability growth model selection and usage is due to the available tools. For this we 
describe the necessary steps for using two of these tools: SoRel and CASRE. We 
discuss their respective roles, the former in verifying the basilar assumption that the 
failure data exhibits a growth in reliability, the latter in selecting the suitable 
reliability growth model for obtaining the required prediction. We then discuss the 
advantages and difficulties encountered in applying these models for reliability 
prediction, and also describe a procedure describing the steps necessary for the 
integrate use of SoRel and CASRE.  

 
Part V: In Chapter 8 we present the conclusions and an ongoing experience 

concerning the readapting and integration of the Cow_Suite methodology into a more 
general framework for enabling the validation of Component Based (CB) systems by 
testing them against the corresponding UML architectural specifications. Specifically 
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using the emerging methodologies for representing components and development 
process [CD00], we outline the steps necessary to provide the user with a tool for 
components testing.  Our intention is to define a test environment, called UML 
Combination, which will be the joint, with the necessary adaptations, of Cow_Suite, 
for analyzing the UML components specification and selecting and generating test 
cases, and CDT [BP03] for codifying the test cases and (re-)executing them every 
time a component instance will be plugged into the system.  

 

1.3 An overview of the publications status  
The research proposals of this Thesis have been obtained with join collaboration 

of different people both from the academic and industrial world and several results 
achieved have been published in different international conferences proceeding and 
journals. Specifically here for each Chapter we highlight those sections have already 
been published and those not yet.   

 
Chapter 4  
We presented the Propean methodology in [BMM02], in which both the details of 

the methodology and the architecture of the Propean Tool are described. The 
application of Propean to managing the testing phase and its use with RUP are 
instead published in [BMM02] and [BLM02] respectively. Propean has been applied 
to further a case study not included in this Thesis and presented in [BBM02a] and 
[BBM03].  

 
Chapter 5 
The description of the test strategy Cowtest and the methodology Cow_Suite 

have been presented in [BBM1] and [BBM02] respectively. In this Chapter we 
improve the overview of literature and include more details about the steps necessary 
for Cow_Suite application, the procedure adopted for the derivation of the basic 
structure and the algorithms used for the test cases derivation. The comparison 
between the test plan derived applying Cow_Suite and that produced manually by the 
ERI personnel has been published in [BIL03]. 
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Chapter 6  
The description of the One-Step and Two-Steps methods and their application to 

the real cases study have been published in [LPM99] and [BMM02a], while the  
Bemar model has been presented in [BM01]. 

 
Chapter 7 
The application of the Reliability Growth Models to industrials cases study has 

been published in [BLM98]. Here we also present an original procedure for the 
integrated use of the tools Sorel and CASRE with the purpose of reliability 
prediction.  

 
Chapter 8  
The ongoing extension of Cow_Suite to the Component based paradigm has been 

published in  [BMP03], here we include more details of the combined application of 
the existing tools. 

 
The following table summarizes the Thesis proposals, presenting our research 

result for each testing phase.  
 

Testing phase Research Results 
Planning Propean approach for Test Planning Management using Queueing Networks 

(Chapter 4) [BBM02a, BLM02, BMM02, BBM03] 

In OO environment Cow_Suite for test case generation and selection 

(Chapter 5) [BBM01, BBM02, BIL03] 

Test cases generation 

In Component Based environment a readapting of Cow_Suite for the “UML 

Components” designs  (Chapter 8) [BMP03] 

Non-operational testing: One-Steps and Two-Steps methodology for 

predicting the cumulative number of failures (Chapter 6) [BM98, LPM99, 

BMM02a] 

Test results analysis 

Operational testing: application of the Reliability Growth model for 

reliability predictions (Chapter 7) [BLM98] 

Table 1 The research proposals in the different testing phases. 
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PART 1:  
SOFTWARE TESTING: BASIC KNOWLEDGE  



 

 



 

2 Software Testing 

Preface 
This Chapter attempts to provide a comprehensive view of Software Testing, 

clarifying the terminology that will be used in this Thesis and emphasizing the 
relevant issues in a unified context. Due to the vastness of this topic, for each subject 
we only provide a brief description and set of guideline references. We defer to the 
different Chapters of this Thesis for a more complete and exhaustive explanation.  

In particular, in Section 2.1 we present the definition of testing as well as some 
alternative (static) techniques that can be applied for software quality purposes, while 
in Section 2.2 we differentiate the various testing stages applicable during the testing 
process. The techniques relevant for selecting the proper set of test cases are depicted 
in Section 2.3, while the methodologies for evaluating the testing results are found in 
Section 2.5.  

2.1 Testing Phase 
The testing phase is an important and critical part of software development, 

consuming even more than half of the effort required for producing deliverable 
software [BE90]. Unfortunately, often due to time or cost constraints, the testing is 
not developed in the proper manner or is even skipped. The testing activity in fact is 
not limited to the detection of “bugs” in the software, but it encompasses the entire 
development process. The testing planning starts during the early stages of 
requirement analysis, and proceeds systematically, with continuous refinements  
during the course of development until the completion of the coding phase, with the 
beginning of the test cases execution. This last step represents the biggest part of 
software cost that can be evaluated in terms of: the cost of designing a suitable set of 
test cases which can reveal the presence of bugs; the cost of running those tests, 
which also requires a considerable amount of time; the cost of detecting them, i.e. the 
development of a proper “oracle” which can identify the manifestation of a bug as 
soon as possible; the cost of correcting them.  
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All these activities have in common the same testing purpose: evaluating the 
product quality for increasing the software engineering confidence in the proper 
functioning of the software. However it must be made clear that testing cannot show 
the absence of defects; it can only reveal that software defects are present, as shown 
by Dijkstra as long as thirty years ago [DI70].  

We report the definition of the Software Testing introduced in [BE01]: 
Software Testing consists of the dynamic verification of the behaviour of a 

program on a finite set of test cases, suitably selected from the usually infinite 
executions domain, against the specified expected behaviour 

As shown by this definition, testing deals with dynamic verification of system 
quality, which also involves the code execution, as will be better described in this 
Chapter.  

Generally the techniques applicable for quality evaluation can be divided into two 
sets: static techniques, which do not involve code execution, and dynamic 
techniques, to which testing belongs, which instead required running code. The static 
techniques are applicable all during the process development for different purposes 
such as to check the adherence of the code to the specification or to detect defects in 
code by its inspection or review.  Instead the latter approach more properly observes 
failures as they show up. In particular dynamic analysis techniques involve the 
execution of the code and the analysis of its responses in order to determine its 
validity and to detect errors. The behavioral properties of the program are also 
observed.  

Other examples of dynamic analysis include simulation, sizing and timing 
analysis, and prototyping, which may be applied throughout the lifecycle [PW93]. In 
this Chapter we briefly present the static techniques (Section 2.1.1), preferring to 
concentrate on testing, which is the main topic of this Thesis1.  

Before continuing the presentation of the diverse aspects of Software Testing it is 
important to clarify the terminology relative to the terms “fault”, “defect” and 
“failure” that we will use. Although their meanings are strictly related, there are 
some distinctions between them.  

As discussed in [BE03], a failure is the manifested inability of the program to 
perform the function required, i.e. a system malfunction evidenced by incorrect 
output, abnormal termination or unmet time and space constraints. The cause of a 

                                                 
1 For the structure of the following sections we refer to [BE01]. 
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failure, i.e. the missing or incorrect code, is a fault. In particular, a fault may remain 
undetected until some stirring up event activates it. In this case it brings the program 
into an intermediate unstable state, called error, which if propagated to the output 
causes a failure. The process of failure manifestation is therefore [PL98] 

Fault→Error→Failure 
which can be iterated recursively: a fault can be caused by a failure in some other 

interacting system. 
Testing reveals failures and a consequent analysis stage is needed to identify the 

faults that caused them. In particular, it is possible that many different failures can 
result from a single fault, and the same failure can be caused by different faults. In 
this situation what should be better estimated in a program, its number of contained 
“faults” or how many “failures” it would expose? Either estimate taken alone can be 
tricky: if failures are counted it is possible to end up the testing with a pessimistic 
estimate of program “integrity”, as one fault may produce multiple failures. On the 
other hand, if the faults are taken into consideration, it is possible to evaluate at the 
same level harmful faults that produce frequent failures, and inoffensive faults that 
may remain hidden for years of operation. It is hence clear that the two estimates are 
both important during development and are produced by different (complementary) 
types of analysis.  

In this Thesis we will present different methodologies and approaches to manage 
and control the testing phase under different complementary aspects. In particular, 
we are interested in what it is observable by testing, i.e., the failures.  

2.1.1 Static Techniques 
The static techniques are based on the examination of the project documentation, 

the software and other related information about requirements and design and not on 
software execution [DRW02]. These data are also used to trace the requirements into 
the developed software and to verify its adequacy to the specification. The static 
techniques include software inspection, reviews, code reading, algorithm analysis 
and tracing. Thus the use of static techniques in not limited to the testing phase; their 
application during the entire the development phase is even more important. In 
particular they can be applied [PW93]:  
• During the requirements phase, they can be used to check adherence to 

specification conventions consistency, completeness and language syntax. 
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Commonly used static analysis techniques are flow analysis, data flow analysis, 
traceability analysis, and interface analysis.  

• During the design phase, the most commonly used techniques include algorithm 
analysis, database analysis, interface analysis and traceability analysis. 

• During the implementation phase the frequently used techniques are code 
reading, inspections, walkthroughs, reviews, control flow analysis database 
analysis interface analysis, and traceability analysis. Other categories of 
techniques are complexity analysis, sneak circuit analysis and slicing. 
It is worth noting that an important and widespread used class of static (analytic) 

techniques is the use of formal methods to verify software requirement and design. 
This technique is attracting quite a lot attention from both research and industries and 
the proof of correctness as well as the verification of security and safety requirements 
of different (crucial) parts of a critical system is will be increasingly applied 
[NAS97]. However this is a vast area of research, quite far from the objectives of this 
Thesis, thus we refer the reader to [WR01] for complete documentation and 
overview of the literature. 

Nevertheless, it should be considered that a defect can be more or less disturbing 
depending on whether, and how frequently, it will eventually show up at the final 
user (and depending of course on the seriousness of its consequences). Indeed, 
whether few or many, some defects will inevitably escape testing and debugging. So, 
in the end, one important measure of quality of the product useful in deciding 
whether it is ready for release is software reliability. Until they do not cause failures 
the remaining defects trouble neither customers nor producers. In Chapter 7 we will 
discuss this topic in detail.  

We conclude this section considering the alternative application of static 
techniques in producing values of interest for testing process control. Different 
estimations can be obtained by observing specific properties of the present or past 
products, and/or parameters of the development process In particular during the 
testing phase the static techniques may be applied to estimate the total number of 
defects and provide very attractive measures. Since by testing we find the failure and 
fix the related fault, static models would provide a prediction on how many defects 
are left in the code. 

Thus static techniques could be very attractive to managers for prediction 
purposes, because they provide "numbers", which the managers are eager for, very 
early in the process compared to dynamic models. The latter can be used late in the 
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life cycle, i.e., during the testing phases, when it may be too late to efficaciously re-
direct development efforts. Static defect models on the other hand can be applied to 
identify more risky modules and consequently re-allocate testing resources or modify 
design.  

It is not possible to decide which is the most appropriate between static and 
dynamic techniques because both of them are useful for different objectives. For 
instance in the front-end phases of the life cycle, managers should use the static to 
apportion risk among modules and to allocate development time and resources. In the 
final stages of development they should use the dynamic instead in order to evaluate 
the degree of disturbance created by defects that are inevitably left, and to decide 
whether the product is ready for delivery.  

2.1.2 Definition of Software Testing 
Referring to [BE01, BE03] in this section we discuss the main concepts of the 

Software Testing definition provided in Section 2.1. As already stated, the testing is a 
complementary approach of the static techniques described which involves the 
execution of the code. The term “dynamic” means precisely that the “testing always 
implies executing the program on (valued) inputs” [BE01] in a specific environment. 
Principally for the non-deterministic systems, the results obtained by testing depend 
strictly on the input provided as well as state of the system. Therefore when speaking 
about input values the definition of the parameters and environmental conditions 
characteristic of a specific system state must be included when necessary. 

Of course, even if the set of input values can be considered infinite, those that 
will be run effectively during the testing of a program must be finite. It is in practice 
impossible, due to time constraints, to exhaustively exercise every input of a specific 
set even when not infinite: this operation could require thousand of years [DJ70]. As 
stated in [BE03], a good test strategy therefore requires a trade-off between the 
number of chosen inputs and overall time and effort dedicated to the testing 
purposes. The selection of test cases is thus a critical and important aspect of testing, 
and the choice of the best test criterion to be applied for this purpose is a complex 
problem as yet unsolved [VJB03]. Different techniques can be applied depending on 
the target and the effect that should be reached.  

Once the tests are selected and run, another crucial aspect of this phase is the 
detection of failure, i.e. the oracle problem, which means deciding whether the 
observed outcomes are acceptable or not. As reported in [BE01] there are two 



    32 
 

possibilities for checking the behavior of the program under testing: testing for 
validation, i.e., evaluating the program against the user’s expectations, or testing for 
verification (conformance testing), i.e., evaluate the program against the 
specifications.  

2.2 Testing Level 
Generally the testing is performed at different levels during the development 

process and can involve the whole system or parts of it. Here we distinguish three 
different stages: unit, integration and system test [BE90 Chapter 1], [PL98 Chapter 
7] providing in the following a brief description of each. It is important to clarify that 
no stage is more important than another. Each one has its specific target and 
difficulties and only a good combination of them can provide products of quality.  

 
Unit Test 

A unit is the smallest testable piece of software, consisting of hundreds or a few 
lines of source code, and generally representing the result of the work of one 
programmer. The Unit test’s purpose is to ensure that the unit satisfies its functional 
specification and/or that its implemented structure matches the intended design 
structure [BE90, PL98]. When the tests reveal an anomalous behavior, it is said that 
there is a unit bug.  

Unit tests can also be applied for test interfaces (parameter passed in correct 
order, number of parameters equal to number of arguments, parameter and argument 
match), local data structure (improper typing, incorrect variable name, inconsistent 
data type) or boundary condition. Further specific details concerning the unit test are 
in [IEEE93]. 

 
Integration Test 

Integration is a process by which components are aggregated to create a larger 
component. Even though the single components are individually acceptable when 
tested in isolation, they could result incorrect or inconsistent when combined in order 
to build complex systems. For example, there could be an improper call or return 
sequence between two or more components [BE90]. Therefore integration testing is 
specifically aimed at exposing the problems that arise from the combination of 
components by the verification that each component behaves according to its 
specification defined during preliminary design. In particular, it is mainly focused on 
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the communication interfaces among integrated components. The recent (and even 
not-so-recent) testing literature contains few entries relative to integration testing, 
and practical methodologies rely essentially on good design sense and the testers’ 
intuition. 

Integration testing of traditional systems was done substantially in either a non-
incremental or an incremental approach. Except for small, simple systems, in a non-
incremental approach the components are linked together and tested all at once (big-
bang testing) [JO95]. In the incremental approach, we find the classical “top-down” 
strategy, in which the modules are integrated one at a time, from the main program 
down to the subordinated ones, or “bottom-up”, in which the tests are constructed 
starting from the modules at the lowest hierarchical level and then are progressively 
linked together upwards, to construct the whole system. Usually in practice, a mixed 
approach is applied, as determined by external project factors (e.g., availability of 
modules, release policy, availability of testers and so on) [PL98]. 

In modern Object Oriented, distributed systems, approaches such as top-down or 
bottom-up integration and their practical derivatives, are no longer usable, as no 
“classical” hierarchy between components can be generally identified. Some other 
criteria for integration testing implies integrating the software components or 
subsystem based on identified functional threads [MGB99], [MU02]. In this case the 
test is focused on those classes used in reply to a particular input or system event 
(thread-based testing) [Jo95]; or by testing together those classes that contribute to a 
particular use of the system.  

A different branch of the literature is testing based on the Software Architecture: 
this specifies the high level, formal specification of a system structure in components 
and their connectors, as well as the system dynamics. Some recent papers explore the 
way in which the description of the Software Architecture could be used to drive the 
integration test plan [BCI00, BIM01, MU02]. Indeed, in [GKC01] the authors have 
also investigated the expression of Software Architecture in UML, with appropriate 
stereotype extensions. 

Finally, some authors have used the dependency structure between classes as a 
reference structure for guiding integration testing, i.e., their static dependencies 
[KGH95], or even the dynamic relations of inheritance and polymorphism [LTW00]. 
Such proposals are interesting when the number of classes is not too big; however, 
test planning in those approaches can begin only at a mature stage of design, when 
the classes and their relationships are already stable. 
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In this Thesis (specifically in Chapter 5) we concentrate mainly on this typology 
of testing, proposing in contrast an approach that deals with big, complex systems 
and that can be used from the early stages of design, when the component structure is 
preliminarily sketched.  

 
System Test 

System test involves the whole system embedded in its actual hardware 
environment and is mainly aimed to verify that the system behaves according to the 
requirements document. In particular it attempt to reveal bugs that cannot be 
attributed to components as such, to the inconsistencies between components, or to 
the planned interactions of components and other objects.  

As will be discussed in Chapter 7, test and data collected applying this type of 
testing can be used for defining an operational profile of the system which support a 
statistical analysis of the systems reliability [MU93], [LY96]. Generally system 
testing includes testing for performance, security, reliability, stress testing and 
recovery [JO95, PL98]. 

2.2.1 Objectives of Testing 
The Software Testing can be applied for different purposes, such as verifying that 

the functional specifications are implemented correctly or that the system shows 
specific reliability. In [BE01] a complete list of the possible testing objectives is 
provided; here we limit ourselves to describing those that will be mentioned in this 
Thesis.  
• Acceptance testing is the final test action prior to deploying the software. Its 

goal is to verify that the software respects the customer’s requirement, i.e., it can 
be used by the end-users to perform those functions and tasks the software was 
built to do [PL98].  

• Alpha testing Before releasing the system it is given to the in-house user for 
exploring the functions and business tasks. Generally there is no test plan to 
follow; the individual tester determines what to do [KFN99].  

• Beta Testing the same as Alpha testing but the system is given to external users. 
In this case the amount of detail, the data, and approach taken is entirely up to the 
individual tester. Each tester is responsible for creating their own environment, 
selecting their data, and determining what functions, features, or tasks to explore. 
Each tester is responsible for identifying their own criteria for whether to accept 
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the system in its current state or not. Beta testing is thus the less controlled phase 
[KFN99].  

• Reliability achievement:  testing is a means to improve reliability; therefore the 
test case must be randomly generated according to the operational profile. In 
Chapter 7 we provide a complete description of reliability testing as well as the 
method used for evaluating the reliability level reached [LY96]. 

• Functional Testing: Tests focused on validating whether the observed behavior 
of the tested system conforms to the specification. In particular it checks whether 
the functions are as intended and provides required service(s) and method(s). 
This test is implemented and executed against different tests targets, including 
units, integrated units, and systems [PE95] 

2.3 Functional and Structural Testing 
As stated previously, a testing technique is a systematic method used to select 

and/or generate tests. It can be considered effective if the tests included are likely to 
reveal bugs in the tested object. Since objects are modified in order to correct their 
bugs, the kind of bugs found in an object changes with time, and thus the 
effectiveness of a technique. 

In [BE01] two alternative classifications of test techniques are provided: the first 
is based on how the tests are generated (for instance tester expertise, specification, 
code structure and so on) the second is based on the type of information about the 
software, used for generating the tests (black-box or white-box). We adopt the latter 
here briefly presenting the main testing techniques applicable. 

2.3.1 Functional Testing 
Functional testing, also called black box testing, relies on the input/output 

behaviour of the system. In particular the system is subjected to external inputs, so 
that the corresponding outputs are used to verify the conformance of the system to 
the specified behaviour, with no assumptions of what happens in between. Therefore 
in this process we assume knowledge of the (formal or informal) specification of the 
system under test, which can be used to define a behavioural model of the system (a 
transaction flowgraph). This graph is either focused on how software is built (i.e. 
structure) or on how it behaves (i.e. function). A structural focus leads us to 
structural test techniques, whereas a functional (behavioural) focus leads us to 
functional test methods [BE90].  
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One of the crucial aspects of black box testing is therefore the inputs selection. A 
complete functional test would consist of subjecting the program to all possible input 
streams and verifying the outcome produced, but as stated in Section 2.1.2 this is 
theoretically impossible. For this different techniques can be applied such as: 
• Testing from formal specifications: In this case it is required that specifications 

be stated in a formal language, with a precise syntax and semantics. The tests are 
hence derived automatically from the specification, which are also used for 
deriving inductive proofs for checking the correct outcome [ZHM97].  

• Equivalence partitioning: the functional tests are derived from the specifications 
written in structured, semiformal language. The input domain is partitioned into 
equivalence classes so that elements in the same class behave similarly. In this 
context the Category Partition is a well-known and quite intuitive method, which 
provides a systematic, formalized approach to partition testing [OB88]. 

• Boundary-values analysis. This is a complimentary approach to equivalence 
partitioning, and concentrates on the errors occurring at boundaries of the input 
domain. The test cases are thus chosen near the extremes of the class. [JO95, 
KFN99]. 

• Random methods: consist of generating random test cases based on a uniform 
distribution over the input domain. It is a low-cost technique because large sets of 
test patterns can be generated cheaply without requiring any preliminary analysis 
of software [BE90].  

• Operational profile: test cases are produced by a random process meant to 
produce different test cases with the same probabilities with which they would 
arise in actual use of the software [LY96]. 
One of the points against the black-box testing is its dependence on the 

specification’s correctness and the necessity of using a large amount of input in order 
to get good confidence of acceptable behaviour. 

2.3.2 Structural Testing 
The structural testing, also called white-box testing, requires complete access to 

the object’s structure and internal data, which means the visibility of the source code. 
The tests are derived from the program’s structure, which is also used to track which 
parts of the code have been executed during testing. For this some of the commonly 
used techniques for test case selection are: 
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• Control flow-based criteria: these techniques use the control flow graph 
representation of a program in which nodes correspond to sequentially executed 
statements while edges represent the flow of control between statements. The aim 
of white box testing criteria is to cover as much as possible the control flow 
graph, limiting the number of selected test cases. In particular they differentiate 
in: statement coverage which is based on executable statements, Branch 
coverage, which focuses on the blocks and case statements that affect the control 
flow, Condition coverage which relies on subexpressions independently of each 
other, Path coverage which is based on the possible paths exercised through the 
code [BE90, ZHM97]. 

• Data-Flow coverage: In data-flow testing, a data definition of a variable is a 
location where a value is stored in memory (definition) and a data use is a 
location where the value of the variable is accessed for computations (c-use) or 
for predicate uses (p-use). The data-flow testing goal is to generate tests that 
execute program subpaths from definition to use. Traditional data-flow analysis 
techniques work on control flow graphs annotated with specific information on 
data usage [JO95, ZHM97]. 
Generally the functional and structural test strategies are not alternative 

approaches but can be used in combination because they use and provide different 
sources of information. 

2.4 Object Oriented Testing 
Object-Oriented programming (OO) has nowadays become the preferred 

paradigm for large-scale system design. Due to the extent of published papers and 
books on this argument, and specifically on the Object Oriented Testing, it is not 
possible to provide an exhaustive dissertation on this argument here therefore, we 
limit ourselves exposing the main concepts, referring the reader to [BI99] for more 
details. 

The OO programming encompasses a body of methods, processes, and tools used 
to construct software systems and provides a unifying paradigm for the three 
traditional phases of software development: analysis, design and implementation 
[KM90]. It has in fact an excellent structuring mechanism, the classes, which permit 
the division of the system in well-defined units, which may then be implemented 
separately.  
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OO programming introduces a new concept of a subprogram, different from the 
traditional systems, because it attempts to separate the specification (interface) for 
the subprogram from its implementation (body). Hence a class can export a purely 
procedural interface and the internal structure of data may be hidden. This allows the 
structure to be changed without affecting users of the class, thus supporting software 
reuse and simplifying maintenance. New classes may be created as extensions of 
existing classes through the reuse of a class in a library, or via inheritance. In both 
cases the result is a reduction in the amount of software, which must be written 
because since previously tested classes may be utilised [KR98]. 

Thus, OO introduce powerful new features in the program languages, which 
provide visible benefits in software design and programming but also raise new 
problems in the Software Testing and maintenance phases. These characteristics can 
be summarized as [WH92, LMR92, BI99, KHG02]: 
• Encapsulation: modeling and storing with an object the attributes and the 

operations an object is capable of performing. This increases the difficulty in 
controlling the object interactions and in consequently preparing suitable test 
cases to verify such interactions. 

• Inheritance: the properties defined for a class are inherited by its subclasses, 
unless it is otherwise stated. However, a method that is tested to be "correct" in 
the context of the base class does not guarantee that it will work "correctly" in the 
context of the derived class. The retesting of inherited methods in a different 
context is therefore a rule, which increases the number of tests to perform.  

• Polymorphism: is the ability to bind a reference to more then one object. This 
means that each possible binding of a polymorph component requires a separate 
test.   

• Dynamic binding means code that implements an operation that is unknown until 
run time. These features make testing more difficult because the exact data type 
and implementation cannot be determined statically, and the control flow of the 
OO program is less transparent. 
In this context the traditional Software Testing techniques, generally based on 

imperative programming, are often not directly applicable to the OO software with 
their event-driven nature. Specifically, four different levels of testing can be 
individuated [CCT02]: 
• The algorithmic level in which the code of each operation in class is tested 

separately, so that conventional testing techniques can be applied; 
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• Class level in which the objective is to verify the integrity of a class by testing it 
as an individual entity.  

• Cluster level is concerned with the integration of classes. As the functionality of 
individual classes has already been verified, the focal points are usually placed on 
the synchronization of different concurrent components as well as interclass 
method invocations. 

• System level in which the interactions among clusters are tested. 
Thus starting from the class level a significant difference between conventional 

program testing and OO Software Testing is due to the state depended behaviors. 
While in the former this situation is common for the embedded systems, in OO 
programming, many objects may have state depended behaviors and/or interact with 
each other. Often the subprograms are encapsulated within a larger entity, e.g. a 
class, working in conjunction with the other items of the same object. This situation 
makes the test of a subprogram in isolation very difficult because the smallest 
testable unit is no longer the subprogram, but classes and instances of classes 
[KHG02]. 

Another important point which differentiates the non-OO approaches from the 
OO is integration testing. In the former approaches such as top-down, bottom-up or 
big-bang can be applied. Instead in the OO context, considering a unit, the methods 
associated with each operation often take advantage of the underlying 
implementation of the class, hence testing in isolation each operation-method 
combination is difficult. Thus to test a class the following activities must undertake 
[KR98]: 
a) Create an instance of the class, i.e. an object, passing the appropriate parameters 

to the constructor 
b) Call the methods of the object passing parameters and receiving results 
c) Examine the internal data of the object 

This can be achieved either by writing a test program for each class and their 
inclusion of debug statements or by the inclusion of appropriate mechanisms in the 
program development environment itself. The natural testing integration is therefore 
to combine "subprograms" into a class, one at a time and thus testing the whole 
system. This avoids creating the specific object states, because they can be set by 
other encapsulated operations, or combinations of encapsulated operations. In this 
situation it is clear that specific approaches for the integration may not help since 
each operation may be used to test the other [BE93]. 
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In OO programming different testing techniques can be applied starting from the 
cluster level as listed below. But most of them are the reviewed approaches or 
extension of the techniques used in the imperative programming paradigm, and only 
a few techniques are specific for the object-oriented context. We refer to [CCT02] 
for a complete description. 

State-based approach relies on the construction of a finite-state machine or 
state-transition diagram for representing the different states of the program under 
test. The difficulty of the technique increases with the number of concurrent units 
and mainly during the dynamic instantiation of objects during program execution 
[KCT02]. 

The event-based paradigm uses temporal relationships between synchronization 
events such as message sequence constraints or temporal logic [CT98]. 

Integrated formal methods combine object-orientation with other formal 
paradigms such as finite state machine or process algebra [SC99, SD01]. 

Deterministic and reachability testing forces the synchronization to be 
executed in desirable orders so that a deterministic test oracle can be applied and 
checked with the deterministic result. Due to dynamic binding, the same 
synchronization may result in different binding effects at different points of input 
[SCK01, CLL02]. 

For fault-based testing, techniques such as mutation testing may not be effective 
in object-oriented programs and must thus readapted for this contest [KCM01] 

UML-based techniques conduct testing by using the UML documentation. We 
provide an extensive survey of these techniques in Chapter 5. 

Dynamic data flow testing helps identify anomalies of data actions by collecting 
information during program executions. Conventional probing techniques may not be 
adequate for languages that support Java-like reflection [SBA01] 

2.5 Testing Measures 
Measurements are nowadays applied in every scientific field for quantitatively 

evaluating parameters of interest, understanding the effectiveness of techniques or 
tools, the productivity of development activities (such as testing or configuration 
management), the quality of products, and more. In particular, in the software 
engineering context they are used for generating quantitative descriptions of key 
processes and products, and consequently controlling software behavior and results. 
But these are not the only reasons for using measurement; it can permit definition of 
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a baseline for understanding the nature and impact of proposed changes. Moreover, 
measurement allows managers and developers to monitor the effects of activities and 
changes on all aspects of development. In this way actions to check whether the final 
outcome differs significantly from plans can be taken as early as possible [FP97]. 

However, as stated in [PJC97] the most successful measurement program would 
be one in which researcher, practitioner and customer work together to meet goals 
and solve the problems, but this occur very rarely. The measurement process is 
formally defined as: “The process by which numbers or symbols are assigned to 
attributes of entities in the real world in such a way as to describe them according to 
clear and defined rules” [FP97], where an entity represents an object or an event, 
and an attribute is a feature or property of an entity. In other words this means 
representing the real world with mathematical expressions and rules so that it will be 
clearer and easier to understand the attributes and their relationships.  

However, is not unusual to have different measures for the same thing, which can 
generate confusion or lead to erroneous management decisions. Thus it is important 
to determine which representation is the most suitable for measuring an attribute of 
interest i.e. the scale of measurement. As reported in [FP97] the main types of scales 
are: 
• Nominal, in which the items are divided into different classes with any notion of 

ordering among them;  
• Ordinal, in which the different classes are ordered with respect to the attribute; 

Interval, in which it is possible to define the concepts of distance from the 
ordered classes even if there is no “zero point” in the scale;  

• Ratio in which mapping preserves the order, size of intervals, and ratios between 
them and where the total lack of attributes represents the zero element;  

• Absolute, in which measurement simply counts the number of elements in the 
entity set.  
We refer the reader to [WR01] and [IEEE98] for a wider coverage of the topic of 

quality measurement, including fundamentals, measures and techniques.  
However, it is important to clarify that measurement is not exclusively for 

making predictions. The measures, or measurement systems, are used to assess an 
existing entity by numerically characterizing one or more of its attributes, while a 
prediction system consists of a mathematical model together with a set of prediction 
procedures for determining unknown parameters and interpreting results (i.e. 
predicting several attributes of a future entity). In particular validating a prediction 
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system in a given environment consists of establishing its accuracy by empirical 
means; that is, by comparing model performance with known data in given 
environment, while the validation of a measure ensures that this numerically 
characterizes the claimed attribute by showing that the represented condition is 
satisfied [FP97]. 

Considering the testing phase, it is important to clarify that there is no agreement 
in literature on how to classify the different applicable measures. We decide here to 
adopt the [BE01] classification, so we consider that measurement can be applied 
either to evaluate the program under test, or the selected test set or even for 
monitoring the testing process itself. In particular as stated in [BMB96] within each 
group it is possible to distinguish direct and indirect measures. To direct measures 
belong for example lines of code (LOC) produced, execution speed, memory size or 
defects reported over a set period of time. Indirect measures include functionality, 
quality, complexity, efficiency, reliability, and maintainability. 

 In the following section we report only the measures that will be mentioned in 
this Thesis, referring to [BE01] for a complete overview. 

2.5.1 Evaluation of the Program Under Test 
For evaluating the program under test the following measurement can e applied:  
Program measurement to aid in planning and design testing: considering the 

program under test, three different categories of measurement can be applied as 
reported in [BE90]:  

• The Linguistic measures: these are based on proprieties of the program or 
specification text. This category includes for instance the measurement of: 
Sources Lines of Code (LOC), the statements, the number of unique operands 
or operators, and the function points. 

• The Structural measures: these are based on structural relations between 
objects in the program and comprise: control flow or data flow complexity. 
These can include measurements between program modules, in terms of the 
frequency with which modules call each other.  

• The Hybrid measurement: these result from the combination of some 
structural linguistic properties. 

Fault density: Generally this is a widely used measure in industrial context and 
foresees the counting of the discovered faults and their classification by their type. 
For each fault class, fault density is measured by the ratio between the number of 
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faults found and the size of the program [PE95]. We discuss in detail this type of 
measurement in Chapter 6. 

Life testing, reliability evaluation: By applying the operational testing for a 
specific product it is possible either to evaluate its reliability and decide if testing can 
be stopped or to achieve an established level of reliability. In particular the 
Reliability Growth models can be used for predicting the product reliability [LY96]. 
We discuss in detail this type of measurement in Chapter 7.  

2.5.2 Evaluation of the Test Performed 
For evaluating the set of test cases implemented the following measures can be 

applied:  
Coverage/thoroughness measure: Some adequacy criteria require exercising a 

set of elements identified in the program or in the specification by testing. In this 
case, during the testing the number of elements covered by test cases are monitored 
and the coverage (expressed in percentage) is derived as the ratio between the 
covered elements and the total number. The coverage can be for instance relative to 
the paths, the statements of the branches as well as the number of functionalities 
exercised during testing [PF97]. We discuss this type of measurement in Chapter 5. 

Comparison ad relative effectiveness of different techniques: In this case, 
once established exactly what the term effectiveness means, test case are used to 
evaluate the effectiveness of the testing techniques applied. Possible evaluations can 
be the number of faults found during testing, and the improvement in reliability after 
testing. Analytical and empirical comparison between different techniques can be 
used for this [JO95]. We discuss this type of measurement in Chapters 6 and 7. 

2.5.3 Managing the Test Process  
For managing the test process the following measures can be applied: 
Effort/Cost estimation: The testing phase is a critical step in process 

development, often responsible for the high costs and effort required for product 
release. The effort can be evaluated for example in terms of person-days, months or 
years necessary for the realization of each project. For cost estimation it is possible to 
use two kinds of models: static and dynamic multivariate models. The former use 
historical data to derive empirical relationships, the latter project resource 
requirements as a function of time [PR94]. In particular, these test measures can be 
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related to the number of tests executed or the number of tests failed. We discuss the 
cost/effort estimation in Chapters 4 and 5. 

Internal vs. independent test team: An important task in test planning is the 
estimation of resources required which means organizing not only hardware and 
software tools but also people. Thus the formalization of the test process also 
requires putting together a test team, which can involve internal as well as external 
staff members. The decision will be determined by consideration of costs, schedule, 
maturity level of the involved organization and the criticality of the application. We 
discuss this topic in Chapter 4. 
 
Summary  

In this section we provide a brief description of Software Testing, presenting its 
objectives and various ways to achieve them. In particular, we concentrate mainly on 
those testing techniques and measurements which will be used and mentioned in this 
Thesis. Our purpose was not to exhaustively present the world of Software Testing in 
all its parts (other references can be used for this purpose) but to provide an 
orientation Chapter to the readers of this Thesis. 
 
 



 

3 A Little Bit of Modelling Basics 

Preface 
In this section we provide some basic concepts concerning the Unified Modelling 

language (Section 3.1) and the Rational Unified Process (Section 3.2) that will be 
used in this Thesis, specifically in Chapters 4 and 5.  

3.1 Unified Modelling Language 
The definition of the Unified modelling Language, UML, started in 1994 with the 

cooperation of Grady Booch and James Rumbaugh at Rational Software Corporation 
and proceeded over the years with the collaboration of Ivar Jacobson as well until the 
release of Version 1.0 in the January 1997. From this date various versions have been 
up until the released 1.5 in March 2003. 

In this section we briefly report the main concepts of UML without referring to a 
specific version because the intent is only to provide background knowledge useful 
for the reader’s understanding of concepts presented in this Thesis. We refer to 
[UML, JBR98, RJB99] for further details.  

The underlining idea of UML is to provide a modelling language for specifying, 
visualizing, managing and documenting the phases and characteristics of a software 
development process. The UML can be used for specifying requirements by creating 
diagrams to trace analysis and design phases (analysis and design models) and 
visualizing the system as assembled after its effective realization. Moreover the 
UML can lead the system construction in the different development phases by 
applying a Round Trip approach, i.e. using the models for code generation and 
reporting back the possible code modifications in the models themselves. 

The UML created only as a modelling language and not as a programming 
language, can be used instead of textual documentation for documenting the system. 
The developed models in fact represent an expressive, compact and consistent way 
for expressing information during the life cycle. 



  46  

The basic concepts of UML are summarized in three different categories: 
Diagrams, Views and Extension Mechanisms. We briefly discuss their main 
characteristic in the following subsections.  

3.1.1 UML Diagram 
UML diagrams are graphs describing a particular characteristic or system 

behaviour. UML has eight diagrams that can be used in different combinations for 
representing all aspects and functionalities of the system (the view of the systems). In 
terms of the views of a model, the UML defines the following graphical diagrams: 
• use case diagram 
• class diagram 
• behaviour diagrams: 

o state diagram 
o activity diagram 

• interaction diagrams: 
o sequence diagram 
o collaboration diagram 

• implementation diagrams: 
o component diagram 
o deployment diagram 

We provide a brief description of each in the following. 

3.1.1.1 Use Case Diagram 

A Use Case Diagram is a description of a specific aspect of system behaviour (a 
system functionality) and in particular represents the interactions between a number 
of external agents (actors) and their connections with the system. In particular an 
actor is defined as someone (a possible system user) or something (a system) that 
interacts with the system using information interchange 
A Use Case (UC in the following) is directly connected to a requirement of the 
system and represents a functionality, i.e. a specific use that a system provides as 
perceived by an actor. In particular a UC describes the interaction between the actors 
and the system, not the internal logic of a system functionality, at different levels of 
detail (system or subsystem). The actual description of a UC is generally expressed 
in a textual way. In particular a UC is a class, not an instance, and describes the 
functionality as a whole including alternatives, errors and exceptions. An 
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instantiation of a UC is called scenario, and describes a specific sequence of actions 
that illustrates system behaviours through the interaction of the components defined 
in the architecture. Hence the scenarios are used to drive the discovery of use cases 
and actors. A Use Case is always initiated by and actor which requires a sequence of 
actions to the system and provides an output to an actor [EP00]. 

The UC and the actors are connected by associations (communication 
associations), which show how the actors communicate with the system. Generally 
an association is non-directional one-to-one relationship.  

Figure 1 Relationships between UCs 

A Use Case can be refined using other Use Cases, which can be put in relation to 
each other, by using three kinds of relationships (Figure 1): 
− Extends relationship which is a generalization relationship where one use case 

extends another use case by adding actions to a general use case. 
− Uses relationship which is a relationship where one use case uses another use 

case indicating that as a part of the specialized use case, the behaviour of the 
general use case will also be included. 

− Grouping relationship when a number of use cases handle similar functionalities 
they can be bundled in a package 
The UCs are a representation of implementation-independent system 

functionalities. 

Request of participants lists Look up partecipants forms

Verify the payment

Invoice emission

<<uses>> <<uses>>

<<extend>>
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3.1.1.2 Sequence Diagram 

A Sequence Diagram (SD) shows the dynamic collaborations between a certain 
number of objects highlighting the way in which a scenario is realized by the 
interactions of a set of objects. A SD is focused on the sequences of messages 
exchanged between the objects, and is characterized by two dimensions: 1) the 
vertical dimension represents time and 2) the horizontal dimension represents 
different objects [UML]. Normally time proceeds down the page and is represented 
by the LifeLine activation of the objects involved.  
 

Figure 2 An example of SD 

The objects exchange Messages, which represent the interaction between them: a 
sender requests a service owned by the receiver. The message activation is 
represented in the SD by an arrow at the head of a focus of control region, i.e., a 
rectangular box on the object Lifeline that shows the period of time during which an 
object is performing an action, either directly or through a subordinate procedure. 

There are different typologies of messages that we describe briefly below (for 
more details and their graphical representation we refer to [UML]): 
• Synchronous message: when the sender who has required a service waits for the 

response of a receiver to continue its execution.  

APartecipant : 
Participant

 : Registration  : Secretary  : Web System 
Database

1. request of registration( )
1.1. registration( )

1.1.1. verify seminar data( )

1.1.1.1. confirm seminar data( )

1.1.2. verify availability of partecipants number( )

1.1.3. confirm registration( )
1.2. enable registration( )
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• Self-delegation: the sender sends a message to itself. 
• Asynchronous message: the sender continues to execute after sending the 

message without waiting for it to be handled. It is used particularly in Real Time 
applications, where objects interact concurrently for creating for instance new 
threads, new objects, or for communicating with a thread already under 
execution. 

• Object deletion: an object termination caused by another object or the object 
itself 
The messages can then be characterized by iterations, i.e. when a message is sent 

several times to multiple receivers (ex. operation for a set of elements) or conditions 
to model branches or to decide whether or not to send a message. 

3.1.1.3 Collaboration Diagram 

The Collaboration Diagrams (CD) specify the objects collaborating in a specific 
scenario and the messages exchanged. They express the same information as the 
Sequence Diagrams, but while a SD describes the interactions among objects 
focusing on time, a Collaboration Diagram shows them in terms of space.  

Figure 3 The CD derived by the SD of Figure 2  

APartecipant : Participant

 : Registration

 : Secretary

 : Web System 
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1.1.2. verify availability of partecipants number( )
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1.1.3. confirm registration( )

1.1.1. verify seminar data( )

1.1.1.1. confirm seminar data( )
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The CD therefore gives an explicit representation of objects’ relations 
highlighting the collaborations among objects and emphasising more the Objects’ 
links. In particular the messages are not ordered in space so they need an ordinal 
numbering. In some tools (Rational Rose, for example [RRT]) one diagram can be 
easily derived from the other. In Figure 3 we show the CD obtained by the SD of 
Figure 2. 

3.1.1.4 Class Diagram 

A Class Diagram  shows the static structure  of a system representing its classes 
and objects with attributes and methods. It specifies the constraints among classes 
using different types of associations as will be described later in this section. A 
system can have one or more Class Diagrams defined at diverse development phases 
(analysis, design and so on) representing different object typologies such as 
interfaces, impleme ntation modules and subsystems. 

A class in a Class Diagram is the description of an object type with its 
characteristics and behaviours and it is characterized by:  
a) The Class Name : the name of the object to which the class refers 
b) The Attributes: describe the characteristics of an object. Each attribute has a 

Type (e.g. primitive types: Integer, Boolean, Real) and a Visibility which 
indicates whether the attribute can be referenced from the other classes. The 
Visibility can be:  
− Public (+): the attribute can be used and viewed outside the class;  
− Private (-): the attribute cannot be accessed from other classes;  
− Protected (#): the attribute can be used only from the class or from its 

subclasses; 
− Implementation/Package (?): the attribute can be accessed only from classes 

within the same package; 
c) The methods: describe the behaviour of a class, i.e. the actions that can be 

executed. They are used to manipulate attributes.  
A Class Diagram consists of classes and the relationships between them. In 

particular the involved classes can be put in relation to each other using:  
• Association: a class connection, i.e. a semantic link between objects of classes 

involved. The association is characterized by the name, usually a verb indicating 
the action, the navigability, i.e., the direction in which the association is 
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practicable (ex: a user utilizes a pc) and the multiplicity which indicates how 
many objects are linked to the association. Ex.:  0..1, n..m; 

• Aggregation: a special case of association which indicates that the relation 
between the classes is a sort of “whole-part” (Ex. person-team).  

• Composition (composition aggregation): a stronger concept than aggregation. 
The part lives inside the whole and it will be destroyed together with its whole. 
The multiplicity of the whole can be 0 or 1 (Ex. window-button).   

• Generalization (inheritance): a relationship between a general and a specific 
class (Ex. vehicles- cars, boats). It can be used to specify a superclass i.e. a class 
with a more general behaviour or a Subclass, i.e. a class which inherits all the 
characteristics of the superclass (attributes and methods); it is consistent with the 
superclass and it specializes its characteristics. 

Figure 4 An example of a Class diagram  

• Refinement: the relationship between two descriptions of the same thing but at 
different degrees of detail. 

• Dependency: a semantic connection between two model elements (classes, 
packages, use cases) one independent and one dependent. A change in the  
independent element will affect the dependent element.  
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We show in Figure 4 an example of a Class Diagram which specifics the different 
relations of the object involved in the SD of Figure 2.  

A specific typology of a Class diagram is the Object Diagram which uses the 
same notation and relationship of a Class Diagram, and is used to show specific links 
from class instances at some moment in time. It can be viewed as an example of a 
Class Diagram to illustrate how a complex Class Diagram can be instanced. 

3.1.1.5 State Diagram 

The State Diagram is the complementary description of the Class Diagram 
because it specifies the life cycle of the class objects. It shows all possible states that 
the objects can assume during their life and the events causing the state changes, 
called transitions. Specifically a state is the result of previous activities performed by 
the object and it is typically determined by the values of its attributes.  

Figure 5 An example of State Diagram 

There are three standard events that can determine the change of an object state: 
an action in the entry state, inside the state, do, and in the exit state. They are 
characterized by different types: a condition becomes true (change event); the receipt 
of an explicit signal from another object (signal event); the receipt of a call on an 
operation by another object (call event); the passage of a designated period of time 
(time event). 

Finally a transition can be a Parallel Transition, i.e. it can be divided in one or 
more parallel transitions and the subsequent actions performed concurrently, or a Self 
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transition, i.e. the causal event brings again in the same state. We report in Figure 5 
an example of the State Diagram. 

3.1.1.6 Activity Diagram 

The Activity Diagram shows sequences of activities, such as for instance the 
internal logic of a process, and it is used typically to describe the activities performed 
during an operation.  

Figure 6 An example of Activity Diagram 

The Activity Diagram is a variant of a State Diagram,  in which the states called 
activities, allow the description of concurrency and synchronization. As in the 
commonly used flow-charts the Activity Diagrams describe the interactions among 
objects or processes showing: how actions are taken, what they do (change of object 
states), when they take place (action sequences), where they take place (swimlanes). 
Specifically a swimlane groups activities in vertical zones with respect to their 
responsibility. They are used to describe where the actions are performed (in which 
object) or in which part of the project. In Figure 6 we show an example of an 
Activity diagram. 
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3.1.1.7 Component/Package Diagram 

A Component Diagram shows the physical structure of the code in terms of 
components and their dependences. In particular the components describe the 
implementation in the physical architecture of the concepts and the functionalities 
described in the logical architecture. They are executable software modules with 
their own identity and interfaces.  

In a Component Diagram the enclosed components are characterized by 
dependency relations. A dependency between two components means that one 
component needs the other for its complete definition. In Figure 7 we show an 
example of a Component Diagram. 

The Component Diagram can also be viewed as Package Diagram. This is a 
particular diagram that can be applied to any type of model element but it is usually 
used to collect classes and define their dependencies. Specifically every Class 
Diagram should be inserted in a Package diagram. In Figure 8 we report an example 
of a Package Diagram. 

Figure 7 An example of a Component Diagram 

 

Figure 8 An example of a Package Diagram 
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3.1.1.8 Deployment Diagram 

A Deployment Diagram depicts the run-time architecture of processors, devices, 
and the software components. It is the final physical description of the system’s 
topology, describing the structure of the hardware units (nodes) and the software to 
execute on each unit. Specifically a node is a physical object (device) that has some 
kind of computational resource while a connection is the communication path among 
nodes. In Figure 9 we report an example of a Deployment Diagram. 

Figure 9 An example of Deployment Diagram 

3.1.2 UML Views 
Generally the modelling of the architecture of a (complex) system requires 

dealing with the problem from different points of view, considering diverse aspects 
such as: defining the static structure and dynamic interactions (functional aspects); 
establishing the timing, reliability, deployment requirements (non-functional 
aspects); organizing and scheduling resources and people in working groups and 
finally mapping to code modules (organizational aspects). 

Considering the definition of the software architecture provided by the IEEE 
Working Group on Architecture in [IEEE01] as "the highest-level concept of a 
system in its environment", it is evident that architecture description requires only 
the definition of its structure but it also encompasses the "fit" with system integrity, 
with economical constraints, with aesthetic concerns, and with style. It is not limited 
to an inward focus, but takes into consideration the system as a whole in its user 
environment and its development environment - an outward focus. 

Therefore the system architecture is described by a number of views (multiple 
viewpoints from OO methodologies) each representing a particular aspect of it and 
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addressing some specific set of concerns, specific to stakeholders in the development 
process: end users, designers, managers, system engineers, maintainers, and so on 
[RUP]. 

The views capture the major structural design decisions by showing how the 
software architecture is broken down into components, and how components are 
connected by connectors to produce useful forms [PW92]. These design choices 
must be tied to the requirements, functional, and supplementary, and other 
constraints. But these choices in turn put further constraints on the requirements and 
on future design decisions at a lower level. 

Each view is described in a number of diagrams containing information that 
emphasizes a particular characteristic of the system. In this section we consider the 
typical set of views, called the "4+1 view model" [KRU95] as schematise in Figure 
10. In the following we provide a brief description of each of them: 

Figure 10 The 4+1 view model 

3.1.2.1 Use Case View 

The Use-Case View describes the functionalities the system should deliver, as 
perceived by external actors and contains use cases and scenarios that encompass 
architecturally significant behaviour, classes, or technical risks. The Use Case View 
is central for the development; its content drives the development of the other views, 
and in particular it describes the final goal of the system. Generally the Use Case 
view includes the following diagrams:  
• Use Case Diagram 
• Sequence/Collaboration DiagramActivity Diagram 

Specifically, in the Use Case Diagram the UC describes a system functionality, or 
more precisely a requirement at different levels of detail. In the Use Case View there 

Use Case View

Component View Logical 
View 

Deployment View Concurrency View
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could be UCs associated with main requirements, others that are related to the minor 
system functionalities. 

Figure 11 The use-case view as conceived in RUP.  

In particular a UC associated with a high level requirement could be better 
specified either by using other UCs for the related subfunctionalities, or SDs and 
CDs for describing the required behaviour. For this reason, the UML principle for 
realizing a UC is a collaboration. It shows the implementation of the UC in terms of 
classes/objects and their relationships and interactions. A collaboration is represented 
by a number of diagrams showing the context and the integrations between the 
participants of the collaboration (classes/objects). The diagrams used for this purpose 
can be collaboration, sequence or activity  

Figure 11, taken from the Rational Unified Model (RUP) documentation [RUP] 
shows the content of the Use Case View and where it is realized within RUP as will 
be better described in Section 3.2. 

3.1.2.2 Logical View 

The Logical View is mainly an architectural view of the system which constitutes a 
basis for its structure and organization. It describes how the system functionalities, 
depicted in the Use Case View, are realized in terms of the static structure and 
dynamic collaboration between objects.  

The design elements of the Logical View are generally collected into packages 
(for instance system, subsystem, Use Case realization) and classes, possibly grouped 
in turn into two high level packages: the Analysis Model and the Design Model. 
Referring to [RUP] the former is considered an optional package, mainly 
representing a conceptual overview of the system. It can constitute a foundation for 
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the development of the Design Model, which is instead an abstraction of the 
implementation of the system. The Design Model represents and documents the 
design of the system in terms of design classes, subsystems, packages, 
collaborations, and the relationships between them. 
 

Figure 12 The Logical View as conceived in RUP 

Thus the Logical View provides a basis for understanding the structure and 
organization of the design of the system, and generally includes the following 
diagrams; 
• Interaction diagrams (sequence and collaboration) 
• Class Diagram 
• Activity and State Diagram 

Figure 11, taken from [RUP] shows the content of the Logical View and where it 
is realized within RUP as will be further described in Section 3.2. 

3.1.2.3 Component View 

The Component View, called also Implementation View [RUP], is the description 
of the implementation modules and their dependencies. The allocation of packages 
and classes of the Logical View, to the packages and modules of the Component 
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View, is also described. The purpose of this view is to capture the architectural 
decisions made for the implementation. Typically, the Component View contains:  
• An enumeration of all subsystems in the implementation model;  
• Component diagrams illustrating how subsystems are organized in layers and 

hierarchies  
• Illustrations of import dependencies between subsystems  

This view is useful for assigning implementation work to individuals and teams, 
or subcontractors; assessing the amount of code to be developed, modified, or 
deleted; reasoning large-scale reuse; considering release strategies [RUP] 

3.1.2.4 Concurrency View 

The Concurrency View called also Process View [RUP], focuses on the division 
of the system into processes and processors and on the non-functional characteristics 
of the system used for efficient resource usage, parallel execution and the handling of 
asynchronous events from the environment.  

Figure 13 An example of Concurrency View for the process organization of the system. 

It specifically contains the description of the tasks (process and threads) involved, 
their interactions and configurations, and the allocation of design objects and classes 
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to tasks. This view need only be used if the system has a significant degree of 
concurrency. As [BRJ98] states: "With UML, the static and dynamic aspects of this 
view are captured in the same kinds of diagrams as for the design view - i.e. class 
diagrams, interaction diagrams, activity diagrams and statechart diagrams, but with 
a focus on the active classes that represent these threads and processes." Of concern 
when constructing and using the process view are, for example, issues of 
concurrency, response time, deadlock, throughput, fault tolerance, and scalability. 
Figure 13, taken from [RUP] documentation, shows an example of Concurrency 
View for the process organization of a system. 

3.1.2.5 Deployment View 

The Deployment View shows by means of a Deployment Diagram the physical 
deployment of the system, such as the description of the various physical nodes for 
the most typical platform configurations, the allocation of tasks (from the Process 
View) to the physical nodes, and connection among the different nodes. This view 
need only be used if the system is distributed. Figure 14, taken from the RUP 
documentation [RUP] shows an example of Deployment View. 

3.1.3 UML Extension Mechanisms 
Even if the UML already provides a rich set of modeling concepts and notations, 

the Meta Model, representing the common OO concepts linked together by well-
defined semantic rules, the users may require either additional features and/or 
specific notations or to attach non-semantic information to models.  

These needs are satisfied in UML by three built-in extension mechanisms, 
(Constraint, Stereotype, and TaggedValue) which let the user define its own 
modeler’s repertoire as well as attach free-form information to modeling elements. 
These three extension mechanisms can be used separately or together to define new 
modeling elements that can have distinct semantics, characteristics, and notation 
relative to the built-in UML modeling elements specified by the UML Meta Model.  

In particular the Object Constraint Language (OCL) [WK99], which is a formal 
language to specify constraints and other syntax expressions related to model 
elements, can be used. In the next subsection we report a brief description of the 
extension mechanism. 
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3.1.3.1 Stereotype 

The stereotype is the most important extension mechanisms: it defines and 
specializes new types of model element basing on the previously defined elements. 
The stereotype is therefore a semantic redefinition or extension of a previously 
defined semantic of the elements. 

Figure 14 The Deployment View shows the physical distribution of processing within the 
system. 

Typically it is used in classes, types, relationships, components and operations 
and in all the diagrams where the original element was used. Some of the standard 
Stereotypes are: For classes:  
• <<actor>>;  
• <<interface>>, which is described only as abstract operations linked to a class, a 

component or a package;  
• <<control>>, <<boundary>>, <<entity>> which are used to increase the semantic 

meaning of the classes and their usage in modeling situations (usually Analysis 
Model). In particular: 
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−  the <<boundary>> stereotype specializes the use of a class for presentation 
and manipulation. It presents and communicates the information in a system 
to another system such as human or machine and can also be used to 
manipulate information. Typically <<boundary>> stereotypes refer to 
windows, dialogs or communications classes  

− <<entity>> stereotypes are used to model the core concepts. 
− <<control>> stereotypes are used to connect the boundary objects with their 

entity objects and to handle a sequence of operations inside the system. 
Specifically the <<control>> stereotypes handle the processing of the 
information in the entity objects along with the functionality sequences that 
involve a number of entity objects. 

For use cases (Traceability): <<use case realization>> stereotype is used to show the 
realization (implementation) of a system functionality described in a use case. 
For generalization relationships: <<extends>> and <<uses>> stereotype 
For operations: <<constructor>>stereotype 
For package: <<layers>> stereotype which is used to decompose a system in groups 
of tasks in which each group of subtasks is at a particular level of abstraction, and 
<<subsystem>> stereotype. 

3.1.3.2 Tagged Values and Constraints 

A tagged value is a (Tag, Value) pair that permits arbitrary information to be 
attached to any model element. A tag is an arbitrary name; some tag names are 
predefined as Standard Elements as listed below. At most, one tagged value pair with 
a given tag name may be attached to a given model element. The interpretation of a 
tag is (intentionally) beyond the scope of UML, and can be shown in the diagram or 
separately documented. Some of the standard tagged values are: for types, invariants, 
for operations, Preconditions and Postconditions. 

The constraint concept allows new semantics to be specified linguistically for a 
model element. The constraint is a semantic condition or a restriction, which can be 
used within the diagrams or wherever necessary. The specification is written as an 
expression in a designated constraint language (such as OCL).  

3.2 Rational Unified Process 
During the last ten years, part of software research has been dedicated to the 

improvement of the development process, (Software Process Improvement (SPI) 
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initiatives) because it realized that software products cannot be completely evaluated 
without also considering the process that produces them [KK00]. In this context the 
CMM model, [PCC93], developed at the Software Engineering Institute (SEI) is a de 
facto reference used by thousands of organizations together with the SPICE 
framework (ISO 15504) [DO99]. We report below a brief description of the 
commonly used process assessment models referring to [ELM01] for further details. 

As summarized in [KK00], the CMM model is a framework that describes the 
elements required for an effective software process. In particular, it focuses on an 
evolutionary improvement path from an ad hoc, immature process to a mature, 
disciplined process. It presents sets of recommended practices in a number of key 
process areas that have been shown to enhance software development and 
maintenance capability. The CMM guides developers in gaining control of their 
development and maintenance processes, and evolving toward a culture of software 
engineering and management excellence. 

Other methods for managing the program improvement are the IDEAL 
framework [MF96] defined at the SEI, and the Rational Unified Process (RUP), 
which we present in detail in this section.  

As described in [KK00] The IDEAL method is an integrated approach for SPI 
defined by the SEI which identifies five phases: Initiating, Diagnosing, Establishing, 
Acting, and Leveraging. Each of these phases is centered on a particular activity: 
• Initiating, which specifies the business goals and objectives that will be realized 

or supported 
• Diagnosing, which identifies the organization’s current state with respect to a 

related standard or reference model 
• Establishing, which develops plans to implement the chosen approach 
• Acting, which brings together everything available to create a “best guess” 

solution specific to organizational needs and put the solution in place 
• Leveraging, which summarizes lessons learned regarding processes used to 

implement IDEAL 

The Rational Unified Process [RUP], which is a detailed refinement of the 
Unified Process (UP) defined by Jacobson et al. [JBR98], presents itself as a Web-
enabled software engineering process useful for: improving team productivity, 
delivering of software best practices to all team members, guiding the user in 
applying UML during the process development, and providing an extensive set of 
guidelines, templates, and examples. It is in particular a customizable framework, 
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adaptable to the different organization exigencies, supported by tools (tightly 
integrated with Rational tools) which automates a large part of the process 
development [KR00].  

A central role of this process is represented by the RUP Best Practices, which are 
mainly guidelines for a well-established process development. RUP identify six best 
practices, detailed in next section, which are: Develop Software Iteratively, Manage 
Requirements, Use Component-Based Architectures, Visually Model Software, 
Verify Software Quality, Control Changes to Software. 

The RUP structure is characterized by: a static structure that describes the process 
(who is doing what, how and when) (Section 3.2.2); dynamic structure that details 
how the process rolls out over time (Section 3.2.3); an Architecture-centric process 
that defines and details the architecture; a Use-Case Driven Process which specifies 
how use cases are used throughout the development cycle. 

3.2.1 Best Practices 
There is not a single definition of Best Practices because they treat many topics. 

They can be viewed as any commercially proven approach applicable to software 
development which, used in combination, allows identification op the root cause of 
software development problems [SPM]. We report a brief description of the best 
Practice as intended in RUP below. 
• Develop Software Iteratively 

RUP suggests avoiding the classic waterfall development process, preferring 
instead an iterative one. There are various reasons why it is necessary to develop the 
software iteratively [KR00] as a better tolerance of requirements changes, which 
often are the cause of project troubles, missed schedules and so on or an 
improvement on the integration process which are more precise.  
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Figure 15 The iterative development process 

The elements are integrated progressively starting from the smaller ones and 
proceeding in a continuous and constant way, mitigating in this manner the risks as 
well. Moreover developing software iteratively avoids late discovery of design 
defects, facilitates reuse of common parts and results in a more robust product. The 
general schema of an iterative process is taken from [BO88] and shown in Figure 15. 
• Manage Requirements 

A requirement is defined as a condition or capability to which the system must 
conform. Requirements management consists of three activities: finding, organizing 
and documenting the system’s required functionalities and constraints; evaluating 
changes to these requirement and assessing their impact; tracking and documenting 
the changing requirements of a system. Proper requirements management offers the 
solutions for the root causes of software development problems. 
• Use Component-Based Architectures 

A Component Base Development (CBD) permits assembly of software from 
manageable modules, reuse or customizing the existing components and reuse of the 
commercially available components. When the software is developed iteratively, by 
using component-based architecture, is possible to observe the continuous evolution 
of the system architecture. In particular each iteration produces an executable 
architecture that can be measured, tested, and evaluated against the system’s 
requirements. 
• Visually Model Software 

The use of a visual notation, such as UML, allows visualizing, specifying, 
constructing and documenting the structure and the behavior of the system 
architecture. This has the beneficial effect of improving communications in the 
design teams and letting to hide or expose details as necessary. In particular, visual 
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models can be useful for many purposes: understanding complex systems; exploring 
and comparing design alternatives at a low cost; forming a foundation for 
implementation; capturing requirements precisely; communicating decisions 
unambiguously. 
• Verify Software Quality 

This means the continuous assessment of the quality of a system with respect to 
its functionalities, reliability, application performance and system performance. In 
particular the verification is performed by creating tests for the key scenarios, each 
one representing some aspect of the system’s desired behavior. The management of 
quality has different purposes: to identify appropriate indicators (metrics) of 
acceptable quality; to identify appropriate measures to be used in evaluating and 
assessing quality; to identify and appropriately address issues affecting quality as 
early and effectively as possible. 
• Control Changes to Software 

The changes in software are extremely important in an environment in which 
multiple developers, organized into different teams, are working together on multiple 
iterations, releases, products, and platforms. This activity may include: definition of 
repeatable procedures for managing changes to software, proper resources allocation 
based on the project's priorities and risks; continuous monitoring of the changes 
including how to track, control and ensure that changes are acceptable. 

3.2.2 Static Structure 
The RUP static structure is presented mainly by four primary modeling elements: 

• Workers: In RUP the term worker refers not to an individual but to the roles that 
must be performed to do specific work. A role is an abstract definition of a set of 
activities performed and artifacts owned. A worker therefore is a sort of “hat” that 
an individual can wear during the project. He/she performs one or more roles and 
is the owner of a set of artifacts. The mapping from individual to workers is 
performed by project manager when he/she plans and staffs the project. 

• Activity: a specific unit of a work to be performed and is assigned to a specific 
worker. To each worker is associated a set of activities which expressed the 
workers’ behavior. The granularity of an activity can be a few hours or more than 
one day; it may be repeated several times on the same artifact in the different 
iterations. In this case the repeated activities may be performed by the same 
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worker but not necessarily the same individual. Every activity is generally broken 
into steps:  
o Thinking step: the worker understands the task, examines the artifacts, and 

formulates the outcome 
o Performing step: the worker creates or update some artifacts 
o Reviewing step: the worker inspects the results against some criteria 
Not all the steps are necessarily performed each time an activity is invoked. 

• Artifacts: the tangible objects of the project, which can be developed or used for 
producing the final product. The artifacts are used as input by workers to perform 
an activity and are the output, or results, of such activities. Typically they are not 
documents; the RUP approach discourages systematic production of paper 
documents, preferring to maintain the artifacts within the appropriate tool used to 
create and manage them. The RUP artifacts fall into five information sets: The 
Management set (Planning artifacts, Operational artifact), Requirement set 
(Vision document, Use-case model), Design set (Design model, Architecture 
description), Implementation set (Source code and executable), Deployment set 
(Installation scripts, User documentation). 

• Workflows: are a sequence of activities that produces a result of observable 
value. The activities often tightly interwoven especially when they involved the 
same worker or individual. In UML a workflow can be expressed as a sequence 
diagram, a collaboration diagram or an activity diagram. There are two types of 
workflows: Core Workflows and Workflow Details.  
The Core Process Workflows are divided into two groups, representing a 
partitioning of all workers and activities into logical grouping. The first group is 
composed of the Engineering workflows: Business modeling workflow, 
Requirements workflow, Analysis and design workflow, Implementation 
workflow, Test Workflow, Deployment workflow. The second group is 
represented by the Supporting workflows: Project management workflow, 
Configuration and change management workflow, and Environment workflow. 
Each core workflow is associated with one or more models, which are in turn 
composed of associated artifacts, for instance use-case model, design model, 
implementation model, and test  

• Additional process elements: are added to activities or artifacts to make the 
process easier to understand. They are divided into: guidelines, which are rules, 
recommendations, or heuristics that support activities and steps; templates, which 
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are models, or prototypes, of artifacts; tool mentors, which show how to perform 
the activities or steps using a specific tool; concepts, which are all the key 
concepts used during the process, for example, iteration, phase, risk and so on. 

3.2.3 Dynamic Structure 
The dynamic structure describes how the process rolls out over time, in particular 

in RUP, which is organized into four different phases (Inception, Elaboration, 
Construction, Transition Figure 16). We report in the following section a brief 
description of each taken from [RUP, KR00]. 

As shown in this figure, every phase ends with a milestone, i.e. a point in time 
where goals have to be reached and critical decisions must to be made. These four 
phases constitute a development cycle which end with software generation. 
Specifically the software development starts with an initial development cycle and 
evolves in new software generation with an evolution cycle, which can be triggered 
for instance by user-suggest enhancements or changes in the user’s context or in the 
underlining technology. 

 

Figure 16 RUP phases 

Unless the product "dies," it evolves into its next generation by repeating the 
same sequence of Inception, Elaboration, Construction and Transition phases. Figure 
17, taken from [RUP] show the general schema of the RUP development process, 
demonstrating how the workflows evolve within the different phases. 

3.2.3.1 Inception 

The Inception phase goal is to achieve concurrence among all stakeholders on the 
lifecycle objectives for the project. It is particularly important for development of 
new products in which there are significant business and requirements risks which 
must be addressed before the projects can proceed. It is important to specify that the 
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Inception phase is not a requirement phase; rather it is a kind of feasibility phase 
where just enough investigation is done to support a decision to continue or to stop. 

We list here some of its main purposes: 
• Establishing the project scope and boundary conditions. This includes the 

definition of the most important requirements and constraints, the acceptance 
criteria, and what is intended to be in the product and what is not. 

• Discriminating the critical use cases of the system and the primary scenarios (Use 
Case Model). 

• Exhibiting, and maybe demonstrating, at least one candidate architecture against 
some of the primary scenarios. This means mainly the evaluation of the trade-offs 
in design, and in make/buy/reuse, and the feasibility through simulation model or 
initial prototype. It is important to note that the real architecture will be realized 
only during elaboration and Construction phases. 

• Estimating the overall cost and schedule for the entire project and the potential 
risks (the sources of unpredictability). This includes the evaluation of alternatives 
for risk management, staffing, project plan, and cost/schedule/profitability trade-
offs. 

• Preparing the supporting environment for the project. This means assessing the 
project, the organization and selection of the required tools, as well as deciding 
which parts of the process must be improved 
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Figure 17 General Schema 

For completeness we list below some of the Inception phase artifacts (in order of 
importance), providing a brief description for the most important. They are:  
Vision document: This defines the stakeholders view of the product to be developed, 
and captures very high-level requirements and design constraints to give the reader 
an understanding of the system to be developed. Moreover, it serves as input to the 
Use Case Model 
Business Case: This provides the necessary information from a business standpoint 
to determine whether or not the project is worth investing in, also establishing its 
economic constraints. It represents an economic plan for realizing the project, as 
presented in the Vision document, which must be approved at the lifecycle 
milestones, and updated at further milestones 
Risks List: This is designed to capture the perceived risks to the success of the project 
and is one of the Project Manager’s responsibilities to maintain and keep it updated. 
In particular it identifies, in decreasing order of priority, the events that could lead to 
a significant negative outcome and serves as a focal point for project activities and 
the organization of the iterations.  
Software Development: This is a comprehensive, composite artifact that gathers all 
information required to manage the project and is again the responsibility of the 
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Project Manager for its completion and updating. It describes the approach for the 
development of the software, and is the top-level plan generated and used by the 
managers to direct the development effort. A key discrimi nator of a good Software 
Development Plan is its conciseness, lack of philosophy, and focus on meaningful 
standards and procedures. 
Development Case: This describes the development process to follow for the 
individual project and it is changed based on the lessons learned at each iteration. 
Iteration Plan 
Use-Case Model (10-20% complete) 
Prototypes   

The Inception phase ends, as shown in Figure 16, with the Lifecycle Objectives 
Milestone which foresees the evaluation of the objectives of the project, and the 
decision either to proceed with the project or to cancel it.  

3.2.3.2 Elaboration 

The Elaboration phase is the most critical phase of each evolution cycle; its goals 
are to baseline the architecture of the system and provide a stable basis for the bulk 
of the design and implementation effort in the Construction phase. The architecture 
evolves considering the most significant requirements (those that have a great impact 
on the architecture of the system) and the assessment of risks. As for the Inception 
the Elaboration phase is not a requirements or design phase; rather, it is a phase 
where the core architecture is iteratively implemented, and high-risk issues are 
mitigated.  

In particular, the stability of the architecture is evaluated through one or more 
architectural prototypes with the purpose of: ensuring that the architecture, 
requirements and plans are stable enough, and the risks sufficiently mitigated to 
determine the cost and scheduling for development completion; addressing all 
architecturally significant risks of the project; establishing a baseline architecture, 
expressed with significant scenarios, which will support the system requirements at a 
reasonable cost and time; producing the prototypes to mitigate specific risks such as: 
design/requirements trade-offs, component reuse, product feasibility.  

For completeness we list below some of the Elaboration phase artifacts (in order 
of importance). Excluding those described in the previous phase, we provide for the 
most important a brief description. They are:  
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Prototypes: They show something concrete and executable to users, customers and 
managers for reducing uncertainty surrounding the stability or performance of key 
technology, the understanding of requirements and the usability of the product. The 
prototypes produced are divided into two groups, depending on what they explore 
and their outcome. In the former group belong the behavioural prototypes which 
focus on exploring specific behaviour of the system and the structural prototypes, 
which explore several architectural or technological concerns. To the latter belong 
the exploratory prototypes which are thrown away when done, also called 
throwaway prototypes, and the evolutionary prototypes, which gradually evolve to 
become the real system. The exploratory and behavioural prototypes are intended to 
very rapidly try out some user-interfaces and rarely evolve into resilient products. 
Risk List defined previously 
Development Case defined previously 
Software Architecture Document:  It is the responsibility of the software architect 
who establishes the structure for each architectural view: the decomposition of the 
view, the grouping of elements, and the interfaces between these major groupings. 
Therefore the Software Architecture Document provides a comprehensive 
architectural overview of the system which uses a number of different architectural 
views to depict various aspects of the system. In particular the use-case view must be 
considered before the other views, because the use cases drive the development. The 
process and deployment views are also considered for systems with a large degree of 
concurrency and distribution. 
Design Model: The software architect is responsible for its correctness. He/she 
verifies whether the Design Model realizes the functionality described in the use-case 
model, and whether the architecture fulfils its purpose. It is therefore an object model 
describing the realization of use cases. The Design Model serves as an abstraction of 
the implementation model and source code and it is conceived as document for the 
design of the software system. It therefore encompasses all design classes, 
subsystems, packages, collaborations, and the relationships between them. 
Implementation Model: The software architect is responsible for the integrity of the 
implementation model, ensuring its correctness, consistency, readability and the 
achievement of its purpose. The Implementation Model is a collection of the 
components and the implementation subsystems that contain them. Components 
include both deliverable components, such as executables, and components from 
which the deliverables are produced, such as source code file. 
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Vision Document defined previously 
Use-Case Model: This is a model of the system's intended functions and its 
environment and serves as a contract between the customer and the developers. In 
particular it is an essential input to activities in analysis, design, and test. The Use 
Case Model is used by: the customer who approves it, i.e. the system is what he/she 
wants; the user for better understanding the system, the software architect for 
identifying architecturally significant functionality; the designers for getting a system 
overview. It is used early in the Inception phase to outline the scope of the system, as 
well as during the Elaboration phase. It is refined by more detailed flows of events 
during the Construction phase. 

The Elaboration phase ends, as shown in Figure 16, with Lifecycle Architecture 
Milestone which foresees the examination of the objectives and scope, the choice of 
architecture, and the resolution of the major risks. The project may be aborted or 
considerably reconsidered if it fails to reach this milestone.  

3.2.3.3 Construction 

The goals of the Construction phase are to clarify the remaining requirements and 
completing the development of the system based upon the baseline architecture.  This 
is mainly a manufacturing process, where emphasis is placed on managing resources 
and controlling operations to optimise costs, schedules, and quality. In particular the 
Construction phase is a transition from the development of intellectual property 
during Inception and Elaboration, to the development of deployable products during 
Construction and Transition. The main activities of this phase are:  
• Minimizing development costs by optimising resources and avoiding 

unnecessary scrap and rework,  
• Achieving adequate quality and useful versions (alpha, beta, and other test 

releases) as rapidly as is practical,  
• Develop iteratively and incrementally a complete product that is ready to make 

the transition to its user community. This includes the description of the 
remaining use cases and other requirements, the completion of the 
implementation, and the testing of the software to decide if the software, the sites, 
and the users are all ready for the application to be deployed. 

We list below some of the Construction phase artifacts (in order of importance). 
Excluding those described in the previous phases we provide a brief description for 
the most important. They are: 
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Deployment Plan: This describes the set of tasks necessary for installing and testing 
the developed product so that it can be effectively transitioned to the user community 
and provides a detailed schedule of events, persons responsible, and event 
dependencies. The Deployment plan is begun in the Elaboration phase and is refined 
in the Construction phase. 
Implementation Model: defined previously. 
Test Suite: The Test Designer is responsible for this artifact, who has two sets of 
responsibilities. The primary set consists in implementing each Test Suite according 
to defined standards; identifying opportunities for reuse and simplification; managing 
all subsequent changes to it. The secondary set consists in identifying for each Test 
Suite its needs and the requirements, and ensuring that the Test Suite encompasses a 
collection of test cases that are useful to validate together. A package-like artifact is 
used to group collections of Test Scripts. Sometimes these groups of tests can refer 
directly to a subsystem or other system design element; other times they relate 
directly to quality dimensions, requirements compliance and so on. 
Training Materials: They refer to the material that is used in training programs or 
courses to assist the end-users with product use, operation and/or maintenance. The 
purpose is to teach users how to use, operate or maintain the product. The training 
Materials are needed if there will be formal education of users or system operations 
staff.  
Design Model: defined previously. 
Development Case: defined previously.   
Data Model: This is a subset of the implementation model which describes the 
logical and physical representation of persistent data in the system. It also includes 
any behaviour defined in the database, such as stored procedures, triggers, 
constraints, and so on. The Data Model is specifically needed where the persistent 
data structure cannot be automatically and mechanically derived from the structure of 
persistent classes in the design model  

The Construction Phase ends, as shown in Figure 16, with the Initial Operational 
Capability Milestone. At this point it is necessary to decide whether the software, the 
sites, and the users are ready to become operational without exposing the project to 
high risks. All functionality has been developed and all alpha testing (if any) has 
been completed (see Chapter 2). In addition to the software, a user manual has been 
developed where there is a description of the current release. 
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3.2.3.4 Transition 

The focus of the Transition phase is to ensure that software is available for its end 
users. The Transition Phase can span several iterations, and includes testing the 
product in preparation for release, and making minor adjustments based on user 
feedback.  By the end of the Transition Phase the project should be in a position to be 
closed out. In some cases, the end of the current life cycle may coincide with the start 
of another lifecycle on the same product, leading to the next generation or version of 
the product.  

For completeness we list below some of the Transition phase artifacts (in order of 
importance). Excluding those described in the previous phases for the most important 
we provide a brief description. They are: 

Product Build: This is the packaging of a product for market. In particular a 
product can contain multiple deployment units, and may be accessible as a 
downloadable commodity, in shrink-wrap or on any digital storage media formats. 
The Product is defined as a Deployment Unit that has been packaged for sale and 
distribution. Typically the product is released to manufacturing in the late Transition 
iterations. By that time the software has undergone internal and beta testing, and is 
sufficiently mature for mass production. 
Installation Artifacts: They refer to the software and documented instructions 
required to install the product. These artifacts are needed if installation programs will 
be used to configure the system in the deployment environment. If the software is 
deployed only once (as is the case with many systems built by a company for internal 
use on a corporate server), installation artifacts may be omitted. In a system where 
the end user is expected to install the product, the Installation Instructions can be 
included in the user's guide. 
Training Material defined previously 
End-User Support Material: It consists of the user manual and provides instructions 
for using the software. In particular it provides the basis for test plans and test cases, 
and for construction of automated test suites. This is typically required for any 
system that has a user interface; systems that have little or no user interface may omit 
it. 
The Transition phase ends, as shown in Figure 16, with the Product Release 
Milestone. At this point, it is necessary to decide if the objectives were met, and if 
they should start another development cycle. In some cases this milestone may 
coincide with the end of the Inception phase for the next cycle.  At the Product 
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Release Milestone, the product is in production and the post-release maintenance 
cycle begins. This may involve starting a new cycle, or some additional maintenance 
release. 

Summary 
We have provided in this section basic knowledge about both UML and RUP, 
necessary for the comprehension of the methodologies presented in this Thesis.  



 

 

PART 2:  
A SOLUTION FOR TEST PLANNING MANAGEMENT 



 

 



 

4 The Propean Approach 

Preface 
In this Thesis we consider the overall testing process starting from its initial 

stages, i.e. the definition of the Test Development Plan including the resource 
estimates (specifically time, staff, and development environment costs in particular) 
up to the effective Test cases execution.  

In this Chapter we start our journey in the testing phase, discussing an original 
methodology, the Propean approach, useful for Test Development Plan definition. 
Specifically the Propean intent is to propose a valid and reliable solution to the 
managers to support the decision-making process in a multiproject management 
environment.  

From this perspective, in this Chapter we describe the Propean approach, Section 
4.4 and the application of Propean to support the decision to release a product, based 
on the analysis of trouble reports (Section 4.5).  

However, the use of Propean methodology is not limited only to testing 
management, but can be adopted in every development phase as well as for the 
organization of the entire development process for defining the Software 
Development Plan. In Section 4.6 we show the application of Propean to a case study 
encompassing the modelling of the entire Rational Unified Process. 

4.1 Propean Scope 
Planning the testing phase is a difficult and critical task for project managers, 

which requires evaluating whether the resources assigned to a specified task are 
adequate or whether under the existing organizational schemes the predicted time 
schedules will be met. Making such decisions is very complicated, because the 
processes involved are highly complex: the influencing factors (both human and 
technical in kind) are many, and in most cases not easily measurable or predictable. 

We present the Propean methodology, Project Performance Analysis [BMM03], 
which relies, as the name implies, on Software Performance Engineering (SPE) 
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[SM90, SW01] and queueing networks models [LA83]. Specifically following the 
metaphor that:  
• Project teams correspond to the processing resources in performance models, 
• Project activities are the tasks to be performed within established time intervals. 

We readapt in Propean the performance analysis methods for: assessing the time 
to completion of specified testing activities or the overall testing phase, handling 
personnel multitasking during different projects, optimising the workloads 
distribution. 

For modelling the testing phase and obtaining the required estimations we 
embrace the trend of using UML as input modelling notation [FR99, JSW99, EP00, 
MA00, NLS02] (specifically we adopt the standard RT-UML specialized profile 
[UMLP]) and performance techniques for system evaluation [WO00, WO02, CM02]. 
As a result we obtain an integrated approach that allows the managers to: use 
familiar notations and tools to define models of the flow of testing activities to be 
performed and of the tasks to be distributed among personnel; express their expertise 
by tuning the input models with the proper parameter values; automatically derive 
measures of interest which rely on a solid mathematical background and have a 
statistical validity.  

Actually the idea of using performance techniques in project management is not 
completely new, but applications so far have been limited to a single project at a 
time, as for example in [AMN95], or have been developed to handle specific 
situations, as in [ACL01] for simulating the performance of geographically 
distributed cooperating maintenance service centres, and not as a general approach. 
In contrast, Propean provides a generic solution which can handle multiple projects 
and can be applied to any situation and workflow of activities.  

4.2 Related Works 
Extensive literature about project management and development can be found, 

but little of it treats the problem of multiproject planning and people multitasking on 
several parallel projects. In this context the Software process simulation modelling is 
one of the widespread techniques used for strategic management of software 
development, supporting process improvement and training of software management 
[KMR99]. In particular a software simulation model represents some specific aspects 
either of the current implemented or of the hypothetical future implementation of 
process. We report here a brief survey of major related studies and of the more 
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widespread decisional tools. We refer to [KU01] for a more complete review of the 
research on the decision in product development and to[KMR99] for an introduction 
of the software process simulation modelling. 

Two crucial aspects of project management during development are resources 
distribution and activity planning. These issues belong to a more general research 
field which is Concurrent Engineering (CE) [SM97]. This discipline became popular 
with the studies of Imai et al. [IKT85] and Takeuchi and Nonaka [TN86] and has 
greatly influenced both the academic and the industrial approaches to production. 
However, these works focus mainly on organizing tasks within a single project, 
taking into account the decomposition of a complex product design into smaller 
activities and their subsequent coordination. 

Considering the distribution of resources in a multiproject environment, PERT 
(Project Evaluation and Review Technique) [KA86] and CPM (Critical Path 
Methods) [DE85] are probably the first proposed methods. They describe an 
idealized flow of project activities, in which no new project is introduced over time 
and activity durations are treated as deterministic. Markov chain models [KU01, 
WE86], which assume an exponentially distributed activity time and use matrix 
methods for deciding the task time order in development [BFS90] were the natural 
subsequent evolutions. 

The work presented here is close to that of Adler et al. [AMN95]. These authors 
study the problem of personnel organization and resources distribution among 
several projects developed at the same time, and like us use queueing networks and 
stochastic processing network models to represent product development and identify 
the bottlenecks in task scheduling. However the authors focus on five basic process 
elements: jobs, tasks, procedure constraints, resources, and flow management 
control. In particular, a single process may need to handle a variety of job types, 
which in turn are divided into tasks (i.e., activities or operations). Tasks are 
connected by precedence relations. The resources are engineers and technicians, who 
are the units that execute the tasks. The flow management control represents how the 
resources executed a job’s constituent tasks. Lock [LO98] identifies a sixth element 
consisting of the assessment of individual contributions. 

Recently queuing theory has been applied to model requirement management 
[HRN01], software maintenance requests [PMB99], [WC99], [RA00] and to 
management planning [ACL01]. Specifically, the latter case presents a queueing-
based approach for staffing process management and evaluating service levels. The 
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nodes of a multi-stage, multi-centre queueing model are associated with the different 
maintenance phases. Each stage is considered in series and each entering request is 
subjected to a sequence of activities before leaving the system. 

4.2.1.1 Decisional Tools 

The decisional support that managers can use is generally of two kinds. One 
consists of techniques or methods that visualize resources and personnel and 
distribute them among the phases of project development. Examples are represented 
by the traditional Control Charts or Gantt Charts [BO96], or the more innovative 
Design Structure Matrix (DSM) [BR01] which can display the interactions between 
different teams with the process activities. Tools may support these methods, which 
are extremely intuitive, but generally the validity of the plans depends strictly on the 
subjective skill of the managers. Besides, the use of these techniques in a 
multiproject context could be rather difficult. 

The second kind of decisional support consists of specialized tools for managers. 
Microsoft Project Tool [MPT] or the Kerzner Project Management Maturity Online 
Assessment Tool [KPM] represent some examples of specific tools which provide a 
valid aid in maintaining an updated database of available people and resources, and 
for producing and visualizing a project plan. 

Recently, the idea of readapting existing tools for management purposes is 
becoming more common for economic aspects as well and some proposals can be 
found in the literature. An example is the work of Dickinson et al. [DTG01], which 
shows how to use Dependency Matrix in combination with the existing Portfolio 
tools to support the decisional process, analyse the interdependences between 
projects and combine them. Another solution is presented in [BLP01] where the 
authors propose a tool for production management optimisation using Gantt Charts 
and PERT diagrams for visualizing the obtained results.  

However, most existing tools consider only a specific aspect of management, 
focusing for example either on the completion time or on personnel distribution and, 
more importantly, they cannot explicitly manage several contemporaneous projects. 
Finally, the majority of available tools apply ad hoc algorithms for simulating project 
evolution, based on some parameter values introduced by the user. Some of those 
tools generate approximate predictions without any guarantee of statistical 
significance.  
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Thus the approach presented here attempts to overcome the mentioned limitations 
of the existing tools, proposing an innovative solution for project management.  

4.3 Background Knowledge 
In this section we briefly report the background information necessary for 

understanding the Propean methodology. In particular in Section 4.3.1 we present the 
basic concepts of performance engineering, in Section 4.3.2 the RT-UML profile and 
specifically the Performance Analysis Profile. 

4.3.1 Basic Concepts of Performance Engineering 
We provide here the definitions and the basic concepts of performance 

engineering used in the development of the Propean Methodology, without aiming to 
supply a complete documentation.  

Generally the application of performance techniques has, as its main objective, 
the quantitative evaluation of the system under development. Specifically its 
performance can be expressed in different ways including: response time, 
throughput, or constraint on resource usage [SM90]. The response time is typically 
one of the main elements characterizing the quality of a system and is described from 
a user perspective, for instance the number of seconds it takes to respond to a user 
request. It is conditioned by a number of factors such as the execution time of the 
device, the entity of the requests, and the number of simultaneous users. This last 
factor in particular mainly complicates the evaluation of the response time due to the 
management of the queue of requests for the same device.  

Therefore, a performance model must be developed for evaluating the 
performance of a system. Solving this model much information can be derived such 
as the mean response time and the identification of devices representing bottlenecks 
for the system performance.  

Different approaches can be used for generating a performance model but we 
only consider those based on the Software Performance Engineering (SPE) presented 
first in [SM90]. This is a systematic and quantitative approach for constructing 
software systems, which is based on the careful and methodical assessment of 
performance issues throughout the lifecycle, from requirements and specification to 
implementation and maintenance. The SPE process includes the following steps 
[SW01, SE02]:  
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1. Assess Performance Risk: establish the effort to put into SPE activity, i.e., the 
level of risk and its impact on system performance 

2. Identify Critical Use Cases: determine which use cases are most important either 
for operation of the system or for responsiveness or scalability for the user(s) of 
the system  

3. Select Key Performance Scenarios: identify for each use case the most important 
scenarios, i.e., those which are executed frequently or that are perceived as 
critical to the performance  

4.  Establish Performance Objectives: for each key performance scenario specify 
quantitative criteria for evaluating its performance characteristics and the 
conditions (workload mix and intensity) under which the performance objective 
should be achieved  

5. Construct Performance Models: explained in detail below 
6. Determine Software Resource Requirements: identify the amount of processing 

and software resources required for each scenario step  
7. Add Computer Resource Requirements: include the resources and devices to be 

used by scenario steps. Computer resource requirements depend on the 
environment in which the software executes. 

8. Evaluate Performance Models: using the model and the selected analysis 
method, compute the performance predictions. Whether there are not problems, 
proceed to solve the execution model. Otherwise two alternatives are possible: 
modify the product concept choosing the most promising design approach and 
evaluate the effect on performance; or revise the performance objectives to adapt 
them to the new reality 

9. Verify and validate the models: these activities proceed in parallel with the 
construction and evaluation of the models themselves and have the purpose of 
verifying the accuracy of the predictions 
Considering the construction of the performance model (activity 5), the SPE basic 

concept is the separation of the Software Model (SM) from its environment (i.e., 
hardware platform model or Machinery Model, MM). This distinction, on the one 
hand, allows for defining software and machinery models separately and solving 
their combination, on the other improves the portability of the models (e.g., the 
performance of a specific software system can be evaluated on different platforms, 
and the performance of a specific platform can be validated under different software 
systems).  
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The SM captures the essential aspects of software behaviour; we represent it by 
means of Execution Graphs (EGs) (Appendix A). An EG is a graph whose nodes 
represent software workload components and whose edges represent transfer of 
control. A software workload component can be a single instruction or a whole 
procedure, depending on the granularity adopted for the model [SM90]; this feature 
makes EGs suitable for modelling software at different levels of detail.  

EGs include several types of nodes (or blocks), such as basic, cycle, conditional, 
fork and join nodes. In Appendix A we give a brief description of each of them while 
Figure 6 and Figure 7 show examples of EG. Each node is weighted by use of a 
demand vector representing the resource usage of the node (i.e., the demand for each 
resource).  

The MM model is the hardware platform and is based on the Extended Queueing 
Network Model (EQNM) [LA83]. To specify an EQNM, we need to define: the 
components (i.e., service centres), the topology (i.e., the connections among centres) 
and some relevant parameters (such as job classes, job routing among centres, 
scheduling discipline at service centres, service demand at service centres). 
Component and topology specification is performed according to the system 
description, while parameters specification is obtained from information derived by 
EGs and from knowledge of resource capabilities. In particular an EQNM is 
characterized by nodes and arcs, which connect the nodes. To in case of branching to 
each arc is associated value, called routing probability, representing the probability 
that a job will cover that path. Obviously the sum of the values associated to the 
outgoing arcs of a branch must be equal to 1. In Figure 8 an example of an EQNM is 
reported, while in Appendix A we discuss the Queuing network in detail. 

Once the EQNM is completely specified, it can be analysed by using of classical 
solution techniques (simulation, analytical technique, hybrid simulation [LA83]) to 
obtain performance indices such as the mean network response time or the utilization 
index.  

4.3.2 RT- UML: the Performance Analysis Profile 
Although UML is generally recognized as a useful tool for modelling the 

functional characteristics of a system (e.g., see papers in [UML00, UML01, 
UML02]), historically it had ignored non-functional requirements, such as response 
time, availability, throughput and bandwidth. These constitute important system 
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features, nowadays often referred to in abstract as the QoS (Quality of Service) 
characteristics. 

By general consensus the UML lack of a quantifiable notion of time and 
resources was felt to be “an impediment to its broader use in the real-time and 
embedded domain” [SE01]. As reported in [SE01], in 1999 to cope with the needs 
from this key area, the Analysis and Design Platform Task Force of the OMG issued 
an explicit request for proposals (RFP) for a UML domain-specific interpretation (to 
be fully conformant with the UML standard) capable of dealing with non-functional 
requirements. 

In response to the OMG RFP, a working consortium of OMG member companies 
proposed a UML Profile for Schedulability, Performance and Time (RT-UML), 
which has been recently adopted as an OMG standard profile [UMLP]. 

Presenting a detailed overview of the RT-UML profile is beyond the scope of this 
Thesis; we provide here only the essential background necessary for understanding 
the RT-UML features we use in the Propean methodology. For major details we refer 
the reader to [UMLP]. 

RT-UML is not an extension of the UML metamodel, but a set of domain profiles 
for UML allowing for the construction of models that can be used to make (early in 
the life cycle) quantitative predictions regarding the characteristics of timeliness, 
schedulability, and performance. In particular, effort has been spent both to enable 
predictive quantitative analyses (e.g., the ability to determi ne the schedulability of a 
planned piece of software or its response time), and to model QoS aspects, such as 
deadlines and priorities. 

The idea underlying the RT-UML is to import, as annotations in the UML 
models, the characteristics relative to the target domain viewpoint (performance, 
real-time, schedulability, concurrency), in such a way that the various (existing and 
future) analysis techniques can usefully exploit the provided features. 

Generally domain viewpoints are not often used in practice because they require 
great expertise and specialized knowledge. The intent of RT-UML profile is to 
overcome this problem by providing a single unifying framework to encompass the 
existing analysis methods, while leaving enough flexibility for different 
specializations. At the core of the profile is the general resource modelling 
framework, which provides a common model of resources and of their QoS 
attributes. Then, based on this common framework, more specific sub-profiles are 
defined, i.e., “profile packages dedicated to specific aspects and analysis techniques”. 
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Their purpose is to specialize the generic concepts to better represent the needs of a 
specific domain, i.e., to derive a conceptual domain model. 

The general resource modelling framework itself consists of three sub-profiles 
dealing respectively with resource modelling, concurrency and time-specific 
concepts. In the next section, we focus in particular on the RT-UML sub-profile we 
use in Propean, i.e., the Performance Analysis (PA) profile. 

The PA profile is specifically designed for capturing performance requirements 
and specifying the QoS characteristics or execution parameters. At a high level of 
abstraction, the concepts characterizing the PA profile are: 
• The scenarios, i.e., ordered sequences of steps, describing various dynamic 

situations involving the use of a specified set of both processing and passive 
resources under specified workloads (i.e., the load intensity and the required or 
estimated response times for the scenario). In particular we can distinguish 
between: a closed workload, in which a fixed number of requests cycles while the 
scenario is executed, and an open workload, in which the requests arrive at a 
given (predetermined) rate. 
A step in a scenario is characterized by its mean execution number (i.e., the mean 

number of times it is repeated when executed) and the host execution demand (i.e., 
the execution time taken on its host devices) and might involve multiple concurrent 
threads, due to forking. 
• The resources, i.e., the servers in a performance model that can be active or 

passive. The active resources are usually servers characterized by the service 
time, i.e., the execution demand of the steps that are hosted by resources, while 
the passive resources can be acquired and released during scenarios and are 
characterized by the holding times. 

• The performance measures of the system that include: resource utilizations, 
waiting times, execution demands, and response times. Each of these values can 
be: derived from the system requirements or performance constraints (e.g., 
response time for a scenario); estimated on the basis of experience or previous 
knowledge (e.g., execution demand); directly measured or simulated.  

The RT-UML PA profile provides UML extensions to deal with the above notions of 
scenarios, resources, and workloads and the associated attributes (in the following, 
PA attributes), so as to allow for extensive and wide-ranging performance analyses. 
In our methodology, we are actually interested only in a small subset of these 
extensions. 
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PA scenarios can be modelled following either a Collaboration-based approach or 
an Activity-based approach (as in [PS02]). In the tradition of [CM02], we take here 
the former approach, and represent a scenario by an annotated Sequence Diagram. 
The use of Activity graphs might present some advantages in expressiveness 
[UMLP] (modification of the Propean approach to allow usage of Activity graphs is 
part of our future plans). 

We report below a short description of the subset of PA annotations we use in 
Propean. They concern the workload, the steps and the resources involved in the 
scenario considered. For each annotation we specify the associated stereotype, the 
attributes and the UML extensions (PA attributes) used for representing these domain 
concepts (for more detail see [UMLP). In particular: 
• closed workload: a fixed number of jobs cycles indefinitely in the scenario, and 

spends an external delay period. The stereotype used is <<PAclosedload>> 
- Attributes and associated PA attributes: 

- Population: the size of the workload, i.e., the number of jobs involved 
(PApopulation) 

- - Response time: the delay between the instant in which the scenario starts 
and that in which it is completed (PAresptime) 

• Step: each increment in the execution of a scenario that can involve the use of 
resources is a step. The granularity of a step depends on the level of abstraction 
associated with the scenario. The stereotype used is <<PAstep>> 
- Attributes and associated PA attributes 

- Repetition: the number of times the step is repeated (PArep) 
- HostExecutionDemand: the total execution demand of the step on its host 

resources, i.e., the service demand necessary for accomplishing the request 
(PAdemand) 

• Resource: This can be passive or active and can participate in one or more 
scenarios. The former is generally protected by an access mechanism and can 
represent either a physical device or a logically-protected access. The latter can 
be a processor, an interface or a storage device and is characterized by the 
processing steps allocated to it along system deployment. The stereotype used is 
<<PAresource>> 
- Attributes and associated PA attributes 

- Utilization: this is usually the result of an analysis and represents the 
computed utilization of processing resources expressed as a percentage. 
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For a passive resource in particular it represents the mean number of 
concurrent users of the resource (PAutilization) 

- SchedulingPolicy: the policy that controls the resources, i.e., the rules for 
assigning the resources to a set of steps (active resource) or the access 
control policy for handling requests from scenario steps (passive 
resource). The scheduling policy can be for example FIFO (first-in- first-
out), PS (processor sharing), LIFO (last-in-first-out) and so on 
(PASchdPolicy) 

- ProcessingRate: (only for active resources) the relative speed factor of the 
processor, expressed as a percentage of some normative processor 
(PArate) 

- IsPreemtable: (only for active resources) the possibility for the resource to 
be preemptable or not, once it starts the execution of an action 
(PApreemptable) 

- Throughput: the rate at which the resource performs its function 
(PAthroughput) 

The numerical values associated with the PA attributes may have different 
interpretations; for example, they may represent a fixed value, a variable to be 
estimated, an average value or a distribution, or else they may be a prediction, a 
measure or a requirement. To model PA value semantics, RT-UML follows a 
predefined syntax, whereby it is possible to specify all the desired characteristics (for 
an example of application see Section 4.5). 

4.4 The Method 
The method presented in this section provides for the manager a sound, reliable 

solution supporting the decisional process in multiproject management, by the use 
and readapting of the techniques of Software Performance and queueing networks1. 
In particular starting from the metaphor of Section 4.1 and using the above SPE 
concepts, we capture in the SM those aspects relative to the activity planning, while 
in the MM those relative to people (over/under) utilization and distribution. 

                                                 
1 These are in fact the most widespread methods in the performance field, but the application of other 
approaches, like Petri nets [LI98], LQNs or process algebras [HR01] could be used instead, by 
applying the appropriate transformation rules from the UML diagrams to these notations [UML00, 
UML01, UML02, WO00, WO02]. 
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In particular, we apply the method proposed in [CM02] extended to the RT-UML 
profile (Section 4.4.1), for the derivation of performance models based on SPE 
techniques, starting from a set of UML diagrams. Precisely, the SM is derived from a 
Sequence Diagram (SD), and the MM from a Deployment Diagram (DD). The 
method then extracts from these diagrams the main factors affecting system 
performance and combines them to generate a performance model. 

In Figure 1 we outline the basic steps of the Propean methodology (and who is in 
charge of each of them) that will be detailed in the following of this section. We refer 
to the case study of Section 4.5 for a more detailed description. 

Figure 1 The Propean application steps 

1. Manager: Analysis 
In this step the project manager defines the project activities under consideration. 

In particular he/she has to associate with each activity an estimation of the time and 
resources necessary for completing it and the roles of the people involved2. In 
organizations with stable processes, this information can be derived from previous 
experience on similar projects. 
2. Manager: Modelling 

The results of analysis in Step 1 have to be modelled as RT-UML diagrams. In 
particular the manager should describe, in one or more SDs, the scenario(s) 
representing the adopted release process. In the SDs the objects represent the teams 
involved, and the messages represent the requests of execution of a set of activities or 
correspond to information/data exchanged between the teams. Moreover the manager 

                                                 
2 Note that this is a classic manager duty and not a specific request of the proposed method. 

1. Analysis: definition of  project activities (manager) 
2. Modelling: definition of the SDs and the DD (manager) 
3. Model annotation: specification of proper parameters and values 

(manager) 
4. SPE models generation: derivation of the SM and MM models 

(automatic) 
5. Model evaluation: resolution of the EQNM and derivation of the 

relevant predictions (automatic) 
6. Analysis of results: evaluation of the results obtained (manager) 
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should construct a Deployment Diagram (DD) modelling the resources available and 
their characteristics. In this case the nodes of the DD can be associated with: classic 
resources (device, processor, database), different project teams, communication 
means such as, for example, the intranet device. The links between the DD nodes 
represent the communications between the teams or the documents exchanged inside 
the organization. We note that the manager does not need to repeat this step from 
scratch each time he/she needs to make estimations about a project. In a mature 
organization, for similar products, the effort needed to derive this reference structure 
will be made only the first time. The same diagrams can then be re-used for 
subsequent similar applications, by possibly updating the associated parameters, as 
will be described in the next steps. 
3. Manager: Model annotation 

The two types of diagrams developed in Step 2 must be annotated with the proper 
values and parameters. The project manager should express, by using a comment-
based annotation, the attributes associated with events and actions of the diagrams. In 
particular, referring to the attributes relative to the PA profile described in Section 
4.3.1 the PA attributes of the closed workload will be associated with the initial 
action of the SD; those of the steps will be linked to each of the subsequent message 
activations; those of the resources will be related to each of the nodes of the 
Deployment Diagram. In Figure 4 and Figure 5 we report an example of the resulting 
SD and DD. The details of these figures will be described in the next section. 
4. Automatic: SPE models generation 

By applying the method proposed in [CM02], and described in Section 4.4.1, it is 
possible to derive a model for the planned activity (the SM based on EG) and a 
model for the involved teams and resources (the MM based on EQNM). 
5. Automatic: model evaluation 

The EQNM obtained in the previous step, which represents the teams and 
activities, can be solved to obtain relevant results such as: the predicted completion 
time for the project (or for a single phase), the resource utilization rate, the best 
resource distribution with respect to a given completion time, and so on.  
6. Manager: analysis of results  

The results automatically obtained in Step 5 are analysed by the project manager 
and, if different from those expected, he/she can go back to Step 1 (or 2), make some 
modifications to the diagrams or to the assigned parameters, and repeat the process 
until the desired results are obtained. 
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4.4.1 EG and EQNM Derivation 
With reference to Step 4 of the Propean methodology described above, we 

explain here the process applied for automatically deriving the EG and the EQNM. 
In short it consists of the analysis of the SD and DD designed by the project manager 
as described in the following phases. 
1. Analysis of the SD 

In this phase we analyse the SDs separately and in particular the messages 
exchanged between objects considering their respective lifeline. In particular in each 
SD we associate with every interaction a tuple (l, A1, A2, PApar) where:  

• l is the label of the SD interaction arrow,  
• A1 is the name of the object from which the arrow starts,  
• A2 is the name of object at which the arrow ends,  
• PApar represents the performance annotation of <<PAstep>> 
The SD is now translated into a high level EG (called meta-EG). Each node in the 

EG identifies an interaction, and corresponds to the set of operations performed in 
relation to that interaction. Every node in the meta-EG is labelled with the tuple (l, 
A1,  A2, PApar) that characterizes the translated interaction. Figure 2 illustrates the 
skeleton of the algorithm used for the EG generation with proper labels for a very 
simple SD. 

 

Figure 2  Labeled Meta-EG generation 

Depending on the degree of detail the manager adopts, the SD may be too 
complex to allow the generation of a unique comprehensible software model (EG). In 
this case before generating the EG it would be convenient to check if there are parts 

a b c

m1( ) 

m2( ) 
<<PAstep>> 

{PArep=Nrep 
PAdemand=('req', 
'mean',ts)} 

<<PAclosedLoad>
> {PApopulation=NUsers}  

(m1( ), a,b,PAclosedload, Nusers)

(m2(), b,c, Nrep, PAdemand(ts)) 

Sequence Diagram Labeled Meta-EG 
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(operations in the SD) that can be grouped together. For example, we could 
aggregate a set of operations that is repeated many times in the SD, or that belongs to 
the same process phase. In this case a high-level EG is generated and expanded, 
when necessary, into sub- EG. 

The Execution Graph (called meta-EG) obtained in this step includes only five 
types of nodes: basic, branching, cycle, fork and join [Appendix A, SM90, SW01]. 
Each basic node is labelled with the tuple (l, A1, A2, PApar) identifying an 
interaction, and corresponds to the set of operations that are carried out by 
component A1  before interacting with A2 through (l, A1, A2, PApar). This set of 
operations is translated into an EG node and possibly connected to another node by a 
pending arrow. In case of multiple interactions, a fork node is placed before 
considering the sequence of the outgoing interactions. The multiplicity of the fork 
node determines the number of pending arrows associated with it and is obviously 
equal to the cardinality of the multiple interactions (i.e., the number of different 
threads originated by this interaction). Figure 6 and Figure 7 show respectively the 
high level EG obtained from the SD of Figure 4 and a sub-EG relative to the block 
problem analysis. 
2. Analysis of the Deployment Diagram 

The use of the information contained in the Deployment Diagram is twofold. On 
one hand, tailoring the meta-EG to the specific platform can be performed, thus 
obtaining an EG-instance; on the other hand an Extended Queueing Network Model 
(EQNM) can be obtained representing the hardware platform hosting the software 
system.  

We start by describing the stepwise process adopted for deriving the EG-instance. 
In our case the nodes of the DD does not represent the hardware resources, but the 
different teams. The components inside a node represent the tasks that the team must 
perform (obviously, a team can be composed of one or more people). Project phases 
can be carried on with the collaboration of components living inside different nodes 
of the DD. Specifically the names of the interacting components within the meta-EG 
block labels are substituted with the names of the team that accomplishes the 
operation and the values of the relative PAattribute. Furthermore, when the names of 
the interacting components are different in the label, an overhead delay due to 
coordination among project teams (e.g., team meeting) is added to the performance 
model. In this way the node label in the EG-instance corresponds to the demand 
vector, which specifies for each team the work-demand relative to the modelled 
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operation. Figure 7 shows an example of an EG-instance, including the demand 
vector specification. 

The EQNM topology can be derived in a straightforward way from the 
information collected in the DD. As already stated, in our case the service centres 
model the project teams involved in the software processes, so the number of service 
centres in the network correspond to the number of teams. The connections between 
different service centres are derived from the communications represented in the DD. 
The values of the attributes associated with the different nodes of the DD are used to 
better specify the characteristics of the EQNM service centres.  

Subsequently by using well-known performance techniques [CM02, SM90, 
SW01], the obtained EG-instance is combined with the EQNM to achieve the 
complete definition of the queueing model, as in the traditional SPE approach. The 
obtained model is then solved by use of the classic solution technique and tools 
[LA83, SW01] to obtain the performance indices of interest. 

4.4.2 Architecture of the Propean Tool  
The final goal of this research is an automated environment that the manager can 

easily consult in his/her everyday activity to obtain advice for sound decision-
making. With reference to the stepwise procedure described in Section 4.4, this 
environment should incorporate a tool fully automating steps 4 and 5 (the SPE 
related computations), and provide support to the other steps pertaining to the 
manager as well, facilitating the RT-UML modelling of the workflow and the 
resources according to the required formats.  

Currently we have already available some small pieces of such a tool (which we 
used to process the case study presented here), while further implementation work is 
ongoing to complete the platform. In this section we overview the architecture of the 
Propean tool. To make the SPE calculations, Propean transforms the UML model 
annotated with performance information into an Extended Queueing Network 
performance model [LA83]. Following [UMLP] the input to our transformation 
algorithm is a file containing an annotated UML model translated in XML format 
according to the standard XMI interface [UMLP], and the output is the 
corresponding EQNM model description file, which can be read directly by existing 
EQNM solvers [LA83]. The tool architecture is illustrated in Figure 3. A UML tool 
(such as Poseidon [POS]) processes the input diagrams and generates the XML file. 
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The UML to EQNM transformation component takes as input the XML file and 
produces as an output a file describing the performance model.  

Specifically, the EQNM model structure is generated from the high-level 
software architecture described in the DD indicating the allocation of software 
components (in our cases the activities) to hardware devices (in our case the teams). 
The EQNM model parameters are obtained from detailed models of key performance 
scenarios, represented in the SDs. The derived performance model goes to a 
performance model solver (EQNM analytical solver or simulator) which derives the 
performance analysis results. Finally the Results Convertor analyses the performance 
results and convert them back in the UML model as constraints on some PAattribute, 
thus completing a round-trip tour. 

Figure 3  Propean Tool Architecture 

The policy we are pursuing in the implementation is that, where available, we use 
existing tools, and integrate them into the Propean tool. For instance, we obviously 
do not want to develop a new UML tool. In this regard, we notice that the release of 
the RT-UML profile has occurred quite recently and there are not yet commercial 
tools specifically handling it or supporting the Performance profile. 

Therefore, the XML files must be processed to “attach” the tagged values 
associated to different model elements with the stereotypes.  
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4.5 Propean for Managing the Testing Phase 
In every process development, as best practice before facing any of the 

development phases is to establish an accurate and truthful Development Plan in 
which the required resources are assigned and the people scheduled. Considering in 
particular the testing phase, Propean methodology, by applying the well-known 
techniques from the field of computer performance engineering, can facilitate the 
definition of the Test Development, providing the managers with sound and reliable 
solutions. Performance analysis techniques are used to predict the outcomes that will 
result from manager’s assumptions and to figure early out whether under the current 
workflow the settled objectives will be met. In particular, Propean provides managers 
with both the resources distribution (i.e. people assignment) and the prediction about 
the completion time of the processes under development. Specifically, as stated in 
the preface the Propean as support for the manager’s decisional process in 
multiproject management can be useful at any stage of development, as soon as the 
project manager is called to dynamically make the most appropriate decision based 
on the actual project status and the emerging circumstances. We will show an 
examples of this in Section 4.6. 

4.5.1 Case Study 
We investigate here the release decision for a software product driven by product 

quality, measured in terms of bugs found. More precisely, we suppose that, as usual, 
the testers report each failure found during the test execution in a form, called the 
trouble report, and that the product will be released only after the testing is 
completed with no trouble report left open.  

We consider that at the beginning of the test phase the manager faces either of 
two different situations:  
i) considering the actual personnel availability, he/she wants to early predict the 

expected time until release;  
ii) for a fixed release time, previously established on the basis of customer 

exigencies, he/she wants to decide the most adequate personnel configuration to 
respect the time constraints.  
In this section we illustrate the use of Propean for pursuing either goal (i) or (ii) 

considering a simplified case study derived from [KFN99], to which we refer for 
further detail. 
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As a first step, we model the organization structure of the company considering 
the testing stage and the management of reported problems (we disregard the teams 
not directly involved in these activities). The organization is composed of a project 
manager PM, a test team T (1÷3 people), a development team D (2÷4 people) and the 
system architects SA (1÷2 people).  

The testers begin to execute the planned test cases and every few days (we 
assume 3 in this example), they insert the trouble reports in an on-line database, 
called the tracking system TS, which only the testers and the project manager can 
modify.  

At each TS update, the PM analyses the trouble reports and seek the proper 
solutions for each reported problem. We consider three possible outcomes from 
his/her analysis:  
• The problem must be fixed: the PM classifies the problem as “open” and passes it 

on to the developers. In this case study for simplicity we assume no prioritisation 
politics among failures, i.e., all reported problems are assigned the same severity 
(different priorities could also be handled, but the example would be more 
complicated). 

• The problem can be deferred. The PM chooses to leave the problem in the current 
version of the product and to fix it in a subsequent release. The problem is 
classified as “deferred”. 

• The problem is not recognized as such. From the trouble report analysis the PM 
concludes that it is not a real problem, because the program was actually 
supposed to work in that way. The problem is classified as “as designed”. 
The TS update with the problem classification as “deferred” or “as designed” by 

the PM closes the trouble report (at least for this product release). If instead the 
problem is classified as “open”, further actions must be taken as described below. 

On receiving the open problem reports from the PM, the developers first analyse 
them to check whether they have enough information to fix the problems or need 
further explanation from the testers about the failure symptoms. In the latter case, the 
workflow may include an interaction cycle with the testers. Occasionally, the 
developers may realize that the fix requires a major design change and so inform the 
PM, who may require the intervention of the software architects to modify the 
design, after which the developers modify the code accordingly. 

After every problem fix, the testers have to retest the modified parts of the 
program (regression test). Thus they either classify the problem as “closed”, 
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consequently updating the associated trouble report in the TS, or possibly generate 
further trouble reports containing the new problems found during the test phase. 

Given this abstract workflow of the activities and personnel involved, the project 
manager can periodically analyse the status of the TS in order to:  
Case i) estimate the expected time at which the product can be released, that is 

when the TS only contains problem reports classified as “deferred” or “as 
designed”, i.e., there are no remaining “open” problems; 

Case ii) derive the most efficient personnel organization for releasing the product 
within the established time constraints. 

In Case i), if the estimated release time is too late, for example with respect to 
market demands, the PM has to take the proper corrective actions. For instance, the 
PM could increase the number of people involved in the development or test phase or 
else decide to pursue a later release date. Alternatively, if the involved personnel are 
handling several projects simultaneously, the PM could decide to temporarily divert 
the people from one or more of the concurrent projects to focus on this one. Similar 
considerations can be made for Case ii). In both situations, it is very important that 
the PM base his/her resolution on a reliable estimate, not on a subjective guess, and 
that he/she can objectively take into account all the likely combinations of events. 

This is the purpose of the methodology presented in the following section: we 
intend to supply the project manager with a tool that uses performance engineering 
techniques to: 
• Predict the release time, also allowing for multiproject management, i.e., the 

teams are not dedicated full-time to a single project  
• Identify (by looking at the personnel rate of utilization) the component that 

represents the bottleneck and is mainly responsible for the release time delay 
• Identify the most convenient team composition in order to ensure that all the 

projects are released within the deadline agreed upon with the customer, or 
within the budget allowance. 

4.5.2 Details of the Methodology 
In this section we describe the application to a case study of the Propean 

methodology (Section 4.4). 
1. Analysis: In this case the project manager decides to focus analysis on the 

testing phase. During this step he/she has mainly to define the boundary conditions, 
such as for example the resources involved and the strategy to adopt for project 
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release, and to establish which parameters (symbolic expressions) are relevant for the 
estimation, possibly postponing their evaluation to Steps 5 and 6. 

2. Modelling: during this step the manager develops the SD and the DD 
representing respectively the sequence of the activities performed during the testing 
phase and the overall organization of the different teams. These two diagrams are 
presented respectively in Figure 4 and Figure 5; the meaning of the stereotypes and 
tagged values of RT-UML will be explained in the next step. 

3. Model annotation: The SD and the DD developed must be annotated with the 
proper parameters. 

Considering the SD, the attributes relative to the closed workload are associated 
with the first action of this diagram. The note must report the name of the stereotype 
(<<PAClosedLoad>>) followed by the parameters associated with the PA attributes 
which are: 
• PApopulation = $Nuser that represents the number of jobs in the scenario: in our 

context, the number of projects contemporarily under testing. The symbol $ 
indicates that $Nuser is a variable that the project manager will instantiate with 
an appropriate value before starting the automatic derivation of the required 
estimations. 

• PAresptime = (‘msr’,’mean’, $t_to_release) that represents the completion time 
and is one of the expected results. It is modelled as a measured (‘msr’) 
distribution whose mean is expressed by the variable $t_to_release.  
The other steps of the SD are annotated with the stereotype <<PAstep>> 

associated with different PA attributes, depending on the activity considered.  
Considering the second and third step of the SD, every three days (Nrep) the 

testers insert in the database a certain number of trouble reports (denoted as $N). The 
insertion has a mean value equal to ts. In other words, $N and ts are the values to be 
estimated by the project manager, possibly with the help of testers. They are 
associated with the PA attributes as follows: 
• PArep = Nrep number of insertions in the data base 
• PAdemand = (‘req’,’mean’, ts) the execution demand of this step on its host 

resource, i.e., the time necessary (‘req’) for the testers to insert a trouble report in 
the database, follows a distribution whose mean is given by ts.  
When the Project Manager analyses the trouble reports, he/she observes a 

variable number of bugs reported ($N). The value to be associated with this variable 
generally depends on the project typology and can be estimated for a family of 
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similar products. The Manager can classify each bug as “open”, “deferred” or “as 
designed” with a given probability (denoted as p_fix, p_def, p_des, respectively) and 
spending a certain amount of his/her time (denoted as t_fix_PM, t_def_PM, 
t_des_PM, respectively). The Project manager must estimate the associated values 
based on his/her experience. For example let us considering the deferred bugs: the 
value $N*p_def will give the number of bugs classified as deferred among the $N 
reported and t_def_PM*$N*p_def will represent the time necessary for the project 
manager to deal with them. The situation described is simply modelled by 
associating with the relative step the stereotype <<PAstep>> with attribute: 
• PAdemand = (‘req’,’mean’, k) where k can assume values t_fix_PM*$N*p_fix, 

t_def_PM*$N*p_def, t_des_PM*$N*p_des depending on the considered SD step. 
It represents the time necessary (‘req’) for the project manager to deal with the 
different trouble reports and follows a distribution whose mean is given by k. 
Similar consideration can be also done for the other steps of the SD, annotating 

each step with the parameters of interest and estimating the required values.  
Considering the DD, its nodes can refer to both classical resources (device, 

processor, database) and people teams. Moreover, the DD also models the 
communication nodes: for instance, the Intranet to access the database TS and a 
meeting room symbolizing a “communication channel” between different teams. 
Each node represents a kind of resource and therefore it is necessary to associate 
with each resource a stereotype <<PAhost>>. Then, depending on the resource 
considered, the associated PA attributes are:  
• PAschdPolicy=P where P can be equal to FIFO, PS or PR and models the 

strategy by which the resource handles the different jobs. 
• PApreemptable= Yes In the case study it is supposed that only the System 

Architect team can be interrupted during his/her work. 
• PAutilization=$Util represents the rate of utilization of the different resources. 

The value associated with this variable is an analysis result. 
• PArate=1 the resource works full-time on the assigned job.  

Pathroughput=Np represents the amount of work provided per unit of time (a day 
in the case study) by a person belonging to a certain team. This value is normalized 
to 1 in case of a single person, 2 when two people work together, and so on.  
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Figure 4 Sequence Diagram 
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4. SPE model generation: Following the steps described in the previous section, 
the corresponding EG and EQNM can be automatically derived from the annotated 
SD and DD. Figure 6 and Figure 7 illustrate the high level EG and one of the low 
level EGs obtained from Figure 4 and Figure 5 respectively, while Figure 8 shows 
the EQNM with a team composition made of: 1 project manager, 1 software 
architect, 1 tester and 2 developers (1PM, 1SA, 1T, 2D). 

With respect to the SD and the DD, in this step we have made the following 
choices:  

i. The database TS and the connected Intranet have not been modelled, because 
the times involved in the TS accesses are orders of magnitude less than the times 
required by the activity steps (msecs vs. days); 

ii. The meeting room has been introduced as a delay centre modelling the 
communications with the manager. 
 

Figure 5 Deployment Diagram 
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Figure 6 represents an EG at a high level of abstraction modelling the main 
activities of the testing phase without details, while Figure 7 shows the details of the 
block named “problem analysis”, by illustrating several activities modelled in Figure 
4. Moreover, the demand vector for each block is derived by combining information 
coming from annotations in the SD and in the DD. 

 

Figure 6  High level EG obtained from SD in Figure 4  

For example, the first block is called “3+4” because it models the interactions 3 
and 4 in the SD; its associated demand vector represents the service demand to the 
resources involved in the scenario for the management of bugs that are deferred or 
classified “as designed”. In such a case only the manager is involved and his/her 
service demand can be derived from the annotated SD as 

(t_def_PM* $N*p_def + t_as_des_PM*$N*p_as_des). 
Note that the different kind of projects (depending, for example, on the test 

duration or on the number of bugs) generate different instances of the demand 
vectors for the EGs in Figure 6 and Figure 7, and therefore different routing chains in 
the EQNM. The possible choices lead generating different models to be evaluated in 
the next step. 

5. Model evaluation: several analyses can be done by assigning different values 
to parameters in the EQNM. Examples of various model evaluations are illustrated in 
the next section. 
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Figure 7 The low level EG for “problem analysis” block obtained from SD in  Figure 4 

 

Figure 8  The EQN Model obtained from SD in Figure 4 and from DD in Figure 5  
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6. Analysis of results: the manager can make several kinds of decisions by analysing 
the results obtained in the previous step. Again, an example of this analysis is 
illustrated in the next section. 

4.5.3 Discussion and Results 
It is important to point out that on the manager’s side the effort required to 

employ the methodology is to explicitly derive in a SD (such as the one shown in 
Figure 4) a high level model of the activity workflow and in a DD (as in Figure 5) 
the organization structure. He/she does not need to know all the other details on how 
such models are then translated into SPE models and then solved. 

We understand that even the derivation of the RT-UML diagrams could be felt at 
first impact to be an undesirable extra burden for the already overloaded manager. 
However, objectively it should not take much effort: if one has a clear view (as 
plausibly the manager must have) of how the development process is structured and 
which activities are to be accomplished, and their mutual influences, deriving the 
RT-UML diagrams that depict them at a high level of detail should not take much 
labour, especially with the support of an appropriate interactive tool. Besides, we 
expect that the returns make it worthwhile.  

In fact, once such diagrams have been derived, various interesting analyses can 
be conducted in completely automated way. The manager can make different 
assumptions on the parameters of the modelled scenarios and automatically obtain a 
reliable prediction of what will be the outcomes consequent to each assumption. 

We present in the following two orthogonal applications of Propean to the 
described case study, illustrating for each of them the parameters to be introduced 
and the kind of estimations that can be derived. We consider the two situations in 
which: (i) the manager wants to predict the completion time of the testing phase 
(Section 4.5.3.1); or (ii) he/she wants to derive the most efficient personnel 
distribution for completing the testing phase within a fixed time deadline (Section 
4.5.3.2). 

Generally for each diagram several parameters can be varied, depending on the 
desired prediction. We have considered the following parameters: the estimated 
duration of the test period, the number of registered trouble reports, the composition 
of the involved teams, and whether they are fully dedicated to the examined project 
or instead are contemporaneously handling other projects.  
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4.5.3.1  Estimating the Completion Time 

Considering the case study described in Section 4.5.1, we illustrate some 
plausible situations: in Propean, each different situation corresponds to a variation in 
the parameter values in SD and DD. For example a possible situation could be 
represented by the following assumptions:  
• The planned duration for the test phase of a given product is six days 

(considering the attribute PArep in the second step of the SD, the parameter Nrep 
is set equal to 2); 

• For the type of project under test, based on his/her experience, the manager 
assumes that the number of trouble reports issued will be equal to 10 (considering 
the attribute PAdemand in the third step of the SD, the parameter $N is set equal 
to 10) 

• The personnel in charge for the test and debug phase consists of one tester, two 
developers and one software architect (plus of course the manager): this 
configuration is denoted as 1PM, 1SA, 1T, 2D; (as illustrated in the considered 
DD) 

• The tester and the two developers are in parallel engaged in another project (the 
parameter $Nuser of the SD is initialised to 1). 
For each parameter configuration, using Propean the manager can thus obtain, 

early in advance of the testing phase, a prediction of the time in which the product 
will be ready for release (i.e., no more open trouble reports exist). 
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Table 1 Estimated time to release in days 

In Table 1 we report the results obtained for different parameter values. In the 
table the estimated time to release is measured in days, considering one working day 
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to be equal to 8 hours (optimistic bound), and the results are rounded to the closest 
integer. The table shows the release time when the planned duration for the test and 
debug phase is three, six or nine days (with a group of four columns for each case), 
and when 2, 10, or 20 trouble reports are issued, as indicated in each row. 

For each case, then, we derive the estimate when the resources (the people) are 
fully dedicated to the project under exam (denoted as T&D Full Ded); the test team is 
fully dedicated, while the developers are handling this and another project (D Shared 
1); both the testers and the developers are handling this and another project (T&D 
Shared 1), and finally both the testers and the developers are handling three more 
projects in addition to this one (T&D Shared 3). 

Going back to the situation described above, in which the test duration was 
assumed equal to six days and the number of trouble reports to 10, the time necessary 
for completing the testing phase is estimated to be 17 days from the start of the test 
phase (2nd row, 7th column). If the manager was pointing towards a much earlier 
release deadline, Propean shows it is unlikely that he/she will be able to meet it. Let 
us assume that the target release deadline is 12 days. Even considering the more 
optimistic hypothesis that only two bugs are encountered, in the present 
configuration the release time would be not shorter than 14 days (1st row, 7th 
column). Thus, either the manager can accept a more relaxed deadline, or he/she 
takes some countermeasure. In particular, if the project under exam has high priority, 
a possible solution could be to take away from the other parallel project the resources 
(the tester and the developers) that are necessary to complete this one. In this case if 
they are fully assigned to the completion of the testing phase of this project, then the 
predicted release time with 10 bugs is reduced to 12 days (2nd row, 5th column), 
which was the target deadline. Thus, by means of simple SPE analyses, the manager 
gets statistical predictions that can support his/her decisional process. 

On the other hand, adopting the latter solution results in an increased project cost, 
due to the under-utilization of certain personnel categories. Another relevant 
parameter the manager should consider before taking any decision is in fact the rate 
of utilization of the teams involved. This analysis is automatically obtained with the 
parameter assignments used for the estimation of completion time and can be very 
useful not only to better administrate human resources, but also to identify the 
bottlenecks when a phase takes too long. 
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Table 4 Utilization rate of testers and developers 

In Table 2 we report the percentage of the utilization rate, denoted by ρ, for the 
tester and the developers considering the same parameter assignment in Table 1. This 
index is measured by the ratio between the frequency at which requests arrive, and 
the frequency at which the processing element (in our case a team) can deliver 
services. The utilization rate varies between 0 and 1, where 1 means that the resource 
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is saturated, and can represent a bottleneck; 0 means it is idle, and a good utilization 
is somewhere in the middle. 

In the initial configuration we assumed one tester and two developers, employed 
in this and in another project. We can see that the bottleneck is clearly the tester, as 
the utilization rate percentage is computed to be 99%, while the two developers are 
well employed, with a rate of 55%. Deciding to fully dedicate one tester and two 
developers to the test and debug phase allows the manager to meet the deadline, but 
in such a configuration the developers are under-utilized, at 29%.  

One further possibility to explore could be to devote one tester at full time, while 
leaving the two developers on both projects. In such a configuration we would get a 
release period of 13 days, but the resources are better employed (the tester 46% and 
the two developers 58%). 

Analysing the results in Table 1, another interesting fact can be observed: 
although obviously the duration of the test and debug process can be greatly 
influenced by the number of bugs found, a rational organization of the personnel is 
more crucial, especially for large enterprises dealing with several development 
processes in parallel. The release delay increases faster as the teams get involved in 
more simultaneous projects than if we increase the estimated number of bugs.  

For instance, considering a large product with a planned test period of 9 days, 
when all the resources are fully dedicated the expected release time, even foreseeing 
20 bugs, is 18 days, against the 20 days estimated to handle half (i.e., 10) bugs if the 
tester and the developers are contemporaneously employed in another project. If we 
further consider a configuration in which the tester and the developers are handling 
three more projects, even though in this project we optimistically assume finding 
only two bugs, handling them would take 28 days. 

Another possible countermeasure when the predicted release time exceeds the 
target deadline is to add more personnel to the development of product. Using 
Propean, revising the estimates is immediate and again it only consists of changing 
some of the configuration parameters. 

Let us consider, for example, that the personnel in charge of the test and debug 
phase consists of two testers, two developers and one software architect, plus of 
course the PM. This configuration is denoted as PM1, SA1, T2, and D2. We report, 
in Table 3 and Table 4 respectively, the estimated time to release and the utilization 
rate of the testers and developers. 
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Considering the initial situation in which the test duration was equal to six days, 
the number of trouble reports to 10 and the committed release time 12 days, even if 
one more tester is added, the product would be ready in 15 days (as reported in Table 
3, 2nd row, 7th column), instead of 17 as with the previous configuration, but this may 
not be sufficient. In this new configuration the manager would be able to meet the 
target deadline only if the estimated number of bugs is two. 

The utilization rate of testers with ten bugs (Table 4) is equal to 55% (instead of 
99% of the previous cases). This means that personnel organization in this case is 
better than before and the tester resource is no longer the bottleneck of the 
development process. As shown in the table, in this case assigning the testers and the 
developers full-time to the project, or even only the developers, would be 
meaningless. Their utilization rates in the two cases, (30% and 22%) and (24% and 
31%) respectively, reflect an under-utilization of the resources. 

4.5.3.2 Deriving the Best Personnel Distribution 

As in the previous section, we discuss several situations for illustration purposes. 
Considering the case study, in this section we report the results obtained under the 
following assumptions: 
• The planned duration for the test phase of a given product is 3 days, (considering 

the attributes PArep in the second step of the SD the parameter Nrep is set equal 
to one);  

• For the type of project under test the manager assumes that the number of trouble 
reports issued will be equal to two (considering the attributes PAdemand in the 
third step of the SD the parameter $N is set equal to two);  

• The personnel in charge of the test and debug phase consists of one software 
architect, the program manager, while the number of testers and developers is 
variable. The configuration is denoted as 1PM, 1SA, Tt, Dd where the variables t 
and d indicate the values to be established by using Propean. 
More precisely, the goal of the manager, given the above parameter assignment, 

is to define the values for the variables t and d, i.e. the best personnel assignment, so 
that the project can be released within no more than seven days (considering one 
working day equal to 8 hours, and the results rounded to the closest integer).  

Table 5 reports some of the results obtained when the planned duration for the 
test and debug phase is three days, and considering the testers and developers fully 
dedicated to the project under exam (denoted as T&D Full Ded); the testers fully 
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dedicated, while the developers are handling this and another project (D Shared 1); 
both the testers and the developers are handling this and another project (T&D 
Shared 1), and finally both the testers and the developers are handling three more 
projects in addition to this one (T&D Shared 3). In particular we suppose that when a 
team (resource) receives the request for a job, the task is performed by only one of 
the people available at that moment. 

 
Planned Test Duration=3 days Configuration 1PM, 

1SA, Tt, Dd T&D Full Ded D Shared 1 T&D Shared 1 T&D Shared 3 

t=1, d=2 5 6 8 13 

t=2, d=2 5 6 7 10 

#Bug 2 

t=3, d=4 5 5 6 8 

t=1, d=2 9 10 11 17 

t=2, d=2 9 10 11 14 

#Bug 10 

t=3, d=4 9 9 10 12 

t=1, d=2 14 15 16 22 

t=2, d=2 14 15 16 20 

#Bug 20 

t=3, d=4 14 15 15 17 

Table 5 Estimated completion time at various configurations 

Planned Test Duration=3 days 

T&D Full Ded D Shared 1 T&D Shared 1 T&D Shared 3 

Configuration 1PM, 

1SA, Tt, Dd 

T D T D T D T D 

t=1, d=2 24 24 15 60 99 56 100 76 

t=2, d=2 12 24 0.7 60 55 58 76 77 

#Bug 2 

t=3, d=4 0.7 12 0.6 33 38 30 60 52 

t=1, d=2 30 29 25 57 99 55 100 74 

t=2, d=2 15 29 12 57 55 56 76 75 

#Bug 10 

t=3, d=4 10 15 0.9 30 38 30 60 50 

t=1, d=2 31 30 27 55 99 55 100 75 

t=2, d=2 16 30 14 54 55 56 76 76 

#Bug 20 

t=3, d=4 10 15 0.9 30 38 30 61 50 

Table 6 Utilization rate (%) of testers and developers 

Therefore, if the estimated number of trouble reports is equal to 2 and the target 
release date is 7 days, from the analysis of Table 5, a good configuration could be 
one tester and two developers completely dedicated to this project, one tester and two 
developers with developers handling this and another projects, or, alternatively, two 
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testers and two developers engaged at the same time in another project. The other 
configurations can be immediately excluded because beyond the deadline. 

The manager can also derive a more precise evaluation of the cost of project 
realization, by using the utilization rate of the people involved. For this reason in 
Table 6 we report the corresponding percentage of the utilization rate of the tester 
and developers, while a more thorough discussion of the project cost is deferred to 
Section 4.5.3.3. 

An alternative situation is that when a team (resource) receives the request of a 
job, the task is performed by all the people available in that moment. This means that 
if two people are available, they will work in parallel to complete the job. Table 7 
and Table 8 report the estimated completion time for the different configurations and 
the percentage of utilization rate of the testers and developers. The different policy of 
job completion is incorporated by the resulting utilization rates of the testers and 
developers. 

Planned Test Duration=3 days Configuration 1PM, 

1SA, Tt, Dd T&D Full Ded D Shared 1 T&D Shared 1 T&D Shared 3 

t=1, d=2 5 7 8 15 

t=2, d=2 4 6 8 14 

#Bug 2 

t=3, d=4 4 5 6 8 

t=1, d=2 7 10 11 17 

t=2, d=2 7 9 11 16 

#Bug 10 

t=3, d=4 6 7 8 10 

t=1, d=2 12 14 15 21 

t=2, d=2 11 12 13 19 

#Bug 20 

t=3, d=4 9 10 10 13 

Table 7 Estimated completion time at various configurations 

4.5.3.3  Cost Estimation 

Achieving the target deadline is certainly important. However, another relevant 
factor that the manager must also consider is the associated cost. For each selected 
configuration we can derive a rough estimation of cost denoted as CG(i), i=1, …, Nc 
(total number of configurations), and computed as follows: 

CG(i) = d(i) * Σk ∈{T,D} [ (pk(i) * ck)/sk(i)] 
Where :  d (i) denotes the working days for configuration i 
  pk(i) is the number of people in team k 
  ck is the cost associated with each person in team k 
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  sk(i) is the number of projects shared by team k in configuration i  
 

Planned Test Duration=3 days 

T&D Full Ded D Shared 1 T&D Shared 1 T&D Shared 3 

Configuration 1PM, 

1SA, Tt, Dd 

T D T D T D T D 

t=1, d=2 26 28 13 59 99 56 100 77 

t=2, d=2 14 29 60 60 52 57 76 77 

#Bug 2 

t=3, d=4 11 18 60 35 38 32 61 53 

t=1, d=2 34 35 26 62 99 60 100 78 

t=2, d=2 19 38 13 64 56 60 77 78 

#Bug 10 

t=3, d=4 16 25 14 40 42 38 65 56 

t=1, d=2 36 37 31 62 99 61 100 78 

t=2, d=2 20 40 17 63 56 62 77 78 

#Bug 20 

t=3, d=4 17 26 16 40 42 39 63 54 

Table 8 Utilization rate of testers and developers 

For example let us compare, the configurations a and b  (a,b ∈ {1,…, Nc}), 
where 

a corresponds to: 6 days of planned test duration, 10 bugs, T&D shared1, 1PM, 
1SA, 1T and 2D 

b corresponds to: 6 days of planned test duration, 10 bugs, T&D shared1, 1PM, 
1SA, 2T and 2D. 

CG(a) = d(a) * Σk ∈{T,D} [ (pk(a) * ck)/sk(a)] = 17 [ (1*cT)/2 + (2*cD)/2] 
CG(b) = d(b) * Σk ∈{T,D} [ (pk(b) * ck)/sk(b)] = 15 [ (2*cT)/2 + (2*cD)/2] 
Let us suppose, for the sake of simplicity that cT= cD= c, we obtain: 
CG(a) = 17*c*3/2= 25.5*c 
CG(b) = 15 *c*2=30 *c 
Therefore the manager should decide by comparing configuration a and b, 

whether the increase in the project cost is justified by a reduction by only two days of 
the completion time.  

Other information that can aid the manager in decision-making is the 
computation, based on utilization rate, of a so-called “waste” factor, which is the cost 
of people under-utilization, as follows: 

WG(i) = d(i) * Σk ∈{T,D} [ (pk(i) * ck*(1-ρk))/sk(a)] 
Therefore for configuration a and b above, we can compute  
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WG(a) =  17 * [ (1 * c*(0.01))+(2*c*0.45)/2]=17*c*0.46=7.82*c 
WG(b) =  15 * [ (2 * c*(0.44)/2)+(2*c*0.44)/2]=15*c*0.88=13.2*c 
Note that, by use of the attribute PArate we can also give an idea of the expertise 

of people belonging to the team, with PArate ∈ [0,1], where 1 denotes a highly 
skilled person, while 0 denotes a beginner. So, we can weight the cost ck by use of 
PArate to take into account the cost of different people. Obviously, the other 
parameters such as the centre service time modelling people work also should be 
weighted by the PArate value. In the examples above we have supposed, for 
simplicity, PArate equal to one.  

Note that currently, due to restrictions imposed by the PA profile, it is necessary 
to suppose that all people in the same team have the same skill and cost (an average 
value can be taken, if this is not the case). 

 

4.6 Propean Applied to RUP 
The Propean methodology is not limited to the testing phase, but can be also 

adopted for managing the other development phases as well as the entire life cycle as 
described in [BBM02a, BBM03]. In this section we present a more general case 
study encompassing the modelling of the whole Rational Unified Process (RUP) (see 
Chapter 3), which is one of the emerging processes adopted in the industrial context. 
In particular exploiting the RUP peculiarity of letting its regular updated exactly as 
the software products, [KR00], our intent is to augment RUP with the capability of 
producing reliable schedule and resource utilization estimates useful to RUP decision 
makers [BLM02].  

If the goal of RUP is to produce high-quality software within predictable 
schedule and budget, we need a means of reliably drawing such predictions: for 
instance, how long will RUP take to process a certain project? How will RUP utilize 
the available resources? How is the RUP schedule affected by the concurrent 
processing of several projects? In this section we answer such questions on rigorous 
grounds, equated RUP to a product, of which we analyse the performance by 
applying the Propean methodology, just as we do with any other critical product. 

As stated in Section 4.4 for this purpose it is necessary first of all to derive the 
RT-UML diagrams that model the RUP process as configured to fit the needs of the 
specific organization under exam. This phase pertains to the manager, who has to 
model the process and the workflows to be instantiated. This may seem to be a heavy 
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requirement; in practice, the UML process model can be derived once for an 
organization, and then at each new application of the technique to a specific project, 
the manager only needs to update the parameters in the diagrams (such as the number 
of people involved, and the estimated duration of the single activities). The derived 
diagrams are then processed to obtain the performance estimations. 

In the next section we discuss the steps necessary for applying the Propean 
methodology while in Section 4.6.2 we present the case study provided by Ericsson 
Lab Italy (ERI). Finally in Section 4.6.3 we present some results and discussions. 

4.6.1 Details of the Methodology 
In this specific case the Propean application to RUP is divided into two steps. The 

first, called RUP modelling (Step 4.6.1.1), consists of the description of the 
functionality and architecture of the RUP product by means of UML diagrams 
appropriately annotated according to the RT-UML profile. The second step, called 
RUP customisation (Step 4.6.1.2), represents the core of the Propean application. The 
UML diagrams developed in the previous step are refined and completed by the 
manager, accordingly to personnel availability and process exigencies. In the next 
subsections the main aspects of the two steps will be briefly described. 

4.6.1.1 RUP Modelling  

In this section we present a brief description of the procedure we used to 
represent RUP applying Propean. As for the development of any other software 
product, the first step is to describe the system functionalities (i.e. the process 
activities) in terms of Use Cases (UCs). This description follows an iterative process, 
incrementing at each iteration the level of detail of the system functional 
specification. We begin therefore by representing the interaction of the external 
actors (in our case, End User, Customer and Stakeholder) first with the different RUP 
phases (Inception, Elaboration, Construction and Transition), and then with the 
single workflows. The description is further refined representing the interaction of 
the external and internal actors (one actor specification per role) with the workflow 
activities in the different phases. Finally for each activity an annotated Sequence 
Diagram (SD) representing the roles interaction is developed. Figure 9 reports an 
example of the SD used. 
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Figure 9 Activity “Conceive a new project” of the workflow Project Management. 

The Propean modelling of RUP proceeds with the identification of the 
organizational structure of the system, i.e., architecture definition. As for system 
functionality, the architecture definition follows an iterative process describing the 
decomposition of the system into parts that interact through interfaces, relationships, 
and constraints. First of all we therefore describe as subsystems the Roles Set called 
Analysts, Managers, Developers, Testers and Additional Roles and we define the 
interfaces they use. In this case, the attributes of the interfaces are the set of 
exchanged documents.  

The subsystem definition is then refined associating a class to every role and 
describing the interfaces they use. For every class the attributes represent the 
artifacts, and the methods are the activities in which the role is involved. 

The UML description of RUP derived so far represents only the static structure of 
the process and is the common starting point for applying Propean to different real 
situations. The Propean user, typically a manager, starting from this process 
framework, must adjust and characterize it with respect to the specific needs, 
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peculiarities and constraints of his/her organization. In particular, as described in the 
next section, he/she has to identify the dynamic structure of the process and express 
the sequential flow of activities in the different RUP phases.   

4.6.1.2 RUP Customization 

In the previous section we briefly explained the incremental process adopted for 
deriving the UML model of the static structure of RUP. Here we discuss the required 
modifications to the steps of the Propean procedure presented in Section 4.4 in order 
to customize the RUP process to the specific organization needs, and to derive 
successively a queueing network based model for making predictions.  
1. Manager: Analysis 

For every phase of the RUP process (Inception, Elaboration Construction, and 
Transition) the ma nager, with reference to the UML static model described in the 
previous section, must specify the flow of the activities involved using the Activity 
Diagrams (ADs). In each of these diagrams, the decisions and conditions as well as 
the parallel execution of the activities must be shown. In particular the manager 
should decide: to possibly suppress some of the RUP activities of entire workflows 
according to the specific development needs of his/her organization, or to specify 
how many iteractions must be performed for each phase. In Figure 10 we report an 
example of a developed AD. In this case the activities of the different workflow, 
each one associated to a representative SD, are considered to be a sort of “building 
bricks” that the manager fits into the activity diagrams for describing the overall 
structure of the development process.   
2. Manager: Modelling 

As mentioned in Section 4.4, the manager must describe the organization 
structure in a Deployment Diagram, DD in which the nodes refer to both classical 
resources (device, processor, database) or personnel team. Figure 11 shows an 
example of an annotated DD.  

In addition the manager must also specify the associations between roles and 
personnel. The RUP modelling supplies the ma nager with a Class Diagram with roles 
specialization; therefore he/she has only to reorganize the association between the 
different classes according to the organization exigencies. For example in Figure 12 
is the class “designer” is associated which a real person (therefore it becomes a 
superclass) who can also assume the roles of Design reviewer, Database designer and 
so on (the subclasses) 
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Figure 10 Activity Diagram relatives to the Elaboration Phase 

3. Manager: Model annotation 
In this step the manager must better specify the activities belonging to each 

Activity Diagrams developed in Step 1. Every activity is in fact associated with an 
annotated SD; therefore, the manager has only to refine the parameters or values of 
the stereotypes of the SDs description as mentioned in Section 4.4. The Figure 9 is an 
example of an annotated SD. 
4. Automatic: SPE models generation 

The SPE model is derived as explained in Section 4.4.1 considering the Activity 
Diagrams as well. It includes a model for the planned activities obtained by each 
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involved SD and Activity Diagram (the SM based on EG), and a model for the 
involved teams (the MM based on EQNM). 

Figure 11 Deployment Diagram 

5. Automatic: Model evaluation 
The same of Section 4.4: the EQNM obtained in the previous step can be solved 

to obtain the desired results  
6. Manager: Analysis of results 

The same of Section 4.4: the results obtained in Step 5 are analysed by the 
manager, who can decide to go back to the previous steps. 

4.6.2 An Example of Propean Application 
To see how Propean works, we will apply it here to a case study consisting of a 

hypothetical project development. Although this example is built ad hoc for 
illustrative purposes, its organization and the assigned parameters (people involved 
and planned time for the composing steps) faithfully reflect the management 
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practices of a real-world organization. We describe the project here and in the next 
section provide the results obtained by applying Propean. 

The system to be developed is composed of two large subsystems, A and B. 
Subsystem A consists of three components, and subsystem B of two components. For 
clarity, the development process of this system is represented in Figure 13 by means 
of an Activity Diagram. 

 

Figure 12 Class diagram relative to the Roles distribution 

To apply Propean, we have modelled the process parts relative to every node of 
this AD using the “bricks” methodology overviewed in the previous section. Each 
node is detailed into the RUP activities referring to it and modelled by means of one 
or more SDs. The various activities corresponding to the nodes of this AD are 
distributed among the four phases of RUP, and associated with the activities forming 
the various workflows. For instance, considering the AD of Figure 10, the activity 
“Define the system” in the Analysts swimlane implements the activity “System 
Design” of the AD of Figure 13. In other words, we tailored the generic RUP model 
in Propean to the specific needs of this project, which is a small one, and therefore 
we obtained a rather simplified RUP configuration. Then, according to Step 3 we 
annotated the SDs with the estimated duration of each activity. The estimations were 
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made by an industrial manager as an average “guess” based on ERI standard 
parameters, assuming: the size (in terms of code lines) of the components as small, a 
medium system complexity, the existence of a design basis, a well-known 
technology, and medium competence of project team. Moreover, we assigned the 
personnel who will have to carry on the planned activities. 

Figure 13 Development process representation 

Specifically, we assumed as the initial configuration for analysis the following, 
referred to as Conf_I: 

• 1 Project Manager (PM) 
• 1 System Analyst (SA) 
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• 1 Designer (D) 
• 1 Impleme nter (I) 
• 1 System Integrator (SI)  
• 1 Test Designer (TD) 
• 1 Tester (T) 
• 1 External Worker (EW) 

Note that this is the initial configuration; during the analysis with Propean it may 
be the case that the hypothesized configuration shows itself as inappropriate and 
alternative configurations are found to be more effective. One of the objectives of 
Propean is to assess whether the personnel utilization is adequate with respect to 
project needs. 

4.6.3 Analysis of Results 
Here we show and comment on some of the estimations that can be automatically 

obtained by means of Propean. 
At a first run, we derived the expected time to completion for the initial 

configuration Conf_I shown above. The estimated times for the four RUP phases 
considering the development of the system stand alone, i.e., without any concurrent 
project development which could compete with this for resources, are given in the 
first column of Table 9. Conf_I results are given in the white part of the table. 

But the real potential of Propean is that we can also make estimations in the more 
realistic hypothesis that people are not dedicated full-time to this project, and that 
other RUP processes are going on concurrently. 

For instance, in the table, we also show the estimated time to completion of each 
process, assuming that two or three processes are concurrently running; we can also 
make hypotheses on how the processes are interleaved. So for instance we 
considered the case that the 2 or 3 processes started contemporaneously (0 days of 
displacement), or that a process starts 30 days after the preceding one started (30 
days of displacement). The times are given in days for one process. 

As is plausible, we find that the concurrency among more projects brings large 
delay on the schedule: a project alone takes 188 days to complete, but if there are two 
projects to manage contemporaneously, it will take almost 90 days more; this delay 
is a little diminished if some displacement is inserted between them, so that people 
can finish one task on a project before being engaged in the other one; but as the 
Elaboration phase in this project is very long, then we see that the advantage is not 
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big and involves the first period of the project. Things get worse if we add more 
projects in parallel. The other interesting feature of Propean is that we can look at 
how the involved teams are charged, and identify the bottlenecks in people 
configuration. 

 

Table 9 Propean estimated times (in days) for the RUP phases 

In Table 10, we report the utilization rate of people (in the interval 0-1, where 0 
means idle and 1 means the person time is saturated at its maximum). We can see 
that in the planned workflows, the System Integrator SI and the Tester T are idle 
most of the time, as their utilization rate is very low compared to the other people 
involved. Therefore, we analyse how the RUP performance would change if we 
decide to assign different activities to these two people: in the light grey part of the 
two tables we report the results obtained assuming a different configuration, called 
Conf_A, in which the person who acted as a System Integrator before is now 
assigned part of the activities of the Designer, while the person acting in Conf_I as a 
Tester is given a Test Designer role here. As is obvious, we are also trying to 
consider the expertise of people, and we are reconfiguring them accordingly. The 
reconfiguration allows the manager to save 16 days in the schedule for the stand-
alone project, and even more days in the multiproject scenarios. Moreover, if we now 
look at the utilization rate of people, we see in Table 10 that the effort is more evenly 
distributed among people. 

 
 

 Number of Concurrent Projects  
 Phases 1 2 (0 days displ. ) 2 (30 days displ.) 3 (0 days displ. ) 3 (30 days displ.)

Conf_I (8 pp) Inception 28,81 44,72 40,25 57,63 54,33 
1 PM, 1 SA Elaboration 104,58 155,76 141,35 194,21 187,23 

1 D, 1 I, 1 SI Construction 29,56 35,54 35,79 46 44,32 
1 TD, 1 T Transition 25,33 38,30 36,68 49,5 48,61 

1 EW Total 188,54 275,14 254,62 349,67 337,25 
Conf_A (8 pp) Inception 28,89 43,42 40,18 56,58 50,38 

1 PM, 1 SA Elaboration 91,88 127,06 120,24 156,63 142,82 
2 D, 1 I, 0 SI Construction 25,73 33,36 33,26 42,04 40,97 

2 TD, 0 T Transition 25,88 37,96 36,53 50,16 47,08 
1 EW Total 172,53 241,49 230,62 308,02 283,07 

Conf_B (6 pp) Inception 28,81 43,1 40,08 56,94 50,84 
1 PM, 1 SA Elaboration 104,58 152,57 142,96 190,43 179,26 

1 D, 1 I, 0 SI Construction 29,56 37,72 36,03 47,85 45,46 
1 TD, 0 T Transition 26,18 18,14 36,26 49,5 47,79 

1 EW Total 189,38 271,41 255,88 349,47 325,02 



   124 
 

Table 10 Propean estimated utilization rate of people for the RUP phases 

We have also investigated a different hypothesis, called Conf_B: given that SI 
and T are not doing much, we move them away from this project, redistributing their 
tasks to the other people (SI task to D, and T task to TD) i.e., we only assign 6 
persons to the process. In this case the results are shown in the dark grey part of the 
two tables. We still get a more even distribution of effort among people, while the 
time to completion remains quite similar to that of Conf_I (i.e. we get almost the 
same time with less cost).  

Thus in conclusion the results of Propean analysis for this case study leave the 
project ma nager with either of the alternatives: getting the project completed in a 
shorter time and more rational employment of resources with 8 people, or getting it 
completed in almost the same time of the initial configuration, but employing only 6 
people. Clearly that the initial configuration is not an effective choice. In addition, 
Propean provides quite reliable estimates of schedules, based on the manager 
estimations for the single activities. 

 
Summary 

In this section we present an innovative approach called Propean, useful for 
defining a suitable test plan in a multiproject environment in which resources and 
personnel are shared among products. Propean constitutes an integrated approach in 
which managers, by using familiar notations and tools, can both define UML models 

Number of Concurrent Projects 
Personnel 1 2 (0 days displ. ) 2 (30 days displ.) 3  (0 days displ. ) 3 (30 days displ.) 

PM 0,09 0,13 0,13 0,15 0,15 
SA 0,33 0,45 0,44 0,55 0,52 
D 0,44 0,6 0,59 0,71 0,68 
I 0,31 0,44 0,42 0,55 0,51 

SI 0,005 0,006 0,007 0,009 0,008 
TD 0,25 0,34 0,33 0,4 0,38 
T 0,06 0,09 0,09 0,11 0,1 

EW 0,13 0,17 0,16 0,2 0,19 
PM 0,10 0,15 0,14 0,18 0,17 
SA 0,36 0,52 0,47 0,62 0,59 
D 0,24 0,35 0,33 0,4 0,4 
D 0,24 0,34 0,32 0,43 0,39 
I 0,340 0,49 0,47 0,58 0,57 

TD 0,16 0,24 0,22 0,28 0,28 
TD 0,16 0,24 0,23 0,29 0,27 
EW 0,13 0,19 0,18 0,23 0,22 
PM 0,10 0,14 0,13 0,16 0,15 
SA 0,33 0,46 0,43 0,54 0,52 
D 0,44 0,62 0,59 0,71 0,69 
I 0,310 0,44 0,42 0,53 0,51 

TD 0,32 0,44 0,42 0,51 0,5 
EW 0,12 0,17 0,16 0,2 0,21 
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of the flow of activities to be performed during the development and of the tasks to 
distribute among personnel, and automatically derive the measure of interest. 
Propean  translates the developed models in a format that is processable by standard 
performance analysis algorithms, so that a solver of these last can be applied to 
obtain the desired results.  

Therefore we presented the procedural steps required for applying the Propean 
methodology and showed how the well-known techniques from performance analysis 
can be usefully and quite naturally adapted to tasks of relevance for software 
managers: assessing the time to completion of specified activities, handling 
personnel multitasking during different projects, optimising the workloads in 
development cycles, deciding about product release, and similar issues. 

We demonstrate also how the use of Propean methodology can be extended to 
management of the other development phases as well as for the organization of the 
entire development process.  



 



 

PART 3:  
STRATEGIES FOR TEST CASE GENERATION  



 

 



 

5 An Automated Approach to UML-Based 
Testing 

Preface 
The testing phase is an expensive but essential part of development, which must 

be well-organized and defined. Unfortunately often due to time or cost constraints it 
is not developed properly or is even skipped. Therefore methods and tools that 
facilitate and reduce the effort (time and/or cost) due to the management and the 
control of this critical phase are necessary. In the previous Chapter we presented the 
Propean approach, which automates the definition of a Test Development Plan 
before the effective launch of the testing phase. This document establishes the time-
scheduling of the different activities and the resources and personnel assignment to 
the different tasks of the testing phase.  

Then when the testing phase effectively begins, based on of the financial plan 
established, the test cases must be defined and distributed among the functionalities 
of the system to be tested, and subsequently executed. This is another critical point 
for the testing phase management. Generally, it is not easy to decide both the 
functionalities on which the testing effort should be concentrated and the amount of 
test cases to dedicate to each of them. Wrong decisions could increase the overall 
cost of the testing phase and the time required for its completion considerably.  

We propose for this reason, in this Chapter an integrated, practical and automatic 
approach called Cow_Suite, which is prototyped in a tool, for generating and 
planning a suitable set of test cases, starting from the UML documentation. 
Cow_Suite includes both a method for deriving the test cases from the UML system 
specification and a strategy for distributing test cases among system functionalities 
(test cases prioritisation and selection). 

One of the peculiarities of Cow_Suite is that it can be applied to real-world 
projects not only during the testing phase but, more importantly, from the early 
stages of system analysis and modelling, as soon as some UML diagrams have been 
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defined. Managers can therefore derive estimation, in terms of the number of test 
cases to be executed, of the effort required for completing the testing phase very 
early in the development process. Cow_Suite can thus be used in combination with 
Propean to derive the estimation values required for the application of this approach. 
However in this Chapter we concentrate mainly on the use of Cow_Suite alone, only 
suggesting in certain sections when integration with Propean could be possible. 

In this Chapter we present the outline of the Cow_Suite approach (Sections 5.4, 
5.5) and a brief description of the prototyped tool in its current status (Section 5.6). 
In particular we describe the Cow_Suite application in two case studies, one taken 
from the literature (Section 5.7) and the other provided by a real software developer 
(Section 5.8).  

5.1 Cow_Suite Point of View 
In this Chapter we concentrate on the methodologies for conformance testing 

from UML models. Until very recently UML-based testing has not received the 
attention it deserves and few methods have been proposed so far. In particular many 
of them demand too much on the developer’s side and cannot be easily adapted to a 
real industrial context. They require either a rigid and meticulous modelling process, 
or often address a low-level test stage, or cannot scale-up to deal with large system 
portions. The reason is that UML was not created with testing purposes in mind, and 
does not readily allow for the rigorous analysis that is needed for automatic test 
derivation. This issue is referred to as the UML testability question in [BL01]. For 
test engineering a trade-off must be found between test thoroughness and cost. 

Our response to this problem is an integrated, practical and automatic approach to 
the generation and planning of UML-based test suites, which can be applied to real-
world-sized projects since the early stages of system analysis and modelling 
[BBM02]. To this end, we have developed a methodology and a prototype tool, 
called Cow_Suite, for COWtest pluS UIT Environment. As the name implies, the 
methodology implemented by Cow_Suite combines two original components: a 
method for deriving the test cases, called UIT (Use Interaction Test) [BB00], and a 
strategy for test prioritisation and selection, called Cowtest (Cost Weighted Test 
Strategy) [BBM01]. These two components work in agreement, as Cowtest helps 
decide which and how many test cases should be planned from the universe of test 
cases that UIT could derive for the system under consideration. UIT automatically 
generates test suites for the high-level test stages, encompassing system and 
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integration testing at various levels. Each generated test suite focuses on a functional 
portion of the system, as interactively selected by the tester on a structure of the 
suitable UML diagrams.  

Thus Cow_Suite takes different position from other approaches, and proposes a 
pragmatic way of conceiving UML-based testing. This position of Cow_Suite can be 
summarised by its features of usability, timeliness, incrementality and scale, which 
we have pursued in an organic manner since the very inception of the approach. We 
explain one by one the meaning of these four features: 
• Usability: where other methods require to augment the UML specifications with 

specific annotations to facilitate the test derivation, or to translate the UML 
diagrams into an intermediate notation that the methods can process (see next 
section), the leading principle of the Cow_Suite approach is to use exactly the 
same UML diagrams developed for analysis and design for test planning, without 
requiring any additional formalism or ad-hoc effort specifically for testing 
purposes. For us usability means that it is the test methodology that, as far as 
possible, adapts itself to the modelling notations and procedures in use, and not 
vice versa; 

• Timeliness: according to the good software engineering principle that test 
planning should start as early as possible in the development cycle, a restricted 
set of minimal preconditions is assumed in order to start applying Cow_Suite (see 
Section 5.3.1). Typically, in the early design phases not all relevant scenarios are 
yet specified and the UML diagrams are defined at a high abstraction level, with 
several of them sketchy yet. While other methods require a complete and quite 
detailed set of UML diagrams, Cow_Suite can already begin outlining a test plan 
even at these early stages. Of course, the plan will be as abstract as the processed 
diagrams and is progressively refined as the diagrams are enriched with more 
information (see also the incrementality feature below); 

• Incrementality: Cow_Suite was conceived for system and integration testing, 
(Chapter 2), which are typically conducted in an incremental fashion, considering 
progressively larger parts of the system and addressing, at each incremental step, 
the functionalities and the interactions that are relevant at the level considered. In 
Cow_Suite, the tester interacts with the tool in order to determine the integration 
stage for which the test suite should be derived (or, which elements of the UML 
model should be tested). Then, taking as a reference the corresponding UML 
diagrams, the UIT method derives the test cases at a specification granularity 
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corresponding to the degree of detail at which the considered diagrams are 
modelled. We are not aware of other UML-based test methods explicitly 
addressing incremental testing 

• Scale : Cow_Suite trades thoroughness for comprehensiveness: as we intend to 
address UML-based testing of real-world systems in a practical, efficient way, we 
provided the capability to manage big test suites, keeping their sizes and 
functional coverage under control, via the Cowtest component. Other authors 
have proposed thorough and meticulous algorithms for deriving detailed test 
cases (see next the section), but often these methods either cannot scale up to 
handle the many big UML diagrams that are needed to model huge, complex 
systems, or would result in an unfeasibly large set of test cases. In contrast, the 
combined usage of Cowtest and UIT permits to derive a feasible number of test 
cases while keeping the coverage of functional areas as wide as possible 

5.2 UML Testing: an Overview of the Literature 
Even though UML is widely employed in industry and research, very little of the 

literature so far has addressed its use in the testing phases. In [WI99] the author 
brought up several possible issues that should be solved for effectively applying 
UML for testing purpose such as lack of detail and features of the UML models 
developed during the design and implementation phase. In particular in [EW03], the 
authors focus attention on the improvements of the UML requirement models to be 
used for testing purposes. We provide here an overview of the literature, presenting 
the solutions derived both from the academic and commercial environment 
(respectively Section 5.2.1 and 5.2.2), with the aim of placing the Cow_Suite tool in 
this context.  

5.2.1 Academic Response  
In this section we briefly present the approaches and tools available in the 

research area for the UML testing. In particular we differentiate them into two 
groups: those which require translation of the UML diagrams into an intermediate 
formal description (Group A) and those which requires annotation of the UML 
diagram with further (formal) information (GROUP B).  

As stated in the previous section Cow_Suite differentiates both types of approach, 
because it does not require any additional formalism or ad-hoc effort specifically for 
testing purposes.  



133 5. An Automated Approach to UML-Based Testing 

 

5.2.1.1 GROUP A 

• UMLAUT (Unified Modelling Language All pUrposes Transformer) [JGP98]   
[UMLA]: it derives tests by translating the UML diagrams into an intermediate 
formal description, which can be processed by tools already constructed for 
different methodologies and adapted to the UML specifications. In particular 
UMLAUT transforms the UML representation of the system into a form suitable 
for validation within their VALOODS framework (VALidation of Object 
Oriented Distributed Software), which comprises a validation engine that will 
exercise the actual validation.  

• Offutt and Abdurazik approach [OA99]: in this specific case the UML State 
Diagrams are translated into formal SRC specifications, from which input data 
for unit testing are automatically generated The same authors have presented in 
[OA00] a model for performing static analysis and generating tests inputs from a 
formal design description of collaboration diagrams specifications. The paper 
novelty was that tests could be generated automatically from the software design, 
which is also the leading criterion of the Cow_Suite tool, rather than the code or 
the specifications. Moreover the authors defined both static and dynamic testing 
criteria of specification-level and instance-level collaboration diagrams. These 
criteria allowed formal integration tests to be based on high-level design 
notations. 

• Liuying and Zhichang approach [LZ99]: the authors propose deriving test cases 
from UML Statecharts, exploiting a formal semantic constructed for UML 
Statecharts. The method presented can automatically generate and select test 
cases from UML Statecharts in the context of object orientation, which will 
detect errors early in order to improve software quality. It is based on the Wp-
method [FBK91], which deals with hierarchy and concurrency in structural 
context. 

• Kim et al. approach [KHC99]: the author discusses the application of UML 
state diagram for class testing. To this purpose a set of coverage criteria is 
proposed based on control and data flow in UML state diagrams and the 
generation of test cases satisfying these criteria from UML state diagrams is 
shown. In particular they propose a transformation method from state diagram 
into extended finite state machine and flow graph. The transformation consists of 
flattering the hierarchical and concurrent structure of states and eliminating 
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broadcast communications, while preserving both control and data flow in the 
UML state diagram 

• Tsai et al. approach [TSP99]. This approach is focused on class testing. The 
method utilises state machines in order to produce threaded multi-way trees, 
which are referred to as inspection trees. Inspection trees can be used to generate 
test cases and parse test results files. This allows the authors to determine 
whether the classes under test contain errors. The algorithms for the creation of 
inspection trees and the examination of the test results file using an inspection 
tree are described. 

• SCENT (SCENario-based validation and Test of software) [RG00]. This is a 
method supporting requirements elicitation, analysis and definition by creating 
scenarios in a structured way, validating the scenarios with the customer/user and 
formalizing them into statecharts. From the statecharts, test cases, specifically 
designed for integration and system testing, are derived in a systematic manner 
by covering every transition. 

• Mayrhauser et al. approach [MFS00]: The authors describe an approach to 
black-box test-generation in which an AI (artificial intelligence) planner is used 
to generate test cases from UML Class Diagrams. In particular these diagrams are 
used to derive test objectives and a domain theory which are then transformed to 
planner representations and given as input to the planner. The planner uses the 
problem description to generate a test suite that satisfies the UML-derived test 
objectives.  

• Graubmann and Rudolph [GR00] the authors show that the UML-Sequence 
Diagrams can be seen as an object-oriented variant of the ITU-T standard 
language Message Sequence Chart (MSC) which is very popular mainly in the 
telecommunications area. Therefore, they include the MSC inline expressions 
and High Level MSC (HMSC) into Sequence Diagrams. In this approach the 
High Level MSC are used for formalizing and structuring the construction of 
scenarios for use cases in the form of HyperMSC, and then also employed as a 
basis for the specification of test cases.  

• Chevalley and Thévenod-Fosse approach [CT01]: the authors proposed a 
probabilistic method, called statistical functional testing, for the generation of test 
cases from UML state diagrams, using transition coverage as testing criterion. In 
particular the emphasis is placed on defining an automatic way to produce both 
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the input values and the expected outputs. The technique is automated with the 
aid of the Rational Software Corporation’s Rose RealTime tool [RSC]. 

• Antoniol et al. approach [ABP02]. This paper is focused on state-based class 
testing. The authors, considering the derivation of test sequences by covering all 
round-trip paths [BI99] in a finite state machine (FSMs), investigate this strategy 
when used in the context of UML statecharts. In particular, based on a set of 
mutation operators proposed for object-oriented code, the authors seed a 
significant number of faults in an implementation of a specific container class 
and investigate on its effectiveness in detecting faults 

• Harel and Marelly approach [HM03]. The authors described a powerful 
methodology for scenario-based speci?cation of reactive systems. The approach 
is supported and illustrated by a tool (a play-engine). As the behaviour is played 
in, the play-engine automatically generates a formal version in an extended 
version of the language of live sequence charts (LSCs). As they are played out, it 
causes the application to react according to the speci?cation. In particular the 
Play-in is a user-friendly high-level way of specifying behaviour while the play-
out is way of working with a fully operational system directly from its inter-
object requirements. This approach can be applied to many stages of system 
development, including requirement engineering, speci?cation, testing, analysis 
and implementation. 

5.2.1.2 GROUP B 

• Hartmann et al. approach [HIM00]. This is a Siemens Corporate Research 
approach where the developers first define the dynamic behaviour of each system 
component using Statecharts; the interactions between components are then 
specified by annotating the Statecharts. Test cases are then derived from these 
annotated Statecharts using a test generation engine, and executed with the help 
of a test execution tool. 

• TOTEM Testing Object-orienTed systems with the unified Modelling language) 
approach [BL01]. It supports the derivation of functional system test 
requirements, which are then used to then to derive test cases, test oracles and 
test drivers. The approach is mainly based on the use case sequences and uses the 
sequence or collaboration diagrams associated to each use case, transforming 
them into regular expressions, and the class diagram. In this process class 
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invariants and a detailed formal description of UML as well as a rigorous use of 
OCL notation are required.  

• SCENTOR [WM01]. This is a research prototype aimed at supporting the 
generation of scenario-based testing using Junit as a basis. SCENTOR assumes a 
software engineering approach where lightweight UML modelling is part of the 
design process. Tests generated by SCENTOR are based on sequence diagrams 
contained within the UML model of the system. In particular this tool maintains 
the Extreme Programming focus on the production of source code. One of the 
purposes of SCENTOR, like Cow_Suite, is to reduce the required formal 
descriptions in the development process.  

• Latella and Massink approach [LM01] the authors propose a formal testing 
framework for a behavioural subset of UML Statechart Diagrams (UMLSDs). In 
particular they define a new formal operational semantics and some proper 
testing pre-orders and equivalences which allow one to equate/distinguish 
systems on the basis of their interaction with the surrounding environment, 
abstracting from their internal structure. The purpose is to provide a way for 
effective automatic verification of testing equivalence of the statecharts, based on 
existing techniques and tools. 

• AGEDIS: Automated Generation and Execution of Test Suites for DIstributed 
Component-based Software [AGE02] was developed in European project 
managed and coordinated by the IBM Israel Haifa Research Laboratory. Like 
Cow_Suite AGEDIS purposes are the automation of software testing, improving 
software quality, and reducing of the expense of the testing phase. In particular, 
for tests generation and execution it is firstly necessary to model the application 
under test in UML by the support of the tool Objecteering UML editor [OBJ] 
together with the AML (AGEDIS Modelling Language) profile for that tool. 
Then, annotate the model with further testing information, such as the coverage 
criteria, specific test purposes, and testing constraints. 

• Riebisch et al. approach [RPG02]: The authors’ scenarios and use cases, 
enriched by detailed behavioural information, for statistical test case generation. 
In particular they introduce an approach for generating system-level test cases 
based on use case models and refined by state diagrams. These models are then 
transformed into usage models to describe both system behaviour and usage. The 
method is supported by a XML-based tool for model transformation. 
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• Pickin et al. approach [PJT02] the authors investigate the use of formal 
validation in a UML-based development process. They present a method and a 
tool for automated synthesis of test cases from generic test scenarios and a design 
model of the application. The underlying “on the fly” test synthesis algorithms 
are based on the input/output labelled transition formalism. 

• SeDiTeC [FL02]: this tool uses UML sequence diagrams, that are complemented 
by test case data sets consisting of parameters and return values for the method 
calls, as test specification. SeDiTeC supports specification of several test case 
data sets for each sequence diagram and automatically generates test stub for the 
classes and methods whose behaviour is specified in the sequence diagrams.  

5.2.2 Industrial Response 
We report here two commercial tools applicable to the UML documentation for 

different testing purposes. They range over many fields and are not specifically 
developed for integration testing.  
• The Rational tools [RSC]. The Rational Software Corporations provides various 

testing products which allow testers and developers to create robust software for 
a wide range of industries and platforms and enable them, by the use of 
automation and good practices. To create high quality software. One of them is 
Rational Suite® TestStudio® which automates functional, regression, unit, and 
performance testing and provides a seamless testing process, defect and change 
tracking, runtime analysis, software configuration ma nagement, requirements 
management and test management.  

• Analyst Pro - Powerful UML Tool [ANA]. This is a tool for specification, 
analysis, design and testing of systems. Analyst Pro allows both specification of 
UML diagram as well as storing diagrams created with other tools. The test cases 
are generated from use cases and eventually update in case of changes in use case 
during the design. 

5.3 Cow_Suite Methodology 
The Cow_Suite approach consists of two components, working in a combined 

way: the Cowtest strategy, and the UIT method that will be described respectively in 
Sections 5.4 and 5.5 Here we present the minimal necessary requirements for 
Cow_Suite application and general schema of Cow_Suite utilization (Sec. 5.3.2), 
which shows how the two components, Cowtest and UIT have been integrated.  
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5.3.1 Prerequisites for Applying Cow_Suite 
The leading criterion of Cow_Suite is the use of the same UML diagrams 

developed during specification and design, without imposing on the UML designers 
any additional formalism, or ad-hoc effort. The approach can be used in all the 
phases of the software development process, even though some diagrams have yet to 
be completed or refined. Of course, like any other test strategy, Cow_Suite needs to 
refer to a documented and systematic design process and for this reason we set some 
minimal requirements. However, they are very basic requirements, in no way test-
specific: they establish a minimum discipline in design documentation that should be 
enforced in any standard software engineering process, and not only for the sake of 
testers.  

Depending on their granularity, first we depict the more general prerequisites and 
then those strictly related to the development on UML documentation. In particular 
the latter are mainly inspired by the best practices and guidelines of the RUP process 
development [RUP, KR00]. 

General Requirements:  
1. Cow_Suite is mainly based on the analysis of the Use Cases (UCs) and Sequence 

Diagrams 1 (SDs). In particular for organizing the UML element in a sort of 
hierarchy it is necessary to explicitly define associations and relations among the 
developed UCs, and between Actors and UCs, such as, for example, “uses” or 
“generalization” relationships. 

2. It is important to keep track of how a UC is refined in the low-level design; this 
means specifying how a high-level UC, i.e., system functionality, is realized 
within the packages of the design model. 

3. As the UIT method is based on an analysis of the SDs, the description of relevant 
scenarios are of course essential. 
However, in early design phases, it is plausible that the UCs are defined at a high 

level, and many of them have to be completed; similarly not all relevant scenarios are 
elicited or documented. The Cow_Suite approach can be also useful under these 
conditions, because it can highlight points of weakness in the reference 
documentation. Specifically, it provides a picture of the project level of completeness 
and prompts the user for the revision or the completion of the unfinished diagrams.  

                                                 
1 Collaboration Diagrams are also usable because, for our purposes, they contain the same information 
of Sequence Diagrams. Nevertheless, we only refer here to SDs analysis.  
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Detailed Requirements: 
1. The design elements, such as Actors, UCs, SDs, CDs, defined during the 

requirement phases, and represented in the Use Case View, should not be 
designed alone, but in relation to other elements of the same view, for example 
by means of associations or relations. 

2. Every UC defined in the Use Case View (high level UC) (Chapter 3), must have 
a corresponding UC in the Logical View (Chapter 3), stereotyped as <<use case 
realization>> with a dependency (stereotyped «realize») on the Use Case. This 
represents the refinement of the high-level UC in the lower-level design 
diagrams. SDs or CDs should be used for this purpose.  

3. Every UC stereotyped as <<use case realization>> must be collected, in the 
Logical View, in a package called “Use Case Realizations”. This in turn should 
contain a Class Diagram called “Traceability” in which the associations between 
the UCs and their realizations are defined. Referring to RUP the separation from 
the UC and its realization is necessary in order to allow the changes of the use 
case implementation without affecting the baseline use case.  

4. Every Use Case Realization should contain references to the package/s that 
represent the implementation of the relative UC (referring to RUP the packages 
of the Analysis Model or the Design model). We suggest collecting them into a 
package called “Design Link” package, as will be explained in detail in Section 
5.4.1.2. 

5.3.2 Cow_Suite Usage  
The application of Cow_Suite begins early in advance from the code definition 

from the analysis and design phases, and proceeds in parallel with them by analysing 
the UML project description for the derivation of the test cases. In this way, as the 
design evolves, a more refined and complete test plan is automatically derived. In 
this section we briefly present the steps leading from analysis of the UML 
description to test cases derivation. In particular we report in Figure 1 an Activity 
Diagram describing the actions required for the application of the Cow_Suite tool. 
This diagram is a sort of roadmap for following the application of the tool. The 
details of the various steps will be presented in the different sections.  

In the figure the different colours of the activities show the separation between 
the test strategy (Cowtest) and the method used for deriving the test cases (UIT): 
respectively from Activity 0 to Activity 8 and from Activity 9 to Activity 12.  
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Figure 1  The Activity Diagram of the Cow_Suite usage 

As shown in the diagram the activities from 0 to 2 focus on the acquisition of the 
UML project specification and on the organization of the design elements in a well-
defined structure. This will be the basis on which the Cowtest strategy relies. The 
activities are completely automated by the Cow_Suite tool, which uses specific 
procedures and algorithms for the structure derivation (See Sec. 5.4.1.3).  

From Activity 3 to Activity 9 user interaction is required both for assigning 
several specific parameters values and selecting the testing strategy to be applied. 
The Cowtest strategy can be applied into two different conditions: either the testing 
must respect a certain resource investment, which we translate in practice into fixing 
a number of test cases to be executed; or the testing has the purpose of covering a 
fixed percentage of system functionalities and therefore the test cases must be 
concentrated on them (See Sec. 5.4.3) 

The UIT methodology is then applied for deriving the test case frameworks 
(Activity 8 and 9) (See Sec. 5.5). In particular, by using the information provided by 
the user the final test specifications, called Test procedures, are derived (Activities 
10, 11 and 12). 

As shown by the activity diagram, every step can be repeated several times 
during project development and consequently the final test procedures can be 
specified at different degrees of detail. Thus the proposed stepwise methodology can 
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be an effective support for test scheduling and planning which proceeds along with 
project development. 

5.4 The Cowtest Strategy 
In the following subsections we present a stepwise description Cowtest (Cost 

Weighted Test Strategy) which is a practical aid to managers for test planning. In 
particular, we distinguish two different test planning schemes: testing must respect a 
certain resource investment, which we translate in practice into fixing the number of 
test cases; or the test cases must cover a fixed percentage of functionalities. 
Accordingly, the Cowtest strategy can implement two approaches: a fixed number of 
tests or fixed functional coverage. The choice between either of the two is performed 
in Section 5.4.3 while in the next section the procedure adopted for deriving the basic 
structure on which the strategy relies is described. 

5.4.1 Deriving The Basic Structure  
A UML design consists of several diagrams containing various model elements, 

and forming the different views of the system. In this section we explain the 
procedure applied for organizing the model’s elements into a defined structure. In 
particular the analysis starts from the diagrams collected in the Use Case View, 
considering in particular their mutual relationships, and proceeds with those of the 
Logical View. Referring to the activity diagram in Figure 1 in this section we 
describe the activities 0, 1 and 2.  

5.4.1.1 Use Case View Analysis 

As described in Section 3.1.2.1 the Use Case View is the main representation of 
the system, even if the coarser in terms of architectural description. Its purpose is the 
depiction of functionalities that the system must perform and the explanation of the 
interactions between the system and the external world. We begin the analysis of the 
Use Case View from the main Use Case Diagram, considering its design elements 
(Actors, UCs, SDs, CDs), and we proceed in an ordered way, with the other diagrams 
(if any) of this view. The purpose is to collect the design elements and the relations 
between them into two different sets, called “V” and “E”, respectively. In particular 
every UC, Actor, SD or CD, is associated to a different node (also called “vertex”) 
and is name inserted in the set “V”. Contemporarily, every relationship, such as 
generalizes, extends, uses, etc., between the nodes is related to an oriented arc and 
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put in set “E”. The orientation of each arc follows the semantic relationship between 
the elements involved (not the graphic notation). For instance for the generalization 
relationship the arc orientation is from the parent to the child (as reported in the 
UML 1.4 semantics [UML]), i.e. in the opposite direction with respect to the 
associated arrow. 

The nodes and the arcs are then organized into an oriented graph MG (V, E), 
called the Main Graph, representing a global description of the project. It may not 
always be possible to represent the design description with only a single graph. 
When some connections between the different model elements are missing, or there 
are some holes in the design, the vertices of the set V are split up into disjoint subsets 
and the Main Graph is disconnected into more subgraphs.  

5.4.1.2 Logical View Analysis 

As described in Section 3.1.2.2 the Logical View is mainly an architectural view 
of the system which constitutes a basis for its structure and organization. We use its 
information for three different purposes as described below: completing the Main 
Graph, defining a new graph called Design Graph, and introducing a specific 
package, called Design Link. 
• Completing the Main Graph 

Coming back to the test strategy, the information contained in the Logical View 
is used to upgrade and extend those collected during the analysis of the Use Case 
View. Therefore we first consider the Use Case Realizations package (Sec. 5.3.1), 
which may be created in either the Analysis Model or the Design Model or both. In 
particular we focus on the use case realizations belonging to its class diagram 
"Traceabilities" (Sec. 5.3.1), which are strictly related to the UCs of the Use Case 
View. Each of them in fact describes how the UC is realized within the Logical View 
in terms of collaborating objects. In particular, use case realization shows the 
implementation of the UC by creating a group of classes working together to 
describe the behaviour of the UC, and a set of SDs and CDs which explicitly show 
how the interaction among these classes evolves. The focus of the use case 
realization is therefore to separate the specifications of the system at requirements 
level, i.e. UCs of the Use Case View from the architectural design of the system. 

In our test strategy we use these new design elements to augment the set V of the 
Main Graph definition. A different node is associated to each use case realization, or 
every SD/CD linked with it, and inserted in the set V. On the other hand each 
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relationship or <<realize>> dependence, between these design elements is related to 
an arc and inserted in the set E of the Main Graph definition. As for the relationships 
individuated during the Use Case View analysis, the arcs orientation follow the 
semantic relationship between the elements involved.  
• The Design Graph Definition 

The remaining design elements (packages and their components) of the Logical 
View are then analysed from a different perspective, for defining a new oriented 
graph called Design Graph. This is a graph DG(V’, E’) in which the set of vertices 
V’ consists of all the developed packages or components and the set of arcs E’ 
represents the dependences between these elements. The Design Graph is structured 
following a process similar to that used for the Main Graph. The construction starts 
from the Design Model package and proceeds in an ordered way, with the analysis of 
its packages, excluding the previously considered Use Case Realizations. In 
particular the design elements considered during this process are:  
• The packages, each one associated with a different a node of set V’. If a package 

is further subdivided into sub-packages a node for each of them is also inserted in 
V’. Moreover, an oriented arc (from the high level package to the sub-package) is 
inserted in the set E’ for each of the sub-packages.  

• The SDs linked to the packages. A node in V’ is inserted for each of them and an 
arc from the package to the SD is defined in E’. 

• The package diagram, if any representing the dependences among packages. In 
this case a node of the set V’ is associated to each of the involved packages (if 
not jet included in V’) and an oriented arc, representing the dependences between 
the packages, is inserted in the set E’.  

The Design Graph is therefore an oriented graph, showing the hierarchy and the 
dependences between the different packages or SDs. In other words it represents the 
organized structure of the components, sub-system, and other parts that will represent 
the architecture of the system to be developed. However, as already indicated for the 
Main Graph, it is possible that the Design Model analysis produces a disconnected 
Design Graph with sub-graphs or isolated nodes. Once again this is due to the 
incomplete or badly-defined UML project specification and it is not imputable to the 
process used for deriving the graph. 

The Main Graph and the Design Graph differ as to the model elements they 
consider, but especially in the kind of information they collect. The Main Graph is, in 
fact, a high-level representation of the system: the UCs represent the functionalities 
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or the sub-functionalities of the system and the SDs the description of how the UCs 
are realized by the interaction between objects and actors. The Design Graph, 
instead, provides a lower-level description of the system, the packages represent the 
components or sub-components that will be implemented and the graph structure is a 
mapping of the project architecture.  
• Design Link Definition 

It would be extremely important to be able to connect the information contained 
in the Main Graph with those of the Design Graph. Considering a UC of the Use 
Case View representing a high-level requirement, it is generally extremely difficult 
to individuate the components, in the Logical View, that implement it. The problem 
is accentuated in the presence of dependences between packages or between the 
elements inside the packages themselves. In other words, considering the two graphs 
there is a lack of connection between the nodes of the Main Graph associated to the 
UCs and those of the Design Graph representing the packages or components, which 
implement them. It is worth noting that this deficiency is not due to the procedure 
adopted for deriving the two graphs but is imputable to the UML project 
specification. The compact description of the UML design provided by the Main and 
the Design graphs only further emphasizes this lack of information. 

In the literature, this problem has already arisen and some solutions provided. In 
the ICONIX process [RS01], Rosenberg and Scott close the gap between the 
requirement level view and the detailed design view by introducing a new kind of 
diagram, called “Robustness Diagram”. This was originally introduced by Ivar 
Jacobson work’s [JCJ92] which included it in the UML standard as an appendage. It 
was depicted as an UML collaboration diagram, showing both the objects that 
participate in a scenario and how they interact with each other. In short, the 
Robustness Diagram as adopted in ICONIX is instead a class diagram, which shows 
object instances rather than classes and contains three kinds of objects:  

• The boundary objects, which actors use in communicating with the system 
• The entity objects, which are usually objects from the domain model 
• The control objects which “connect” boundary objects and entity objects 
We do not wish to provide a complete description of the Robustness Diagram 

here, preferring to refer the reader to the book of Rosenberg and Scott [RS01] for 
more details. However, inspired by the ICONIX process, we propose a solution 
compatible with the procedures adopted for the Main and Design Graphs derivation. 
Therefore we suggest including in each use case realization a specialized package 
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diagram, called the Design Link, collecting the list of the packages of the Logical 
View that implement the UC associated to the use case realization considered. The 
Design Link is therefore intended to fill the gap between the requirements and the 
detailed design. It represents a useful piece of documentation for both the people 
involved in the design and those who will implement the system. 

When the Design Links are available, during the definition of the Main Graph, a 
node is associated to each of them and inserted in the set V; the same is done for the 
packages referred in the Design Link. Contemporarily the arcs, representing the 
connection between the use case representation and Design Link and the Design Link 
and these subpakages, are inserted in the set E. 

Thus the Design Link and its packages represent the “glue” between the 
information of the Main Graph and the Design Graphs, which associate each 
requirement to the relative system components.  

5.4.1.3 Trees Derivation 

In the previous section we have described the necessary steps for deriving the 
Main and the Design Graph from the analysis of the UML documentation. Here we 
show the procedure adopted for deriving the basic structures of our strategy 
application (Activity 2 of Figure 1). It is worth noting that the analysis of the Design 
Graph is almost the same as those applied to the Main Graph; therefore we describe 
only the latter in detail. We want to isolate each interaction of the external 
environment with the system for the purpose of testing it separately. In the Main 
Graph this is translated into associating to each actor, responsible for one or more 
external stimuli, a different tree, which expresses the way in which the interactions 
are implemented in the system. 

The trees derivation is performed by using a modified version of the Depth-First 
Search algorithm [CLR01] called DFS_Mod showed in Figure 2, which produces a 
forest of several Main Trees. In this section we describe only the main characteristic 
of the algorithm applied for the Main Trees derivation, since that for the Design 
Trees is almost the same. The trees obtained constitute a detailed documentation of 
what has been developed so far, highlighting the structural decomposition of the 
functions. Therefore considering the Main Graph G(V,E), obtained as described in 
the previous section, the DFS_Mod derives trees with these peculiarities: 
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• The root is always represented by an actor, who is a person (or external system) 
interacting directly with the system. The actor requests are therefore the 
functional stimuli for the system. 

• The UCs at the first level represent the requirements, each associated with a 
different functionality that the system must realize. In particular a functionality 
could be in turn specialized or refined into sub-functionalities, which correspond 
to the UCs at the second level in the tree.  

• The SDs /CDs (if any) at the second level of the tree describe the interactions and 
the exchanged messages among the objects belonging to one of the UCs at first 
level.  

• Considering the i-th level of the tree, the UCs represent the description or the 
realization the sub-functionalities at upper level and the SDs/CDs the description 
of the objects’ interaction of the UCs at (i-1)-th level.  

• Some parts of the tree are opportunely replicated or marked: they belong to other 
trees or to repeated nodes and are signals of the presence in the Main Graph of 
cycles or of elements reused in more diagrams.  
The trees derivation can also be applied in the anomalous situation in which the 

Main Graph is not connected. In this case the DFS_Mod algorithm produces a set of 
“anomalous trees” which can for instance either be represented as a single node 
(model element), or as a tree rooted in a UC instead of an actor. These trees, 
classified as “Not Linked”, are not used in the strategy application. In Figure 6 we 
show a Main Tree, the Design Tree and the set of Not Linked elements derived by 
applying the Cow_Suite tool to a case study.  

The advantages in reorganizing the design element in this hierarchical structure 
are numerous; we list some of them below:  
• Complete view: Each of the derived trees (Main Trees, Design Trees) describes to 

the people involved in the development (specifically the project managers) the 
level reached in the functionality implementation. Considering for instance a 
Main Tree, the paths from a UC to the leaves represent the specification of the 
UC and describe its level of implementation in the design. The SDs encountered 
in each path depict, at different levels of detail, the behaviour of the functionality 
associated to the UC and specify the required interactions among the involved 
design objects. 
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Figure 2 The DFS_Mod Algorithm 

• Incompleteness of the design: The Not Linked elements evidence some 
incompleteness or weakness in the UML design. This could happen either if some 
parts of the UML design are not yet completely developed at the time of the tree 
derivation, or if some relation between the design elements has been forgotten or 
not specified during the analysis or design phase. In both cases, the set of Not 
Linked elements clearly reveals this situation to the people involved in 
development so that they can immediately take proper corrective actions.  

• Estimations for management: One aim is to provide a strategy which can be 
applied at any time during the software development. Thus, if necessary, the 
people involved in development can automatically derive the different trees and 
therefore have a complete vision of what has been developed so far. This could 
be used for a rough estimate of the effort and time required for completing the 
project specification.  

• Organized documentation: The derived trees represent an ordered and organized 
documentation continuously updated with the latest changes and complete in 
every part. 

Let G(V, E) and oriented graph were V is the 
set of vertex and E the set of arcs. 
 
DFS_Mod(G) 
 
1.  For each vertex v∈V[G] 
2.  do color[u]← WHITE 
3.  π[u] ←NIL 
4. For each vertex u ∈Actors[G] 
5.   do DEF-Visit_Mod (u) 
 

% The visit starts only from the actors nodes 
 

6.  For each vertex u ∈V[G]\Actors[G]  
7.  do if color[u]= WHITE 
8.   then DEF-Visit_Mod (u)  

DEF-Visit_Mod (u) 
 
1.Color[u] ← GRAY2.For each v ∈Adj[u] 
3.  If v∈Actor[G] then  
4.  v’←NewActorGeneration(v) 
5.  π[v’] ←u 
 

%The DEF-Visit_Mod ends at this step 
6.  else 
7.  Do if color[v] = WHITE 
8.   then ? [v] ←u 
9.   DFS-Visit_Mod(v) 
10. else  
11.    v’← NewNodeGeneration(v) 
 

12.    π[v’] ←u  
13.    if v∈Predecessors[u,v] then  
 

14.   TreeDuplication [v’,v] 
 

15. color[u] ← BLACK
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5.4.2  Defining a “Testing Profile” 
So far the basic structure on which the Cowtest strategy relies, has been 

automatically defined by the Cow_Suite tool. Now the user must interact with the 
tool to specify the parameters or choices useful to adapt the test strategy and the test 
cases derivation to his/her needs. Referring to Figure 1 in this section we describe 
activities 3-6 which mainly consist of selecting one of the developed trees, assigning 
the weights to its nodes (Sec. 5.4.2.1) and choosing the proper the integration stage 
(Sec. 5.4.2.2). As in the previous section we discuss in detail only the steps for the 
Main Trees because those for the Design Trees are nearly the same. 

5.4.2.1  Assign Weights to the Nodes.  

Generally the various system functionalities do not have the same “importance” 
for overall system performance or dependability, and the testing effort should be 
planned and scheduled accordingly. Different criteria can be adopted in order to 
define what “importance” means for test purposes, e.g., component complexity, or 
usage frequencies (such as in reliability testing [MIO87]). Often, these criteria are 
not documented or even explicitly recognized, but their use is implicitly left to the 
sensibility and expertise of the managers. The basic Cowtest idea is that we ask 
managers to make explicit these criteria, and we provide them with a systematic 
strategy in order to use such information for test planning. 

In particular, for each of the derived (Main) trees, managers are requested to 
annotate the nodes level by level with a value, belonging to the [0,1] interval, 
representing its relative “importance” with respect to the other nodes at the same 
level. This value, called the weight, must be assigned in such a manner that the sum 
of the weights associated to all the children of one node is equal to 1; the more 
critical a node the greater its weight.  

Several criteria for assigning the importance factors could be adopted. Obviously 
this aspect in the proposed approach remains highly subjective, more in the realm of 
expert judgment than mechanisable methods, but here we are not going to provide a 
quick recipe on how numbers should be assigned. We only suggest expressing in 
quantitative terms the intuitions and information about the peculiarity and 
importance of the different part of the system to be developed, considering that such 
weights will correspondingly affect the testing stage. In our intuition, that only 
empirical evidence from the strategy usage history can legitimate, we believe that the 
strategy should be robust enough to moderate deviations.  



149 5. An Automated Approach to UML-Based Testing 

 

However it is worth noting that the process of node annotation implies a 
beneficial side-effect: for assigning the appropriate values, the people involved in 
development are forced to reflect on the relative complexity of each functionality 
with respect to the context in which it is inserted. Consequently, they pay attention to 
the parts where problems could be more critical and become conscious of the 
importance of each node for the system development. 

5.4.2.2  Integration Stage Selection and Weighted Trees Derivation 

The Cowtest, and mainly the UIT method, are specifically developed for 
integration testing; thus before any test strategy, it is necessary to define the 
integration level at which the testing will be performed. Considering the previously 
trees derived, this means deciding which nodes to analyse for testing. Each level in a 
specific tree shows a different degree of detail of the system functionalities 
implementation and consequently a specific level of integration. Thus by excluding 
the root of the tree that for each Main tree is always an Actor node, we introduce the 
concept of an integration stage:  

The first integration stage is represented by the UCs connected to the root node 
and the SDs/CDs (if any), which are the children of that UCs (hence they are at level 
2 of the tree). 

The i-th integration stage is represented by the UCs at the i-th level of the tree 
and every SDs/CDs, children of these nodes, situated at i+1-th level. 

We decided to include the SDs at level i+1 within the i-th integration stage, 
because they represent the interaction between the different components that realize 
the functionalities described in the UCs at i-th level of the tree.  

Before applying any of the proposed test strategies, it is necessary to determine 
the integration stage at which the testing will be performed on the selected tree. 
Fixing the integration stage therefore means deciding which kind of information 
(nodes) to consider for deriving the test cases. Consequently the node selected will 
be: the nodes belonging to the fixed integration stage plus all nodes at higher levels, 
and in particular the leaves of the latter. 

Having fixed an integration stage, it is now possible to use the weights assigned 
to derive for each node a relative importance factor, called final weight, in terms of 
how risky is that node and how much effort should be put into testing.  

The final weight of every node is then computed as the product of the weights of 
all nodes on the complete path from the root to this node. It is the reference index for 
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choosing which tests to execute as will be described in the next section. Note that the 
sum of the final weights of the leaves is still equal to one. 

In Figure 7 the numbers in square brackets are the final weights computed for the 
Main Tree of Figure 6. 

5.4.3 Cowtesting 
Following the steps described so far the trees’ structure has been defined; for 

each of them a (different) integration stage has been selected and the final weight of 
each node calculated. Now it is necessary to determine test strategy to adopt for test 
case derivation. Referring to Figure 1 in this section we explain activityies7-8 

We consider two different situations: either a certain number of tests is fixed, or 
the percentage of functional coverage is chosen as a stopping rule. The first is the 
case in which a certain test budget is available, which we translate in practical terms 
as a fixed number of test cases. In such a case, Cow_Suite allows us to derive the 
most suitable distribution of the available test cases among the functionalities 
developed. The second situation considered occurs when a certain percentage of 
functionalities must be covered for testing purposes. In this case using the tool, it is 
possible to determine by which functionalities are to be covered and the minimum 
number of test cases to execute. In both circumstances, an entire collection of test 
cases is automatically derived from each SD/CD by applying the UIT methodology 
as explained in Section 5.5. Here we present the strategy used for test selection and 
prioritisation in the two situations, respectively. 

Similarly to the previous section we discuss only the procedural steps adopted for 
the Main Trees because the main difference with respect to the Design Trees is in the 
typology of the obtained test cases. Considering the Main trees, the test cases will be 
specifically designed for system or high-level subsystem integration testing 
(occasionally even for component testing). Those obtained by the Design Trees will 
be suitable for the low-level subsystem and component integration testing (rarely for 
unit testing). Therefore the test cases will reflect the degree of detail of the 
information collected in the different trees.  
• Cowtest_ing with fixed number of tests 

If a number NT of test cases is fixed (or, more plausibly, only a test budget up to 
NT tests can be afforded), our strategy can be used to select NT test cases out of the 
many test cases that could be conceived. In fact, using the final weight, called nw, 
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associated to each SD, the number nt of tests to be selected can be easily derived as: 

 5.0* += NTnwnt . 
Clearly, a prediction of the number of test cases is just one half of the task. To 

make a more practical prediction in terms of man/hours, or required budget for 
testing, it would be necessary to estimate the cost of the various test cases, which is 
clearly not inconsiderable. 
• Cowtest_ing with fixed functional coverage 

Let us now consider the alternative case in which a certain percentage of 
functional test coverage (e.g. 80%) is established as an exit criterion for testing. In 
this case Cowtest can drive test case selection, by highlighting the most critical 
system functionalities and properly distributing the test cases.  

For each SD representing a leaf at the chosen integration stage, its final weight, 
nw, is calculated as above. Then considering the fixed coverage C, the selection of 
the functional test cases to be run can be derived ordering in a decreasing manner the 
nw*100 values and adding them together, starting from the heaviest ones, until C is 
reached. 

Moreover using the final weights of the selected leaves, normalized so that their 
sum is still equal to 1, it is also possible to derive the minimum number of test cases 
required to reach the fixed coverage. 

Considering that each test case required a certain amount of time, t, to be 
executed, this last feature was particularly useful in the early stages of the process 
development when Cow_Suite was applied in combination of the Propean approach, 
(Chapter 4) to estimate the overall duration of the testing phase.  

5.5 Use Interaction Test 
UIT, largely inspired by the Category Partition method briefly described in 

Section 5.5.1, was originally conceived for integration testing in order to 
systematically test the interactions among the objects, or object groups, involved in a 
SD/CD [BB00]. Within the Cow_Suite approach, we have integrated a modified 
version of the UIT method (for clarity referred to as UIT_sd), by which test 
derivation was carried out once for each SD/CD as a whole and not separately 
considering the objects involved. In this section, we only concentrate on the UIT_sd 
methodology, referring to Appendix B for mode details on the original UIT. 
However, before presenting it some definitions are necessary. Inspired by the RUP 
process [RUP] we distinguish between Test Cases and Test Procedures.  
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• A Test Case is the set of actions performed to test a possible objects interaction, 
with associated test inputs and execution conditions.  

• A Test Procedure is a set of detailed instructions for setting up, executing, and 
evaluating the results of a given Test Case.  

The final output of the UIT and UIT_sd methodologies, is therefore a set of Test 
Procedures,  derived exclusively by the UML documentation without requiring to 
introduction of additional formalisms. It is worth noting that, in the following 
sections, we detail the Test Case and Test Procedure derivation only in for the SDs 
because the application of the two methodologies for the CDs is nearly the same  

5.5.1 Category Partition Method 
The Category Partition (CP) is a well-known and quite intuitive method proposed 

in the late 1980’s [OB88] to derive functional tests from the specifications written in 
structured, semiformal language.  

CP provides a systematic, formalized approach to partition testing that is one 
standard functional testing methodology. Generally speaking, partition testing is 
based on the simple idea that the input domain is first divided into several 
equivalence classes (also called partitions, although in order to be true partitions 
these should be non-overlapping, which is rarely the case in practice); then one or 
few tests are selected from within each of the identified partitions, as representative 
of the behaviour of the entire class.  

The first step of the CP method is to analyse the functional requirements in order 
to divide the analysed system into functional units that can be tested separately. A 
functional unit can be a high-level function or a procedure of the implemented 
system. For each identified functional unit, the tester identifies the environmental 
conditions (the required system properties for a certain functional unit) and the 
parameters (explicit inputs for the unit) that are relevant for testing purposes: these 
are called the categories. The test cases are then selected by taking the significant 
values of each category, which in CP are called the choices. A complete set of test 
cases is obtained by taking all possible combinations of choices for all the categories. 
To prevent meaningless combinations or pairs of contradictory choices, the 
categories can be annotated with constraints, e.g., in a test case a choice from one 
category cannot occur together with certain choices from other categories. 

The CP method has been implemented by Siemens in the TDE tool, that 
automatically constructs the test cases from the specifications expressed in a 
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dedicated semi-formal specification language, called TSL. The CP method has 
encountered wide interest in the literature, and has inspired the further development 
of a large number of test methodologies, also using formal languages such as Z 
[SP99]. 

5.5.2 UIT_sd 
UIT_sd, similarly to the UIT method, constructs the Test Procedures using solely 

information retrieved from the UML diagrams. UIT_sd is an incremental test 
methodology; it can be used at diverse levels of design refinement, with a direct 
correspondence between the level of detail of the scenario descriptions and the 
expressiveness of the Test Procedures derived. All the SDs relative to a selected 
integration stage constitute the basis for the UIT_sd method. For each selected SD, 
the algorithm for Test Procedures generation is the following: 
1. Define Messages_Sequences. Observing the temporal order of the messages 

along the vertical dimension of the SD, a Messages_Sequence is defined 
considering each message with no predecessor association, plus, if any, all the 
messages belonging to its nested activation bounded from the focus of control 
region [UML]. A Messages_Sequence represents a behaviour to be tested and 
describes the interactions among objects necessary for realizing the 
corresponding functionality.  

2. Analyse possible subcases: the messages involved in a derived 
Messages_Sequence may contain some feasibility conditions (e.g., if/else 
conditions). These conditions are usually described in the message notes or in the 
message specification and are formally expressed using the OCL notation 
[WK99]. If these feasibility conditions exist, a Messages_Sequence is divided 
into subcases, corresponding to the different possible choices. 

3. Identify Settings Categories: for each resulting Messages_Sequence, we define 
the Settings Categories as the values or data structures that can influence its 
execution. In detail, they can be determined: 
• From all the messages involved, by considering their input parameters; 
• From the analysis of possible Class Diagrams to which the messages belong, 

by examining the attributes and data structures that can affect the observed 
interactions. 

4. Determine Choices: for each Settings Category and for each Message belonging 
to a Messages_Sequence, the possible choices are identified as follows: 
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• for the Messages, they represent the list of specific situations, or relevant 
cases in which the messages can occur; 

• for the Settings Categories, they are the set or range of input data that 
parameters or data structures can assume. 

5. Determine Constraints among choices: the values of different choices in a 
Messages_Sequence may turn out to be either meaningless or even contradictory. 
To avoid this, the Category Partition methodology suggests introducing 
constraints among choices. These are specified by assigning to choices certain 
Properties used to check the compatibility with other choices belonging to the 
same Messages_Sequence, and by introducing the IF Selectors, which are 
conjunctions of previously assigned properties. 

6. Derive Test Procedures: a Test Procedure is automatically generated for every 
possible combination of choices, for each category and message involved in a 
Messages_Sequence. For each analysed SD, a document, called the Test Suite, 
collects all the derived meaningful Test Procedures grouped by 
Messages_Sequences.  

Figure 3 Sequence Diagram “Login-Main Flow” from CRS example of Section 5.7.1 
 

 : Student  : MainApplicationForm :    LogonForm  : SecureUser 

if (login  
successful) 

else 

       1. start( ) 1.1. open( ) 

2. enterUserName(uid) 
3. enterPassword(pwd) 

4. loginUser( ) 
4.1. validateuserIDPassword(uid, pwd) 

4.2. setupSecurityContext( ) 

4.3. closeLoginSection( ) 
4.2.1. newUserID( ) 
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Below, we report an example of UIT_sd application to the SD Login-Main 
Flow of Figure 3. Following the sequencing of messages along the vertical axis it is 
possible to initially define (Step1) four Messages_Sequences (M_S) such as:  

 
- M_S1: 1.start() 
   1.1.open() 
- M_S2: 2.enterUserName(String) 
- M_S3: 3.enterPassword(String) 
- M_S4: 4.loginUser(),  
   4.1validateUserIDPassword(String, String),  
    4.2.setupSecurityContext(), 
     4.2.1.newUserID(), 
    4.3.closeLoginSection() 
As described in Step 2, a feasibility condition in messages 4.2 and 4.3 can be 

observed: the value of login successful determines the execution of messages 
4.2.1 or 4.3 so that Messages_Sequence 4 is split into two different subcases: 

- M_S4.1: 4.loginUser(), 
4.1.validateIDPassword(String, String),  

      4.2.setupSecurityContext(), 
4.2.1.newUserID() 

- M_S4.2: 4.loginUser(),  
4.1.validateIDPassword(String, String), 

  4.3.closeLoginSection() 
For each derived Messages_Sequence, the Settings Categories can be identified 

(Step 3). In M_S4.1, for example, the categories are: uid and pwd, representing the 
parameters of the messages involved. Then for each message and for each Settings 
Category it is necessary to determine the Choices(Step 4). Figure 4 shows the 
definition of Choices for M_S4.1 and the Constraints values (Step 5) associated to 
the Choices in square brackets. Finally, as described in Step 6, the relevant Test 
Procedures are generated; the fixed amount of Test Procedures (as imposed by the 
strategy application) is randomly extracted from the potentially derivable ones.  In 
Figure 8 we report, for the SD Login-Main Flow , the Messages_Sequences and 
the Test Procedures as derived by the tool Cow_Suite. A detail of one of the latter is 
shown in Figure 5 . 
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Figure 4 Choices values for Messages_Sequence 4.1  

 

Figure 5 Test Procedure example 

5.6 Cow_Suite Tool  
The Cow_Suite approach can be naturally adopted and automated by industries 

using any UML design tool. We have implemented it in the Cow_Suite tool, in 
particular designed to be compatible with Rational Rose [RRT], one of the most 
widely used commercial tools for UML design. The existing Cow_Suite version 
retrieves the information extracted by Rose from the UML design using the REI 
(Rational Rose Extensibility Interface) libraries. 

   
Choices values for Messages_Sequence  4.1   
Settings Categories:      Messages:    
       ui d           Loginuser()               m.Jackson     access request  of a new user  [Property new]   
            f_smith       access request of a registered user [Property registered]               paul_white     access request of a not allowed user [Property notAllowed]   
             s_71whatson     access request of an expired account user[Property expiredAccount]             …………..   
        pwd           validateuserIDPassword(uid, pwd)               m56jkrm                 access validation  of a new user [IF new ]              annamaria                  access validation of a registered user  (correct uid and pwd) [IF registered]              p71271                 access validation of a registered user  (wrong uid or pwd) [IF registered]             12.2.73                 access validation of a not allowed  user  [IF notAllowed]              ……….                 access validation of an expired account user [IF expiredAccount]   

  
                                     setupSecurityContext()   
                   successful access of a registered user [IF registered]   
                   successful access of a new user [IF new ]   
  
             newUserID()   
                   access of a new user [IF new ]   
  

Test Procedure 
loginUser() 

 access request of a registered user  
validateuserIDPassword(uid, pwd) 

 access validation of a registered user  (correct uid and pwd) 

setupSecurityContext() 

  rID() 

  access of a new user 
uid 
 f_smith 
pwd 
 m56jkrm 
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The Cow_Suite tool consists of three working windows: Cowtest, UIT and Test 
Specification, implementing respectively the Cowtest approach, the methodology 
UIT_sd and the Test Procedures generation. 

 
Figure 6  Main Cow_Suite tool window with Main Trees, Design Trees and Not Linked 

elements 

The execution starts by analysing the Rose .mdl file (the internal representation of 
the parsed UML diagrams) and proceeds with the construction of the Main Trees and 
the Design Tree. Figure 6 shows a representation of the Main Trees, the Design Tree 
and the list of “Not linked” elements 2. Observing this figure, we notice that , as the 
design evolves, the tool continuously provides a complete overview of the 
specification status of the diverse system functionalities.  

Considering every Main Tree, the tool, by default, distributes the weights in a 
uniform way (Sec. 5.4.2.1) among the nodes at the same level of integration. 
However the user can always modify any of the assigned weights, and the values of 
the other nodes are automatically normalized. Following the step described in Sec. 
                                                 
2 This figure, likes the others in this section, refers to the case study that will be presented in the next 
section 
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5.4.2.2, the user selects an integration level on a Main Tree and directly chooses the 
test strategy to use in a dialog window. For each selected integration stage, the tool 
directly derives a weighted subtree according to the chosen test criterion. In Figure 7, 
an example of the UIT Tree is reported. In particular the SD nodes keep track of the 
number of Test Procedures that must be developed according to the test strategy 
selected. In Figure 7, the left window shows the selected subtree, while, on the top 
right, all the SDs are collected together. In the bottom right window only the user 
selected SDs are listed. 

 

Figure 7  UIT Window with the derived UIT Tree, the set all SDs found and the selected 
SDs. 

Then, for each selected SDs, the Cow_Suite tool automatically constructs the 
Messages_Sequences applying UIT_sd. On the left Figure 8 shows an example of a  
list of Messages_Sequences. Each Messages_Sequence contains the lists of all 
Messages and the Settings Categories involved plus its feasibility condition (where 
existing).  

After Messages_Sequences derivation, the user, using several dialogue windows, 
can interact with the tool for inserting the Choices values, after which the Test 
Procedures are automatically derived. As explained in Section 5.5.2, the tool 
automatically excludes the combinations of parameters that result contradictory or 
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meaningless. On the right Figure 8 shows some of the final resulting Test 
Procedures. 

So far the Test Suite document is a text file document, but the Test Procedures 
final format can be easily adapted to become the input format of a particular Test 
Driver. In this regard, we remark that the Cow-Suite tool does not execute the 
derived Test Procedures: for this purpose Cow_Suite should interact with a test 
driver, to which the derived tests should be passed to be automatically launched. 
 

 
Figure 8  Messages_Sequences, Choices and Test Procedures for the SD Login-Main Flow 

5.7 Applying Cow_Suite to Course Registration System  
In this section we present the application of the Cow_Suite methodology to a case 

study, the Course Registration System [CRS]. In particular we discuss the Cowtest 
application and the integration with this strategy with the UIT methodology. 

5.7.1 Course Registration System 
The Course Registration System (CRS) is a fictional project to develop an on-line 

course registration system for Wylie College, and is well-known in the UML 
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literature [CRS]. The project is intended to replace the existing procedure for courses 
registration, which is based mainly on the personal interaction of the registrar with 
the students and professors and only support access through the clerk in the 
Registration Office. The new system will therefore enable professors and students to 
access the system using PCs connected to the Wylie College computer network and 
by any personal computer connected via the Internet.  

The main problem with the existing system was the limited flexibility in the 
procedure followed by students for registering to the courses. They had to complete a 
course registration form and submit it to the registrar, who took up to 2 weeks just to 
examine the form and another week to send the confirmation back to the students. 
Instead, with the new system the CRS users, students, professors and a registrar can 
access the system via a login function through PC clients and quickly find the 
required information like the course availability and assignment. Briefly the main 
requirements for the new system will be: 

• A student can either register for courses belonging to the current semester 
course catalogue or view his/her own data relative to the previous semester.  

• A professor can select the courses he/she wants to teach from the course 
catalogue, also defining the dates and times the specific course will be given, 
and submit the grades.  

• A registrar is in charge of professors and students’ information. He/she 
maintains and verifies the data and course registrations, checking that there 
are enough people per course, and notifies the students in case the required 
courses are cancelled. 

The CRS also interfaces with two existing system: the Billing system, which 
keeps track of each registered student in each course offering that is not cancelled, so 
the students can be billed, and the Course Catalog System that represent the database 
of the course information. 

Typically in real project development not all the system functionalities are 
developed contemporaneously or are specified at the same level of details. This is the 
situation we consider as well. We assume that the software developer concentrates 
first on the realization of the student system interaction, represented by the system 
functionalities called: Login, used by the students to log into Course Registration 
System; View Report Card, that allows the students to consult their report cards for 
the previously completed semester; and finally Register for Courses, that allows the 
students to register to courses in the current semester. In particular the Course 
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Catalog System provides a list of all the course offerings for the current semester, so 
that the students can also modify or delete previous course selections, if the changes 
are made within the add/drop period at the beginning of the semester.  

5.7.2 Cowtest Application 
The Cowtest application begins with the analysis of the UML documentation 

available fro the CRS case study. In particular, as described in Section 5.4.1 the first 
representation of the Main Graph is derived by using the information of the Use Case 
View. We show in Figure 9 the Main Graph obtained. In this example, the UCs are 
quite simple not further refined into sub-UCs, therefore only a level of UCs is 
derived.  

This graph is then integrated, as described in Section 5.4.1.2, with the 
information of Logical View when it is available. In Figure 10 we report the 
upgraded Main Graph in which both the information of the Use Case View and the 
Logical View are integrated. The UCs with a dotted edge represent the use case 
realizations. 

It is worth noting that the CRS is a fairly simple example, which nearly has a 
UML project specification complete in every part. As result the Main Graph obtained 
is connected but generally this is not a typical situation.  

As discussed in Section 5.4.1.2, once the Main and the Design Graphs were 
completed, it was not possible, only using the information of the UML specification, 
to link the data of the former with those of the latter. Specifically, considering for 
instance the Login function of the Main Graph, it was very hard to individuate in the 
Design Graph the packages that realized this functionality. To overcome this 
problem, even if we didn’t know the real association between UCs and packages, we 
tried to derive a probable and sufficiently realistic Design Link at least for the Login 
function by consulting further documentation. The obtained result is shown in Figure 
11. As explained in Section 5.4.1.2 the Design link collects the list of the packages of 
the Logical View that implement the UC associated to the use case realization 
considered.  

The derived graphs are then used for the application of  the DFS_Mod algorithm, 
as described in Section 5.4.1.3, to obtain the Main Trees and the Design Trees. To 
this purpose, considering the Main Graph shown in Figure 10, we report in Figure 6 
the structure of the Main Tree rooted at the actor Student. This tree is only focused 
on the interaction of the system with this actor, excluding all the other system 
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functionalities not directly involved, because the purpose is to test this collaboration 
separately. 

As shown by the figure the tree presents some marked parts due to the presence 
in the Main Graph of nodes connected to more than one design elements: For 
instance the UC node Login at first level is filled (and labelled with a “R” not 
visible in the figure), because it is a multiply used functionality, i.e. more than one 
actor is associated to it, as shown in the Main Graph.  

 

 
Figure 9 The Main Graph after the analysis of the Use Case View Data 
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Sequence Diagram: Close  
Registration / Close Registration -  
Less than 3 students 

Billing System 
(from Actors) 

Maintain Professor Information 
(from Use Cases) 

Maintain Student Information 
(from Use Cases) 

Registrar 
(from Actors) 

Student 
(from Actors) 

Submit Grades 
(from Use Cases) 

Professor 
(from Actors) 

Course Catalog 
(from Actors) 

Select Courses to Teach 
(from Use Cases) 

Sequence Diagram: Close  
Registration / Close Registration -  
Main Flow (close offerings) 

Sequence Diagram: Close Registration /  
Close Registration - Main Flow (bill  
students) 

Sequence Diagram: Login /  
CourseCatalog - getOfferings 

Collaboration Diagram: Login /  
CourseCatalog - getOfferings 

Sequence Diagram: Login / Login  
- Main Flow 

Login 
(from Use Cases) 

Login 
(from Use Case Realizations) 

Close Registration 
(from Use Cases) Close Registration 

(from Use Case Realizations) 

Sequence Diagram: Register for  
Courses /  Register For Courses  
- Main Flow (Part 3 -  
Completion) 

Sequence Diagram: Register for  
Courses / Register For Courses -  
Main Flow (no distribution) 

Sequence Diagram: Register for  
Courses / Register For Courses -  
Main Flow (Part 1 - Set-Up) 

Sequence Diagram: Register  
for Courses / Subscribes and  
Observer 

Sequence Diagram: Register for  
Courses /  Register For Courses -  
Main Flow (Part 2 - Course  
Selection)) 

View Report Card 
(from Use Cases) 

Register for Courses 
(from Use Cases) 

Register for Courses 
(from Use Case Realizations) 

 
Figure 10 Main Graph of the Course Registration System 

Once the Main Trees have been defined it is necessary to assign the importance 
values to each node as described in section 5.4.2. To this purpose, considering the 
CRS case study, we assume, for example, that during its development, the Login 
and Register for Courses must be completely defined and implemented, 
while View Report Card is an already developed functionality. It is important 
to specify that this is just one of the possible cases considered to show a criterion to 
assigning the weights, it is not the real situation encountered during the CRS 
development.  
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Consequently in our example Login and Register for Courses are new 
system functionalities, and therefore we assigned to them a greater weight than that 
associated to the already built View Report Card. In particular Register 
for Courses is more complex, in term of implemented features, than Login, so 
its testing must be more accurate. Based on these considerations we assign the values 
0.50, 0.30, 0.20 to Register for Courses, Login and View Report 
Card, respectively. In Figure 6, the weights assigned to each node are represented 
by the numbers reported in square brackets close to the node name. 

 

 
Figure 11 Design Link Package for the Login function 

Then the nodes at lower levels are considered from time to time and the weights 
assigned. For example, considering Figure 6, for the node labelled “Login” at the 
second level, that is the use case realization of the use case “Login” at level one, 
the weights assignment of its children is: 0.4 to the Login-Main Flow because it 
is the SD representing the main behaviour of the login functionality, 0.3 to the others 
because they represent the minor interactions between the objects involved.  

The weights assignment is then used to derive the final weight of each node after 
the integration stage selection, as described in Section 5.4.2.2. To this purpose we 
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report in Table 1, considering the tree rooted in the Student node of the CRS 
example, the nodes that belonging to the different integration stages and in Table 2 
the corresponding final weights when the 2nd integration stage is selected. In 
particular Table 2 is organized in the following manner: the first and second columns 
hold respectively the integration stage, and the names of all tree leaves considered. 
The third column shows the leaves critical profile, i.e., the importance values of each 
node visualized as the weights in square brackets in Figure 6. For example, the final 
weight of the SD Register For Courses – Main Flow (Part 1 – 
Set-up) is calculated as 0.1 = 0.25*0.8*0.5.  

 
Integration stage Tree nodes 
1st int. stage View Report Card, Login, Register for Courses 
2nd int. stage Login, Login–Main Flow, CourseCatalog–getOffering, CourseCatalog–

getOffering, Course Catalog, Register for Courses, Register For Courses-
Main Flow (Part 3 Completion), Register For Courses-Main Flow (Part1 Set-
Up), Register For Courses-Main Flow (no distribution), Subscriber and 
Observer, Register for Courses-Main Flow (Part 2 Course Selection) 

3rd  int. stage Login–Main Flow, CourseCatalog–getOffering, Register For Courses-Main 
Flow (Part 3 Completion), Register For Courses-Main Flow (Part1 Set-Up), 
Register For Courses-Main Flow (no distribution), Subscriber and Observer, 
Register for Courses-Main Flow (Part 2 Course Selection) 

Table 1 Integration stages  

In Figure 7 we report the final weights of the tree rooted in the Student as derived 
by the Cow_Suite tool. 

For example the assigned number of tests for Register For Courses – 
Main Flow (Part 1 – Set-up) is given by 50= 500*0.1+0.5. 

Instead, taking into account the second test strategy proposed, i.e. Cowtest_ing 
with fixed functional coverage, the final weight of every leaf can be used to select 
among them those on which concentrate the test effort. Referring to the CRS 
example in Table 3we report in details some results obtained considering the second 
integration stage and several coverage degrees.  

The table is organized in the following manner: the first and second columns hold 
respectively the names of all the tree leaves and the their relative weights at the 
second integration stage. The remaining columns are divided into two parts showing, 
respectively, the normalized final weight, nwf, and the minimum number of tests 
with respect to the fixed coverage percentage. 
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Integration 
Stage 

Leaves names Critic
al 
profile 

2nd Stage/NTest 

View Report Card 0.2 0.2 100 
Login 0.3   

1st Stage 

Register for Courses  0.5   
Login 1   
Login–Main Flow 0.4 0.12 60 
CourseCatalog–getOffering 0.3 0.09 45 
CourseCatalog–getOffering 0.3 0.09 45 
Course Catalog 0.2 0.1 50 
Register for Courses 0.8   
Register For Courses-Main Flow (Part 3 Completion) 0.25 0.1 50 
Register For Courses-Main Flow (Part1 Set-Up) 0.25 0.1 50 
Register For Courses-Main Flow (no distribution) 0.15 0.06 30 
Subscriber and Observer 0.1 0.04 20 

2nd Stage 

Register for Courses-Main Flow (Part 2 Course 
Selection) 

0.25 0.1 50 

Table 2  Test cases distribution at different integration stages  

 
Leaves names 2nd  Stage 

weights  
70%coverage  
nwf /NTest 

80%coverage/ 
nwf /NTest  

90%coverage/ 
nwf /Ntest 

100%coverage/ 
nwf /NTest 

View Report Card 0.2 0.27 2 0.2469 2 0.2222 2 0.2 5 
Login–Main Flow 0.12 0.1667 1 0.1481 1 0.1333 1 0.12 3 
Course Catalog 0.1 0.1389 1 0.1235 1 0.1111 1 0.1 2 
Register For 
Courses-Main Flow 
(Part 3 Completion) 

0.1 0.1667 1 0.1235 1 0.1111 1 0.1 2 

Register For 
Courses-Main Flow 
(Part1 Set-Up) 

0.1 0.1389 1 0.1235 1 0.1111 1 0.1 2 

Register for 
Courses-Main Flow 
(Part 2 Course 
Selection) 

0.1 0.1389 1 0.1235 1 0.1111 1 0.1 2 

CourseCatalog–
getOffering 

0.09   0.1111 1 0.1 1 0.09 2 

CourseCatalog–
getOffering 

0.09     0.1 1 0.09 2 

Register For 
Courses-Main Flow 
(no distribution 

0.06       0.06 1 

Subscriber and 
Observer 

0.04       0.04 1 

Table 3 Leaves selection on the base at different values of functional coverage 

In this case considering Table 3, if we wish to cover 80% of the functionalities 
available it is sufficient to include the nodes: View Report Card, Login- Main 
Flow, Course Catalogue–getOffering, Course Catalog, Register for 
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Courses, Register For Course–Main Flow (Part 3-Completion), 
Register For Courses–Main Flow (Part 1 Set-Up), Register For 
Courses–Main Flow (Part 2–Course Selection). The sum of their final 
weights times 100 is equal to 81. Moreover, using the final weights of the selected 
leaves, normalized so that their sum is still equal to 1, it is also possible to derive the 
minimum number of test cases required to reach the fixed coverage. In this case the 
minimum number of test cases is 8, one test per leaf except View Report Card 
which required 2 tests cases. 

5.7.3 Combining UIT_sd and Cowtest 
We do not describe here the Test Cases and Test Procedures derivation by 

applying the UIT_sd methodology, since it has been already described in Section 
5.5.2. For this purpose, some of the Test Procedures derived form SD Login-Main 
Flow  of the tree rooted in the Actor Student, are shown in Figure 8. Here we mainly 
concentrate on explaining the integration of the Cowtest with the UIT methodology 
and for this purpose we slightly modified the UML design of the quite simple CRS 
case study.  

 

 : Any User  : LoginForm

2. // enter user name and password( )

2.1. // validate username and password( )

1. // login user( )

 
Figure 12 SD labelled Login – BasicFlow 

Generally from the UML designs of the real world projects more complex trees 
with a higher number elements can be derived. In these cases the differences between 
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the test cases, derived from the SDs associated to diverse integration stages, become 
more evident with respect to CRS, as well as the relation between integration stage 
and level of integration testing exercised.  

The changes of the UML documentation consist of linking to the UC labelled 
Login of the Use Case View, the high level SD called Login–BasicFlow reported in 
Figure 12. This is a very simple SD, which describes the functionality represented by 
the UC.  

Naturally the addition of this SD modifies the structure of the derived Main 
Trees. Figure 13 shows the changes relative to the tree rooted in the actor Student of 
the CRS. It is beyond the scope of this section to discussion about the new 
assignment of the weights to the nodes; we therefore adopted the uniform 
distribution.  

As discussed in section 5.4.2.2 the selection of an integration stage corresponds 
to determining the amount of information to use for integration testing and hence the 
structure and granularity of the Test Cases derived applying UIT_sd. 

 

 
Figure 13 The tree rooted in the Actor Student modified with the addition of Login-Basic 

Flow 

Specifically, assuming the adoption Cowtest_ing with a fixed number of test 
cases, if in the above tree the first integration stage is selected only the newly added 
SD (Login-BasicFlow) will be considered for the UIT_sd application. Figure 14 
shows the set of derived Test Cases derived applying the Cow_Suite tool. Observing 
their structure, it is evident that the Test Cases only have the purpose of verifying the 
correctness of interactions among the components that will realize the functionality 
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described in the UC Login. The degree of detail is voluntarily high and reflects the 
granularity of information of the selected integration stage.  

 
Sequence Diagram ”Login – Basic Flow” 

 

Test Case 1  
Description: 
Precondition: 
Flow of Event (Messages_Sequence):  
       loginUser 
Categories:      
   Settings Categories:  
               Users DataBase 
   Interactions Categories:  
               LoginUser 
Post Condition: 

Comment: 

 

 

Test Case 2  
Description: 
Precondition: 
Flow of Event(Messages_Sequence):  
       Enter user name and password 
       Validate user name and password 
Categories:      
   Settings Categories:  
               UserNames Database 
               Passwords and User Name Lists 
   Interactions Categories:  
              Enter user name and password 
              Validate user name and password 
Post Condition: 

Comment: 

 

Figure 14 Test Cases derived by the SD Login-Basic Flow  

If instead the second integration stage is selected, assuming again adoption of the 
Cowtest_ing with a fixed number of test cases, the SD Login –Main Flow is also 
selected (Figure 3). It represents the description of all the necessary operations (i.e. 
messages that the different objects exchange with each other) to implement the 
functionality described in the UC Login. In this case Figure 15 shows the set of Test 
Cases derived with the Cow_Suite tool. Comparing them with the Test Cases derived 
from the SD Login–Basic Flow several differences are revealed:  
• The objects involved are detailed at various levels of description. In the SD 

Login – Basic Flow the LoginForm is only the high level description of a system 
component that will be realized by the objects of the SD Login–Basic Flow.  

• The operations in the Test Cases derived from the SD Login–Basic Flow are 
more detailed, focusing on implementation and specific for the integration test at 
low level. 

• In both cases the Test Cases structure depends only on the Messages_Sequences 
individuated in the SDs. Therefore, it is not possible to relate a Test Cases of the 
SD Login – Basic Flow to one of the SD Login – Basic Flow. 
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As revealed by this simple example, the higher the integration stage selected for 
applying the different test strategy the more detailed is the level of integration 
verified by the derived Test Cases. 
 

Sequence Diagram ”Login – Main Flow” 
Test Case 1  
 
Description: 
Precondition: 
Flow of Event 
      start()  
      open()    
Categories:       
  Settings Categories: 
  
 Interactions Categories:  
                 Start() 
                 Open() 
Post Condition: 
Comment : 
 

Test Case 2  
 
Description: 
Precondition: 
Flow of Event:  
      EnterUserName() 
 
Categories:      
   Settings Categories:  
               uid      
   Interactions Categories:  
               EnterUserName 
 
Post Condition: 
Comment: 

Test Case 3  
 
Description: 
Precondition: 
Flow of Event:  
      EnterPassword()  
 
Categories:       
  Settings Categories: 
                 pwd 
 Interactions Categories:  
                 Start() 
                 Open() 
Post Condition: 
Comment: 

Test Case 4.1 
Description: 
Precondition: 
      IF (login successful) 
Flow of Event:  
       loginUser() 
       validateuserIDPassword(uid, pwd) 
       setupSecurityContext() 
       newUserID 
Categories:      
   Settings Categories:  
               uid 
               pwd 
               Passwords and UserNames Database 
   Interactions Categories:  
               LoginUser 
               ValidateuserIDPassword 
               SetupSecurityContext 
               NewUserID 
Post Condition: 

Comment: 

 

Test Case 4.2 
Description: 
Precondition: 
      ELSE 
Flow of Event:  
       loginUser() 
       validateuserIDPassword(uid, pwd) 
        closeLoginSection 
 
Categories:      
   Settings Categories:  
               uid 
               pwd 
               Passwords and UserNames Database 
   Interactions Categories:  
               LoginUser 
               ValidateuserIDPassword 
               CloseLoginSection 
 
Post Condition: 

Comment: 

 

Figure 15 Test Cases derived by the SD Login – Main Flow 
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5.8 Comparing Manual vs. Automated Test Case 
Derivation. 

As observed in the preface of this Chapter, Cow_Suite can be applied during the 
development process either combined with Propean approach (Chapter 4) to derive 
parameters of interest, or in isolation to derive a meaningful Test Plan. In this section 
we focused in the latter aspect, describing the application of Cow_Suite to a real-
world case study provided by Ericsson Lab Italy (ERI) [BIL03]. Using our tool we 
derived a detailed test case plan, called UIT test plan for the Integration Testing of 
some new functionalities to be added to an existing system. The UIT test plan was 
automatically derived outside the production processes, exclusively using the UML 
diagrams developed during the analysis and design phases. The ERI personnel had 
independently derived another test plan (the “official” one), called ERI test plan, for 
the same functionalities. The ERI test plan was developed manually, following 
standard in-house procedures at ERI and was based mainly on the personal expertise 
of the people involved and their knowledge of the system. In the following sections 
we report the description of the case study and two test plans (Sections 5.8.1, 5.8.2, 
5.8.3) and their qualitative and quantitative analysis (Section 5.8.4).  

5.8.1 Case Study 
The case study concerned a project whose aim was to develop an IP Telephony 

system to support GSM communications based on H.323 architecture [H323]. 
Although the system was not wholly under ERI responsibility, a significant number 
of independent subsystems were managed and developed in-house by ERI. The 
subsystems under ERI's control regarded mainly H.323 gatekeeper functions 
implemented by the Sitekeeper and User Agent subsystems. The Figure 16 depicts 
the entire system, together with the subsystems under ERI responsibility SK, UA, 
H.323 proxy and the associated plug-in. 
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Figure 16 Description of the system 
 
Table 4 provides a brief description of some of the system components shown in the 
above figure. 

The specific feature used to compare ERI's manual vs. UIT-based automated test-
case definition was the Basic Routing Enhancements (BRE). 

This feature represents an improvement of the routing functionality in the GSM 
on the Net system, which is a new multimedia system based on IP protocol The 
upgrade mainly regards extension of some tables through the addition of new 
parameters, the implementation of new functionalities for determining the enterprise 
or the User Agent Group associated, giving a certain number.  

As proper implementation of BRE implies modification of the Site Keeper, SK, 
and User Agent, UA, an accurate and specific test plan was needed. 
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Table 4  Description of components  

5.8.2 ERI Test Strategy 
To better illustrate the test strategy adopted by ERI, a brief description of the 

project's scope is in order. The project had to implement eleven features, which after 
careful analysis we discovered to be nearly all independent. Therefore, due to the 
project's short timeframe, a parallel development life cycle was adopted rather than 

BTS   the usual Base Station for GSM radio  
transmission   

A - Bis  
Gateway  
(AGW)   

the component that packs the GSM  
messages into IP packet, to allow   
transport over the IP network   

Terminal  
Agent  
(TA)   

the component that allows all terminals  
H.323 compliant to access the system 
 

 

Access  
Node   

a control node for the GSM terminals. It is  
composed of:   
Radio Network Server (RNS): provides 
the radio network management and the  
traffic functions   
Network Access Controller (NAC): a 
Terminal Agent for the GSM terminals. In  
th e NAC the system provides the protocol  
translation between GSM proprietary  
protocols   

Service  
Node (SN)    

is the main component of the system. The  
SN is composed of:   
User Agent (UA): in the UA are   
implemented all the users system  
functionalities. In particular: User  
Service Agent (SA): in the SA there 
are 

  
the implementations of supplementary  
services, such asVirtual Private Network,  
Calling Line Identity  
Presentation/Restriction, Call Forwarding. 
SiteKeeper (SK): in the SK is :  the interface  
between the SN and the system access   
provider. All terminals (if necessary  
converted to H.323 by an access agent)  
enter  the SN through the SK. The SK  
performs the routing for calls and  
resources management.    
  

Manageme 
nt System   

the component for efficient management  
of the  system   
  

SS7  
Gateway    

the gateway dedicated to P LMN interface 
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an incremental one. Although the features were independent, all components were 
affected by more than one feature. For this reason, the project involved identification 
of specific test strategies for each feature with the aim of covering the feature 
requirements as well as the architecture of the system as a whole. 

Table 5 Description of testing activities  

The test strategy defined by the project comprises nine different testing activities 
as described in Table 5. 

Nevertheless, not all the activities were mandatory; each feature had its own Test 
Strategy defining the test activities to be performed. The purpose of having a specific 

Testing 
Activities 

Characteristics Responsability 

Class Test Executed both in static and dynamic mode Design Team 

Component 
Test WB 

White Box, aiming at testing the interfaces 
among classes, described in a specific Test Plan 

Design Team 

Component 
Test BB 

Black Box, aiming at testing in a simulated 
environment the functions implemented by the 
component and its behaviour, described in a 
specific Test Plan 

Design Team 

Node Test WB White Box, aiming at testing the interfaces 
among components, described in a specific Test 
Plan 

Design Team 

Node Test BB Black Box, aiming at testing in a simulated 
environment the functions implemented by the 
node and its behaviour, described in a specific 
Test Plan 

Design Team 

Feature Test 
Pre-Integration 

Functional test in simulated environment using 
the real code, described in a specific Test Plan. 
The Test Plan is derived from the detailed 
requirements. The main purpose of the 
preintegration is to deliver to the Integration & 
Validation team a feature running and clean 

Design Team 

Feature Test Functional executed in the target environment., 
described in a specific Test Plan. The Test Plan 
is derived both from detailed requirements and 
main requirements 

Integration & 
Validation 
Team  

Regression 
Test 

Mandatory at the end of each feature delivery I&V Team 

Performance 
Test, 
Stability Test, 
Negative Test, 
Overload Test, 
Characteristic 
Test,  
Capacity Test 

Described in a specific Test Plan I&V Team 
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test strategy for each feature was to arrive at the best trade-off between quality and 
time. In particular the BRE test strategy was to perform five different testing 
activities (the last common to all the features): Class Test; Feature Test Pre 
Integration; Feature Test; Regression Test (twice); Performance Test. 

For the illustration purposes, herein we concentrate on the Pre-integration Test 
and present and compare the two different test plans with regard to this aspect of the 
BRE testing. 

5.8.3 Test Plans Description 
In this section we briefly describe the structure of two derived Pre Integration test 

plans. Specifically, in Section 5.8.3.1 we present the “official” test plan, (which we 
refer to as ERI_TP in the following), developed by ERI following standard in-house 
procedures, and in the Section 5.8.3.2, the UIT Test Plan, (henceforth referred to as 
UIT_TP), derived applying the Cow_Suite tool, based exclusively on UML-
diagrams. 

5.8.3.1 ERI Test Plan 

The ERI_TP has been defined specifically for testing the BRE functionalities. 
Essentially, it is a natural language document describing the test cases configuration, 
as well as the test results expected in terms of checking that the BRE requirements 
have been fully covered. In drawing up the ERI_TP, the ERI staff bases their 
decisions solely on their personal knowledge, both for definition of the test cases and 
validation of their accuracy with the respect to the requirements. 

The test plan was obtained wholly independently of the UIT_TP, without 
reference to the UML system description. Moreover, no tool or automatic device was 
applied for deriving the test cases. The test specifications were in fact defined  
“manually” according to the standard in-house procedures at ERI. 

Once the test cases were defined, each test was then assigned to a specific test 
group representing high-level system functionality. The Project Manager uses such 
test groups to check requirement compliance. 

In greater detail, each test case is divided into three separate parts: Description, 
Precondition and Procedure. 
• The Description defines the goal of the test cases. Moreover, it provides a 

description of the environment, the entities involved in the test and the specific 
conditions under which the test should be run.  
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Figure 17 ERI_TP Test case description 

• The Precondition delineates the data structures involved in the test case. In 
particular, the values and the types of information they must contain are listed 
explicitly. Often, the precondition part also provides a natural language 
description of the behaviour that the test case must exhibit, the actions it is to 
perform and the conditions required for test execution. 

• The Procedure part is in turn divided into three sections: Action, Result and 
Comment. The Action consists of a brief description of the steps necessary for 

TEST GROUP 1: CALL ESTABLISHMENT  WITH ENTERPRISE INFORMATION  
This test group aims to verify that the Control Node is able to establish different kinds of  
calls using the Enterprise information.   
  TC 1:  Basic call from internal user to External Network, Enterprise with public numbering  
plan, Enterprise determination based on e164 alias   
  Description   
This test is made to verify  that the typical call case from user to External Network works  
properly using the information of the Enterprise the user belongs to.   
The needed Enterprise determination is performed using the e164 alias in the incoming  
SETUP message.   
  Precondition   
•   The file  MasterRoutes.def  must contain a row looking like this: 

1 (=UA) UAGname 1 (=e164 Route Type) EnterpriseName Digits 0 
An example could be:  1    UAGxxx    1    Ericsson    39067258   0   

•   The Enterprise (in our example “Ericsson”) must be present in the file  Enterprise.def  .  
•   No Number Modification will be configured for the TA the calling user belongs to.  
•   A GW is to be added to the Network Topology; this Access Agent must be associated  

(via a proper Access Group) to a suitable route (let’s make it for example “39068”) and   
to the Enterprise the user belongs to.  The file  MasterRoutes.def   could contain for  
example a row looking like this:   

•   1   Agxxx    1    Ericsson    39068…   
•   Another  GW is to be added to the Network Topology; this Access Agent must be  

associated (vi a a proper Access Group) to the same above route  but to a different  
Enterprise (let’s call it for example “Nokia”).  The file MasterRoutes.def could contain  
for example a row looking like this:   

•   1   Agyyy    1    Nokia    39068…   
  Procedure   
Action:    
Make a ca ll from the user belonging to the first Enterprise (in our example “Ericsson”) to  
the above GW.  The first digits of the dialed number must match the above route (in our  
example a suitable Called Party Number could be “39068xxxx”). 
NB: please notice tha t the originating SETUP message MUST contain in the source address  
an e164 alias matching with the one defined in the table  MasterRoutes.def (in our example  
the alias could be “390672580001”).   
Result:     
The final result is the call termination towards the G W reserved for the Enterprise the user  
belongs to (in our example to the GW in the AG “AGxxx”, not   “AGyyy”).   
Comment:    
Only the GWs reserved for the Enterprise can be used for routing calls. 
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constructing the test case and assigning values to its variables. The Result section 
describes the expected outcomes of the test case. Finally, the Comment section 
may contain some notes or suggestions for proper execution of the test case. 
In Figure 17 one of the ERI_TP developed test cases is reported.  

5.8.3.2 UIT Test Plan 

The UIT_TP is derived by applying the Cow_Suite tool to the UML description 
of the system. In particular, we distinguish two level of detail: the UIT_TP including 
only Test Cases or UIT_TP in which the Test Procedures are specified.  

 
 

 : Terminals  
Termination  : SK_Originating  : UA_Originating 

 : SK_Terminating  : VGW 

1. SETUP(A,B) 
1.1. DetermineEnterprise(A) 
1.2. HRA( ) 

2.1.1. GRA(B, Enterprise) 

2. SETUP(A,B,Enterprise) 
2.1. LRQ(A,B,Enterprise) 

3. LCF() 
3.1. SETUP(A, B, Enterprise) 

3.1.1. LRA(B, Enterprise) 
3.1.2. SETUP(A, B) 

if (GRA  
Successful) 

4. LRJ( ) 
4.1. RELEASE( ) 

else 

 
Figure 18 Sequence Diagram “Call user to External Network” 
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Depending on the degree of detail chosen, some evident differences result, 
regarding both the people involved in test plan specification, and the period of 
software development during which the UIT_TP can be derived.  

Considering the UIT_TP at Test Cases level, it can be derived during the early 
stages of software development, long before the testing phase. Test Cases 
construction does not require any specific knowledge of the system, because it is 
derived automatically from the information in UML diagrams. In Figure 18 and 
Figure 19 respectively we show one of the SDs available and some of the 
individuated Setting and Interaction Categories. These data have been used for 
deriving the Test Cases of Figure 20.  

 

Figure 19 Settings and Interactions Categories Specification for UA_Originating  

As shown by this figure each Test Case contains information useful for 
determining the interactions of the units involved and how to test them. Once 
derived, Test Cases are grouped into Use Case Test Suites (UCTS), which represent 

  Test  Specif icat ion for “UA_Originating”  
  

   Sett ings :           
         A                        E164  phone  number                              e - mail   [ IF  Ericsson Enterprise]       
   

         B                               E164 phone  number    
         Enterprise   
            Ericsson   [ P r operty  Ericsson Enterprise]              Nokia    [ Property  Not 

  (Ericsson Enterprise)]              S iemens    [ Property  Not   (Ericsson Enterprise)]              … … … . .            
         MasterRoute.def          
            array of MasterRoute records  

                      
         Network Topology  f i l es          
   Interactions   :           
         Setup(A,  B,  Enterprise)              call  from a GON user to an external network when      a correct association in MasterRoute.def exists               call  from a GON user to an external network when    

   a MasterRoute.def association does not exist    
         LCF ()    
            call  from a GON user to an external  network when      an association for B exists in MasterRoute.def    
         LRJ()   
            call  from a GON user to an external network when      an ass ociation for B in MasterRoute.def does not     exist  
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the actions necessary in order to check correct performance of the functionality 
described in the UC. Figure 20 shows an example of UCTS corresponding to test 
group 1 of the ERI_TP reported in the Figure 17.  

 

Figure 20 Use Case Test Suite description 

By interacting with the Cow_Suite tool, the test plan derived so far is then 
specified at the Test Procedures level, later in the design development, as described 
in Section 5.5.2. The designer can define the values of the choices and constraints for 

U S E  C A S E  T E S T  S U I T E  1  
S e q u e n c e  D i a g r a m  “ B R E -S t e p 1 :   C a l l  U s e r  t o  E x t e r n a l  N e t w o r k ;  

O r i g i n a t i n g  C a s e / T e r m i n a t i n g  C a s e ”  
T e s t  C a s e  1  
D e s c r i p t i o n :  
P r e c o n d i t i o n :  
F l o w  o f  E v e n t :  
 S E T U P ( A , B ) 
 D e t e r m i n e E n t e r p r i s e ( A )  
 H R A ( )  
C a t e g o r i e s :  
      S e t t i n g s  C a t e g o r i e s :  
 A  
 B  
 M a s t e r R o u t e s . d e f 
 E n t e r p r i s e s . d e f 
 N e t w o r k  T o p o l o g y 
     I n t e r a c t i o n s  C a t e g o r i e s :  
 S E T U P ( . . , . . , . . )   
 D e t e r m i n e E n t e r p r i s e ( . . )  
 H R A ( )  
P o s t  C o n d i t i o n : 
C o m m e n t :  

T e s t  C a s e  2  
D e s c r i p t i o n :  
P r e c o n d i t i o n : 
F l o w  o f  E v e n t : 
 S E T U P ( A ,  B ,  E n t e r p r i s e ) 

L R Q ( A ,  B ,  E n t e r p r i s e ) 
 G R A ( B ,  E n t e r p r i s e )  
C a t e g o r i e s :  
      S e t t i n g s  C a t e g o r i e s :  
 A  
 B  
 E n t e r p r i s e  
 M a s t e r R o u t e s . d e f 
 E n t e r p r i s e s . d e f 
 N e t w o r k  T o p o l o g y  
     I n t e r a c t i o n s  C a t e g o r i e s :  
 S E T U P ( . . , . . , . . )   
 LRQ( . . ,  . . ,  . . . )  
 G R A ( . . ,  … ) 
P o s t  C o n d i t i o n :  
C o m m e n t :  
 

T e s t  C a s e  3 . 1  
D e s c r i p t i o n :  
P r e c o n d i t i o n :  
F l o w  o f  E v e n t :  
 [ i f  ( p r o p e r  E n t e r p r i s e ) ]  

L C F ( )  
 S E T U P ( A , B ,  E n t e r p r i s e )  
 L R A ( B ,  E n t e r p r i s e ) 
 S E T U P ( A , B ) 
C a t e g o r i e s :  
      S e t t i n g s  C a t e g o r i e s :  
 A  
 B  
 E n t e r p r i s e  
 M a s t e r R o u t e s . d e f 
 E n t e r p r i s e s . d e f 
 N e t w o r k  T o p o l o g y 
     In t e rac t i o n s  C a t e g o r i e s :  

L C F ( )  
 S E T U P ( A , B ,  E n t e r p r i s e )  
 L R A ( B ,  E n t e r p r i s e ) 
 S E T U P ( A , B ) 
P o s t  C o n d i t i o n : 
C o m m e n t :  
 

T e s t  C a s e  3 . 2  
D e s c r i p t i o n :  
P r e c o n d i t i o n : 
F l o w  o f  E v e n t : 
 [ e l s e ] 

L R J ( ) 
 R E L E A S E  
C a t e g o r i e s :  
      S e t t i n g s  C a t e g o r i e s :  
 M a s t e r R o u t e s . d e f 
 E n t e r p r i s e s . d e f 
 N e t w o r k  T o p o l o g y  
     I n t e r a c t i o n s  C a t e g o r i e s :  

L R J ( ) 
 R E L E A S E  
P o s t  C o n d i t i o n :  
C o m m e n t :  
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all the Setting and Interaction Categories of the Test Cases, so that the Test 
Procedures, structured as in the Figure 21, can be automatically derived. In this case, 
a good understanding of the system and its details, characteristics and behaviours, is 
clearly required. 

Finally, for each Test Case, a document called Test Case Procedures Set is drawn 
up delineating the set of the meaningful derived Test Procedures.  
 

Figure 21 One of the derived Test Procedures for Test Case 1  

5.8.4 Comparison of Results 
In this section we report the results of the comparison, with respect to both 

contents and development effort, between the two test plans focusing in particular on 
their peculiarities, strengths, and weaknesses It should be stressed that we do not 
evaluate the effectiveness of the two plans in terms of fault detection or time required 
for the real execution of test cases. When this experience was performed the test 
cases of ERI_TP had already been executed by ERI testers during the BRE pre-
Integration testing and this phase closed. Hence we were not able to compare the 
ERI_TP and the UIT_TP on the basis of test results. We report only the pros and 
cons of the Cow_Suite in test generation, proving that it can be considered a valid 
instrument for defining test plans in the industrial environment.  

  Test Procedure  
 
  SETUP(A,B, Enterprise) 
    call from a GON user to an external network when a 
           correct association in MasterRoute.def exists  
  LRQ(A, B, Enterprise) 
    call from a GON user to an external network when a correct 
        association in MasterRoute.def exists 
  GRA(B, Enterprise) 
    call from a GON user to an external network when a correct 
        association in MasterRoute.def exists  
  A 
    e-mail 
  B 
    e164 
  Enterprise 
    Ericsson 
 
  MasterRoutes.def table 
  Network Topology files 
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However, due to the similarity of the tests (as detailed in the previous section) it 
has been possible to determine degree to which the requirements would be covered 
by the execution of the UIT_TP Test Procedures. 

5.8.4.1 Comparison of the Contents of the Test Plans 

In this section we compare the two test plans with regard to the following aspects: 
the degree of requirements coverage, and the expressiveness and the degree of detail 
of test cases derived for the same functionality. 

Considering the requirements coverage, the two test plans achieve quite similar 
results, though some differences deserve note. The ERI_TP is surely the more 
accurate, because its test cases have been specifically constructed to cover all BRE 
requirements. Covering all requirements is assured by the thorough system 
knowledge of those who construct the test plan.  

On the other hand, the degree to which UIT_TP covers the systems requirements 
is strictly linked to the SDs construction and information content. As described in 
Section 5.5.2, the UIT method can derive Test Cases only when well-formed, proper 
SDs have been furnished; the lack of SDs specifications prevents complete 
requirement coverage from being achieved. 

Fortunately the case study analysed here had a quite complete UML system 
description; consequently, as seen in Table 6, UIT_TP provides almost the same 
requirement coverage as ERI_TP.  

Table 6 Requirement Coverage Matrix of ERI_TP and UIT_TP 

Specifically in Table 6, considering the requirements of the BRE functionality, 
the columns labelled TG1.TG5 represent the different test cases groups in ERI_TP, 
while those labelled UCTS1…UCTS8 are the Test Cases set derived from the SDs 
associated with a specific UC (UCTS stands for Use Case Test Suite).  

TG1 TG2 TG3 TG4 TG5 UCTS1 UCTS2 UCTS3 UCTS4 UCTS5 UCTS6 UCTS7 UTCS8
RS_BRE1 X
RS_BRE2 X X X X X X X
RS_BRE3 X X X X X X
RS_BRE4 X X X X
RS_BRE5 X X X
RS_BRE6 X X X
RS_BRE7 X X
RS_BRE8 X X X X
RS_BRE9 X X X

RS_BRE10 X X X
RS_BRE11 X X
RS_BRE12 X X
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As shown by this table, the test cases both covering the RS_BRE1 or the 
RS_BRE3 requirement in the TG2 group (3rd row, 3rd column) of ERI_TP are not 
derivable via the UIT method due to the absence of the relative SDs. Actually these 
test cases were based mainly on the designer’s experience and were built explicitly to 
test some exceptional conditions or anomalous system behaviours.  

On the other hand, use of the Cow_Suite tool reveals some test cases not 
provided for in the ERI_TP (for instance RS_BRE3 requirement in the UCTS2 
group, 4th row, 8th column). These Test Cases were derived from two SDs that 
describe the same objects’ interaction from two different points of view. In this case, 
these Test Cases do not increase the requirements coverage of the UIT_TP, but 
represent a different way of testing the same functionality. One may choose between 
these equivalent Test Cases as necessary, for example by ease of implementation. 
Thus the two test plans show differences in expressiveness and degree of detail of the 
test cases 

Table 7 shows a comparison of the two test plans in terms of derived test cases: 
the rows contain the ERI_TP test cases subdivided into groups, and in the columns 
the UIT Use Case Test Suites. An ”X” in the cell signifies equivalence of the test 
cases based on the two methodologies. In particular, the UCTS7 and UCTS8 Test 
Cases are an alternative to the UIT derived Test Cases while test cases TG1-TC6 and 
TG5-TC2/3 are not provided for in UIT_TP. 

Regarding the details of the two types of test cases, other differences can be 
noticed, in expressiveness and in the amount of information contained.  

The ERI_TP test cases are clearly more thorough and detailed than those of 
UIT_TP. This is mainly due to the fact that it is an experienced designer who 
provides the ERI_TP descriptions. In writing such a document these experts draw on 
all their experience with and knowledge of the system components and interactions, 
and can therefore specify in detail the steps necessary for executing the test cases and 
providing a complete description of the environment and expected results.  

On the other hand, as stated in Section 5.8.3.2, two different levels of detail can 
be distinguished in UIT_TP. The detail of UIT_TP at the Test Cases level is 
automatically derived using the information in the SDs; hence, the Test Cases 
contain only specifications of the operations without any reference to the 
environment or necessary preconditions. 
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Table 7 Comparison Matrix for Test Coverage 

UIT_TP Test Cases are subsequently refined at the Test Procedures level by 
insertion of the Setting and Interaction values. In this way, the resulting UIT_TP is 
quite similar to the ERI_TP. However, the Test Cases' lack of complete description 
contained the fields labelled “Description”, “Precondition”, “Postcondition” are still 
apparent. The input of such information therefore requires specific intervention on 
the part of designers when they apply the UIT method. The UIT_TP specification at 
the level of Test Procedure is automatically derived with minimal interaction by the 
developers involved in the project. When the aforementioned fields are completed, 
the UIT_TP represents a detailed and complete reference document with the same 
expressiveness as the ERI_TP. 

5.8.4.2 Comparison Relative to the test Plans Development 

In this section we compare the time (considering an 8-hour working day) needed 
to formulate the two test plans and the effort required to transform the test cases into 
executable testing procedures. Moreover, we shall also consider the degree of system 
knowledge required to develop the two test plans and the software development 
stages in which they may be completed. 

Considering ERI_TP, an evaluation of the time necessary to completely specify 
such documents is provided directly by the ERI Project Manager and the designers 
involved in the project. According to such assessments, 5 working days are necessary 
to complete an ERI_TP description, the work being divided into three separate parts: 

UCTS1 UCTS2 UCTS3 UCTS4 UCTS5 UCTS6 UCTS7 UTCS8

TC1 X X
TC2 X X
TC3 X X
TC4 X X
TC5 X
TC6
TC1 X X
TC2 X

TG3 TC3 X
TC1 X
TC2 X
TC3 X
TC1 X
TC2
TC3
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• The first is test-case definition, which requires one day (8 hours) and involves 
only the designer. This phase consists mainly of analysing the system 
components in order to identify the possible test cases. The designer therefore 
constructs a testing schema for each interaction that should be tested. 

• The second part is Procedures definition, which requires two days (16 hours). 
The designer must specify all the steps and actions necessary in order to check 
the system's interactions, particularly the description of the environment and 
definition of parameters. 

• The ERI_TP definition ends with the refinement and completion of 
documentation. This two-day stage (16 hours) involves the designer and project 
manager, who must review the ERI_TP and correct any errors or inaccuracies. 
The main advantage of the UIT_TP-based approach is that it is not necessary to 

spend time on formulating Test Cases; these are in fact derived automatically from 
UML design descriptions using the Cow_Suite tool. By simply executing the tool 
with the UML diagrams as input, the first part of the ERI_TP development cycle is 
completed immediately. 

Completion of the UIT_TP, and therefore derivation of the Test Procedures, 
requires specification of the values of choices and constraints. We asked an ERI 
designer to work interactively with the Cow_Suite tool to insert the required 
information; this took two hours for data input. Therefore, deriving the executable 
Test procedures using the UML-based UIT methodology took two hours, as opposed 
to the 24 hours needed to complete the corresponding ERI_TP work. 

At this point, the designer and Project Manager need only check the correctness 
of the derived Test Procedures and choose those to be actually run. The time 
necessary for these operations has been estimated at only one working day (8 hours). 
All told, derivation of the executable Test Procedure involves only 10 hours' time 
(one day and two hours) with the UIT methodology, while 40 hours (5 days) are 
needed for complete derivation of the ERI_TP. However, although the UIT_TP-
derived test procedures can be passed on directly to the tester for the execution, they 
still lack the specifications regarding environments and pre- and post-conditions. If 
the Project Manager requires that such data be included in the UIT_TP, an additional 
day's work must be accounted for. In this case, the UIT_TP is derived in a total of 18 
hours and the ERI_TP in 40 hours.  

The two test plans also differ with regard to both the software development stages 
in which they can be completed and the knowledge required of the people involved 
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in test planning. As already stated, UIT_TP can be defined as soon as one or more 
SDs have been produced, i.e., during the analysis or design stage. In this case, any 
user with no particular system experience can automatically derive the Test Cases by 
simply applying the UIT method with the help of the Cow_Suite tool. It is worth 
noting that these Test Cases are not the final output of the UIT method application; 
they can be derived in an early stage of project development and therefore represent 
a tentative test plan, useful for the Project Manager for preliminary test scheduling 
and cost estimation. 

As a matter of fact, Project Managers can construct a detailed preliminary test 
plan for pre-integration and other testing stages, both off-line and without designers' 
assistance. In particular, they can make decisions regarding the type of testing 
strategy to adopt, focusing on such strategies to fulfil requirements, provide code 
coverage or concentrate testing on the more peculiar functionalities. Moreover, by 
observing the types and structures of the Test Cases, Program Mangers can make a 
first prioritisation or even select some specific cases and thereby make an initial 
estimation about the number of Test Cases to be implemented during the actual 
testing phase.  

During project development, when more detailed SDs and specific values for 
choices and constraint are available, the UIT_TP can be further refined via definition 
of Test Procedures. Specification of Test Procedures requires specific knowledge of 
the system generally available only to designers, who must specify the values for the 
Settings and Interactions Categories during the analysis or the design phase. 

Regarding the ERI_TP and its description, two specific ERI staff members are 
involved: an expert designer, who is responsible for test-case derivation, and a 
Project Manager, who acts as supervisor and ultimate decision-maker with regard to 
acceptance of a Test Plan. The designer, on the other hand, must possess the 
necessary expertise to properly describe the test cases; therefore, an in-depth, 
thorough understanding of the system components and their behaviours is essential. 
Thus, the ERI_TP can only be drawn up at the end design phase, just before the 
testing phase, because a final, detailed description of all system components is 
required. In this way, only when the testing plan is completed can the Project 
Manager verify the degree of requirements coverage attained or the significance of 
the test cases derived and above all decide whether the test strategy adopted is 
suitable, or not. In the latter case, a different strategy must be adopted and 
consequently, a new testing plan prepared. From the point of view of the tester, the 
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two test plans differ from each other also in the degree of detail of the two types of 
test procedures. In fact, ERI_TP that requires the tester decide what the appropriate 
values are for each test procedure in order to attain requirements coverage, and 
therefore determine how many tests to run.  

As a reference point, it is important to mention that the development and testing 
processes adopted in ERI are quite mature and well-established. ERI has been 
certified at CMM level 3  [PCC93]; therefore the test strategies that we compared to 
the Cow_Suite are effective and well-established.  

5.8.5 Lesson Learned 
This experience brought us to some interesting conclusions about the efficacy of 

the Cow_Suite Application. The main advantage was felt to be the fact that the 
Program Manager can exploit the provided UIT_TP as a baseline to adopt the most 
appropriate test selection strategy. UIT already provides the Project Manager with a 
detailed test plan already during the analysis or design phase, i.e., early with respect 
to the testing stage. Therefore, the Project Manager can get a realistic evaluation of 
the requirement and functional coverage that can be reached. If the values predicted 
are not satisfactory, corrective actions can be taken or a different choice of the proper 
test strategy for the testing phases can be considered. Moreover, the automated 
derivation of UIT_TP allows considerably reduction of the time necessary for test 
plan completion. In the proposed case study, we estimated a reduction of the time 
needed for the UIT_TP derivation of four times, while obtaining the same level of 
requirement coverage of the ERI_TP.  

On the negative side, we observed that the automatic derivation of test cases 
failed to include the exceptional test cases, i.e., test cases to handle abnormal system 
behaviour. In particular, the UIT_TP missed two exceptional test cases, provided 
instead within the ERI_TP. Therefore, it would be opportune that before deployment, 
the UIT_TP is checked by an expert and additional test cases are possibly included to 
cover these special situations. This necessity is indeed common to any other 
automatic test case derivation method. 

Concluding, the Cow_Suite tool has been quite favourably received within the 
ERI company which intents to apply the methodology in other test phases.  
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Summary 
In this Chapter we presented an original approach, Cow_Suite implemented in a 

prototyped tool, useful for deriving and prioritising test cases starting from the UML 
specification. Cow_Suite integrates: a test strategy, Cowtest, which provides a 
practical help to managers for test planning both in case of fixed umber of test cases 
to be performed or fixed percentage of functionalities to be covered; a method, 
UIT_Sd, which constructs the Test Case and Test Procedures using solely the 
information retrieved from the Sequence and Collaboration diagrams available in the 
UML documentation.  

Both for Cowtest and UIT_sd we detailed in the Chapter the requirements for 
their application, the procedural steps performed, the necessary user interactions, the 
typology of obtained results, and possible improvements. In particular we compared 
the Cow_Suite with the other similar approaches taken from the literature evidencing 
its main advantages: the use of exactly the same UML diagrams developed for 
analysis and design, the derivation of a test plan as early as possible in the 
development cycle, even during analysis or design phase), the definition of the Test 
Cases and Test Procedures in an incremental way refining them each time the degree 
of detail of UML diagrams considered increases, the capability to manage big test 
suites keeping under control their sizes and functional coverage.  

We reported here our experience in the application of the Cow_Suite to two case 
studies, one taken from the literature and the other from a real industrial context. In 
particular the latter highlighted the usefulness of the Cow_Suite approach in test plan 
definition, giving in advance to the Project Manager a realistic evaluation of the 
requirement and functional coverage that can be reached during the testing phase in 
one-fourth of the time needed for the test plan derivation using of the conventional 
approach.  
 



 



 

PART 4:  
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6 Methodologies for Failure Prediction 

Preface 
In the previous Chapter we presented an automatic approach (Cow_Suite) which 

is useful, during the development process, for the testing phase organization. It is 
able to derive a Test Plan even from the UML documentation produced during the 
early stage of development, so that ma nagers using Cow_Suite can schedule the cost 
and the effort required for the testing phase in advance.  

Then, once the UML specification is completed and the testing phase effectively 
starts, the derived Test Plan can be completed and executed. This means running the 
derived Test Suites and collecting he test results, failures or successes.  

At this point, it would be important to have methods for predicting during the 
execution of the tests, the final number of failure experienced up to the end of testing 
phase. Each failure requires meticulous extra work for finding and correcting the 
causing fault(s), which could lead to an enormous increase in the final cost of the 
testing phase. Knowing in advance the number of failures expected to occur up the 
end of this phase will permit swift corrective action, thus avoiding unpleasant 
surprises. 

In this Chapter we focus our attention on the failure prediction, proposing new 
methodologies applicable in different situations. Specifically we concentrate only on 
non operational the test stage, i.e. excluding the results derived for instance from the 
beta or operational test (Chapter 2). We refer to Chapter 7 for more details 
concerning specific test phases.  

6.1 Motivations 
In spite of great advances in the software engineering field since complaints of a 

software crisis began to spread in the mid-seventies, the state of the art in software 
development is still such that producing defect-free code remains only wishful 
thinking. On the contrary, coping with software failures both during development 
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and after release, is one of the most difficult tasks of managers, while testing, 
debugging and maintenance activities still consume the major part of development 
effort and resources. For these reasons, methods for estimating the defects contained 
in software are of great interest for managers and testers.  

Researchers have devoted much attention to this problem and have proposed 
many models for quantifying faults and failures, classified as “static” or “dynamic” 
approaches (see Chapter 2). Briefly, looking at properties of the present or past 
products, and/or at parameters of the development process, the former use these 
observations for estimating the total number of defects, or faults, in the current 
product. To this purpose a novel approach is presented in [CDM02], where the 
concepts and techniques from control theory are used for modelling the system test 
process and predicting its behaviour.  

The latter observe defects, (or, more properly failures), as they show up in 
testing, and use statistical inference procedures to predict the number or the time of 
failures expected in future tests or in operation [BS96].  

Thus, for prediction purposes, the static models are attractive to managers, 
because they provide "numbers", which the ma nagers are eager for, very early in the 
process in comparison with dynamic models. These can only be used late in the life 
cycle, i.e., during the testing phases, when it may be too late to efficaciously re-direct 
development efforts. However, as mentioned in Chapter 2, the correct view is that 
static and dynamic models are both useful because they can be used in combination; 
i.e., the former in the front-end phases of the life cycle to allocate development time 
and resources, the latter in the final stages of development in order to evaluate the 
degrees of disturbance of the defects that inevitably remain, and to decide whether 
the product is ready for delivery1. To this purpose [CA98] proposed a model for 
predicting the remaining number of defects in the code based on the failures that are 
observed in testing, which is in a sense a hybrid approach between static and 
dynamic models. 

Indeed, whether many or few, some defects will inevitably escape testing and 
debugging, so that, in the end, the only important measure for deciding whether a 
product can be released is software reliability [LY96]: i.e., the number of failures, 

                                                 
1 To this purpose we refer to the Propean approach presented in the Chapter 4, which could be a valid 
aid in managing the testing phase organizations in terms of resources scheduling and personnel 
assignment. 
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and not of remaining defects, must be estimated. Unless they cause failures, 
remaining defects trouble neither customers nor producers.  

However, in this Chapter we do not consider the reliability estimations for the 
motivations depicted below, but focus on dynamic models in order to evaluate the 
number of failures expected to be observed in future tests, based on the failures 
observed so far. In Chapter 7 the assessment of software reliability through testing is 
treated in detail.  

Industrial test processes commonly undergo several subsequent steps (from unit 
to subsystem, and to system testing see Chapter 2) and eventually start operational 
testing only when the software configuration and behaviour are fairly stable. In 
particular industries have rarely applied the latter for testing single modules, or small 
subsystems, since identifying the required operational profile is quite difficult and 
expensive, and perhaps not sensible at all. They generally prefer to adopt the 
commonly used and less expensive test methods, e.g., branch coverage (Chapter 2), 
whose failure results do not comply with the underlying assumptions of the model 
for reliability predictions: i.e., if the test cases are randomly drawn from the 
operational profile, and as defects are found and removed, reliability will exhibit an 
increasing trend. However, even in the first stage of the operational testing both 
assumptions are hardly satisfied. 

These are the underlying motivations for the work presented in this Chapter. In 
particular we develop some dynamic models that can be applied to predict the 
expected number of remaining failures in early test phases, without making 
assumptions as to how tests are selected.  

The most attractive feature of these models is their simplicity: they merely 
require collecting the time intervals between subsequent failures. No estimation of 
parameters of the product or of the development process is needed, as will be 
described in Section 6.3. In particular, these models could be applied in combination 
with the Cow_Suite approach described in the previous Chapter, to evaluate the 
efficacy of the Test Suite execution in finding failures. However, here we present a 
more general description of these methods without referring to any particular strategy 
of test generation. 

In the next section we present the basic idea used for the model definition: to 
predict the cumulative number of failures at the end of the testing phase by using the 
data collected during the testing phase itself.  
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6.2 Starting Point 
In measurement, one tries to map observations of the empirical world to 

mathematical entities that can be formally ma nipulated. Models are defined 
attempting to capture one's intuition and understanding of the real world; indeed, 
"intuition is the starting point for all measurement" [FP97]. In this section we present 
the intuition underlying the dynamic models we have developed. 

Originally the stimulus came from the analysis of the test results collected during 
several projects by a software producer, Ericsson Lab Italy in Rome (ERI). For each 
product this producer routinely logs the failures observed since early test phases until 
beta testing, and is interested in finding more effective ways to use these data for 
project management and product control. In particular the developer, who has a well-
established and formalized test process, required that the model be compatible with 
its trouble-logging procedures, since it would have been difficult and expensive to 
modify them. It must be clarified beforehand that this producer was not looking for 
new testing methods to apply, that would facilitate failure predictions (as for instance 
would be the case if fault seeding approaches were applied). On the contrary, this 
producer wanted efficient metrics that could be applied to the data collected. It is 
plausible to assume that to a certain extent this proviso would be the same for many 
other producers. 

So far, the data collected are used to derive measures of failure density, i.e., the 
ratio between the cumulative number of failures observed in a given time period and 
the product size, expressed in lines of code. Specifically, with regard to the results 
from beta testing, which is operational, standard approaches for reliability estimates 
and predictions can be applied, as described in detail in Chapter 7. In that Chapter a 
case study provided by the same producer is used for illustrating the application of 
software reliability engineering techniques.  

As previously mentioned the models were developed considering the trouble-
logging procedure used by this producer for data collecting, which registered the 
failure reports on a daily basis. Therefore we decided to group the failure data into 
test intervals (TIs), each one a daylong2. In particular a TI in which at least one 
failure is observed is called a failed test interval (FTI), otherwise it is called a 
successful TI. Note that no ma tter how small a test interval is chosen, until this 
                                                 
2 The length of a TI depends strictly on the type of data collected and on the required granularity of the 
failure predictions. However if the failures are collected at intervals of length l a TI cannot be shorter 
that l. 
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remains larger than a single test, there will always be a chance to observe more than 
one failure within.  

In simple words, the basic idea of the development of the models is that if n 
failures are detected after t TIs, this information can be used for estimating the 
cumulative number of failures at the end of test phase, assuming that we continue to 
test in the same way. In particular we suppose that the prediction may be different if 
the failures are uniformly distributed over the t TIs, or if instead all the failures are 
discovered in the first TI, and then the remaining (t - 1) TIs exhibit no failures.  

Thus the time distribution of failure discoveries is hence a fundamental element 
for the models development. If in fact a priori knowledge or estimation of the failure 
detection rate is assumed over the sequence of TIs, say fdr, and t denotes the total 
number of TIs scheduled, obviously the expected number of failures f would be 
estimated by: 
Eq. (1)  f= t•fdr 

Of course this formula is rather naive and cannot be used in practice in this 
simplistic form, because the failure detection rate in testing can never be established 
with certainty; instead it is a random variable, for which a distribution should be 
identified. For each new product being tested, the empirical distribution of the failure 
detection rate can only be precisely drawn only after the testing is completed. 
However, if we could assume that, after having observed the test results for some 
time it stabilizes (i.e., it can be used as an approximation of the real, yet unknown 
distribution, to predict future behaviour), then a formula generalizing Eq. (1) could 
be used.  

For deriving the cumulative number of failures at the end of test phase two 
different approaches have been implemented. The first, called the “One-Step 
Method”, estimates the failure detection rate, using a statistical prediction method; 
that is to say, the fdr in Eq. (1) is treated as a random variable D, and uses an 
estimation of it to predict the expected number of failures NF (Section 6.4). 

In the second approach, called the “Two-Steps Method”, the expected number of 
failures NF is estimated in two subsequent steps: first we predict NFTI, i.e., the 
expected number of FTIs; second, from this estimation, we derive the expected 
number of failures NF. Correspondingly, at each step we introduce a random 
variable, for which an estimator has to be defined. This method was suggested from 
analysis of available data, and in particular from the observation of their variability 
(Section 6.5).  
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For prediction purposes, with for approaches (One-Step, Two-Steps), we have 
used a Classical estimator, i.e., relying on a frequentist interpretation of probabilities, 
and also an alternative, Bayesian estimator (Section 6.3.1), of a "subjective" 
interpretation of probabilities. 

Finally the two methods were compared using a real case study and the results 
reported in Section 6.6. In particular we noticed that both the approaches perform 
better when the rate of detection of failures in testing remained more or less stable. 
This condition is clearly in contrast with the assumption underlying the models for 
reliability prediction. In this sense the approaches proposed in this Chapter are 
complementary to these and should be used when they cannot yet be applied. 

Here, as previously indicated we want to provide methodologies for the early test 
phases, and in general to all those situations in which failures are found with some 
regularity, and remains valid only for limited periods. This means up to the point in 
which the rate of occurrence of failures starts to decrease, as a result of having 
removed a large number of faults.  

It is worth noting that the predictions provided by the estimators are meaningless 
without a reference to control parameters over the development process. For 
instance, suppose that prediction brings to our attention an unexpectedly low 
predicted number of failures with respect to standard figures. This can be due either 
to an ineffective test process (bad news), or instead to a very good development 
process (good news). However in this Chapter we do not discuss the strategies that 
could be applied for discerning between these two situations since we focus mainly 
on prediction. However a possible solution is to incorporate the collection of useful 
invocation from similar projects, within the global strategy of project control and 
management, so that historical data can be used to set reference/target measures 
when necessary.  

6.3 Background Knowledge 
In this section we briefly present the fundamentals of the Bayesian theory 

(Section 6.3.1), used in the definition of the two methods (One-Step, Two-Steps), 
and the original Bemar model as presented in [Bm98] (Section 6.3.2), which was the 
starting point for the Two-Steps Bayesian approach. In Section 6.5.3 we show how 
the Bemar model has been included.  
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6.3.1 Bayesian Approach 
Bayesian probabilities [GCS95] are attempted to describe an observer’s 

subjective knowledge of yet-unknown events, and how this knowledge evolves as 
new events are observed. The Bayesian probabilistic ideas have been around since 
the 1700s. In 1713, Bernoulli recognized the distinction between two interpretations 
of probability: 
• as the frequency of occurrence of an event in a sequence of repeated experiments, 

the commonly used interpretation in the frequentist (classical) theory; 
• as a measure of the plausibility of an event about which knowledge is 

incomplete, the one that will be used in the Bayesian approach. 
Therefore in the Bayesian framework an interval for an unknown quantity is 

directly related to the probability of containing the unknown quantity, while a 
frequentist interval can only be interpreted in relation to a sequence of similar 
experiments (but it does not give any estimation of the unknown quantity). 

The basic idea of the Bayesian theory is due to Thomas Bayes, who in 1763 
formulated the well-known Bayes’ Theorem: 

 
Eq. (2)  

 
Hence given an occurred event Y, and the conditional probability of event X on Y, 

denoted by P(X|Y), the posterior probability is calculated using:  
• the probability of event Y, denoted by P(Y);  
• the conditional probability of event Y given that event X occurred, i.e., P(Y|X), 

called the likelihood probability , and  
• the prior knowledge about the probability of event X, i.e., P(X), called the prior 

probability. 
To apply the Bayesian approach, first of all it is necessary to make explicit the prior 
belief into a prior probability distribution. In general, this is a difficult task, which 
also generates some perplexity about the usefulness of the Bayesian method [BS96]. 
The Bayesian method tells us how to treat observed data in order to derive the 
appropriate posterior distribution, but the identification of an appropriate prior 
distribution must come from outside. However this is the weakness as well as the 
strength of the Bayesian approach. The prior distribution expresses any desired prior 
state of knowledge, ranging between the two extremes of a virtual ignorance, called 
also non-informative prior or least informative priors, and highly informative 
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knowledge or conjugate priors. Conjugate families are those distributions for which 
the prior and the posterior distribution are members of the same family3. In this case, 
computing the posterior probability is usually trivial. We report in Section 6.3.1.1 the 
Gamma Poisson Model which is one of the conjugate families used in the rest of this 
Chapter. 

Generally the choices for deriving a prior distribution can be summarized as the 
following possibilities:  
1. if evidences or data are not available, the prior probability can give equal 

probability to each possible value (for example by using a uniform distribution). 
In this case, the prior probability is a non-informative prior; 

2. if a certain amount of data has been previously collected, it is sometime possible 
to derive the prior probability directly from them (for example by associating a 
suitable normal distribution); 

3. if there is a strong belief in certain homogeneity in the way in which the priors 
probabilities change as more evidence is acquired, a family of conjugate prior can 
be used for the posterior probability computation.  

In contrast, the Classical approach has a broad field of application and can be used 
whatever is the behaviour of the product being tested. But this is also a limitation of 
the method, because it does not allow us to exploit the evidences of collected 
historical data collected which could contribute to more accurate predictions. 

In this Chapter we use both the Classical and the Bayesian approach in the 
models definition. In particular we compare these models on the prediction of the 
cumulative number of failures at the end of testing phase.  The purpose is to verify if 
the Bayesian estimators could perform better than the Classical because they need 
fewer data to obtain valid predictions, and  exploit the available knowledge about the 
rate of occurrence of failures. 

6.3.1.1 The Gamma Poisson Model 

Sometimes it is possible to assume that the failure will occur “purely randomly”, 
i.e. in a simple Poisson Process of rate λ. In this case the number of failures, R, at 
time t, has a Poisson distribution [LO87]:  

                                                 
3 Formally if Φ denotes the family of probability density functions (pdfs) f(x|θ), a family Π of prior 
distributions for θ is called a conjugate family for Φ if the posterior distribution for θ is in the class Π 
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and in particular P(R=0)=e-λt.  
The conjugate family here is the Gamma. Thus if we represent a priori belief 

about the failure rate λ by Gamma(a,b)  with expected value a/b, the posterior for λ 
after seeing r failures during time t is Gamma(a+r,b+t): 
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with expected posterior value (a+r)/(b+t), where Γ(a+r) is the gamma function 
defined as  

 
 
 

6.3.2 Bemar Method 
The Bemar model, presented for the first time in [BM98] derived the cumulative 

number of failures at the end of the testing phase in two steps: first the number of 
failed test intervals, NFTI, is derived and then, from this number, the number of 
failures NF  is calculated. 

Considering the testing phase established to be NTI test intervals long, a random 
variable T, taking discrete values within the interval [1, M] (where M is the 
maximum value), denotes the distance (in terms of TIs) between two subsequent 
FTIs. Precisely, for each i within [1,M], the associated probability mass function 
[LO87], (pmf), pT(i) = P(T=i), gives the probability that the next failure will be 
observed after ith TI is a FTI). Denoting the expectation of the r.v. T by 

 
Eq. (3)  

 
the following formula holds4: 

 
Eq. (4)  
 
and solving it for  NFTI, we obtain: 

                                                                                                                                          
for all f ∈ Φ, all priors in Π, and all x. 
4 Actually, this formula holds precisely if it can be assumed that the last test interval is a failed one. 
Otherwise, the left-hand side should be decreased by the number of test intervals occurring between 
the last FTI and the last test interval.  
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Eq. (5)  

 
It is worth noting that this formula requires a procedure to derive E[T] for 

instance based on data collected from similar products. In the Bemar model a 
Bayesian approach is used for this purpose. As mentioned in the previous section, in 
the Bayesian framework, probabilities are meant to describe an observer subjective 
knowledge of yet-unknown events. This knowledge evolves as events are observed. 
In this context, the pmf of T pT(i) is taken as the prior knowledge about the behaviour 
of a product under test, i.e., pT(i) is taken to model a tester's subjective belief about 
the rate of failure detection before some evidence (the test results) about the product 
under test is observed. 

In particular the realization of a sequence of test intervals with and without 
failures during the testing phase is observed. Thanks to this evidence, the tester's 
knowledge about this product evolves and the posterior distribution for the pmf of T 
can be derived. Denoting by FK the sequence of observed outcomes 
(failed/successful) for the first k TIs, the posterior distribution p'T,k(i), is derived as 
P(Τ=i | Fk), i.e., it is the update of pT(i) after having observed the sequence FK. 
Applying Bayes' formula we obtain: 

 
Eq. (6)  

 
 
The term P(Fk|Τ=i) corresponds to the likelihood function and can be derived 

considering, if T=i, then the probability of observing a failure in the next test interval 
is 1/i, i.e.: 

 
Eq. (7)  
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Substituting this in Eq. (6), and iterating the same reasoning also to the 
subsequent test intervals, we finally obtain5: 

 
 

Eq. (8)  
 
 
which gives the posterior pmf for the random variable T, after observing k test 

intervals, out of which f were failed. This formula is used for deriving the E[T]. 
By using the Eq. (5) it is possible to then derive NFTI,k, i.e., the number of FTIs  

expected after NTI test intervals, using the test information collected during the first 
k test intervals. 

From NFTI,k the total number of failures NF now needs to be estimated. This 
clearly depends on how many failures on average are observed within a FTI. We can 
again define a random variable F to represent the number of failures observed within 
a FTI, and then derive NF from NFTI, with NF= NFTI•E[F] 

The empirical pmf for F can be derived by considering the results from the first k 
TIs as well as the  maximum number of failures per FTI, called MF. From the 
distribution of the number of failures within a failed test interval, we are able to 
calculate the expectation: 
Eq. (9)  

 
Therefore, after having observed k TIs, the number of failures that a product will 

show at the end of the functional test is: 
 

Eq. (10)  
 
The Eq. (5) and Eq. (10) are to be used incrementally during the testing phase, 

i.e., considering each time a greater value for k, and adjusting the pmfs involved 
correspondingly. In this way, the prediction about the total number of failures for a 
product as testing proceeds will increasingly precise. 

                                                 
5In the generalization of this formula from the case k=1 to larger values of k, we have in reality used 
some relaxed assumptions, which could raise some objection to its validity from a purely theoretical 
viewpoint. However, applying this formula to different cases study we notice that it performed better 
than other theoretically stronger models. 
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6.4 One-Step Method 
In this section we present the One-Step method [LPM99, BMM02a] as described 

in the main steps in  Figure 1. This figure is valid for the one-step method based both 
on a Classical approach (Section 6.4.1) and on a Bayesian approach (Section 6.4.2). 

As indicated in Section 6.2 we estimate the number of failures over a fixed test 
period, specifically after NTI test intervals. Therefore the first steps in both models 
are collecting data and then defining a random variable D to denote the daily failure 
detection rate. Using a valid estimate De of D, we obtain the estimated number of 
failures, over a NTI long period of test intervals, as NTIDNF e •=   

Figure 1 Main steps for the One-Step method  

6.4.1 One-Step Classical 
Referring to Figure 1, after data collection we decide to group the test intervals 

into separate sets containing the same number t of TIs . Different possibilities can be 
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evaluated depending on the typology of the data collected and on the desirable 
granularity of the final predictions. For instance if the TI  corresponds to an hour a 
possibility is to group the test intervals into a daily base (considering a working day 
of 8 hours long we set t =8 and therefore we put 8 TIs in each group). Otherwise, if a 
TI is equal to a working day, as our original data, we can divide the TIs in groups of 
5 test intervals, corresponding to one calendar week of testing. In the former case we 
will upgrade the predictions of the final number of failures at the end of the testing 
phase daily, in the latter weekly.  

We assign then to each group of test intervals an increasing identification number 
k and for each of them we derive the number of failures experienced within the t TIs. 
To this purpose for each group we define an estimator Di of the failure detection rate 
of the TIs in that particular group (e.g. per hour failure detection rate if the TIs 
correspond to one hour, daily failure detection rate if TIs are equal to a day), which is 
calculated as Di = (number of experienced failures within the group i )/ t. To derive 
the estimator De after having observed k• t TIs we use the sample mean of the values 
D1, D2, ...,Dk, i.e., De(k)= Ek [D], which is as an unbiased, consistent, and the 
minimum variance unbiased estimator of D [AL90]. The estimate obtained is 
evaluated by the confidence interval, that is a probability judgment about the 
accuracy of the estimate delivered.  

We continue repeating the steps described above, i.e., we wait for the data 
relative to another group of t TIs, increment k and repeat the above procedure, until 
the desired level of accuracy is reached. 

Assuming this happens after a certain number k* of groups of t TIs, we can use the 
estimated failure detection rate De(k*) to make the predictions, i.e., after NTI test 
intervals, the global number of failures expected at the end of testing phase can be 
obtained by NF,k* = De(k*)•NTI. 

The main limitation of this approach lies in the fact that a large amount of data  is 
necessary in order to derive sensible confidence intervals. Oftentimes the value k* of 
groups of TIs guaranteeing the desired level of accuracy can be so high that it makes 
this kind of approach impractical. 

6.4.2 One-Step Bayesian 
In the One-Step Classical approach, we assemble the test intervals in groups of t 

and assign to each group an increasing identification number k. In this case after 
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observing the k-th (current) group of failure data, we compute the cumulative (i.e., 
from group 1 to group k inclusive) number of failures. 

To derive an estimation De of the failure detection rate, we use this value as a 
parameter of a suitable statistical model (Gamma/Poisson see Section 6.3.1.1), by 
which we calculate the expected cumulative NF over a future period of testing. In our 
specific context the Gamma/Poisson model results the most suitable statistical 
method, but depending on the data available, it is possible either to use other 
conjugate families of distribution, or apply one of the methods described in Section 
6.3.1. Using the Gamma/Poisson model, as described in Section 6.3.1.1, if 
Gamma(a,b) represents the prior belief (for some suitable choice of the parameters a 
and b) the posterior belief about the failure rate D is represented by Gamma(a+x, 
b+t), where x is in this case the number of failures observed in a time interval t.  

We then use the relative error between two subsequent estimates to evaluate the 
accuracy of the estimate obtained. Until the desired level of accuracy is not reached, 
we wait for the data relative to another group of t TIs, increment k and repeat the 
steps described above. 

We then use the outcomes collected during the first n*, i.e. k• t, test intervals to 
derive En*[D], i.e. the posterior expectation of D after n* TIs. This is taken as the 
estimator De(n*) to derive NF,n*, i.e., the predicted number of failures after NTI test 
intervals. 

6.5 Two-Steps Method 
The Two-Steps method predicts the number of failures at the end of testing phase 

in two steps by applying the statistical control procedure described below [LPM99, 
BMM02a]. In particular we first predict NFTI, i.e., the expected number of FTIs; 
then from this estimation, we derive the expected number of failures NF. 
Correspondingly, at each step we introduce a random variable, for which an 
estimator must be defined. Figure 2 shows the main steps of the applied statistical 
procedure, which will be described in detail respectively in Section 6.5.2 for the 
method based on a Classical approach, and in Section 6.5.3 for that based on a 
Bayesian approach.  
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6.5.1 Prediction Procedure 
We use a random variable Q to denote the probability that the next TI will be a 

failed one and derive a valid estimate Qe of Q. Over a NTI long period of test 
intervals we then obtain the number of failed test intervals as: NFTI  = NTI•Qe. 

Once a value for NFTI is thus estimated, the total number of failures will clearly 
depend on how many failures on average are observed within a FTI. Therefore we 
introduce another random variable F to represent the number of failures observed 
within a FTI, and then using a valid estimate Fe of F we derive NF from NFTI simply 
as NF=NFTI•·Fe. 

Figure 2  Main step for the Two-Steps method 

As concerns the estimation of Fe, one possibility is to adopt the classical 
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observed failures over the number of observed FTIs, which for large samples, has the 
property of consistency and unbiasedness [AL90]. Of course other possibilities can 
be launched, depending on the typology of the data available. In this section we 
decided to adopt the sample mean because when we applied the Two-Steps method 
to the available case study, it was the one that first stabilized. 

As for the One-Step Bayesian method, we consider the test intervals assembled in 
groups of t and assign to each group an increasing identification number k. After 
observing the kth (current) group of failure data we derive two different values: the 
cumulative (i.e., from group 1 to group k inclusive) number of FTIs and the 
cumulative number of failures. These values are used as parameters of different 
statistical models to derive: an estimation Qe of the probability that the next test 
interval will be a failed one; an evaluation Fe of the number of failures in each test 
interval; the predictions of global NFTI and global NF over a future testing period. 

We use classical statistical techniques (e.g., confidence interval, relative error) to 
evaluate the accuracy of the estimates obtained. As above, until the desired level of 
accuracy is not reached, we wait for the data relative to another group of t TIs, 
increment k and repeat the procedure described. 

6.5.2 Two-Steps Classical 
To derive the probability Q that the next TI is failed, given a sample of NTI,  we 

based the Two-Steps Classical on the maximum likelihood estimate [AL90, LO87]. 
The idea underlying the maximum likelihood estimate of a parameter is to choose that 
parameter value which makes the observed sample values the most probable. 

In this case the sample to be analysed is formed by sets of test intervals of size n 
(with n=5, 10, …, NTI) with or without failures. We can depict the sample as a 
sequence of Bernoulli trials [LO87] with probability Q of failure on each trial (note 
that in such a way we are assuming independent TIs, which is reasonable for the 
approach followed in test selection). 

Thus, if the observed number of failed TIs is f, then the maximum likelihood 
estimate of Q is given by [AL90, LO87]: 
Eq. (11)  l(Q) = Q f (1 − Q)n− f  

The maximum likelihood estimate of Q is that value of Q which maximizes the 
likelihood function l, or its logarithmic form. Solving for Q yields the maximum 
likelihood estimate results: 
Eq. (12) Qe(n) =  f / n 
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It can be proved that such is an unbiased, consistent, and the minimum variance 
unbiased estimator of Q [AL90].  

To complete the statistical control procedure, we associate to each Qe its 
confidence interval. As in the One-Step Classical method, the study of the 
confidence intervals leads us to determine that, after a certain number n* of TIs, the 
desired level of accuracy is reached. We in fact are dealing with a random variable, 
so we cannot predict with certainty that the true value of the parameter, Q, is within 
any finite interval. However we can construct a confidence interval, such that there is 
a specified confidence or probability that the true value Q lies within that interval. Of 
course for a given confidence level the shorter the interval, the more accurate the 
estimate. 

It can be proved [AL90]. that, for a sample of large size n, an approximate 100(1-
α)% confidence interval for the Bernoulli parameter Q is given by: 

 
Eq. (13)   
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where Qe(n) is calculated as described previously and values for the parameter 
zα/2 are found in statistical reference tables [LO87]. Therefore once a confidence 
level is fixed (90%) according to the producer exigencies, it is possible to associate 
to each Qe(n) the relative confidence interval estimated after n TIs. The study of the 
confidence intervals leads us to determine that, after a certain number n* of TIs, the 
desired level of accuracy is reached. Therefore we can use the estimate Qe(n*), 
obtained after n* TIs , to make predictions After NTI test intervals, the number of 
failed test intervals NFTI is obtained as NFTIn* = NTI• Qe(n*). 

As a final step we obtain the total number of failures expected at the end of the 
testing phase as NFn*=NFTIn*•Fe,n*. 

Again the main limitation of this approach lies in the fact that a large amount of 
data is necessary to derive significant confidence intervals. Consequently the value 
n* of TIs guaranteeing the desired level of accuracy can be quite high. 

6.5.3 Two-Steps Bayesian  
The Two-Steps Bayesian is basically the application of the Bemar model 

described in Section 6.3.2. In this case the random variable Q denoting the 
probability that the next TI is failed, corresponds to the variable T mentioned in the 
Bemar model. Here we only report the formula used for the posterior distribution of 
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the random variable Q, in which we denote with Fn, the sequence of observed 
outcomes (failed/successful) for the first n TIs, and with f the number of FTIs 
observed in the sequence Fn,  

 
 

Eq. (14)  
  
 
As described in the prediction procedure (Section 6.5.1), we use this updated 

distribution to derive, En[Q], i.e. the posterior expectation of Q after n observed TIs. 
This is taken as the estimate of Qe(n) to derive NFTIn, i.e., the predicted number of 
FTIs expected after NTI test intervals, based on the test outcomes collected during 
the first n test intervals, and on the prior expectation about Q. From NFTIn the 
expected number of failures can then be derived in the same way as in the Two-Steps 
Classical method. 

6.6 Application Results 
The One-Step and the Two-Steps methodologies can be applied without referring 

to any particular test strategy. The failure data therefore could be obtained from the 
execution of the Test Suites derived by the Cow_Suite tool (see Chapter 5) as well as 
other specific methodologies. In particular, here we report the application of the One-
Step and the Two-Steps approaches to a case study provided by the Ericsson Lab 
Italy in Rome (ERI) and described in the next section. The purpose in this case was 
to increase the ERI capabilities in statistical process control and in prediction 
methods. We describe the results obtained from this case study in Section 6.6.2. 

In the preface of this Chapter we specified that the methodologies presented here 
were specifically built for dealing with non-operational data. However, their general 
nature also led us in the application of the Two-Steps Bayesian methodology to some 
operational results provided by ERI. We report the description of this experiment in 
Section 6.6.3. Naturally this type of data is more suitable for the application of the 
models for the reliability predictions, as will be discussed in detail in Chapter 7. 

6.6.1 Case Study 
In agreement with the ERI producer, we first selected a set of strategic processes 

to be used for the application of the One-Step and the Two-Steps methods [LPM99, 
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BMM02a]. Of course, applying statistical process control techniques to all 
development processes was not economically feasible. Therefore, the Function Test, 
which is one of the four test phases in ERI test strategy (namely Basic Test, 
Integration Test, Function Test and System Test (Chapter2)), has been identified as a 
strategic one in order to meet commitments to customers with respect to quality 
objectives. In particular, the Function Test  is the phase in which the system 
functions are verified. 

One ERI objective is to reduce by a determined amount the failure density in 
operation, which is obtained by monitoring the first six months of operation of 
released products. Failure density is measured by the ratio between the cumulative 
number of failures observed by the client in those six months and the product size, 
expressed in lines of code.  

Root Cause Analysis (RCA) of reported failures is routinely performed, to track 
back failures to their causes, the faults, and to the phase in which the latter 
originated. An important finding of RCA for ERI products was that a high 
percentage of failures (48%) corresponded to software faults that could have been 
discovered during the Function Test phase. Therefore one of the actions to reduce 
failure density is to decrease the number of failures “slipping through”, i.e. the ratio 
between the number of failures found during first six months, and the sum of failures 
found during Function Test and the first six months.  

Currently, Function Test is performed accordingly to a function test specification, 
with the goal of testing conformance of the target function to its specification. 
Testers derive test cases manually, by making a systematic analysis of the 
specification documentation and attempting to cover all the specified functionalities 
(or use cases). This means that the test cases are deterministically chosen by 
examining the functional specifications before test execution starts (which also 
implies that the number of tests to be executed is decided in advance).  

Function Test execution is organised in a specified number of stages. The tests 
are executed during working days (i.e., five days a week) and 8 hours per day. All 
the failures discovered within a test stage are logged and reported to software 
designers, who trace failures back to the code and correct them. A new software 
version is then released, which is resubmitted to testing in the next test stage. For 
each project, the information registered consists of the Start and End dates of the test 
phase, and of the calendar day (but not the time of day) of discovery of each failure.  
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Therefore, for our purpose we collect the failure data of several projects subjected 
to the Function Test process and use them to apply the One-Step and Two-Steps 
prediction method. The size of the software under test varies from project to project 
(minimum 50 kloc, maximum 150 kloc), and the failures in the data sets considered 
were classified as priority B  (major failures). 

For each project the failure data observed in the first part of the test process, 
grouped into test intervals (TIs) each one a day long, are used to predict the expected 
cumulative number of failures over the planned period of Function Test. This in 
particular stops when all the test cases defined in the test case specification have 
been successfully performed, either at the first try or after fault repair. Specific exit 
criteria related to the measured rate of failures detected over the testing period were 
not explicitly considered in the test process before this experience, and no estimation 
of the remaining number of faults was performed. It is worth noting that a very 
important property of prediction systems is the speed of convergence of estimates. 
With respect to this, we compare the performances of the estimates of the One-Step 
and Two-Steps methods (Sections 6.6.2 and 6.6.3). 
Parameters Setting 

Some historical data, derived from similar products subjected to the same 
Function Test process have been used to set the various parameters required by the 
models considered. Specifically considering the One-Step Bayesian, from an 
accurate analysis of the failure behaviour of several products we observed that we 
could group the products in classes depending on the average failure rate D they 
exhibited at the end of the test phase. We could thus derive the proper parameters (a, 
b) of the prior Gamma distribution for each group.  

In the Two-Steps Bayesian, when analysing the failure data we noticed that the 
distance between subsequent FTIs was not greater than 20; therefore we considered 
that the variable Q could take discrete values within the interval [1,20]. In particular 
a proper prior distribution was obtained observing that for all products considered the 
distribution of Q concentrated for most of its realizations on the three same 
consecutive values, while very rarely took the other possible values.  

6.6.2 Result Analysis 
In this section we provide a few examples of the results obtained from the use of 

One-Step and Two-Steps methods as described in the Section 6.5. We do not report 
in the following figures the results of the application of the One-Step Classical 
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method, because in this particular context this approach required too many data for 
producing acceptable estimates. 

In the following diagrams, on the horizontal axis we put the number of elapsed 
groups of TIs. On the vertical axis we put the cumulative number of failures over 
completion of the scheduled test period (for confidentiality reasons, we omit the 
actual numbers). When a prediction becomes acceptable based on the confidence 
interval or the relative error, as described in the prediction procedure, we stick to it 
and the prediction curve becomes a straight line. We check a posterior the prediction 
of the models against the actual number of failures observed at the end of the test 
period (the dotted horizontal line) (of course this knowledge is in no way used to 
make the prediction). The strip marked with vertical segments around the latter 
indicates the zone where the relative error of the prediction would be below 10%.  

In Figure 3 we show the results for Project 1. In particular the curve labelled 
“Gamma/Poisson Model” corresponds to the result obtained for the One-Step 
Bayesian method, the one labelled “Our Bayesian Model” to the Two-Steps 
Bayesian, and the one labelled “MaxLik (Classical)” to the Two-Steps Classical.  

Analysing the curves obtained it is possible to observe that the maximum 
likelihood method produces a valid prediction after 14 groups of TIs (70 testing 
days); the Two-Steps Bayesian model and the Gamma/Poisson model anticipate the 
prediction, respectively of as many as four and two groups. That is a very good result 
from the manager's point of view. With regard to the outcome of prediction, both 
models produce valid estimates (for us, this meant within the 10% error strip). 

In a second project considered, as shown in Figure 4, we can see, that both the 
estimates produced with the Gamma/Poisson and the Classical model models are 
outside the 10% error strip. In general we could see that the effectiveness of the 
Gamma/Poisson model is greatly dependent on the choice of the parameters (a,b).  

We must add, for thoroughness’ sake, that unfortunately the Bayesian models 
(One-Step and Two-Steps) did not consistently work better and faster for all data 
sets. In a few circumstances the Classical model performed better. Finally, 
sometimes it was quite difficult to either find a suitable prior distribution or proper 
parameters (a,b) of the Gamma distribution. 
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Figure 3 Prediction results for Project 1  

 

Figure 4 Prediction results for Project 2  
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Figure 5  Main steps of the statistical process control strategy 
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From our perspective, such models provide the project management team with an 
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are identified with respect to the Function Test process performance baselines (e.g., 
minimum and maximum failure density computed on historical data in the same 
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Steps models does not require any unnecessary additional work from the people who 
are going to use the proposed strategies, e.g. testers. On the contrary we try to 
conform as much as possible the models to the existing data collection procedures.  

Our philosophy is always to propose methodologies that are easy to use and 
readapt and that require any, no or at least low cost and effort to be applied in the real 
industrial context.  

The implementation of appropriate corrective actions (such as executing an 
extended Basic Test in parallel to the Function Test, or postponing the end date of 
the Function Test) can mitigate the risk of failures slipping through the Function Test 
during the first six months in operation, thus reducing reworking and maintenance 
costs. In Figure 5, we illustrate the main steps in the application of the statistical 
process control techniques discussed here. 

6.6.3 Two-Steps Bayesian Model with Operational Data 
As mentioned in the introduction of this Chapter, the Two-Steps Bayesian model 

has also been applied to some operational test results collected by the same producer 
during beta testing (for which we did no expect the model to work as well as for 
functional testing). We selected the Two-Steps Bayesian because it was the model 
that performed better in the majority of the cases during the functional test phase of 
several products. The intent was discovering if and how the Two-Steps Bayesian 
model could be applied either, as a complementary approach to reliability growth 
models, or in those situations in which the failure data relative to operational testing 
did not show a reliability increasing trend (see Chapter 7).  

One of the major difficulties in applying the Two-Steps Bayesian model to this 
kind of data was the definition of the prior probabilities. In fact we were deficient in 
operational test results collected previously on similar projects. In this situation we 
could not apply the criteria described in the previous section for the selection of a 
prior pmf of T;  we thus decided to adopt a uniform prior distribution. 

For the rest, the approach of applying the Two-Steps Bayesian model to the data 
collected during the operational phase is the same as that described in Section 6.5.2. 
Also in this case the failure data was collected on a daily basis, therefore we again 
grouped the test intervals into set of 5 TIs corresponding to a week of testing. We 
report the results in the figure below where in this case k indicates the different TIs. 

As shown by this figure the performance of the model becomes acceptable after 
110 TIs, over an overall e period of 180 TIs.  In this case we do not stick to this value 
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as in the previous examples, because we were also interested in the general 
behaviour of the Two-Steps method as the testing proceeded. We want to analyse the 
improvement of the prediction as more data failure data become available. As shown 
in Figure 6, after the 125 TIs the prediction stabilized between the 5% error strips. 
This represents a valid result from the manager’s point of view, and we would expect 
better results using an informa tive prior probability.  

To compare our results with those provided by the standard models for reliability 
prediction, we attempt to use the latter with the same data set. Unfortunately we were 
not successful; the problem was that the reliability did not regularly increase, as 
required by those models (see Chapter 7). Thus we expect a worse performance of 
the Two-Steps Bayesian model with data that exhibit consistent reliability growth. 

Figure 6 Prediction of the Two-Steps Bayesian model for beta testing 

To verify this hypothesis we have tried the model on a set of data taken from the 
literature [ACL96]. These data are reported as execution times in seconds between 
successive failures; therefore, in order to apply our model, we grouped the failure 
data into test intervals of 600 seconds. Also, in this case we used a uniform prior 
distribution because we had further information about the failure behaviour. 

The results are shown in Figure 7 where k indicates the corresponding group of 
TIs. As expected, the results became acceptable only late in the operational phase, 
therefore the predictions provided by the Two-Steps Bayesian model are not very 
useful. 
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From this experience, we can conclude that the Two-Steps Bayesian model could 
represent a complementary approach to reliability growth models when the 
hypothesis of applicability of the latter are not verified. 

Figure 7  Prediction of the Two-Steps Bayesian model for operational testing 

Summary 
In this section we presented two dynamic methodologies, the One-Step and the 

Two-Steps Method, useful for predicting the cumulative number of failures at the 
end of the testing phase by using the data collected during the testing phase itself.  
The most attractive feature of these models is their simplicity: they only require 
collecting the time intervals between subsequent failures. No estimation of 
parameters of the product or of the development process is needed. 

For prediction purposes in both the One-Step and the Two-Steps Method we used 
a Classical estimator and an alternative Bayesian estimator comparing their 
respective performances in the overall estimated number of failures by using a 
industrial cases study. As a result we conclude that the Bayesian approaches usually 
achieve better results with respect to the Classical also because the latter may require 
too much data to provide meaningful predictions. 

Although we focused our attention on the non-operational test stage, due to the 
general nature of the proposed methods we also tried to apply them to operational 
data. For this reason we have reported here the results obtained by using an industrial 
case study.  
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7 Reliability Models Application 

Preface 
In this Chapter we continue the exploration of the testing phase, considering now 

its final stages, i.e. the operational testing. So far we have proposed only methods 
and approaches which can be applied: before beginning the testing phase, to schedule 
the time and effort required for its development (Chapter 4); till the release in 
operation of the final products, for deriving and prioritising the test cases (the 
Cow_Suite methods of Chapter 5) and for predicting the overall amount of failures 
discovered at the end of testing phase (Chapter 6). In particular, the latter models 
have been specifically created to deal with non-operational failure data even if some 
of them could represent a complementary approach for failure rate estimation.  

Now we want to concentrate on the operational testing, which is the final test 
action prior to deploying the software. Thus by using the data collected in this stage, 
we want to apply the commonly-used methods (the reliability growth models) for 
evaluating some characteristics of the products as the level of reliability achieved.  

In this Chapter we provide an introduction the Software Reliability Engineering 
(Sections 7.1) and a brief description both of the operational testing and the models 
applicable to reliability prediction (respectively Sections 7.2 and 7.3, 7.4). Finally, 
we report our experience in applying these last to a real case study provided by an 
industrial software developer (Section 7.5). 

7.1 Software Reliability Engineering 
Since the 1980s, with the increasing in the use of software systems in everyday 

life, a large part of software engineering has focused its attention on the quality of 
software components, and on the methodologies for controlling and evaluating them. 
In particular the range of the research included both the specification of a proper 
development process and the analysis of the software applications themselves. A 
“mature” and well-established development process can contribute to the quality of 
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its products but cannot completely guarantee about reliability level. Therefore the 
application of techniques for quantitatively evaluating and predicting the level of 
quality attained are necessary, especially in the situation in which it is crucial to 
confirm that a particular program has achieved its reliability goal before use. Often 
the developed systems are used in situations where failures and incorrect outputs can 
cause annoyance, loss of money, or even loss of human life. In literature there are 
several examples in which software failures caused dramatic disasters or killed 
people, such as the case of the Therac-25 radiation therapy machine [LI92]. These 
experiences have contributed to the birth and the diffusion of Software Reliability 
Engineering (SRE) which concentrates mainly on a very important software 
attribute: reliability. This is only one of the attributes of a software product and 
belongs to the specification of the general terms of dependability ([LA92], [LA93]).  

Reliability, which is formally defined as ”the probability of failure-free software 
operation for a specified period of time in a specified environment” ([AI91]), in 
particular represents quantitatively the “quality level” reached by a software product. 
Observing a program performing failure-free for a long enough period (or if a 
sufficiently small number of failures are observed during a long period of operation) 
it would be reasonable to accept claims that it is sufficiently reliable for its intended 
purpose. Unfortunately with some systems, specifically the critical ones, real 
operations cannot be used to obtain this kind of measurement and other methods for 
estimating their reliability must be used instead.  

Before continuing it is important to specify that when referring to SRE the 
attention is focused not on faults but on failures i.e. the deviations of the delivered 
service from the functions for which the program was intended (Chapter 2). SRE is 
therefore not concerned with how many faults remain in the software product, as 
much as they are, but with how often the product will fail, and the impact such 
failures will have on the job they must do. However generally speaking about testing 
it is sometimes wrongly though that the more faults are identified, the greater the 
increase in reliability after their removal.  

Unfortunately, the commonly used testing techniques stress the software in a 
different way with respect to the real uses to which the software will be subjected 
during operation, hence they do not provide a guarantee of the reliability attained. A 
classic example is reported by Adams [AD84]: he found that some of the 30% of the 
faults found in the system he studied would each show up less than once every 5000 
years of operational use. Clearly, any testing procedure that was efficient at finding 
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these very “small” faults, but inefficient at finding “larger” ones (causing failures 
with higher frequencies), would not allow us to increase reliability efficiently. Thus 
conventional testing approaches can increase the reliability of the products, but they 
do not provide any final measure of what has been achieved.  

In literature there are various works which try either to compare the reliability 
obtained by applying widely used testing techniques (for instance branch or data 
flow coverage (see Chapter 2)) and the methods based on the operational profile 
[ST97], [FHL98] [FY00], or to combine diverse software detection techniques to 
improve the final reliability [MZ98], [FO00], [LPS00], [LPS01a/b]. 

Regarding SRE, it is formally defined as the quantitative study of the operational 
behaviour of software-based systems with respect to user requirements concerning 
reliability [LY02]. SRE involves the entire process of development, from the 
feasibility to the maintenance phase, with the main intent of predicting, modelling, 
estimating and measuring the reliability of software products. In addition SRE 
defines the attributes of interest and the metrics applicable during the development 
process for measuring the products reliability, and specifies the different 
development phases as well as the system architecture. 

Thus SRE attempts both to satisfy the customer’s needs and to define a proper 
plan and schedule of testing phase. The specification of precise reliability 
requirements facilitates the system tester, to verify that the developed system meets 
the requirements, and ensure to the customer the acquisition of the committed 
product. Moreover, the time dedicated to the testing phases is exactly what is needed 
for reaching the required reliability and the involved resources are only focused on 
the high-usage functions or operations avoiding energy waste. The main steps 
identified by SRE are: 
a) Define and quantify product usage. Measuring reliability depends on the 

observation of the product behaviour in operation, and is strictly related to the 
environment in which the product will be inserted. In many cases, i.e. critical 
systems,  the simulation of the product usage in the testing environment is 
necessary. This means specifying how the customer will use the various system 
features and which environmental conditions will influence the process. Testing 
by simulation of operational usage is known as operational testing or statistical 
testing or software reliability engineering testing (SRET). As will be specified in 
detail in the next section the key idea is that the selection of the test cases is 
carried out in such a way that the probabilities of selection are the same as those 
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in real operation. Consequently, any statistical estimation of reliability in the 
testing environment can also assumed to be as characteristics of operational 
reliability.  

b) Define quantitatively the reliability goals with the customer. This is useful not 
only for providing the information necessary for demonstrating that the reliability 
requirement has been achieved, but also to maximize customer satisfaction and 
resolve any possible contractual controversy. 

c) Track the reliability of the product during testing by executing the proper test 
cases. In operational testing the test cases are executed in random order, but 
based on usage probability. Hence those runs, which are of the greatest 
importance to the customer, are likely to occur more often. 

d) Measure the reliability, i.e., interpret the test results obtained. There are two 
different testing behaviours as will be better discussed in the next section: testing 
to certify the reliability or testing to improve it. In the former case when failures 
are discovered during the testing phase they are left in the code (life testing) 
because the purpose is deciding whether the software is acceptable or not 
[ABK94]. In the latter the corresponding faults are removed, hence a sequence of 
programs is obtained showing (possibly) a growth in reliability which is in turn 
measured by the application of the Reliability Growth Models.  

7.1.1 Achievable Reliability 
In [PSM02] the authors analyzed the practical implications of varying 

probabilities of failure over input subdomains of operating regimes, and evaluated 
the possibility of estimating useful upper and lower bounds on the reliability of a 
two-versions system. Of course, it is very attractive for the customer requiring high 
reliability for the products he/she is going to acquire. Unfortunately the difficulty of 
achieving and demonstrating reliability is strictly related to the level of reliability 
required [LS00]: for instance if a reasonable failure probability is 10-3 per unit time, 
it is necessary to run at least 1000 test cases. Of course, the situation is more critical 
in case of safety critical systems developed for managing and controlling aircraft, 
industrial plants, railway and air traffic for which the reliability requirements must be 
very high. For instance, as reported in [LS93], in civil transport airplanes the quoted 
requirement is failure probability of at least 10-9 per hour of operation; in the U.S. 
Federal Aviation Administration's Advanced Automation System (for air traffic 
control), the required failure probability was at least 10-7, i.e. 3 seconds per year.  
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These stringent requirements, called 'ultra-high reliabilities” [LS93], appear very 
difficult to reach and demonstrate by using available means: reliability growth 
models, testing with stable reliability, structural dependability modelling, as well as 
more informal arguments based on good engineering practice. In [LS93] and [LS00] 
the authors provided some rigorous arguments about the limits of what can be 
validated with each of such means. In particular they show that only combining 
evidence from these different sources it is possible to raise the levels that can be 
validated and reaching consequently ultra-high reliability. Recently alternative 
studies demonstrate that the use of Bayesian networks [MW82] can also be used for 
reaching this target [NFF03] and [NKF03].  

The proof that high software reliability is attainable comes from earlier systems, 
which reach this level during extensive operational use. For instance the AT&T 
telephone system historically exhibited very high quality-of-service measures, 
achieved by focusing not only on component reliability [HMW01] but also an 
extensive redundancy, error detection and recovery capabilities.  

Recently, with the increasing of the use of Component-Based software, the target 
of the literature has been partially oriented to the measurement and achieveme nt of 
the overall reliability of an integrated software system [LRM97, LRM02, LHK02, 
YLK02]. Some interesting results are: [ST00] which focuses on the problem of 
component re-use, and [PO02] which treats an important problem in many safety-
related industries, the reliability assessment of upgraded legacy systems. 

As shown in this short, and not exhaustive overview of the literature, achieving 
an established level of reliability is not a trivial problem and many solutions have 
been provided over the years. Generally the topic of reliability is extensively treated, 
leading to the diffusion of the software reliability engineering practice in many 
fields. Examples of successes obtained are found in [MU03], which provides a 
complete list of published articles and papers, written by practitioners who have 
applied software reliability engineering to their projects and described their 
experiences resulting.  

7.2 SRET 
Software reliability is a measure of the probability that software will execute 

without failure for a specified time period within a specified environment. A key step 
in SRE practice is to quantitatively define the quality objectives of the development 
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process, which embraces all phases in the software life cycle, from the feasibility and 
requirement stages up to maintenance after delivery.  

This section mainly focuses on the application of SRE activities to the testing 
stage. In mid-1990s, Musa introduced the Software Reliability Engineered Testing 
(SRET) methodology, whereby "SRET is testing guided by reliability objectives and 
expected usage and criticality of different operations in the field" [MU98].  

In particular SRET can be applied in two different manners for debug testing and 
for acceptance testing as mentioned in the previous section. In the former, the metric 
estimated and tracked is failure intensity, i.e. failures per unit execution time. System 
testers use failure intensity to guide the bugs’ correction process. Acceptance testing, 
on the other hand, does not involve fault removal to resolve failures, but enables an 
overall “accept” or “reject” decision. 

In the following sections we briefly report the five principal activities of the 
SRET approach, referring the reader for more details to [LY96, MU93, MU96, 
MU98, MU03]. 

7.2.1 Defining the Reliability Objectives 
As for the other requirements, the reliability must be specified in strict agreement 

with the customer. It provides the information necessary not only for later 
demonstrating that the requirements have been fulfilled, but also for resolving any 
possible contractual controversy, in the case of failure. 

The first step for defining the reliability objective is to establish which 
operational modes need reliability verification. Specifically an operational mode is 
defined as a distinct pattern of system usage likely to stimulate different failures, or 
rarely-occurring failures with critical impact, and hence needing separate testing.  

Many factors may contribute to individuate an operational mode, such as system 
maturity or overload, critical events and so on. [LY96, Chapter 5]. In the distinct 
modes of operation it is then necessary to define possible failures and identify their 
potential impact on users, i.e. the severity classes. Some classification criteria can be 
adopted for this purpose such as the human life impact, the cost impact as the loss of 
present or potential business or the service impact. Generally there are four levels of 
severity classes ordered in a decreasing manner and defined as:  

Severity 1: Complete unavailability to users of essential services  
Severity 2: Degraded availability to users of essential services  
Severity 3: Unavailability to users of services, but workarounds available 
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Severity 4: Unavailability of capabilities that do not affect users 
The last step is defining the reliability level to be achieved for each operational 

mode and severity class. 

7.2.2 Developing the Operational Profile 
The reliability of a product depends on how the costumer will use it; therefore the 
operational profile is the key notion in evaluating software reliability, and is what 
distinguishes operational testing form traditional debug testing.  
Musa defines an operational profile as “the set of operations and their probability of 
occurrence” [LY96, Chapter 5], where an operation is a complete task performed by 
the system. To obtain the list of operations, a stepwise procedure can be followed. 
• First step: the identification of different customer types, i.e. the initiators of 

operations. An operation can in fact be initiated by a user, a transaction, another 
system, or the system's controller, thus it is first of all necessary to group the 
users, who utilize the system in similar ways, into user types. These are then 
refined for identifying all the modes in which a user can invoke the system.  

• Second step: the enumeration of the operations that are produced by each 
initiator. For each initiator, by using the documentation available such as system 
requirements, draft users manuals, a list of operation is produced. This will be 
further refined as requirements, design and implementation proceed. Specifically 
it could be the case either of dividing an operation into two or more, if the 
processing results substantially different in several cases, or reducing the number 
of operations for a less fine-grained representation of use.  
Sometimes, focusing only on testing purposes instead of defining the list of 
operations for each initiator, it is preferable to define the set of test inputs that 
will be used for exercising the software under test. A test input or an input point 
is defined as a set of values, one for each of the variables that affect the behaviour 
of the software under test. 
Hence an input point could take different forms depending on the software 
considered; for instance: 
° For a program, which receives all its input information at the beginning of its 

execution, the input variables form an input point, also called input vector. In 
this case all the possible values of an input vector form a set of input points.  
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° For a program having an internal state, which changes as consequence of a 
receiving input, each input point also includes in its variable the state 
variables with their initial values.  

• Third step: determine the occurrence rates of each operation. For this purpose it 
is possible to either use existing field data from similar systems or to simulate the 
system behaviour, i.e. determine arrival rates of events that invoke different 
operations, or make estimates. 

• Fourth step: determine occurrence probabilities by dividing occurrence rate by 
total occurrence rates. At this step a functional profile is defined, i.e. a list of the 
functions needed by the user in each mode and their occurrence probability. 

• Fifth step: define the operational profile from the user’s point of view. This must 
be converted to the operational profile, which is system oriented.  
If in the second step the set of inputs has been defined, the operational profile 

consists in determining the probabilities of selection of the different inputs, and 
hence the fourth and fifth step are unified. Generally, the set of input points is very 
large (or even infinite); therefore it is not possible to enumerate each point with its 
probability. Three practical methods can be defined and possibly combined, for this 
purpose: 

a) Specifying the probabilities as mathematical functions; 
b) Subdividing the input space into a manageably small number of subsets, and 

specifying a list of probabilities, one for each subset; 
c) Instead of specifying the probabilities, specifying the process for producing 

the input, if it exists, according with the intended distribution. This process 
could be a pseudo-random process, a simulation of the environment 
knowledge, the use of test operators, or of recorded input data set. 

7.2.3 Preparing the Tests 
In this step the test cases to be executed and the scripts for automatically 

launching them are prepared. In particular, 
 A test case is specified by an operation and its complete set of input variable 

values and environment. Once the set of test cases is established they must be drawn 
randomly following the operational profile using specific test procedures, i.e. the 
statistical specification of the set of runs associated with an operational mode, made 
by providing values of operation occurrence rates. The process for preparing test 
cases involves three steps:  
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• First step: Estimating the number of test cases, i.e., runs from the amount of 
testing scheduled and allocating them among the different operational modes. It is 
worth noting that the same test case can be executed in different test procedures 
and results in different test runs. Therefore the minimum number of test cases 
required is equal to the maximum number of runs allocated to an operational 
mode. In this manner in fact it is possible to avoid a useless waste of testing 
resources due to the duplication of runs. Executing the same run with exactly the 
same values for all input variables is only required for collecting more data, 
verifying that a failing run now operates successfully, or conducting a regression 
test.  

• Second step: Specifying the test cases, i.e., selecting the operation with a 
probability equal to its occurrence probability in the operational profile and 
selecting the run with equal probability from all possible runs of the operation. 

• Third step: Preparing the test procedure scripts, i.e. the procedure used for 
calling the test cases. Due to the generally large number of tests to be run the 
execution of the scripts should be automated whenever possible. 

7.2.4 Executing the Tests 
In operational testing, the test cases are executed in random order, but based on 

usage probability. Hence, those runs which are of the greatest importance to the 
customer are likely to occur more often. Statistical testing in particular depends on 
running large number of tests. Roughly for a reasonable chance of finding a fault in a 
program with failure probability q, or to demonstrate a failure probability of the 
order of q, it is necessary to run at least a small multiple of 1/q test cases. For 
instance if a reasonable failure probability is 10-3 per unit time, it is necessary to run 
at least 1000 test cases.  

Considering this order of test cases, manual testing becomes a labour-intensive 
activity. It requires a human tester to select the test cases that appear useful, running 
them through the software under test, and analysing the result for failure. Therefore 
the execution of test cases must be automated with the use of a test management 
system. This is responsible for setting up, executing test procedures scripts, capturing 
input and output, and cleaning up. Specifically it should implement a mechanism to 
automatically record execution parameters, results, failures, and their severity and 
time of occurrence. A set-up for automated testing is shown in Figure 1. 
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Figure 1 The testing environment 

As shown by this figure, an important part of the test automation is the oracle. 
This name indicates any mechanism used to decide whether the program behaves 
correctly on a given test. The oracle decides about the test outcome for example by 
analysing the behaviour of the program against its specification. One of the main 
qualities of the oracle is having a high coverage defined as: the probability that the 
oracle rejects a test run, given the correct probability distribution of the inputs and 
given that the test run is a failure. 

Having a good oracle is therefore an important and difficult to achieve objective 
in operational testing, because if failures pass undetected, software reliability cannot 
be increased and its assessment will be misleading. Also undesirable, even if less 
dangerous, are false alarms, because resources will in wasted to diagnosing inexistent 
failures. Here we do not extensively treat the problem or oracle definition referring 
the reader for more details to [MIO87, LY96 Chapter 5]. We limit ourselves to 
provide some useful guidelines for automatically checking the test results: 
• Specification checks. The definition of a correct result comes from the 

specification by using assertion or formal executable language. For instance: for a 
program which has to find the solution of an equation, the check may consist of 
substituting the results back into the original equation. 

• Back-to-Back testing. Any time a reference system is available, such as a 
previous version of the software, it is possible to compare its results with those 
produced by the program under test. The discrepancies may not always be due to 
bugs, as differences between the two versions may be allowed by the 
specification 

• Reversal checks. When feasible, the oracle can compute the inverse function of 
the produced output and compare it back with the input.  
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• Suspicious behaviours. The oracle can be designed to look for illegal or 
unreasonable values of the variables, that are a necessary, although not sufficient, 
condition for failure. 

7.2.5 Interpreting Test Results. 
Failure data collected during test execution are interpreted differently depending 

on whether the objective is to resolve the detected failures or not, as in debug testing 
or acceptance testing. In the former case the goal is to increase product reliability; 
therefore during system testing, as the fault are removed, periodic estimates of failure 
intensity are made from failure data. Typically these estimates are computed by using 
a suitable reliability growth model, as will be described in the next section. The test 
stops when the reliability objectives are reached, i.e. for each severity class the 
established failure intensities are achieved.  

The acceptance testing goal is to decide whether a product is acceptable or not. In 
this case the test consists in simply evaluating the product failure behaviour against 
the required reliability levels. Depending on the failure intensity achieved it is 
therefore possible to accept or reject the software being tested or continue testing.  

Musa's SRET approach has been successfully applied to many projects with 
documented strong benefit/cost ratio results. As an example AT&T Bell Laboratories 
is currently applying SRET in a substantial number of communications software-
based systems, and specifically in the Operations Technology Center of the Network 
Services Division, developers have used it on over 20 projects; the National Security 
Agency is now embracing the technology to build communications system software 
where security and reliability are logical and required ingredients.  

7.3 Reliability Theory: Some Basic Definitions 
In the previous section, some important concepts such as reliability and failure 

rate were mentioned without a rigorous definition. Before presenting the reliability 
growth modelling it is necessary to fill this gap by introducing key concepts, 
referring the reader to [Ly96 Appendix B] for more details. In reliability theory, 
interest is focused on a random variable T, representing the time to failure, and the 
probability that T is in some interval (t, t+∆t): 
Eq. (1) P(t≤T≤ t+∆t )≡ probability that t≤T≤ t+∆t 

If f(t) indicates the density function and F(t) the distribution function the previous 
formula results: 
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Eq. (2) P(t≤T≤ t+∆t )=f(t)∆t=F(t+∆t )-F(t) 
Then considering that T is defined only for the interval 0 to +∞ and  
 
 

 
From Eq. (2) results: 

 
Eq. (3)  
 

The reliability function, R(t), representing the probability of success at time t, is 
therefore defined as the probability that time to failure is larger than t (that is T>t), 
i.e., 

 
Eq. (4)  

 
In practice the density function f(t) is not used very much because the data 

observed are relative to the failures occurrences, and the failure rate function (or 
hazard function) is preferred instead. Explicitly the failure rate is defined as the 
probability that a failure per unit time occurs in the interval [t, t+∆t], given that a 
failure has not occurred before t. That is: 

 
 
Failure rate≡ 
 
The hazard rate is instead the instantaneous rate of failure at time t, given that the 

system survives up to t and is defined as the limit of the failure rate as the interval 
approaches zero, (∆t→0). That is: 

 
Eq. (5)  

 
As shown by these formulas, the function f(t), F(t), R(t), and z(t) can be 

transformed one into another. Just for instance, for any time t results:  
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Another important measure for characterizing a failure model using a single 
parameter is the mean time to failure, (MTTF). This is defined as the expected time 
during which the system will function successfully without maintenance or repair. 
That is: 

 
Eq. (7)  

 
where f(t) is the density function and R(t) is the reliability function. 
Finally other important functions in reliability theory are the failure intensity, 

λ(t), and the mean value function for the cumulative number of failures µ(t). 
Supposing that M(t) is a random process defining the cumulative number of failure 
by time t,  µ(t) is defined as the mean value function, i.e.: µ(t)=E[M(t)] 

The failure intensity λ(t), is defined as the instantaneous rate of change of the 
expected number of failures with respect to time, and derives from µ(t) as derivative: 

 
Eq. (8)  

 
The software reliability theory is mainly based on the application of reliability 

growth models to evaluate reliability measures; it is therefore important to define 
exactly what this means. 

Generally considering the successive interfailure times, T1, T2, …Tn, a growth in 
reliability can be experienced if the successive intervals tend to become larger, i.e. 
Ti,≤ Tj, for all i<j. Precisely P(Ti<v)≥ P(T j<v) for v>0. Otherwise, if FTi(x) is the 
cumulative distribution function of Ti the growth in reliability is represented by: 
FTi(x)≥ FTi(x)  for all i<j  and x>0 [ACL86]. 

7.4 Reliability Growth Models: an Overview 
The software reliability models appeared for the first time in the 1970s with the 

pioneering works of [MJ72, SH72] and have been the most successful achievement 
in recent years for estimating and predicting the reliability of the systems. Nowadays 
there are dozens of these models, each one with its particular assumption. Basically 
the main characteristics of these models are [MIO87]: 
• Predictive validity: the capability of the model to predict future failure behaviour 

from present and past failure behaviour (that is, data). This characteristic is 
significant only when some changes in the failure behaviour can be experienced, 
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as should occur when applying an operational test in which faults are repaired 
when detected.  

• Capability: the ability of the model to estimate with satisfactory accuracy 
quantities of interest that could be for instance the present reliability, mean time 
to failure (MTTF), or the expected date of reaching a specified reliability.  

• Applicability: the ability of a model to be applied in different conditions across 
software products that could vary in size, structure, or functions implemented. In 
particular, it is very important that a model is not dependent on development or 
operational environments. 

• Simplicity: a model should be simple under three different aspects: in collecting 
data, which must be simple and inexpensive; in its concepts, i.e. anyone without 
extensive a mathematical background should be able to understand the model and 
its assumption; in its implementation, so that the model can be rapidly and 
inexpensively applied.  
Indeed the reliability evaluation is a difficult task, mainly because it deals with 

software failures, caused by design faults, which reveal themselves only under 
appropriate operational circumstances. Generally, software reliability modelling is 
described as a set of techniques that apply probability theory and statistical analysis 
to predict software reliability, or also the modelling of past failure data for predicting 
the future system behaviour.  

The approaches proposed are divided into two distinct categories, depending on 
the data used for the derivation of the stochastic process useful to reliability 
estimations: the number of failures discovered per time period, or the time between 
failures measured as wall clock or execution time. 

It is worth noting that the accuracy of data collection can have a fundamental role 
in the reliability predictions obtained. Considering for example the first group, if 
during the development of the operational test for each failure only the date, and not 
the exact hour in which the failure occurs was reported, the unit of time will not be 
shorter than the day, and the reliability estimations will consequently have the same 
granularity. Moreover it is fundamental to consider only the period in which the 
operational test has been developed, otherwise the predictions should not be true. For 
instance, if the test is conducted only during working days at least Saturday and 
Sunday must be eliminated from the data collected 

Referring to the second group, a peculiar situation is when the failure time is 
expressed in execution time, i.e., the failures are registered considering the time in 
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which the operational test is running on the CPU.  In this case, the time between 
failures registered corresponds exactly to the period in which the operational test has 
run CPU. The same cannot be true when the clock time is collected. It is possible that 
the clock time between two successive failures is equal to one hour but due to 
internal problems the operational test has run on the CPU for only a few minutes.  

Generally, with the proper information, the failure per time period data can be 
transformed into time between failures and vice versa. It is also possible to simulate 
this transformation by distributing the failures on the test period in a random or in a 
uniform manner. 

Usually an informal description of the reliability growth modelling, start 
considering a program under debugging in which the execution time between 
successive failures, t1. t2. …ti-1,  can be experienced [ACL96, BCL90, BL92]. This 
represents the raw data that will be used for defining the stochastic process. In this 
perspective it is assumed that each time a failure is observed the fault causing it is 
fixed, but varying this hypothesis can derive different models [ACL96, MIO87]. The 
time between failures observed is thus considered to be realizations of random 
variables, T1, T2, …Ti-1, and used for predicting the future behaviour, Ti. Ti+1… (note 
that even the current reliability Ti results in a prediction).  

For this purpose different prediction systems are developed and compared, where 
a prediction system is defined as [ACL96, BCL90, BL92]:  
1. The probabilistic model which specifies the distribution of any subset of Ti’s 

conditional on an (unknown) parameter α 
2. a statistical inference procedure for α involving use of available data 

(realizations of Ti’s) 
3. a prediction procedure combining 1) and 2) for making probability statements 

about future Ti’s 
It is worth noting that having a “good” model is not enough for truthful 

predictions; the three points mentioned are strictly related. For instance, in the  
models considered the random variables used are not identically distributed, 
therefore it is not possible to analyse the models’ performance with the traditional 
“goodness-of fit” method [LO87, HSM02]. Moreover, generally the representation of 
the software engineering process is a difficult task and requires complex models; 
therefore, it is not possible to choose a priori in favour of one model instead of 
another. The selection of the model, which better represents the software engineering 
process requires an accurate analysis, as will be explained later in this section. 
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In the following we present a brief summary of the software reliability growth 
modelling, referring to [LY96] for a more detailed documentation. 

7.4.1 Model Classification  
To simplify the model selection, and in particular an accurate model organization, 

Musa and Okumoto [MU83] present a model classification schema, based on the 
different attributes of each model which are: 
1. Time domain. Wall clock versus execution time 
2. Category. This represents the total number of failures that can be experienced in 
infinite time, which can be either finite or infinite.  
3. Type. The distribution of the number of the failures experienced by time t is 
considered 
4. Class. This attribute is characteristic only for the finite failure category. This 
expresses the functional form of the failure intensity expressed in terms of time. 
5. Family. This attribute is characteristic only for the infinite failure category. This 
express the functional form of the failure intensity expressed in terms of the expected 
number of failures experienced. 

Generally the attributes considered most frequently for grouping the different 
models are category and type. Considering the former, if µ(t) indicates the mean 
value function for the cumulative number of failures, as defined in the previous 
section, the models are divided into two basic groups, depending on µ(t):  
• the finite failure models subgroup if ∞<

∞→
)(lim t

t
µ  

• the infinite failure models subgroup otherwise.  
The type attribute instead categorizes the types of data the model uses. In 

particular two subsets can be individuated, even if there are models that can handle 
either groups. 
First group: This is represented by all models that use as input data the observed 
number of failures discovered per time period. Generally distribution of the number 
of the failures experienced by time t is considered to be the Poisson type [HSM02]. 
In this case if the interval [0,t] is divided into n partition such that t0=0, t1,…tn=t  and 
µ(t) indicates the mean value function for the cumulative number of failures, each of 
the fi independent Poisson random variables has: 
• mean value E[fi]= µ(ti)-µ(ti-1) 
• probability density function  

for x=0,1… 
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Second group:  This is characterized by the models that use as input data the 
observed time (actual wall clock or some measures of computer execution time) 
between software failures. In this case the distribution of the number of the failures 
experienced by time t is considered of the Binomial type [HSM02]. 
Combining the two attributes a classification of some of the existing reliability 
models can be made, as shown in the table below.  

Table 1 Classification of the Reliability Growth Models 

7.4.2 Reliability Growth Model Selection 
Every reliability growth model (RGM) is characterized by accurate applicability 

conditions and a mathematical specification. In this section we mainly concentrate on 
the former aspect referring the reader to [LY96, Chapter 3] for an exhaustive 
mathematical description of these models. In particular, we report the three common 
assumptions, generally called Standard Assumptions, which are fairly standard for 
each of them. They are considered fundamental preconditions for applying every 
model.  
A1. The software is operated in a manner similar to that in which reliability 

predictions are to be made. 
A2. Every failure within a severity class has the same chance of being encountered 

as any other in that class 

Failure per time period Time between failures 
Finite failure category Infinite failure 

category 

Finite failure 

category 

Infinite failure 

category 

Books and Motley[BM80] Duane model [DU64] Jelinski and Moranda 

[MJ72] 

Geometric [MO75] 

Non-homogeneous 

Poisson process [GO79] 

Musa-Okumoto 

Logarithmic Poisson 

[MIO87] 

Non-homogeneous 
Poisson process 

[GO79] 

Musa-Okumoto 

Logarithmic Poisson 

[MIO87] 

Schneidewind’s model 

[SC75] 

 Musa basic [MIO87] Littlewood and Verrall 

[LV73] 
Yamada S-Shaped 

[YOO83] 
   

Hyperexponential 

model [OH84] 
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A3. The failures, when the faults are detected, are independent. 
The first assumption ensures that data used for deriving model estimates are 

collected in an environment that can be assumed equal to that in which the reliability 
projections are to be made. Any significant discrepancy between the two 
environments could in fact invalidate the predictions obtained. The second assures 
that different severity classes may have diverse failure rates, and therefore require a 
separate reliability analysis, but the failures in the same severity class must have the 
same distributional property. The latter assumption allows simplicity in deriving the 
estimates, as the maximum likely estimates  [HSM02]. 

A major step in predicting software reliability is to decide which model is the best 
for predicting reliability in a specific context, since there is not a model which 
performs better than the others in any case.  

The procedural process for deciding which RGM should be applied for obtaining 
truthful reliability prediction has three main steps: 

First step: Verify the Standard Assumption at least for A1 and A2. These are 
fundamental prerequisites for applying any model. 

Second Step: Selecting the set of RGMs that can be applied. On the bases of the 
typology of the data collected, i.e. failures per time period or time between failures, a 
first choice of the models applicable for obtaining prediction can be derived, as 
reported in Table 1. 

Third Step: Evaluating the specific requirements of any model. Among the 
models chosen in step two, a refined selection can be performed by analysing their 
specific assumptions or mathematical definition. For instance some models assume 
either that the number of faults in the software has an upper bound, or a perfect 
debugging. If testing is performed when the software is still immature, i.e., it is still 
possible to make many and significant changes to the software under test, it would be 
more appropriate to choose those models that do not assume an upper bound to the 
number of faults (e.g. Musa-Okumoto Logarithmic Poisson model or Littlewood-
Verrall model). Otherwise, it would be more appropriate to choose a model that 
belongs to the finite failures category (e.g. Non-homogeneous Poisson Process 
(NHPP) model or Musa basic model). Moreover, if previous experience on similar 
projects indicates that a significant number of repairs results in new faults being 
inserted into the software, it would be more appropriate to choose from those models 
that do not assume perfect debugging (e.g. Littlewood-Verrall model). Otherwise, it 
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would be more appropriate to choose a model such as the NHPP model or Musa 
Logarithmic Poisson model. 

Therefore the RGM can be differentiated by the assumption regarding testing and 
defect repair, even if, it is important again to stress that currently there is not a 
known method for determining a priori which model will prove optimal for a 
particular development effort. To this purpose in [WO97] the author tries to evaluate 
the effect of violation of the models’ assumption on the inaccuracy of the model 
predictions. 

Fortunately, recent theoretical advances in the field have largely eliminated some 
difficulties that arose in the choice of these models for a specific case. As will be 
better described in the next section, in fact, from the practitioner’s perspective 
several software reliability tools are available today which facilitate the automatic 
execution of Step 3. These tools help users to make the choice of a model without 
requiring extensive knowledge of the mathematical aspects of the RGM. In 
particular, they let the user readily apply the best known software reliability models 
to his/her set of failure data and then choose the model that gives the best 
predictions, by analysing the produced results.  

7.4.3 Survey of Reliability Estimation Tools 
Generally the tools for reliability estimation by using the results of operational 

testing are divided into three categories: the steady-state reliability estimation, which 
is mainly based on the Markov model [KA86] and represents the system behaviour 
as a set of mutually exclusive system states, the modelling of system reliability based 
on component reliability, in which the system is decomposed into functional entities 
consisting of units or subsystems, and the reliability growth models, which are those 
presented in this section. 

For the first two categories many tools exist that were developed outside the 
software domain and can be conveniently be used for modelling software reliability 
as well. Without claiming to be exhaustive, here we extend and update the survey of 
the available tool for reliability estimation presented in Lyu’s book [LY96, Appendix 
A], accompanying each of them by brief description. 
• SMERFS (Statistical Modelling and Estimation of Reliability Functions for 

Software) a portable (written in FORTRAN 77), menu-driven tool developed by 
the U.S. Naval Surface Weapons Centre. The tool provides the statistical 
modelling estimation of reliability function [SME96]. 
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• CASRE (Computer Aided Software Reliability Estimation) developed at JPL 
which is a PC-based extension of SMERFS meant to provide a more user-friendly 
interface, more input data manipulation capabilities and the possibility of 
combining models to obtain different models which may provide better 
predictions [CAS00]. 

• SoRel developed at LAAS-CNRS in Toulouse, a Macintosh-based program with 
features similar to SMERFS, and also providing trend tests [SOR93], [KKL97]. 

• AT&T Software Reliability Engineering Toolkit developed for the first time 
by AT&T in1977 is a MS/DOS or UNIX® operating system implementing the 
Musa basic and the Musa/Okumoto logarithmic Poisson execution time software 
reliability models [LY96]. 

• SRMP (Statistical Modelling and Reliability Program) developed in 1988by the 
Reliability and Statistical Consultants, Limited of the United Kingdom, is a 
command-line-oriented tool for an IBM PC/AT or UNIX® operating system with 
characteristic similar to SMERFS [LY96]. 

• ESTM (Economic Stop Testing Model Tool) implemented by ESTM System in 
1992 in a command-line-driven system for UNIX® operating system, that can be 
used to help decide when to stop testing [LY96]. 

• M-élopée developed in the 1996 by Mathix for France Telecom is a PC-based 
tool which facilitates the direct import of input data and their manipulation. It 
implements several reliability growth models and the trend test [MEL]. 

• FRestimate developed by SofRel Company 2000,  Sugar Land, Texas is a PC-
based tool which allows the prediction of software defects, failure rate, MTTF 
and reliability before the testing. It also has estimation models to be applied 
during testing for reliability prediction [FR02].  

• Goel-Okumoto Software Reliability Model: This is an automated version of 
the Goel-Okumoto Nonhomogeneous Poisson Process Software Reliability 
Model which runs on an IBM-PC or compatible under MS-DOS 2.11 or higher 
distributed by DACS (Data & Analysis Center for Software) Rome, NY. This 
tool also provides the Kolmogorov-Smirnov statistic and different estimations 
about fault and failure [GOEL]. 

• Reliability & Maintenance Analyst distributed by the Engineered Software, 
Inc. Belleville, MI This is a PC-based reliability analysis software package which 
permits the life data analysis [REMA].  
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• PRISM is an IBM PC, or compatible, Reliability Analysis Center (RAC) 
software tool that links together several tools into a comprehensive system 
reliability prediction methodology. It permits combining together different factors 
that influence system reliability [PRIS]. 

• SREPT Software Reliability Estimation and Prediction Tool. This is a unified 
framework containing techniques (including the architecture-based approach) to 
assist in the evaluation of software reliability in all phases of the software life-
cycle [RGK00]. 
Here we only discuss the characteristics of CASRE and SoRel, which are those 

applied in the next section with the case study considered. The main result the tools 
calculate is product reliability (present reliability as well as future predictions of 
reliability) as a function of test time. For this purpose the tools allow the analyst to 
choose the model parameter estimation method: either maximum likelihood or least 
squares [HSM02]. In particular the tool CASRE can represent the product’s 
reliability in terms of several interrelated reliability measures, such as cumulative 
number of failures, failures per time interval, and the product’s reliability function.   

Moreover, for each model the tools CASRE automatically compute the 
prequential likelihood function (PL) [BL92], which is a general means of comparing 
the accuracy of predictions provided by more models when applied to the same 
failure data set. In particular, the best model is characterised by the highest value of 
PL (we must specify that for convenience many times the tools compute -ln(PL), so 
in this case the best model is that showing the lowest value).  

Regarding the tool SoRel, we must specify that it is the only one that allows 
several reliability trend tests such as: the arithmetical test, the Laplace test, the 
Kendall test, and the Spearman test [KKL97]. These tests allow an analyst to identify 
whether the reliability function is increasing, so that an appropriate model can be 
applied. 

7.4.4 Using the Tools for Predictions 
In this section we describe a stepwise procedure useful for predicting the 

reliability of software starting from a set of failure data collected during the 
operational testing. In particular we details the use of two tools, CASRE [LN92] and 
SoRel [KKL93].  

For simplicity’s sake as input data set, we consider only the observed number of 
failures discovered per time period (The steps considering as input data the observed 
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time between failures are similar). This allows immediately a preliminary selection 
among models that can be applied for prediction. Specifically, the reliability growth 
models usable with the tool CASRE are only: Brooks and Motley model, 
Generalized Poisson model, Non-homogeneous Poisson model, Schneidewind 
model, Yamada S-Shaped reliability model. 

7.4.4.1 First Step: Applying SoRel 

A basic assumption for using reliability growth models is that the failure data 
exhibits a growth in reliability; otherwise is quite difficult to obtain useful 
predictions [KKL97]. The first step is therefore to verify if the set of data available 
has this property, i.e. verify their trend. Generally there are two typologies of tests, 
called trend tests, applicable: the graphical test or the analytical test.  

The former is very informal and consists in plotting the failure data, interfailure 
time or number of failures per unit of time, versus time in order to visualize the trend 
displayed. The latter has as principle the test of null hypothesis H0 versus an 
alternative H1 [HSM02]. Usually H0 is assumed that the process is a homogeneous 
Poisson process and H1 that the process undergoes monotonic trend, that is to say 
that the data exhibit only an increasing (decreasing) interfailure times or decreasing 
(increasing) failure intensity. 

Regarding the analytical tests previous studies have shown the Laplace test to be 
optimal within the framework of the most famous software reliability models 
[GA92]. Briefly, this test consists in computing the Laplace factors u(i), expressed 
according to the failure data available (interfailure times or number of failures per 
time period) for the observation period [0, T] (for further details we refer to 
[KKL97]). In particular dividing the interval [0, T] into k units of time of equal 
length and letting n(i) the number of failures observed during time unit, it is possible 
to calculate the Laplace factors as: 

 
 

Eq. (9)  
 
 

The meaning of these values is: 
a) A negative u(k) suggests an overall increase in reliability between data item 1 

and data item k and thus decreasing failure intensity.  
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b) a positive u(k)suggests an overall decrease in reliability between items 1 and k 
and thus and increase in failure intensity. 

c) Values oscillating between -2 and +2 indicate a stable reliability  
The tool SoRel permits the automatic derivation of the Laplace factors displaying 

the numerical results and the visualizing the corresponding curves. This shows the 
trend over a given interval of time - the global trend – highlighting the regions in 
which there is or is not an increase in reliability in the failure data. In particular the 
graphical representation can illustrate information about the local behaviour of the 
failure intensity, represented by the region in which there is a change in the trend. In 
fact the intervals in which there are decreasing Laplace factors indicate a local 
decrease in failure intensity or local increase in reliability. Intervals in which there 
are increasing Laplace factors suggest a local increase in failure intensity or a local 
decrease in reliability. 

Considering that the reliability growth models may be applied when the data 
exhibits a growth in reliability, the local behaviour is useful for choosing the proper 
time origin or end within the global observation period, so that the subinterval of data 
considered has this property. The change in the time origin does not result in a 
simple translation. It is important to specify that sometimes it is possible to apply 
several reliability growth models even if there is a stable reliability in the failure 
data, but this strictly depends on the data available. In the next section we present an 
application of a real case study.  

In the literature, studies for relaxing the assumption of a growth in reliability for 
the application of the RGMs have been performed. In Chapter 6 we also face this 
problem, proposing a Bayesian model for predicting the final number of failures at 
the end of the testing phase. The impossibility of RGMs usage is a critical problem 
mainly in the early phase of testing when the process of failure detection is not fairly 
stable and a large number of failures are experienced. In these conditions it is very 
difficult to experience a growth in reliability. Some research solutions are found in 
[KM91] in which the authors predict the number of failures occurring during a finite 
future time interval from the number of failures observed during an initial period of 
usage by using the RGMs; [XHW97] in which an approach using information from 
similar projects in order to obtain an early estimation of the model parameter for a 
current project is studied; [MD97] in which the authors estimate priori values that 
can serve as a check for the values computed at the beginning of testing, when the 
test data is dominated by short-term noise.  
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7.4.4.2 Second Step: Models Running 

The second step consists in deciding which model is the best one for predicting 
reliability, considering the particular context. Sometimes it is possible to discard a 
model a priori, but generally is easier to apply all the models available to the failure 
data with the help of the tools, and then decide which is the best. In our case, we 
adopted the tool CASRE reporting here the main actions for using it. Further details 
are in [LN92]. 
1. Environment set: Before applying the models to the failure data it is necessary to 

set up the environment that consists in:  
a. Choosing the maximum-likelihood or least-squares parameter estimation. 

For maximum likelihood estima tion, the parameter estimates are such that 
the value of the joint probability density of n random variables (called the 
likelihood function) is maximized. For least squares, regression 
techniques are used to find estimated values of model parameters. 

b. Specify the range of failure data over which software reliability models 
will be applied. On the bases of the Laplace trend test it is possible to 
discard failure data belonging to an initial or a final period (or both) and 
thus specify the proper data range that will be used as input to the models. 
The default data range is the entire data set. 

c. State clearly the interval over which the initial estimates of model 
parameters will be made. By default, the first half of the entire data set is 
used to make the initial estimates.  

d. Specify for how long the models have to predict the failure counts (for 
example for the next k>0 test intervals after the last point in the data 
range used as input to the models) 

2. Models running: The models used for software reliability estimation may be 
chosen and run using currently-open failure data as model input. The model 
results are displayed in the graphical display window for analysis. In particular 
for each model, different views can be derived: 

a. Time between failures: for the failure count data, the time between 
failures for each test interval is taken to be the length of the test interval 
divided by the number of failures in that interval.  

b. Failure counts: the failure data is in the form of failure counts and test 
interval lengths. For the raw failure data, this display shows the number 
of failures encountered during each test interval. When showing model 
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results in this way, the plot shows the number of failures the model 
estimates in each test interval, as well as the number of failures the model 
predicts will appear in the future test interval.  

c. Failure intensity: For failure data and models results, this plot shows the 
number of failures per unit time.  

d. Cumulative failures: the plot shows the cumulative number of failures as 
a function of test interval number.  

e.  Reliability: this display shows the reliability indicated by the model 
results. For each observation in the raw failure data, a hazard rate can be 
computed. If we call the hazard rate h and the time interval is t, the 
reliability of the software is given as e-ht. The plot shows the way in 
which the software reliability changes as failures are observed and faults 
are corrected. 

7.4.4.3 Third Step: Models Selection 

So far the different reliability growth models have to be run to obtain specific 
results, now the one providing the best estimation must chosen. For this, some 
mathematical analyses can be performed.  

The first is the goodness of fit test, which is useful for deciding when a theoretical 
distribution can be used to correctly represent a given empirical distribution. The 
most popular are the Chi-square test and the Kolmogorov-Smirnov test. The former 
is applied when the failure data are relative to discrete random variables, as in the 
case of number of failures per time period, the latter to continuous random variables, 
as for the interfailure time. We briefly report here only the details of the Chi-Square 
test, referring to [LY96], [GA99] for more details. This test assumes that the 
distribution considered can be approximated by a multinomial distribution. In 
particular considering X the r.v. with distribution F(x), such that pi = F(xi) - F(xi-1) is 
the probability that a failure is in the interval [xi-1, xi], n  the number of observations, 
Ni the observed number of times that the measured value of X takes value i (i.e. a 
binomial variable with parameters n  and pi), the Chi-square can be calculated as:  

 
Eq. (10)  

 
where df are the degrees of freedom, i.e. if  k is the number of possible values for 

the variable X then generally df = k – 1. In particular, for the approximation to be 
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accurate, each n·pi value should be moderately large (n·pi = 5) otherwise some 
observations must be combined. In such a case if h is the number of grouped 
observations, df  = k -h-1.  This value can be measured in terms of statistical 
significance if χ2

df it is seen as the value of a random variable Xdf. The boundary 
value, or critical value, of the acceptable range χ2

α(df) is chosen such that: P(Xdf 

> χ2
α(df))=α where α is called significance level of test. Thus the null hypothesis H0 

is rejected if χ2
df > χ2

α(df). Usually α is chosen to be 0.05 or 0.1. 
Applying the tool CASRE a table of goodness of fit statistics for all models that 

have been run is automatically displayed. These values are used in conjunction with 
the table of percentage points for the Chi-Square distribution to determine the 
significance level at which the model estimates fit the data. The models for which the 
Chi-Square value is not within the specified interval are discarded. Specifically the 
significance level is identified considering the degrees of freedom that the tool 
CASRE has calculated for each model (df), and finding in the table of percentage 
points values x1 and x2, which have the coordinates x1 = (df, 0,05) and x2 = (df, 0,95) 
that correspond to a  significance level is 0.95%. Hence all the models for which the 
Chi-Square statistic is not within this interval [x1, x2] are not considered.  

The best model is finally chosen from those that have passed the Chi-Square test, 
considering other evaluations, the prequential likelihood (PL) and the prequential 
likelihood ratio (PLR) [BL92]. Briefly, if n is the number of observations, the former 
is calculated considering the cumulative distribution Fi(t), derived for the reliability 
prediction by using the first j-1 failure data collected,  j=1…i-1, and in particular the 
correspondingly probability density function fi(t) with the formulas:  

 
Eq. (11)  

 
The prequential likelihood function evaluates the differences from the sequence 

of predictor densities and the true (unknown) distribution of the failure data, also 
revealing the situation in which the prediction values are very noisy even if their 
expectation is close to the true one. In both cases the PL assumes small values. It is 
worth noting that since PL tends to become very small the natural logarithm of the 
PL is calculated instead. Hence the best model is characterised by the highest value 
on PL or the lowest -ln(PL). 
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The prequential likelihood ratio is used instead to compare the performance of the 
different models. Two prediction systems A and B can be evaluated via  their 
prequential likelihood as:  

 
 

Eq. (12)  
 
 

In this case if PLR→8  as n→8  then the system B is discredited in favour of A; if 
PLR exhibits neither upward or downward trends nothing can be said about the 
superiority of one system over the other.  

The  tool CASRE automatically calculates the PL for the different models, 
displaying in a plot the way a model’s prequential likelihood statistic (CASRE 
computes -ln(PL)) changes with time. Moreover, given two models, CASRE also 
computes their prequential likelihood ratio useful for how much more likely it is that 
one model will produce more accurate estimates than the other. 

In the next section an application of this evaluation to a real case study is 
presented. In the case in which the failure data are relative to the interfailure time 
other estimations can be used for choosing the best model such as the U-plot and the 
Y-plot [BL92], [CAG99].  

Briefly, the U-plot is a general technique for detecting systematic objective 
differences between predicted (Fi(t)) and observed failure behaviour. If the predictor 
system is working well the ui’s ( ui= Fi(t)) look like a random sample of the uniform 
distribution on (0,1 ), U(0,1). In particular this verification is performed plotting the 
sample cumulative distribution function (cdf) of the ui’ s and the cdf of U(0,1): if the 
U-plot is above the line of unit slope then the predictions are too optimistic, 
otherwise the predictions are too pessimistic.  

Instead the Y-plot is useful for examining the ui’ s trend. For this purpose the KS-
distance analysis is used which measures the max vertical deviation from the line of 
unit slope to the Y-plot. If the KS-distance is not statistically significant the errors in 
the predictions are in some sense stationary. In this case it might be possible to 
correct the failure predictions (Recalibration Technique) [LY96 Chapter 4], 
[BCL90], [BLA98]. If the predictions show an evident and constant bias is possible 
to use this information to recalibrate the future raw prediction in order to eliminate 
such errors. 
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Briefly, the steps for the recalibration procedure are: 
1. Analyze the U-plot and verify if there is an (approximately) constant 

relationship between prediction and through 
2. Obtain the raw prediction at step i of the distribution of the time to next 

failure 
3. Calculate the recalibrated prediction as discussed in detail in [LY96] 
4. Repeat this at each stage i. In this way a sequence of recalibrated predictions 

will result. 
Even if the CASRE do not implement the recalibration procedure, in literature 

there are successful examples of the application of these techniques [BCL90], 
[BLA98] so that the same authors also suggest applying the recalibration to all 
software reliability predictions. 

7.5 The Application Results 
Here we present the application of reliability growth modelling within the context 

of Ericsson Lab Italy (ERI in the following), with the intention of improving the 
capabilities of this organization in statistical process control and in prediction 
methods [BLM98]. In particular, the objective is reducing below a determined value 
the fault density figures, that are obtained by monitoring the first six months of 
operation of released products. Recalling what was explained in Chapter 6, Section 
6.6, the fault density in the ERI context is measured by the ratio between the 
cumulative number of failures observed in that period over the product size, 
expressed in lines of code. Root Cause Analysis (RCA) of reported failures is 
routinely performed, to track down failures to the phase in which they originated.  

In this section we focused on reducing the fault density figures in the Function 
Test phase (Chapter 6) by introducing explicit reliability objectives to guide it. For 
this, a baseline project has been selected for applying reliability testing techniques, as 
described in Section 7.2 and performing the test selection so as to reproduce the 
expected usage of the system in operation.  

7.5.1 Case Study 
The project used as a base to evaluate the SRET approach (Section 7.2) is the 

‘CTM project’. The CTM project implements the service Cordless Terminal Mobility 
(CTM) in the Ericsson AXE architecture. CTM is a service that allows users of 
cordless terminals to be mobile within and between networks. Where radio coverage 
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is provided and the cordless terminal has appropriate access rights, the user will be 
able to make calls from, and to receive calls at, any location within the fixed public 
and/or private networks, and to move without interruption of a call in progress. The 
solution adopted by Ericsson is to connect the mobile terminal to the fixed network 
via a Central Control Fixed Part (CCFP), whose main aim is to concentrate the traffic 
towards the CTM Exchange in a more capacious link called a ‘device’. All the 
devices between a CCFP and a CTM Exchange are grouped, for administrative 
reasons, in an entity called a ‘route’. The Ericsson CTM architecture is shown in 
Figure 2. The baseline project consists of the administration functionalities of the 
links between CCFP and CTM Exchange. 

 

Figure 2  Ericsson CTM architecture  

The steps of the Musa's SRET approach have been applied to the baseline project 
as described below:  
1. Definition of the required reliability. The ERI improvement objectives require 

that fault density, i.e., the number of the failures found in the first six months of 
operation over the product size, is reduced to less than 0.15. We have estimated 
that only 1% of the activity of a CTM-AXE10 switching is spent for 
administrative functions, which are those in the baseline project. From this, we 
estimated that the reliability required for the system under test is on the order of 
10-3 failures per hour of operation. 

2. Definition of the operational profile. Actually this is because never before had 
reliability modelling been attempted within ERI. Consequently on some 
occasions during the implementation of the SRET process we found ourselves in 
role of pioneers, having to decide on acceptable engineering compromises, where 

CTM
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NetworkCCFP
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part of the information or the background required was missed. In particular 
operator manuals and previous experiences in similar systems were used as input 
to derive the operational profile. In the following tables we describe the results of 
the profiles obtained, according to the SRET approach. Regarding the operational 
profile, we used an implicit approach, i.e., the profile is represented by a 
behavioural tree. In Figure 3 we show only one branch of this tree. The severity 
of the failures is considered when assigning the probabilities. 

3. Test case definition. We used the test instructions prepared according to the 
standard Function Test process 

4. Set-up of the test environment. We integrated a proprietary Ericsson tool, called 
‘AUTOSIS’, with an ad-hoc developed tool ‘STUT’. AUTOSIS is a tool used for 
testing any system provided with an interface for man-machine interaction. The 
test is performed by sending commands towards the test object and by analysing 
the printouts obtained. The instructions to perform the test are supplied in the 
form of AUTOSIS test instructions (TIs), which are written prior to execution. A 
TI contains AUTOSIS instructions interpretable by AUTOSIS and commentary 
text. The tool generates two output files: 
a. A log file, with the execution trace, to be used in the debugging of errors; 
b. A report file, recording the execution time and the result of each test case.  
AUTOSIS has been extended in order to handle random variables with the 
integration of STUT. STUT is a tool that was developed to select the test cases 
according to the SRET approach. It generates a file specifying the test 
instructions to be used as input to AUTOSIS by processing the following input 
information: 
• The operational profile and the related test instructions for each leaf of the 

tree; 
• The definitions of the random variables; 
• The required reliability value. 
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Figure 3 Operational profile for ‘Definition of a route’ in the ‘ Installation’ system-mode 

No syntax errors
have been done
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Normal command
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of a route R

Customers profile 
Customer Probability 

Telecom Operator 100% 
Users profile  

User Probability 
Operator 100% 

System-modes profile 
Mode Probability 

Installation 10% 
Operation 90% 
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Function Installation-mode 
Probability 

Operation-mode 
Probability 

Definition of a route 26,2% 14% 
Deletion of a route 0,78% 7% 
Change of route parameters 1,56% 14% 
Print of route parameters 31,4% 21% 
Connect a device to a route 28,8% 17% 
Disconnect a device from a route 0,78% 7% 
Print device data 5,24% 10% 
Print device connections data 5,24% 10% 
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The use of STUT does not require any specific training for ERI testers, because 
the structure of the input file is quite similar to the structure of the AUTOSIS 
input file. 

5. Execute the test cases. To execute test cases the following steps were performed: 
a. STUT, for the selection of a set of test cases; 
b. AUTOSIS, for executing the selected set of test cases: each time a failure is 

observed, we fix it, update the reliability of the system under test and return 
to step a).  

This process was repeated until the required reliability was reached. 
6. Evaluation of reliability. ERI monitors and logs all failures found in the field for 

the first six months of operations. At present, such data are not used directly for 
reliability estimation; on the contrary, they are used to evaluate the failure 
densities, and the timing of failures is thus not directly accessible. However, we 
got access to the detailed failure report, including timing information, for a 
completed product which is similar to the baseline product. To these data, we 
applied standard techniques for reliability evaluation; the findings of this analysis 
are summarized in the next two subsections. 

7.5.2 Data Analysis 
As described in Section 7.4.4.1, as a first step we performed a detailed analysis of 

the data available, in order to verify their suitability for applying reliability growth 
models. The very first assumption for reliability assessment is that the analysed 
product is exercised according to the operational profile. This is not the case for the 
Basic, Integration and Function Test phases (at least, not so far). Thus, for the 
product examined, only the failure data relative to the six months of monitored 
operation are meaningful. For these six months, we had a reported number of 35 
failures, collected over a set of five installations run in parallel. The products run 
continuously and failures are reported on a daily basis. For this reason, and also to 
comply with corporate established attitudes, we opted reliability growth models in 
the class of number of failures per time period. The period to be considered as the 
time unit naturally corresponded to one calendar day, in turn corresponding to five 
days of execution time, by considering the five plants monitored. 

Another very basic assumption for using reliability growth models is that the 
failure data exhibit a growth in reliability. For this we applied the Laplace test with 
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help of the tool SoRel, and somewhat surprisingly, this was not the case if we 
considered the data set as a whole as shown in Figure 4. 

Figure 4 The Laplace test considered in the overall set o f failure data 

Figure 5 The Laplace test on the resticted set of failure data 

On closer inspection, however, we noticed anomalous behaviour in the first two 
months: just two failures in the first month, and a set of eleven failures all 
concentrated in the second month. Thus, we decided to filter the data, by discarding 
the first month of operation. After this filtering, again applying the Laplace test, the 
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failure data relative to the last five months (33 failures) exhibited an increase in 
reliability, although this remained very small in the whole as shown in Figure 5. 
 

7.5.3 Model Fitting 
Subsequently as described in Section 7.4.4.2, we had to decide which model was 

the best one for reliability prediction in our particular context. Since there is no 
software reliability model that performs better than any other one in every case e we 
chose to run all the available models using the tool CASRE. In this case we were 
dealt with failure per time period data, therefore the available software reliability 
models are: Brooks/Motley (BM), Schneidewind (SM), NHPP (also known as Goel-
Okumoto), Generalized Poisson (PM), Yamada S-Shaped (YM). 

 

Table 2 Accuracy results 

As a consequence, for each model the tool automatically computes the Chi-
Square test and the prequential likelihood function (specifically the -ln(PL)), (Section 
7.4.4.2). We show in Table 2 the results of the accuracy analysis obtained.  

We can observe that the evaluation of the Chi-Square test (in this case with 4 
degrees of freedom) brings us to reject the Yamada S-Shaped model (the models fit 
well for the analysed data set if the Chi-Square value is within the interval [0.711, 
9.49]). 

Considering the value computed for (-ln PL), we can see that the NHPP and SM 
models gave the most accurate results for the data source. Indeed, for our data set the 
observation period had the same length, so NHPP and SM were equivalent [LY96 
Chapter 3]. 

Finally, in Figure 6 we show the cumulative number of failures predicted versus 
the raw data and Figure 7 shows the relative error, computed as: 

 
Eq. (13)  

 

 BM bin BM pois NHPP YM SM 
-ln PL 36,677 45,998 36,677 42,494 36,677 
 (3) (5) (1) (4) (1) 
Chi-Square 4,913 4,936 4,772 26,050 4,772 

 (3) (4) (1) (5) (1) 

(PredictedNoFailures − ActualNoFailures )
ActualNoFailures
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From this experience some remarks from the comparison between SRET and the 
conventional approach are possible, regarding in particular the effort required to 
apply the SRET approach: 
• SRET requires extra effort with respect to the Function Test standard process, in 

particular for the definition of the operational profile. If new systems have to be 
modelled, it will be quite difficult to find usage data to assign the right 
probabilities. 

• The definition of test instructions can be more difficult because in SRET they 
have to be specified in a more abstract way (for the need to consider random 
variables); 

Figure 6  The cumulative number of failures predicted versus the raw data 

• Considering the high number of test cases to be executed, a completely 
automated environment is required. The Ericsson AXE10 target environment is 
not completely automatable, so we had to limit the application of this case study 
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to the simulated environment, that is the administrative part. It was not possible 
to execute some categories of test cases that require to be run on the target 
system, such as tests for evaluating performance or involving traffic.  

 

Figure 7 The relative error  

Concerning  the beneficial aspects, the use of the SRET approach provides: 
• a better understanding of the function/feature in the early phase of the 

development process; 
• a structured approach for identifying the test cases (we used a behavioural tree) 

that made the identification of test cases easier.  
• a prioritisation of functions and test cases to shorten the lead time in date-driven 

projects. In fact, the exit criterion of the standard Function Test process requires 
that the entire set of test cases must be executed successfully. This criterion 
involves an execution time related to the number of test cases. The introduction 
of a priority criterion and a classification of incident severity levels allows a 
tester to identify exit criteria to shorten the lead time in date-driven projects. This 
priority criterion may be identified by using the operational profile, i.e.: the most 
critical set of test cases as experienced by the customers has to be executed and 
passed without any failures of major incident severity levels; 

• an improved work organisation between developers and testers, both involved in 
the derivation of the operational profile. The close collaboration between testers, 
system engineers and product users has produced valuable side benefits, such as a 
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deeper understanding of user needs, less ambiguity in the specification of system 
requirements, and the possibility for testers to contribute to system reviews; 

• expertise has been gained during this case study both with respect to the 
construction of an operational model, and with the use and tuning of reliability 
models, thus enhancing ERI's staff awareness of reliability issues, and allowing a 
reuse of those competencies in future projects. Should the new techniques prove 
successful, applying the new test technique will allow ERI to control the 
reliability of its software products and the associated test costs. 

Summary 
In this Chapter we presented the main concepts of Software Reliability 

Engineering focusing in particular on the SRET approach. We discussed the 
procedural steps necessary for defining a suitable test environment, in which 
operational test can be performed and reliability estimation achieved. For this we 
provided some basic definition of the reliability theory and an overview of the main 
Reliability Growth models.  

We have pointed out the advantages and the difficulties in applying these models 
for reliability prediction, highlighting the important role of the available tools in  
facilitating the reliability growth model usage. For this we have discussed a 
procedure which depicting the steps necessary for the integrated use of two available 
tools, SoRel and CASRE, for obtaining the required prediction. Finally, once we 
applied the SRET approach to a real case study, we used the described procedure 
with the failure data obtained, for choosing the best reliability growth model for 
reliability prediction. 



   254  
 

 



 

PART 5:  
POSSIBLE IMPROVEMENTS 

 



 



 

8 Conclusions and Future Work 

Preface 
This is the concluding Chapter of this Thesis, in which we present the 

conclusions and an ongoing experience in defining a general framework, called 
``UML Combination'', for enabling the validation of component-based (CB) systems 
by testing them against the corresponding UML architectural specifications (Section 
8.2). In particular we will readapt two previously developed tools, (Cow_Suite 
presented in Chapter 5) and CDT [BP03], which permits the codification and 
execution of test cases within a CB development process.  

8.1 Conclusions 
In this Thesis we have presented our journey through the world of Software 

Testing, ranging over many fields from definition to organization, from its 
applicability to analysis of its effectiveness. Adopting as a roadmap the testing 
phases subdivision of [BE01], we began at the planning activity and we proceeded 
systematically presenting new methods, approaches and tools useful to the reader for 
managing, controlling and evaluating Software Testing development.  

These were the result of a strict collaboration with software developers looking 
for solutions for their problems and improvements in the different activities of the 
testing process. In order to respond to these needs we made a deep analysis of 
literature, which provided us with hints and ideas either for the definition of new 
methods and approaches, or for readapting and modifying already existing proposals.  

The collaboration with industries imposed us two important constraints, which 
must be always respected even at the detriment of the quality of the possible results. 
These are usability, i.e. the methodologies as far as possible must adapt themselves 
to the modelling notations and procedures commonly used by industries and real 
environments and not vice versa, and automation, i.e., increasing as much as possible 
the mechanization in test cases derivation, execution and validation, consequently 
reducing the manual labour.  
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Taking into consideration these constraints, for our proposals we adopted the 
leading principle of providing readers with some easy-to-apply and low-cost 
methodologies, which maximize the automation and minimize as much as possible 
the required additional formalism or ad-hoc effort specifically for testing purposes. 

Moreover for completeness’ sake for each topic treated we have provided both a 
detailed survey of the literature useful for knowing the state of the art and for 
comparing our solutions, focused on putting theory into practice, with those provided 
by the research world, and the evaluation of the methods proposed by means of case 
studies also taken from a real industrial context. 

In the next sections we present a summary of the proposals of this thesis with 
their limitations and the future work. 

8.1.1 Proposals and Future Work  
In this section we briefly resume the proposals presented in this Thesis, also 

highlighting their general limitations starting, from the test planning to the evaluation 
of test results. 
• Test planning: we provide an original method, called Propean, based on the 

techniques of computer software performance engineering and queueing 
networks for scheduling the testing activities and distributing personnel and 
resources among them by considering a multiproject environment. This approach 
requires users confident with RT-UML for modelling the flow of activities to be 
performed during development and the tasks to distribute among personnel. In 
particular for increasing the accuracy of the prediction also associating to each 
activity the proper estimation, a data-base containing information derived from 
similar projects is necessary.  

• Test Case generation: we provide a tool for the selection of functionalities to be 
tested and the generation of test cases, which supports the user both in the choice 
of the most important software elements on which the testing effort must be 
concentrated, and in the automatic generation of the appropriate test cases by 
using the available UML product specification. Thus the quality and the 
effectiveness of the generated tests depend strictly on the quality of the available 
design: in presence of an incompleteness the approach can only highlight the 
design deficiencies but not overcome them producing meaningful test cases. In 
the Thesis we describe the current status of our approach but several 
improvements are possible such as: implementing other strategies for test cases 
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selection which take also in consideration the diverse cost of each test case; 
providing hints or defining a common strategy for assigning the weights to the 
nodes; implementing methods diverse from UIT for test cases and procedures 
derivation. Notwithstanding the encouraging results obtained this approach needs 
further validations with more complex case studies 

• Test results analysis: We consider non-operational and operational testing. In the 
former case we propose two dynamic methodologies, the One-Step and the Two-
Steps Method for deriving the number of failures experienced up to the end of 
testing phase, by using data collected during the testing itself. In the latter the 
integrated application of different tools for reliability growth models selection 
and usage. Even if both  approaches are quite general, it is worth noting that the 
methods for the non-operational testing have been developed in strict relation 
with the industrial partner which provided us the stimulus for model formulation 
and development. Thus the procedures adopted follows the process for collecting 
data of ERI which however for its simplicity can be considered quite general and 
representative of industrial practice.  
Of course, our work is not yet concluded; many other problems remain unsolved 

and improvements in our methodologies are possible. The research area of Software 
Testing is so vast and involves so many problems that they cannot of course be 
exhausted in this Thesis. We have provided here our “little” contribution on some of 
the salient points that arose during the cooperation with software developers.  

In the future, encouraged by the positive results obtained, we wish to 
quantitatively evaluate the proposed methodologies and approaches with further 
industrial case studies, and unify all the proposals of this Thesis in a unique control 
process useful for managing the testing phase during the entire software life cycle. 

In particular in the next section we present one of the ongoing work which has 
the purpose of improving the strategy of test case generation in component-based 
environment 

8.2 An ongoing Experience: UML Combination 
Component-based (CB) development is one of the focal trends in software 

production today. Although in recent years it is attracting much interest from both 
academy and industry, as testified by the spreading of related events (e.g., [ICSE03], 
[ECBS02]), journal articles (e.g., [IEEE99], [JSS03]), and by the market launch of 
component-oriented technological products and platforms (e.g., CCM [COR], EJB 



   260  
 

[EJB], COM+/.Net [NET]), research in this area is far from complete. Many topics, 
such as component specification, development tools, or performance predictability, 
are in fact still open. 

In this research sphere, UML application for the specification of CB systems is 
just beginning. Although UML was not conceived with a CB paradigm in mind, it is 
very flexible and provides suitable mechanisms for extensions. To this purpose one 
of the emerging references is the methodology proposed by Cheesman and Daniels 
[CD00], called the ``UML Components'', described briefly in Appendix C, which 
focuses both on the representation of the components and on the development 
process applicable for this purpose. Thus the purpose of our ongoing research is to 
apply this new methodology for component testing, which needs a re-evaluation to 
address the peculiar characteristics of CB development as for the other development 
phases [BP02].  

In our opinion an important requirement is that the customer, on the basis of what 
he/she expects from a researched component or architecture, and with reference to 
the system specification/architecture, develops test suites easily (re)executable to 
evaluate the potential candidates. To facilitate the customer in this task we are 
implementing a general framework, called “UML Combination” (UML COMponent-
Based INtegrAted Testing envIrONment). The purpose is the validation of 
component-based systems by testing them against the system’s architectural 
specifications. In particular, starting from the original idea presented for the first time 
in [BMP03], we are defining the UML Combination test environment, which can be 
used by the software developer both for: (i) deriving the test cases and (ii) codifying 
and executing them. 

The methodology will be the result of the combination, with the necessary 
adaptations, of two tools developed in previous projects: the Cow\_Suite, presented 
in Chapter 5, which will analyze the UML components specification for selecting 
and generating test cases, and the CDT ([BP03] [BP02a]) which codifies the test 
cases and (re)executes them every time a component instance is plugged into the 
system. 

Therefore the main requirement for applying the UML Combination will be that, 
by using the UML Components guidelines, the system developer specifies the design 
architecture of the system with particular attention to the interfaces. Then by 
applying UML Combination, he/she can automatically derive a meaningful set of test 
cases and execute them when necessary. 
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While the principles of integration have been settled, the combination of 
Cow_Suite and CDT is currently under implementation So far, the UML 
Combination has only been conceived and partially developed for testing a single 
“virtual” component in isolation, i.e. the component specified at requirement level 
and implemented successively by the integration of one or more real components. In 
Section 8.2.1 we present the current status of the implementation. We are still 
working on the extension of UML Combination to the test of a “subsystem”, i.e. an 
integrated set of virtual components.  

8.2.1 Proposed Approach 
In this section we show briefly how we are going to combine the two components 

of CDT and Cow_Suite, in order to obtain the UML Combination integrated testing 
environment as schematized in Figure 1.  

We discriminate in particular between two different levels of testing as will be 
described in the following sections:  the test of the single virtual component, which 
may be obtained by one or more real components, and the test of a group of 
integrated virtual components (a subsystem) in the final application environment 
[BMP03]. 

Figure 1 The overview of UML Combination. 

8.2.1.1 Test of the Single Virtual Component 

At this stage each component is tested singly, by means of suitable stubs when 
necessary. For each component we use its UML specification to derive, by the help 
of Cow_Suite as described in Chapter 5, the set of test procedures that will be used to 
verify the conformance of its instance. For this we intend to modify Cow_Suite both 
in the final weights distribution and in the procedure adopted for analyze every 
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Collaboration Diagram (CD) or Sequence Diagram (SD) in which an interface, 
belonging to the tested component, is involved.  

Resuming what was explained in Chapter 5, starting from the main Use Case 
Diagram onwards, Cow_Suite uses the developed UML diagrams, and the mutual 
relationships within them, for organizing them into several oriented graphs. These 
are then explored for producing the basic hierarchical structures (trees) of the 
Cow_Suite approach. Every node is then annotated with its final weight representing 
the importance of the node itself, belonging to the [0,1] interval. In the CB 
environment, in the case of a single virtual component, the role of the final weights 
will be improved with respect to the original release of the Cow Suite tool. They in 
fact will be used for associating an importance factor to the methods of its interfaces, 
as described below, and for distributing the test cases accordingly: 
1. For each CD in which an interface of the specified component appears, the final 

weight of the CD is distributed among the invoked methods belonging to the 
considered interface; 

2. For each method the sum of all the values obtained in the previous step is 
derived; 

3. For each interface the sum of the values associated to its methods is normalized 
to 1 
The obtained values will then be used for applying the two different test 

strategies supplied by the Cow_Suite tool: a fixed number of test cases to be 
executed or a fixed percentage of methods to coverage. As described in detail in 
Chapter 5 in the former the tool will select the most suitable distribution of the test 
cases among the methods on the basis of their weights; in the latter it will highlight 
the most critical methods the proper test cases distribution. 

For automatically constructing the tests in both cases we also decided to 
implement within the Cow_Suite tool the original version of the UIT methodology as 
presented in [BB00] and summarized in Appendix B. Specifically, we first isolate the 
CDs/SDs in which an interface belonging to the tested component is involved and 
then by applying the original UIT, we derive from them the ordering of messages and 
the feasibility conditions used in the generation of test cases. The choices, useful for 
the definition of the test procedures, will be derived either as usual by the interaction 
with the user or by the analysis of the contract associated to each method [BLS02]. 
To this purpose particular attention is dedicated to the preconditions, which can 
specify parameter intervals or values useful for test cases generation. 
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Finally the test procedures will be codified using the CDT framework, without 
needing to refer to any particular real implementation. In this framework the 
invocations of the test cases refer to the interfaces of the virtual component, which 
will be implemented using yet-unknown components. It is important to note that by 
assembling prefabricated components to form a virtual component, it is likely that 
the real implementation could supply more functionalities than those required. In this 
case the established set of test cases will only stress the functionalities defined in the 
UML specification. 

8.2.1.2 Test of a Group of Integrated Virtual Components 

We are still working on testing a group of integrated components, because it 
brings up major problems to maintain the original philosophy of the Cow_Suite 
(Chapter 5). The main difficulty we are facing is the inability to define meaningful 
test cases when there are exceptional conditions in the UCs definition. In this context 
during the test cases run, it is not possible to control the path (i.e. the sequence of 
invocations) that the test will follow inside the composed system. 

Thus we are attempting to find solutions to this inconsiderable problem, which is 
intrinsically related to the knowledge of the states in the black box component. We 
present here two possible approaches which we are studying.  

The first is to review the role of Cow_Suite in the integration phase, and 
assuming the weights associated with the CDs/SDs as a sort of “critical profile” 
indicating the importance of a particular scenario in the system. In this case the test 
phase is halted only when each CD/SD has been covered for the specified number of 
times but this solution is clearly in contrast with the original goal of Cow_Suite.  

A second approach under evaluation is to modify the hypothesis concerning the 
component model. So far we have always supposed that a real component is only 
constituted by two “sets” of signatures, respectively representing the provided and 
the required services, and by a brief textual description of the functions performed. In 
order to address the “control path problem”, the solution analyzed is to require that a 
real component implements particular interfaces (probes) that permit investigating 
the state of an instance of the components, and foresees a sort of parameterization in 
the definition of the test cases. 

In both cases, it can be useful for the tester team to recover the test cases 
developed during the verification of the single components in order to obtain 
parameters for the test procedures generation.  



   264  
 

Moreover, the diagrams used to derive test procedures can be used fruitfully, also 
as a guideline for the integration workflow. In this manner we obtain a functionally 
driven workflow, rather than a structural one (as for instance it would be if class 
diagram were used). 

 



 

Appendix A. An overview of EG and QN 

In this appendix we provide a brief overview of execution graph and queueing 
network modelling referring the reader for more details [SM90, LZS84]. 

The Execution Graph (EG) represents the software execution model and provides 
a graphical representation of the processing steps. Like the UML activity diagram 
(Chapter 3) it consists of a set of nodes, representing the software workload 
components, and a set of arcs, representing the transfer of control.  

The software workload components, which can be single instructions or entire 
procedures, depending on the granularity adopted for the model [SM90], allow 
modelling software at different levels of detail. In particular EGs include several 
types of nodes (or blocks), such as basic, cycle, conditional, fork and join nodes, 
described briefly in Figure 1. 

There are two restrictions on the construction of the EG which have the purpose 
of simplifying the solution algorithms [SM90]: 

1. Initial node restriction: there is only one initial node representing the first 
processing step executed in the graph.  

2. Loop restriction: all loops in the graph must be repetition loops  
It is worth noting that the execution graph only models those paths fundamental 

for performance and not all the possible paths, and degree of detail to represent in the 
graph is left to the user. Consequently different execution graphs can model the same 
software (there is not a unique representation). 

Considering instead the Queueing network modelling the systems are defined by 
using Queuing Networks (QNs), which are a collection of interconnected nodes 
representing the service centres, i.e., the system resources, and customers i.e., the 
users or transactions. The nodes (the service centre) can be [LZS84]:  

Single Service Centre: Customers arrive at the service centre, possibly wait in 
the queue, receive service from the server, and depart. This model has two 
parameters: workload intensity, i.e. the rate at which customers arrive, and the 
service demand, i.e., the average service requirement of a customer. By solving this 
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model the performance measures obtained are: utilization, the proportion of time the 
server is busy; residence time, the average time spent at the service centre by a 
customer; queue length, the average number of customers at the service centre; 
throughput, the rate at which customers pass through the service centre 

Multiple Service Centres: The parameters of this model are analogous to those 
of the previous but in this case the service demand, requires separate values for each 
service centre.  

Figure 1 The elements of an Execution Graph 

n 

Dummy 

Driver acr 

Call-return arc 

Arc 

Split Node 

State Node 

 Case Node 

 Repetition Node 

Expanded Node 

Meaning Symbol Name 

When the operations are completed 
the execution from the destination 
come back to the node X 

There is not processing time 
associated to the arc 

When the operations are completed  
the execution from the destination 
come back to the origin  

The execution goes from the arc to 
the destination node 

Attached nodes are new processing 
threads. They need not all complete 
before proceeding 

lock-free, fork-join, send-receive, 
acquire-release  

Every node has specific execution 
probability, and is executed according 
with associated condition 

The following nodes are repeated n 
times. 

The processing step has been refined 
and detailed in a sub-EG 

The processing step at lowest level of 
detail 

Basic node 

X 
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Generally two categories of QN can be distinguished depending on the type of 
transactions (users) considered. The first is the open system, in which all the users 
can leave the system; the second is the closed system in which no user can leave the 
system. In this case the number of users is fixed.  

In each of them a node may be a Non-Blocking (or infinite capacity) node, i.e. it 
can accommodate any number of users waiting to be served.  When the storage space 
in front of the server is finite a node is called a Blocking (finite capacities) node, i.e., 
a prefixed limit is imposed on the number of users waiting to receive a service. 
Considering the closed QN if a node can hold all the customers in the network, it can 
be defined as an infinite capacity node. QN with finite capacities are used for 
representing more realistic models of flow systems. Blocking arises because the flow 
of users through a queue may be halted if the destination queue has reached its 
capacity.  

Several types of blocking may occur: Transfer Blocking, the customer after 
getting service at the source node waits, blocking the server, until there is room in the 
destination queue; Repetitive Service, the blocked customer proceeds to receive 
another service at the source node itself; Rejection Blocking, the customer attempting 
to enter a full queue is lost.  

QN models of systems are useful as an analytical or a simulation based analysis 
of their performance. In particular depending on the types of the component queues 
in the network, different analytical algorithms may be used to obtain exact or 
approximate results both for the performance of the individual queues and for the 
overall system.  



 

Appendix B. The UIT Methodology  

The Use Interaction Test methodology, (UIT), presented for the first time in 
[BB00] is based exclusively on the analysis of SDs from which the relevant 
information to automatically construct Test Cases and subsequently Test Procedures 
are derived. Each SD describes a particular system scenario and explains how a Use 
Case is realized by the interactions of objects and actors. The objects involved in a 
SD are the components that provide for and execute the functionality described in the 
UC, through elaborations and message exchanges; therefore they are precisely the 
elements to be tested.  

Thus the core of UIT methodology is the analysis of SDs as set forth in [JGP98], 
whose authors suggest how to define tests by considering the different 
Messages_Sequences from a possible input state, or from a system input sent by an 
actor. We report in the following the stepwise methodology applied to the SDs for 
the derivation first of the Test Cases and then of Test Procedures:  
1. Find out Test Units. Observing a SD along its horizontal axis, see Figure 1 

arrow (a), we can identify a set Test Units. Each object, which interacts through 
messages with other objects, represents an item that can be separately tested in 
order to examine a possible use of the system, and it is identified as a Test Unit. 

2. Identify Interactions Categories. All messages entering in the selected Test 
Units are called Interactions Categories. In fact, as described in [UML], a 
message is a communication where the sender object invokes an action, a service 
belonging to the receiver object (our Test Unit), which will perform it. Knowing 
the set of Interactions Categories means catching, and thus testing, all the 
possible interactions among the Test Units under analysis and the other objects. 
For example, if we consider the Test Unit LogonForm in Figure 1, the 
observable Interactions Categories are: 
• open()  
• enterUserName (uid) 
• enterPassword (pwd) 
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• loginUser() 
• validateuserIDPassword(uid, pwd) 
• setupSecurityContext() 
 

Figure 1 Sequence Diagram “Login-Main Flow” from CRS example described in Section 
5.7.1 

3. Identify Settings Categories. Besides, for the selected Test Units, we define the 
Settings Categories as the values, parameters or data structures, that can influence 
its interactions towards others objects. They can be determined: 
• From the Interactions Categories, by considering their input parameters;  
• From the analysis of the Class Diagram (if any) to which the Test Unit 

belongs, by examining the attributes and data structures that can affect the 
observed interactions.  

In our example, the Settings Categories for the Test Unit LogonForm  are: uid 
and pwd.  

4. Define Messages_Sequences. Observing the vertical temporal order of the 
messages along the studied Test Unit’s lifeline, Figure 1 arrow (b), a set of 

 

 : Student  : MainApplicationForm :    LogonForm  : SecureUser 

if (login  
successful) 

else 

       1. start( ) 1.1. open( ) 

2. enterUserName(uid) 
3. enterPassword(pwd) 

4. loginUser( ) 
4.1. validateuserIDPassword(uid, pwd) 

4.2. setupSecurityContext( ) 

4.3. closeLoginSection( ) 
4.2.1. newUserID( ) 

 
(a) 

  (b) 

(c) 
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Messages_Sequences can be detected. A Messages_Sequence, is the set of 
messages composed of: a message entering the Test Unit, not yet involved in the 
construction of other Messages_Sequences, plus all the messages (if any) 
belonging to its activation bounded by the focus of control region. A 
Messages_Sequence therefore represents behaviour to be tested and describes the 
interactions necessary in order to realize specific system functionality between 
the Test Unit and the other objects. In Figure 1 the arrow (c) {1.start(), 
1.1 open()} represents one of the possible Messages_Sequences for the 
LogonForm Test Unit.  

5. Construct Test Cases. For each identified Messages_Sequence, a Test Case can 
be generated. It contains the list of all Settings and Interactions Categories 
involved in the Messages_Sequence and their values. Figure 2 shows one of the 
Test Cases derived from the above example. 

Figure 2 An example of a Test Case for the Test Unit LogonForm 

6. Analyse possible subcases. The messages involved in a Test Case may contain 
some feasibility conditions. These conditions are usually described in the 
message notes or in the message specification formally expressed using the OCL 
notation [WK99]. If these feasibility conditions exist, a Test Case is divided into 
subcases, corresponding to the different possible choice values. Referring to 
Figure 1, the condition value of login successful differentiates execution 

   Test  Case    
Description :   
Precondition:   
Flow of Events ( Messages_Sequences ) :   
  l oginUser( )   
  v alidateuserIDPassword( uid, pwd )   
  s etupSecurityContext()   
  n ewUserID( )   
Categories:   

Settings :   
  u id   
  p wd   
Interactions :   
  l oginuser   
  v alidateuserIDPassword   
  s etupSecurityContext   
  n ewUserID   
PostCondition:   
Comment:   



271   Appendix B  

 

of the Messages_Sequence starting with message 4. In this case, if the condition 
is true we have the Test Case 1.1 with the Messages_Sequence:  

4.loginUser() 
4.1 validateuserIDPassword(uid, pwd) 
4.2 SetupSecurityContext  
4.2.1 newUserID 

While in the opposite case the Test Case 1.2 contains the following 
Messages_Sequence:  
 4.loginUser() 
 4.1 validateuserIDPassword(uid, pwd) 
     4.3 CloseLoginSection() 

7. Determine Choices: for each Category (both Settings and Interactions) 
belonging to a Test Case, the possible choices are identified as follows: 
• For the Interactions Categories, they represent the list of specific situations, 

relevant cases in which the messages can occur; 
• For the Settings Categories, they are the set or range of input data that 

parameters or data structures can assume. In Figure 3 we report the choices 
values for the Test Unit LogonForm. 

8. Determine Constraints among choices: the values associated to the choices of 
the setting and Interaction categories of a Test Case may turn out to be either 
contradictory or even meaningless. This can be avoided by adding feasibility 
conditions to the categories choices as suggested in the Category Partition 
methodology. These constraints are specified, by assigning Properties or IF 
Selectors to choices. Specifically the Properties are used for checking the 
compatibility of a choice with the others belonging to the same Test Case, and 
the IF Selectors are used to validate the conjunction of properties previously 
assigned to other choices, as reported in Figure 1 in the sentences in square 
brackets.  

9. Derive Test Procedures: Finally, using these choice values, a Test Procedure can 
be generated for each possible combination of compatible choices, for every 
category involved in a Test Case. Figure 4 shows one of the final resulting Test 
Procedures for LogonForm. For each analysed Test Unit, all the meaningful 
Test Procedures are collected in the Test Suite. 
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Figure 3 Choice values for Test Unit LogonForm 

 

Figure 4 Test Procedure example 

Test Procedure  
loginUser() 

 access request of a registered user  
validateuserIDPassword(uid, pwd) 

 access validation of a registered user  (correct uid and pwd) 

setupSecurityContext() 

  rID() 

  access of a new user 
uid 
 f_smith 
pwd 
 m56jkrm 

Test Unit LogonForm 
Interactions Categories: 
 open() 
   access from a Student 
 enterUserName() 
   access request of a new user [Property new] 
   access request of a registered user [Property registered] 
   access request of a not allowed user [Property notAllowed] 
   access request of a expired account user [Property expiredAccount] 
 enterPassword() 
   access request with correct password [Property registered] 
   access request with wrong password [Property registered] 
 loginUser 
   access request of a new user [Property new] 
   access request of a registered user [Property registered] 
   access request of a not allowed user [Property notAllowed] 
   access request of a expired account user [Property expiredAccount] 
 validateUserIDPassword 
   access validation of a new user [IF new] 
   access validation of a registered user (correct uid and pwd) [IF registered] 
   access validation of a registered user (wrong uid or pwd) [IF registered] 
   access validation of a not allowed user [IF notAllowed] 
   access validation of a expired account user [IF expiredAccount] 
 setupSecurityContext 
   successful access new user [IF new] 
   successful access of a registered user [IF registered] 
Settings Categories: 
 uid 
   m.Jackson 
   f_smith 
   Paul_white 
   S_71whatson ……….. 
 pwd 
   m565jkrm 
   annamaria  
   p71271 
   12.2.73 ……….. 



 

Appendix C. UML Components 

We report briefly the main details of methodology proposed by Cheesman and 
Daniels [CD00], called the UML Components, which focuses both on the 
representation of the components and on the process development applicable for this 
purpose. This is an expansion of the classical notation of UML, which includes the 
extensions required for specifying the components, i.e. their specification, interface, 
implementations and the objects component obtained.  

The idea of UML components was born in the middle of the 1990 from the 
collaboration of many minds which focused attention both on the representation of 
the components by using UML and on the process development applicable for this 
purpose. Without aiming to present here an exhaustive survey of the literature, one of 
the first works in the application of object-oriented practices is that of Cook and 
Daniels [CD94] in which the Syntropy methodology was developed. This represents 
a common base for many recent developments, like Catalysis [DW99] or the UML 
itself, and is the direct ancestor of the Object Constraint Language (OCL) [WK99]. 
From Catalysis another important methodology for defining the development of the 
component based systems descends, called Advisor [ADV], which largely 
influences, together with the Rational Unified Process [RUP] the actual definition of 
UML components. 

Cheesman and Daniels attempt to unify all this knowledge and experience in their 
book [CD00], presenting an easy-to-apply specification process for component-based 
systems, which focuses only on the modeling of the software applications, 
completely ignoring their final implementation.  

Starting from the requirement specification, we briefly report here the main 
details of the specification process adopted by Cheesman and Daniels and the UML 
extensions required. The specification process is divided into different workflows 
(following the definition of the RUP: a sequence of activities that produces a result 
of observable value) interacting together, each one specified by using UML notation. 
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The tasks of the requirement workflow are the business concept model and the 
use case model. The former is a conceptual model, which specifies the key concepts, 
their relations and a common vocabulary useful for avoiding misunderstanding and 
ambiguities. It is represented by a class model, but the classes involved, as well as 
their associations, are only conceptual and not related to the specification.  

Instead the use case model represents the interaction of the system with the 
external users. It is represented by a Use Case Diagram, in which each Use Case is 
related to a different requirement. The system behaviour and main exceptions are 
represented for each Use Case in the associated scenario, following the textual 
structure of the Cockburn's Use Cases [CO01]  

The specification workflow is subdivided into three phases:  
i. The identification of the components: starting from the requirements, an 

initial system architecture is produced;  
ii. The interactions between the components, which identify the system 

operations and responsibilities;  
iii. The specification of the components, which specifies the operations and 

interfaces of the components themselves.  
A business model, represented by a class diagram, is used for modelling the 

business information. The classes involved are defined at the specification level, with 
no relation to a specific language. The notation used for the component interfaces 
differs from that defined in the standard UML, in which the interfaces represent 
implementation constructs typical of the OO languages and that do not require 
attributes or associations. In the UML Components, an interface specification 
consists of: the type, the information model (the attributes, the interface roles in the 
association and their types), the specification of the operation (prototypes, pre- and 
post-conditions), and the invariants. All this information is grouped together in a 
package representing an interface specification, which can also import information 
from other packages. 

In UML Components, even the concept of a component is quite different than in 
the standard UML, because it is completely independent of the implementation. To 
differentiate the specification of a component from its implementation or the 
installed component, a new stereotype <<comp spec>> is introduced which has a set 
of interface types. The ways in which the components interact via the interfaces are 
finally described using collaboration or sequence diagrams. 
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The provisioning workflow is aimed at ensuring that the released software is 
consistent with the given specification of the components. For this purpose the 
components can be implemented, bought, readapted or derived from the integration 
of existing ones 

Finally the integration workflow connects the various components, the user 
interface, the application logic and the existing software in order to obtain an 
efficient application. 
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