
Refactoring a Legacy System Using Components∗

Eda Marchetti, Francesca Martelli, Andrea Polini

Istituto di Scienza e Tecnologie dell’Informazione - “Alessandro Faedo”
Area della Ricerca del CNR di Pisa, Italy

phone: +39 050 315 3463 fax: +39 050 315 2924
{eda.marchetti, francesca.martelli, andrea.polini}@isti.cnr.it

Abstract

We present our experience in reorganizing an “inher-
ited” monolithic piece of software in a component-based
manner. We follow the guidelines of the UML Compo-
nents in order to obtain a meaningful component archi-
tecture, which is then used for modifying and revising the
inherited code. In this paper we describe both the de-
fined component-based architecture and the stepwise pro-
cess that we adopted for reorganizing the source code.

1. Introduction

In recent years, Component Based Software Develop-
ment (CBSD) has attracted considerable interest from both
the research and industry areas, and it is fast becoming
the principal paradigm in Software Engineering. How-
ever, although today some commercial frameworks (e.g.
EJB [12], .NET [13], CCM [11]) permit the actual realiza-
tion of component-based applications, the research is far
from complete, and further studies are necessary especially
regarding component specifications, development method-
ologies and development tools [7].

The reason for the widespread diffusion of the CB
paradigm is due to the increasing complexity of current
developed systems. They are often characterized by dis-
tributed features, remote accessibility and high evolvabil-
ity, i.e., the system must be easily expanded with new
functionalities or improved by modifying the existing code
without affecting the services already provided. To com-
ply with the strict delivery times imposed by the market,
the developers of complex systems use experiences com-
ing from various research and industry fields such as soft-
ware architecture (SA), component-based software stan-
dard and middleware (the latter refers to software that sim-
plifies the construction of distributed heterogeneous sys-

0This work has been supported by Ericsson Lab Italy in the context of
the PISATel initiative (www.iei.pi.cnr.it/ERI/)

tems by providing high-level interaction services on top
of, e.g., a transport protocol). In particular, they mature
the common best practice of specifying a software archi-
tecture as a first step during development. It is worth not-
ing that the concept of SA is not yet well-established and
several definitions have been provided to classify it [5]. In-
formally, the SA expresses the logical structure of the soft-
ware to be developed, in terms of components and their in-
teractions (connectors). The SA will then be implemented
during the software development by substituting the archi-
tectural components with real ones which must conform
to the logical structure. In this step, the real components
can be retrieved either from the market or from inside the
organization, or implemented from scratch.

One of the emerging trends in CBSD is the use of UML
[10] for system specification, which is the de facto stan-
dard notation for the analysis and design of Object Ori-
ented (OO) systems. Even if UML was not conceived
with a component-based paradigm in mind, by its exten-
sions mechanisms, it proves to be flexible enough to be
adaptable to different contexts. Thanks to this charac-
teristic, Cheesman and Daniels in [2] propose an innova-
tive methodology, called UML Components, which focuses
both on the representation of components and on the devel-
opment process applicable for this purpose.

Therefore the advent of the CB paradigm has opened a
new and promising approach for the refactoring of legacy
systems [6, 8]. In this paper we apply the UML Com-
ponent methodology for designing and re-implementing
an additional layer over protocol GSM-MAP, used in the
telecommunication context for mobility management and
other services. Our objective is to define a suitable system
architecture which can be used for re-organizing some of
the already implemented functionalities in a component-
based manner, by reducing modification and code rewrit-
ing as much as possible. In our case, in fact, the available
pieces of software, each related to a different functional-
ity, were developed during the course of several Master’s
theses, assigned and conducted in an uncoordinated and

independent manner, without referring to a common ar-
chitecture. In particular, the UML diagrams provided by
the students were related only to the code organization and
specification, and thus are not easily usable for implement-
ing further functionalities or improving the existing one.
Moreover, available OO code was structured in a mono-
lithic way with many inter-object references. In order to
reduce the time and effort needed for system implemen-
tation, it is our intention to first define a suitable system
architecture and to reuse the existing code as much as pos-
sible, by restructuring and extending it when necessary on
the basis of the defined architecture, and completely real-
izing only the missing functionalities.

Considering the above situation, for us the methodology
proposed by Cheesman and Daniels is a defined develop-
ment process to follow in order to obtain a well-structured
and working system, which facilitates UML specification,
code restructuring and testing. Of course, other develop-
ment processes could be adopted for the same purpose, but
are beyond the scope of this paper either deeper investiga-
tion of this topic or providing a comparison between them.
We adopted UML Components because it is an innovative
methodology for defining a complete UML architecture
specification, which can be used as an input to some ex-
isting tools, such as Cow Suite [1], in order to reduce the
effort due for testing phase development.

Thus, in this paper we report our experience by describ-
ing the steps of the process adopted, by pointing out the
difficulties encountered and the problems faced in apply-
ing the UML Components, even if due to space limitations
we present only the main results. During system archi-
tecture specification it was not always easy to follow this
methodology faithfully, because our case study is quite dif-
ferent from that presented in [2]. In their book Cheesman
and Daniels use as a case study a data management sys-
tem, whose organization is quite easy and different from
the development of a layer in a protocol stack. Therefore
as an orthogonal objective, this paper attempts to be an in-
tegrative documentation for the people interested in UML
Components applications in different contexts.

In Section 2 we introduce the main features of the
case-study used and then, in Section 3, we briefly illus-
trate the main steps foreseen by the approach proposed by
Cheesman and Daniels [2]. In Section 4 we describe how
UML Components has been used to provide a meaningful
software architecture for the system, also in order to revise
the inherited code. Finally, we end the paper in Section 5
with some conclusions.

2. The JAIN MAP API case study

The aim of JAIN (Java APIs for Integrated Network) [6]
initiative is to integrate wireline (PSTN), wireless (PLMN)

and packet based (IP and ATM) networks, for allowing the
simple creation and rapid development of a large variety
of services. The novelty of JAIN basically resides in two
fundamental aspects: first, the service portability, obtained
by specifying standard java APIs over different protocols,
and second, the network convergence, i.e. applications can
be built only on the base of the service logic, irrespective
of the underlying technologies (e.g. GSM stack or internet
stack). In Figure 1 the JAIN level approach is depicted.

In this paper, we focus our attention on the JAIN MAP
API. MAP (Mobile Application Part) is a protocol in the
GSM stack, concerning mobility management and other
services, such as the well-known SMS service. JAIN MAP
API provides an abstraction level over the complicated
MAP interface: in this way, a MAP service developer does
not need to be aware of the specific MAP implementa-
tion features. At present, four MAP capabilities are spec-
ified for the JAIN MAP API: transaction (the SMS ser-
vice), session (Unstructured Supplementary Service Data
USSD), position (MAP location service, information. In
this paper we only describe the implementation of the ses-
sion capability, which allows information exchange be-
tween a mobile station and a GSM network application.
The USSD is faster than the SMS service, because it is
not a store-and-forward service. In particular, it is differ-
ent from the SMS service for its session-oriented nature,
which requires establishing a session each time a customer
(a mobile station) or a network application approaches a
USSD service. A USSD session can be one of two types:
network initiated or mobile initiated: in the first case, the
session is started by a network application (such as the
residual credit notification after a call); in the second one,
the session is started by a mobile station (such the request
of notification of the residual credit). The session remains
open during the entire messages exchange and is released
at the end of the communication. Beyond the classes for
the creation of the stack, for the USSD section capability,
the JAIN MAP API specifications include:
• the classes of the interfaces between JAIN MAP ap-

plication (for short JAIN Client) and JAIN MAP
API layer: the MessageSessionProvider inter-
face implemented by an object named MessageSes-
sionProviderImpl and referred as JAIN Provider, and
the MessageSessionListener interface imple-
mented by the JAIN Client;

• the classes identifying the primitives that
can be invoked both by the JAIN Client,
when data flow from the application to the
mobile user (SessionOpenReqEvent,
SessionDataReqEvent, SessionClo-
seReqEvent) and by the JAIN MAP API
protocol, when data flow from the mobile user
to the JAIN Client (SessionOpenIndEvent,
SessionDataIndEvent).

Figure 1. JAIN levels approach

MAP Service User
(source)

MAP Service User
(destination)

JAIN Client (source)

Entity in which the

implemented
JAIN MAP API is not

MAP Service Provider MAP Service Provider
ConfirmRequest Indication

Entity A Entity B

Response

Confirm

Confirm

JAIN MAP API implementation
(MAP service user)

Request

Request

MAP Service Provider

Entity in which the
JAIN MAP API is implemented

JAIN Provider

JAIN Listener
JAIN MAP API

primitives

MAP Layer
primitives

Provider
MAP Service

(destination)
MAP Service User

Response

Indication

(b)

Underlying protocols

(a)

Underlying protocols

Figure 2. MAP (a) and JAIN MAP (b) service
models

The JAIN Provider provides as many methods as the prim-
itives going from the JAIN Client towards the network are;
the JAIN Client implements the interface MessageSession-
Listener in order to receive events coming from the net-
work. The JAIN Provider is responsible for the creation of
a connection and for mapping between the JAIN primitives
and the MAP primitives. The JAIN MAP API primitives
reflect the model of the MAP primitives as depicted in Fig-
ure 2(a): when the JAIN Client starts a session it invokes a
method in the JAIN Provider and it waits for confirmation
on the MessageSessionListener (the JAIN Listener element
in Figure 2(b)). Analogously, if the GSM user starts a ses-
sion, the MAP layer invokes a method of the JAIN Provider

in order to deliver the request of opening a new connection.
In the previous implementations, the JAIN Providers used
many objects in order to perform their tasks. Our inter-
est was to split the task into logical capabilities and then
to identify these in specific components. This goal allows
also a simpler and faster implementation of the future JAIN
MAP capabilities because starting from the component ar-
chitecture it is sufficient to specify it in order to develop the
new required functionality. For example, the opening of a
connection between the JAIN Client and the MAP Layer is
a feature to be implemented for each capability. Thus, it is
natural to realize a component Connection Factory whose
goal is to create an instance of a proper Connection object
for the requests coming from the different JAIN Providers.

3. UML Components

In this section we briefly present the methodology pro-
posed by Cheesman and Daniels [2], called the UML Com-
ponent, which focuses on both the representation of the
components, and the process development applicable for
this purpose. In particular we report the main details of the
specification process adopted in [2], divided into interact-
ing workflows as suggested by RUP [4].

The first one is the requirement workflow, which pro-
duces the business concept model and the use case model
[10]. The former is a conceptual model, which specifies
the key concepts, their relations and a common vocabulary
useful for avoiding misunderstanding and ambiguities. It
is represented by a class model, but the classes involved,
as well as their associations, are only conceptual and not
related to the specification. Instead, the use case model
represents the interaction of the system with the external
users. It is represented by a Use Case Diagram, in which
each Use Case is related to a different requirement or func-
tionality. The system behavior and the main exceptions are
represented for each Use Case in the associated scenario,
following the textual structure of Cockburn’s Use Cases
[3].

The specification workflow is subdivided into three
phases:

i identification of the components: starting from the re-
quirements, an initial system architecture is produced;

ii interactions among the components, which identify
the system’s operations and responsibilities;

iii specification of the components, which specifies the
operations and interfaces of the components them-
selves.

A business type model, represented by a class diagram,
is used for modelling the entities of the business concept
model actually perceived by the system. The involved

classes are defined at the specification level, with no re-
lation to a specific language. The notation used for the
component interfaces differs from that defined in the stan-
dard UML, in which the interfaces represent implementa-
tion constructs typical of the OO languages and do not re-
quire attributes or associations. In the UML Components,
an interface specification consists of: the type, the infor-
mation model (the attributes, the interface roles in the as-
sociation and their types), the specification of the operation
(prototypes, pre- and post-conditions), and the invariants.
All this information is grouped together in a package rep-
resenting an interface specification, which can also import
information from other packages. In UML Components,
the concept of a component is also quite different than in
the standard UML, because it is completely independent
from the implementation. To differentiate the specification
of a component from its implementation or the installed
component, a new stereotype <<comp spec>> which
has a set of interface types is introduced. Finally, the ways
in which the components interact via the interfaces are de-
scribed using collaboration or sequence diagrams.

Considering the provisioning workflow, it is aimed at
ensuring that the released software is consistent with the
given specification of the components. For this purpose the
components can be implemented, bought, readapted or de-
rived from the integration of existing software. Finally the
integration workflow connects together the various com-
ponents, the user interface, the application logic and the
existing software to obtain an efficient application.

4. Application of the “UML Components”
Methodology

In this section we present the application of the UML
Component methodology (Section 3) to the above case
study for deriving the JAIN MAP API architecture. Due
to space limitations, in the following subsections we only
describe the main details of each workflow, faithfully fol-
lowing the procedure described in [2].

4.1. Requirement Workflow

As a first step we analyzed the on-line documentation
available for the considered application [9] consequently
deriving a conceptual representation of the system, by
highlighting the key concepts and their relations. Then,
as suggested in [2], we represented them in a class model,
the “Business Concept Model”, which contains the follow-
ing classes: JAIN Client (the user of the JAIN MAP API);
JAIN Factories (factories required by the JAIN specifica-
tions to instantiate a protocol stack); JAIN Provider (it
provides the standard JAIN MAP API specifications [9]);
Reference Tab (it stores references and information con-

a) Open Session
CHARACTERISTIC INFORMATION
Goal in Context: The application requires the opening

of a session
Scope: JAIN-MAP
Preconditions: true
Success End Condition: The connection is established
Failed End Condition: The connection cannot be

established
Primary Actor: The application
Trigger: an opening request come in

MAIN SUCCESS SCENARIO
1. The application requires opening a session with MAP
2. JAIN creates a MAP connection
3. JAIN returns the connection ID to the application
4. JAIN sends the data for the mobile to MAP, through

the connection
5. JAIN receives the confirmation from MAP
6. JAIN receives data from MAP
7. JAIN sends data to the application

EXTENSIONS
2. The parameters provided are not correct
2.1 failure

4. JAIN sends a notification to MAP by the connection
4.1 JAIN receives the confirmation
4.2 JAIN sends the confirmation to the application
4.3 stop

5. JAIN receives an abort from MAP
5.1 JAIN sends the abort to the application

b) Process Open
CHARACTERISTIC INFORMATION
Goal in Context: MAP requires the opening of a session
Scope: JAIN-MAP
Preconditions: true
Success End Condition: The connection is established
Failed End Condition: The connection cannot be

established
Primary Actor: MAP
Trigger: an opening request comes in

MAIN SUCCESS SCENARIO
1. The MAP layer requires to open a session with the

application
2. JAIN creates a MAP connection
3. JAIN sends the data to the application, by the

connection

EXTENSIONS
2. The parameters provided are not correct
2.1 failure

Figure 3. The textual description of the Use
Cases Open Section and Process Open

cerning the opened connections); Connections Factory
(factory of connection); Connection Manager (responsi-
ble for the communications between the JAIN Client and
the MAP Layer); MAP (the inherited component which
implements the MAP Layer). The second target of the
methodology described in [2] is the description of the in-
teractions of the JAIN MAP API system with the external
users in a Use Case Diagram, the “Use Case Model”. For
this, we first identified the actors (JAIN Client and MAP
Layer), and we then associated a different Use Case (UC
in the following) with each JAIN primitive. Figures 5, 6
respectively detail the part of the Use Case Model relative

to the JAIN Client and MAP Layer interaction, where the
meaning of the collaboration diagrams associated to use
cases will be explained in Section 4.2. In particular, the
identified interactions are:

• Actor JAIN Client (Fig. 5): JAIN creation - a JAIN
Client requires a JAIN stack instance; Provider cre-
ation - a JAIN Client requires a JAIN Provider in-
stance; Add Listener - a JAIN Client supplies to
a JAIN Provider a “MessageSessionListener” refer-
ence; Remove Listener - a JAIN Client requires to
a JAIN Provider the deletion of a “MessageSession-
Listener”; Open Session - a JAIN Client requires the
opening of a connection with the MAP Layer; Data
Session - a JAIN Client requires the exchange of data
with the MAP Layer; Close connection - a JAIN
Client requires the closing of an open connection.

• Actor MAP Layer (Fig. 6): Process open - the MAP
Layer requires the opening of a communication with
a JAIN Client; Process request - the MAP layer re-
quires to exchange data with a JAIN Client; Abort -
the MAP layer requires the abort of an open connec-
tion as a consequence of network trouble.

Finally we detailed the behavior of each primitive
(Use Case) and the main system exceptions using the
Cockburn textual description [3]. As an example, in
Figure 3 we report the description of the two Use
Cases, Open Session and Process open.

4.2. Specification Workflow

During the specification phase as first step, starting from
the Business Concept Model described in Section 4.1, we
deduced the “Business Type Model” characterizing the en-
tities involved in our case study and specifying the types,
the attributes and the associations for each of them. For
instance, considering the “Connection Manager” we de-
fine a specific class (Figure 4(a)) and the attributes “ses-
sionID: string” and “communNum: integer” which indi-
cate the session identifier used by the JAIN Provider, and
the communication reference number used by MAP Layer,
respectively. We defined also the associations between the
“Connection Manager” and the other classes and their nav-
igability: for example, the “JAIN Client” can open sessions
with different “Connection Managers”, while “Connec-
tion Manager” is associated with only one “JAIN Client”.
Then we identified the <<interface type>> asso-
ciated with the business type model classes, which in our
case study are: “MessageSessionProvider”, “IMAP-Up-
CallMgt”, “IMAPListenerMgt” (Figure 4(a)). In particular
considering the Use Case diagrams developed during the
requirement workflow, we defined the correspondence be-
tween the Use Cases and the system interfaces by consider-
ing the textual description of each Use Case and distribut-

ing the responsibilities of operations execution between the
established interfaces. For instance, considering the “Open
Session” Use Case of Figure 3 the first three operations of
the main success scenario are assigned to the “Message-
SessionProvider” interfaces.

Finally, as shown in Figure 4(b), by using the informa-
tion collected so far, we produced an initial system archi-
tecture that will be used as reference during the code re-
structuring and implementation of the system. Considering
the case study, here we limit ourselves to the description
of “Connection Manager” which is the most critical com-
ponent for correct system behavior. This component must
implement two different interfaces (“IConnectionMgt” and
“IMapListener” see Figure 7) for providing services to-
wards the JAIN Provider component and the MAP com-
ponent respectively.

In particular, we refine the correspondence between Use
Cases and the interfaces redistributing accurately the op-
eration. For instance, considering the “Open Session”
Use Case of Figure 3 and the architecture of Figure 4(b),
the first operation is assigned to the “MessageSession-
Provider” interface of the “JainProviderMgr” component,
the second one to the “IConnectionMgt” interface of the
“Connection Manager” component, the third one to the
“MessageSessionListener” interface of the “JAIN Client”
component.

Finally, using the textual description of the Use Cases
and the established association between the operations and
the interfaces, we specified the interaction between the ar-
chitecture components by using Collaboration Diagrams.
Specifically, we developed a different Collaboration Dia-
gram for both each Main Success Scenario and all possible
Extensions described in the Use Case textual descriptions.
Considering our case study, for the Use Case “Open Ses-
sion” Figure 5 shows the defined1 Collaboration diagrams,
while Figure 6 depicts those relative to the MAP Layer in-
teraction. In particular Figures 8 and 9 respectively show in
detail Collaboration Diagrams describing the component
interaction in case of the Main success scenario of the Use
Cases “Open Session” and “Process Open” of Figure 3.
Thus, following the numbers assigned to the methods invo-
cation in the Collaboration Diagrams it is possible to know
how the system implements both the successful creation of
a new connection requested by a JAIN Client (Fig. 8), and
the start of a communication made by the MAP Layer (Fig.
9).

At the end of the specification workflow a complete de-
scription of the architecture of the system in terms of com-
ponents and interfaces interaction is established. We used
this structure for the system implementation, as will be de-
scribed in the next section.

1Due to space limitations we only show the Collaboration of this Use
Case

1.. *

JAIN Provider
<<core>>

*

References Tab

1 1*

InformationRef: String

<<core>>

<<core>>
Connection Manager

Connections Factory

Connection Type

*

1

<<core>>
MAP

<<core>>
JAIN Client

<<type>>

*1

1

1

*

1

*

1

*

MessageSessionProvider
<<interface type>>

*

*

**

<<type>>

<<interface type>><<interface type>>
IMAP−Up−CallMgt IMAPListenerMgt

IConnectionCreationMgt

Connection FactoryMgr
<<comp spec>><<comp spec>>

JAIN Client

MessageSessionListener

JAIN ProviderMgr

<<comp spec>>

Connection Mgr

<<comp spec>>

IConnectionReferenceMgt

IConnectionMgt

IMapProvider

IMAP−Up−CallMgt

MessageSessionProvider

(b)(a)

sessionID: String
communNun: integer

USSDref: String
SMSref: String
PositionRef: String

IMapListenerMgt

netInitiated: boolean

<<comp spec>>
Map Layer

Figure 4. The business type model (a) and the system component architecture (b)

(from actors)
JAIN Client

JAIN Creation
(from JAIN UCs)

Provider creation
(from JAIN UCs)

Add Listener
(from JAIN UCs)

(from JAIN UCs)
Data Session

Close Connection
(from JAIN UCs)

Remove Listener
(from JAIN UCs)

Collaboration Diagram: Open
Session / Open Session req failure

Collaboration Diagram: Open
Session / Open Session notify failure

Collaboration Diagram: Open
Session / Open Session req

Collaboration Diagram: Open
Session / Open Session Notify

(from JAIN UCs)
Open Session

a.

b.

1

3

4

2

Figure 5. The interaction between the JAIN Client and the system

(from actors)
MAP Layer

Abort
(from MAP UCs)

Process open
(from MAP UCs)

Process request
(from MAP UCs)

Collaboration Diagram: Process
Open / Process open cd

Collaboration Diagram: Process
request / Process request cd

Collaboration Diagram: Abort
/ Notice

Collaboration Diagram: Abort
/ User A

Collaboration Diagram: Abort
/ . . .

1 2

3 4

5

Figure 6. The interaction between the MAP Layer and the system

4.3. Provisioning and Integration Workflows

The “canonical” form of a component based process
certainly foresees, at the end of the specification phase,

a provisioning phase in which suitable components are
sought. However, in our case the purpose was to restruc-
ture, in a component based manner, the previously pro-
duced Object Oriented code, trying to reduce modifications

and code rewriting. In the previous sections we described
the process adopted for overcoming the nonexistence of a
well-defined system architecture, here we concentrate the
attention on how the system has been implemented. The
main problem, transforming the OO code in a CB one, was
the scarce use (no-use), in the inherited code, of the con-
struct interface provided by the Java language, which
consequently produced a web of direct “inter-class” refer-
ences and a set of strongly coupled classes. Thus on the
basis of the system architecture we modified the inherited
code following the steps described below:

1. the inherited Java classes have been grouped accord-
ing to the functionalities of the components foreseen
in the architecture, i.e. for each class we analyze the
tasks performed and we then identify the proper set
(architectural component) in which to insert the class;

2. all the interfaces foreseen in the components archi-
tecture are codified using the construct interface
provided by Java language;

3. for each class in a set we identified every “inter-set”
dependence2, and we removed them by using the suit-
able interfaces;

4. the sets are then handled in order to transform them
into their logical components. We revised the code
also developing, in each set, all the lacking function-
alities. As consequence we extended the code of each
set implementing the java interfaces foreseen by the
logical components;

5. using Jar file, we packaged the elements forming a
logical component, also enclosing an XML file that
describes how the foreseen functionalities are pro-
vided. In this way we defined a raw component model
(we will further clarify this point below);

6. for setting up a functioning system at run time, we
defined a further XML file which reports the compo-
nents to use and their relationships. The interpreter of
this XML file will use the reflection mechanisms to
instantiate the components from the Jar files defined
in step 5.

In our component-based implementation we did not use
any of the standard component model. However both to
be compliant to the definition of “component”, which re-
quires that a component must be deployed independently
from other components [7], and to obtain a component-
based system implementation strictly conforms to the de-
veloped system software architecture, we needed to define
a framework and a raw component model. In the JAIN
MAP case study the independence among the components
it has been obtained using, when necessary, the type de-
fined by the interface construct instead of the type defined

2to say invocations of constructors or references to instances of real
classes belonging to different sets

public interface IConnectionMgt {
void setOpenConnection(IMapProvider provider,

MessageSessionListener listener,
IConnectionAbort connectionMgr,
long sessionID, SessionOpenIndEvent event);

void setOpenConnection (IMapProvider provider,
MessageSessionListener listener,
IConnectionAbort connectionMgr, long sessionID);

void sendData(SessionDataReqEvent event);
void closeConnection(SessionCloseReqEvent even); }

public interface IMapListener {
void ManageMapEvent(MapOpenCnf event);
void ManageMapEvent(MapNoticeIndevent);
void ManageMapEvent(MapUAbortInd event);
void ManageMapEvent(MapPAbortInd event);
void ManageMapEvent(MapCloseInd event);
void ManageMapEvent(MapDelimiterInd event);
void ManageMapEvent(MapUSSDRequestCnf event);
void ManageMapEvent(MapUSSDNotifyCnfevent);
void ManageMapEvent(MapProcessUSSDRequestInd event); }

Figure 7. Interfaces which must be imple-
mented by the component “Connection Man-
ager”

by the class construct (see point 3 above) and removing all
the occurrences of the “new” operator referring to classes
that do not belong to the same set (component), and then
implementing a raw naming service. In fact, we developed
a simple framework which requires that the specification of
the correspondences between the architectural components
and the Jar files, containing the real implementation of a
component, is reported in a XML file. A class that needs a
particular service can obtain a reference to an instance of
a component providing the specified service, invoking par-
ticular methods on the objects constituting the framework.
This objects can read and instantiate, using also the Java
reflection mechanisms, classes inside the Jar file (compo-
nent). Therefore using this “naming” mechanism we can
easily improve or extend the system implementation, mod-
ifying or adding new correspondences in the XML file. At
the same time those mechanisms facilitate the black-box
reuse of the defined components. This latter feature is par-
ticularly important in order to implement the other func-
tionalities foreseen by the JAIN MAP API specification.

5. Conclusions

In this paper we presented our experience in deriving
a suitable component architecture for the JAIN MAP API
case study, by following the UML Components method-
ology described in [2]. In particular, in order to reduce
the effort and the time needed for the system implemen-
tation, we defined a well-structured component architec-
ture model used both for restructuring existing “inherited”
monolithic code in a component-based way, and for eas-

/MessageSessionListener

/MessageSessionProvider:JainProviderMgr

/IConnectionCreationMgt:ConnectionFactoryMgr

/IMapListenerMgt:ConnectionMgr

/IConnectionMgt:ConnectionMgr

/IMapProvider/IMapProviderFactory

1.3.3.3.1.: processMessageSessionEvent(SDInd,ID)

1.3.: setOpenConnection(p,l,cM,ID,SOInd)1.2.: getNewMapProvider(l)

1.3.2.: ManageMAPEvent(MURReq)

1.3.1.: ManageMAPEvent(MOReq)

1.3.3.: ManageMAPEvent(MDReq)

1.3.3.1.: ManageMapEvent(oCnf)

1.3.3.2.: ManageMapEvent(rCnf)

1.3.3.3.: ManageMapEvent(dInd)

1.: processMessageSessioOperation(open,la) 1.1.: getNewConnection()

Use Case: Open Session (Main Success Scenario)
Application

JAIN

MAP

Figure 8. Collaboration Diagram specified for the Use Case Open Session

ily extending it on the basis of the obtained architecture.
In this context, UML Components methodology has been
a valid reference for identifying the system architecture,
isolating the necessary components, and establishing the
relationships between them. With our refactoring, the soft-
ware obtained is more flexible, testable and manageable,
and it reduces the effort needed for further implementation
of new JAIN capabilities.

In future studies we intend to extend the refactoring to
the code available for the other JAIN MAP capabilities
and to complete the implementation of the whole system.
Moreover, we will test the obtained software for both dis-
covering the problems of components integration, and ver-
ifying the correct system behavior. For this, the presence
of a well structured and described architecture will sim-
plify both the validation of the system against the JAIN

/IConnectionMgt:ConnectionMgr

/IConnectionCreationMgt:ConnectionFactoryMgr

/MessageSessionProvider:JainProviderMgr

/IMapProvider

1.1.: getNewConnection()

1.: OpenProcessMapConnection(MapPr)

MAP

JAIN

Application
Use Case: Process Open (Main Success Scenario)

1.2.: setOpenConnection(p,l,cM,ID)

Figure 9. Collaboration Diagram specified for
the Use Case Process Open

specifications, and the test case derivation for testing the
components in isolation, by allowing the use of available
tools for automatic test generation and execution.

6. References

1. F. Basanieri, A. Bertolino, and E. Marchetti. The
Cow Suite approach to planning and deriving test suites in
UML projects. In Proceedings of �UML� 2002, LNCS
2460, pages 383–397, Sept. 30th-Oct. 4th 2002.

2. J. Cheesman and J. Daniels. “UML Components: A Sim-
ple Process for Specifying Component-Based Software”.
Addison-Wesley, 2000.

3. A. Cockburn. “Writing Effective Use Cases”. Addison-
Wesley, 2001.

4. P. Kruchten. “The Rational Unified Process - An Introduc-
tion”. Addison-Wesley, 1999.

5. SEI. How do you define software architecture? On-line
at: http://www.sei.cmu.edu/architecture/definitions.html.

6. H. Sneed. Recycling software components extracted from
legacy programs. In Proc. of 4th Int. Workshop on Princi-
ples of Software Evolution (ICSE 2001), pages 43–51.

7. C. Szyperski. “Component Software - Beyond Object-
Oriented Programming”. Addison-Wesley, 2002.

8. H. Washizaki and Y. Fukazawa. Automated extract com-
ponent refactoring. In Proc. of XP2003 conference (LNCS
2675), pages 328–330, 2003.

9. The JAIN MAP API specifications. Available at:
http://java.sun.com/products/jain/api specs.htm.

10. UML Documentation version 1.5 Web Site. On-line at:
http://www.omg.org/technology/documents/formal/

11. CORBA Component Model specifications. Available at:
http://www.omg.org/technology/documents/formal/com-
ponents.htm.

12. Enterprise Java Bean Technology. Available at:
http://java.sun.com/products/ejb/.

13. .Net resources available at:
http://www.microsoft.com/net/.

