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Abstract. We present an ongoing experience aimed at introducing statistical
process control techniques to one crucial test phase, namely Function Test, of a
real world software development process. We have developed a prediction
procedure, using which, among other things, we compare the performance of a
Classical model vs. a Bayesian approach. We provide here the description of
the prediction procedure, and a few examples of use of the models over real
sets of data. However, far from aimed at identifying new statistical models, the
focus of this work is rather about putting measurement in practice, and in easy
and effective steps to improve the status of control over test processes in a soft,
bottom-up approach. The experience described has started quite recently, and
the results obtained so far, although limited in scope, are quite encouraging (as
well as exciting for the involved team), both in terms of predictive validity of
the models and of the positive response got from development personnel.

1   Introduction

It is only in the state of statistical control that statistical theory provides
with a high degree of belief, prediction of performance in the immediate future

W. Edwards Deming

In this paper we report about an ongoing experience at Ericsson Telecomunicazioni
S.p.A. in Rome (TEI in the following) aimed at applying statistical process control
techniques to the Function Test process.

We discuss here the objective of this study and the starting point. In the next
section we outline the approach taken. In Sections 3 and 4 we briefly describe two
statistical estimators used for data analysis, from a Classical and a Bayesian
viewpoint, respectively. Section 5 then gives a few examples, and Section 6 provides
the conclusions.
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1.1   Objective

Within the frame of the company-wide Ericsson System Software Initiative (ESSI),
regular assessments are being performed at all Ericsson Software Design Centers
according to the Capability Maturity Model (CMM) for software, Version 2 draft C
[1]. Main objectives of ESSI are to identify key areas for process improvement and to
propose a framework for subsequent improvement actions. An assessment has been
recently performed at TEI organization covering the AXE10 (multi-application, open-
ended digital switching product for public telecommunications networks) software
development area. The software processes at TEI were found to be at the Defined
level of maturity (level 3). Although this result was very satisfying, TEI is now going
to initiate some of the level 4 practices. The organization intends to improve its
capabilities in statistical process control and in prediction methods. As it is not
economically justifiable to apply statistical process control techniques to all
processes, a set of processes has been selected according to the business objectives of
the organization.  One of the selected processes is Function Test, that is one of the
four test phases in TEI test strategy, namely:

1) Basic Test, testing the smallest module (test object) in the system. The goal is
to verify design specification;

2) Integration Test, testing a functional area: all modules in that area are
integrated;

3) Function Test, verifying system functions;
4) System Test, verifying system performance and architectural requirements.

Function Test has been identified as strategic in meeting the commitments to
customers with respect to quality objectives, for the following reason. One of the TEI
objectives is reducing of a determined amount the fault density figures that are
obtained by monitoring the first six months of operation of released products. Fault
density is measured by the ratio between the cumulative number of failures observed
in those six months and the product size, expressed in lines of code. Root Cause
Analysis (RCA) of reported failures is routinely performed, to track back failures to
the phase in which they have been originated. An important finding of RCA for TEI
products was that a high percentage of failures (48%) corresponded to software faults
that could have been discovered during the Function Test phase. Therefore, one of the
actions proposed to reduce fault density figures is related to reducing the failures
slipping through from Function Test to operation. The failures slipping through, that
is one of TEI GPC quality objectives, is measured as the ratio between the number of
failures found during first six months, and the sum of failures found during Function
Test and first six months.

In this paper we apply statistical techniques taken from the literature to the
Function Test process in order to put under control its effectiveness in failure
detection.

1.2   Starting Point

Currently, Function Test is performed along a function test specification, with the
goal of testing conformance of the target function to its specifications. Test cases are
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derived manually by testers, by making a systematic analysis of the specification
documentation and trying to cover all the specified functionalities (or use cases). It
means that the test cases are deterministically chosen by examining the functional
specifications and altogether before test execution starts (which implies that the
number of tests to be executed is decided in advance).

Function Test execution is organised in a specified number of stages. The tests are
not executed continuously, but only during the working days (i.e., five days in a
week) and 8 hours per day. All the failures discovered within a stage are logged and
reported to software designers, who trace failures back to code and correct them. A
new software version is then released, which is resubmitted to test in the next test
stage. For each project, the information registered consists of the start and end dates
of the test phase, and of the calendar day (but not the day time) of discovery of each
failure. Test execution (CPU) times were not recorded.

Function Test stops when all the test cases defined in the test case specification
have been successfully performed, either at first try or after suitable fault repair.
Specific exit criteria related to the measured rate of failures detected over the testing
period are not explicitly considered in test process, and no estimation of achieved
remaining number of faults is currently performed.

2   The Approach

Measurement provides an assessment of an entity under observation (more precisely,
of some attributes of this entity [2]). However, the specific objectives for doing any
measurement must be clearly stated within a well-defined measurement programme.
In fact, only when the objectives are explicitly identified, by interpreting the results
of measurement we can take appropriate decisions, and put these into useful actions
[2].

2.1   Measurement Objectives

In this study the final objectives are: to put under statistical control the Function Test
phase and to investigate the feasibility of introducing testing exit criteria according to
remaining faults prediction.

One of the attributes to measure to achieve these goals is the effectiveness in
failure detection during Function Test, i.e., the rate of failures detected over a fixed
period of testing. In particular we use the failure data observed in the first part of the
test process to predict the expected cumulative number of failures over the planned
period of Function Test. A very important property of prediction system is the speed
of convergence of estimates. On this respect, we are currently comparing the
performances of different estimators (see section 3 and 4).

 However, using the predictions provided by the estimators requires insight and
knowledge of the process which goes well behind the statistical analyses described
here. For instance, suppose that measurement  brings to our attention an unexpectedly
low number of failures with respect to standard figures. This can be due to an
ineffective test process (bad news), or instead to a very good development process
(good news).



Towards Statistical Control of an Industrial Test Process     263

How the presented estimators are used in project control and management  and
how historical data through several projects are used to set reference/target measures
is outside the scope of the present paper.

2.2   Data Model

As a first step in this investigation, we analysed the typology of data available to lay
down an appropriate data model. We could access sets of failure data collected over
several projects during the phase of Function Test.

We decided to adopt a data model close to the current logging procedures, as it
would be difficult and expensive to change them. As the failure reports are registered
on a daily base, we decided to group the failure data into test intervals (TIs), each one
a day long. A TI in which at least a failure is observed is called a failed test interval
(FTI), otherwise it is said a successful TI. Quite obviously, anyhow small a test
interval is chosen, until this remains larger than a single test there will always be a
chance to observe more than one failure within it.

Hence, our model estimates the expected number of failures in two subsequent
steps: first we predict NFTI, i.e., the expected number of FTIs; then, from this
number, we derive the expected number of failures NF. To do this, we define a
random variable Q to denote the probability that the next TI is failed. Then, over a
NTI long period of test intervals, using a valid estimate ˆ Q  of Q, we easily obtain:

NFTI = NTI • ˆ Q (1)

Once a value for NFTI is so estimated, the total number of failures clearly will
depend on how many failures on average are observed within a FTI. We again
introduce a random variable F to represent the number of failures observed within a
FTI, and then derive NF from NFTI, with:

NF = NFTI • ˆ F (2)

As concerns the estimation of ˆ F , we decided to adopt the classical estimator E[F],
based on the sample mean (also called arithmetic mean) of the observed failures over
the number of observed FTIs. The choice of the sample mean lies on the observation
that, for the projects considered, it soon stabilizes. Furthermore, for large samples it
shows the property of consistency and unbiasedness [3].

2.3   Prediction Procedure

The statistical control procedure is based on the following main steps:

- Consider the test intervals assembled in groups of 5 TIs (corresponding to one
calendar week of testing) and assign to each group an increasing identification
number k with k = 1,...,

NTI

5
.

- After observing the k-th (current) group of failure data derive values of:

2.1) the cumulative (i.e., from group 1 to group k inclusive) number of FTIs
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2.2) the cumulative number of failures

- Using the observations of step 2) derive:

3.1) an estimate ˆ Q  of Q, based on statistical models (Sect. 3 and 4)

3.2) an estimate ˆ F = E[F] of F

3.3) predictions of global NFTI and global NF over a future period testing, based
on formulas (1) and (2)

- By use of classical statistical techniques (e.g., confidence interval, relative
error) evaluate the accuracy of the estimates obtained at steps 3.1), and 3.2)

- If the estimates ˆ Q  and ˆ F  do not reach the desired level of accuracy, wait for
the data relative to another group of 5 TIs, increment k and repeat Steps 2
through 4.

- Check the model, i.e., evaluate if the proposed model and the substantive
conclusions fit the data and how sensitive are the results to the modelling
assumptions.

In the next sections we describe two different estimators used in step 3.1).
Specifically, Section 3 shows a model based on the Classical (frequentist) approach,
while Section 4 presents a model based on the Bayesian approach.

3   Using a Classical Approach

A classical approach to derive the probability Q that the next TI is failed, given a
sample of NTI, is based on the maximum likelihood estimate [3, 4]. The idea
underlying the maximum likelihood estimate of a parameter that characterizes a
random variable Q, is to choose that parameter value that makes the observed sample
values Q1, Q2 ,...,Qn  the most probable.

In our case the sample to be analysed is formed by sets of test intervals of size n
(with n=5, 10, …, NTI), and we want to predict, as early as possible, the proportion Q
of FTIs. We can visualize the sample as a sequence of Bernoulli trials with
probability Q of failure on each trial (note that in such a way we are assuming
independent TIs, which is reasonable for the approach followed in test selection).
Thus, if the observed number of failed TIs is f, then the likelihood function l is given
by [3, 4]:

l(Q) = Qf (1 − Q)n− f (3)

The maximum likelihood estimate of Q is that value of Q that maximizes the
likelihood function l, or its logarithmic form. Solving for Q yields the maximum
likelihood estimate:

ˆ Q =
f

n
(4)

It can be proved [3] that such ˆ Q  is an unbiased, consistent, and the minimum
variance unbiased estimator of Q.
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To complete the statistical control procedure, we associate to each ˆ Q  its
confidence interval, that is a probability judgement about the accuracy of the estimate
delivered. We are dealing with a random variable, so we cannot predict with certainty
that the true value of the parameter, Q, is within any finite interval. We can, however,
construct a confidence interval, such that there is a specified confidence or
probability that the true value Q lies within that interval. For a given confidence level,
of course, the shorter the interval, the more accurate the estimate.

It can be proved [3] that, for a sample of large size n, an approximate 100(1-α)%
confidence interval for the Bernoulli parameter Q is given by:

ˆ Q − zα / 2

ˆ Q (1− ˆ Q )

n
< Q < ˆ Q + zα / 2

ˆ Q (1 − ˆ Q )

n

(5)

where ˆ Q is obtained by (4) and values for the parameter zα / 2  are found in statistical

reference tables [4].
Therefore fixed a confidence level (90%) according to the producer exigencies, we

associate to each ˆ Q  estimate after n TIs, ˆ Q (n) , the relative confidence interval.
The study of the confidence intervals leads us to determine that, after a certain

number n* of TIs, the desired level of accuracy is reached. Therefore we can use the
estimate ˆ Q (n*), obtained after n* TIs, to make predictions about the number of FTIs
after (n*+5), (n*+10), …, NTI test intervals. In other words, after NTI test intervals,
the number of failed test intervals NFTI  can be simply obtained by

NFTI = NTI• ˆ Q (n*) (see Eq. (1)).
To complete the prediction procedure, we can now apply Eq. (2) to obtain the

global number of failures expected at the end of Function Test.
To assess whether the model inferences seem adequate we check, a posteriori, the

obtained predictions against the real outcomes of several projects. Some examples of
application are illustrated in Section 5.

The main limitation of this approach lies on the fact that a large amount of data  is
necessary to derive significant confidence intervals. Consequently the value n* of TIs
guaranteeing the desired level of accuracy can result quite high.

4   Using a Bayesian Approach

The method described in the previous section has a broad field of application. We can
use it whichever is the behaviour of the product under test. But this is also a
limitation of the method, because it is not able to exploit the evidences of historical
data collected over other TEI projects and which could contribute to better predict the
cumulative number of failures.

For this reason, we investigated other methods which could be correlated to the
behaviour of the product under test, with the purpose of reaching more accurate
estimates or, more importantly, of anticipating the moment in which the predictions
can be trusted. In this section, we report the application of a Bayesian approach.

We chose this kind of approach after an accurate analysis of the failure behaviour
of several products. We observed in fact that every realization of the random variable
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Q can only take discrete values of the form 
1
i

 within an interval 
1

M
,1

 
  

 
   (where M is

a maximum fixed value). Precisely, for each i within [1, M], the associated discrete

distribution, or probability mass function (pmf) of Q, pQ
1

i
 
 
  

 
 = P Q =

1

i
 
 
  

 
 , gives the

probability that the next FTI will be observed after (i-1) successful TIs. In particular,
and more notably, we observed that for all products considered the pmf of Q always
concentrated for most of its realizations on three same consecutive values, while took
very rarely the other possible values. We thought that a Bayesian approach was the
most effective way to exploit this knowledge (in the spirit of the approach described
in [5]).

In the Bayesian framework [6], probabilities are meant to describe an observer
subjective knowledge of yet-unknown events. This knowledge continuously evolves
as new events are observed: inferences are drawn by combining the pre-existing
knowledge with the new evidence collected through observation.

In our context, the observed behaviour of Q in the projects considered constitutes
an important starting point to model a tester’s subjective belief about the rate of
failure detection during TEI Function Test. We express this knowledge through an

appropriate modelling of pQ
1

i
 
 
  

 
 , the prior pmf. During the performance of Function

Test, the realization of a sequence of test intervals with and without failures is
observed. Thanks to this evidence, the tester’s knowledge about this specific product
evolves and a new distribution for the pmf of Q, called the posterior pmf, can be
derived.

Denoting by Fn the sequence of observed outcomes (failed/successful) for the first

n  TIs, the posterior pmf for Q, denoted by p’Q,n
1

i
 
 
  

 
 , then gives P Q =

1

i
| Fn

 
 
  

 
 , i.e., it

is the update of pQ
1

i
 
 
  

 
 after having observed the sequence Fn.

Applying Bayes’ formula we have:

p’
Q,n

1

i
 
 
  

 
 = P Q =

1

i
| Fn

 
 
  

 
 =

Pprior Q =
1

i
 
 
  

 
 P Fn | Q =

1

i
 
 
  

 
 

P Fn | Q = 1

j

 
 
 

 
 
 Pprior Q = 1

j

 
 
 

 
 
 

j =1

M

∑

(6)

in which the term P Fn |Q =
1

i
 
 
  

 
 is usually called a likelihood function.

With f denoting the number of FTIs observed in the sequence Fn, the likelihood

function can be derived as a binomial distribution with parameters n and
1
i

.

Substituting, the posterior distribution p’Q,n
1

i
 
 
  

 
  hence is:
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p’
Q,n

1

i
 
 
  

 
 =

pQ
1

i
 
 
  

 
 ⋅

1

i
 
 
  

 
 

f

1−
1

i
 
 
  

 
 

n− f

PQ
1

i
 
 
  

 
 ⋅ 1

j

 
 
 

 
 
 

f

1− 1

j

 
 
 

 
 
 

n− f

j =1

M

∑

(7)

In the step 3.1 of our prediction procedure (Sect. 2.3), we use this updated pmf to
derive En[Q] , i.e. the posterior expectation of Q after n TIs. This is taken as the

estimator ˆ Q  in Eq. (1) to derive NFTI,n, i.e., the predicted number of FTIs expected
after NTI test intervals, based on the test outcomes collected during the first n test
intervals, and on the prior expectation about Q. From NFTI,n the expected number of
failures can then be derived in the usual way.

In the next section we provide some examples in which this Bayesian model is
compared with a Classical approach.

5   Examples and Discussion

We have so far presented a "textbook", Classical approach for predicting the expected
number of failures in Section 3, and an alternative, Bayesian approach in Section 4.
The second model was introduced not because it is claimed to be better than already
existing methods, but because we hope it can prove more suitable to assess the
specific TEI Function Test process. In particular, we think that since it exploits the
prior available knowledge about the rate of occurrence of FTIs it needs fewer data to
obtain valid predictions.

Indeed, deriving a prior distribution for the probability of interest is in general a
difficult task, which also generates some perplexity towards the usefulness and
applicability of Bayesian inference methods. In this case, the data available from
several projects submitted to the same testing process conducted easily to an
empirical distribution in which the rate of occurrence of FTIs concentrates within a
strict interval.

In this section we provide a few examples of results obtained from use of the two
described estimators. In the following figures we report the results obtained by
applying the models to different data sets coming from the Function Test phase of
large telecommunication systems. The size of the software varies from project to
project (minimum 50 kloc, maximum 150 kloc), and the failures in the data sets
considered  were classified as priority B1 (major failures).

In the following diagrams, on the horizontal axis we put the number of elapsed
groups of TIs. On the vertical axis we put the cumulative number of failures over

                                                          
1 A failure is classified as priority B if it implies:
- large restart with or without reload;
- small restart;
- the function required for the operation and maintenance of the change is out of order;
- traffic disturbance on a single route, or for a few subscribers;
- a dominant PCB (printed circuit board) has a significantly higher failure rate than predicted;
- increased priority from level C for commercial reasons.



268     G. Lombardi et al.

completion of the scheduled test period (for confidentiality reasons, we have to omit
the actual numbers). We report a dashed curve for the Classical predictions, and a
continuous curve for the Bayesian ones. When a prediction becomes acceptable
(according to step 4 of the prediction procedure), we fix it and the curve becomes a
straight line. The model check (step 6) is presented in the figures below by showing
the actual number of failures observed at the end of the test period (the dotted
horizontal line) (of course this knowledge is used in no way to make the prediction).
The strip marked with vertical segments around the latter signs the zone where the
relative error of the prediction would be below 10%.

Project 1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Grouped TIs

NF

MaxLik

Observed

Bayesian,
informed prior

Bayesian,
’ignorance’ prior

Fig. 1. Prediction results for Project 1

In Fig. 1 we show the results for Project 1. The maximum likelihood method
produces a valid prediction after 14 groups of TIs. The light gray curve, labelled
Bayesian “ignorance” prior, would be the output from the Bayesian model using as a
prior pmf a uniform distribution, i.e., not exploiting any specific knowledge from the
test process under observation. We see that with this uninformed prior we gain no
particular advantage in using the Bayesian model; on the opposite, the prediction
stabilizes only after 18 groups of TIs. However, considering the output from the same
model with the informed prior pmf, the prediction is anticipated of as much as four
groups relatively to the Classical model, that is a very good result from the manager's
point of view. With regard to the outcome of prediction, both models produce
accurate estimates.

In the second project considered (Fig. 2), the Bayesian prediction stabilizes three
groups in advance with respect to the Classical method, and in addition we see that
for this project the estimate produced with the latter is outside the 10% error strip.
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But unfortunately the Bayesian model does not consistently work better for any
data set. In the third example (Fig. 3), we see that the Classical model reaches first a
stable prediction.

Fig. 2. Prediction results for Project 2

So, the idea is that we can apply both estimators in parallel, and use that one that
first gives a valid prediction. We believe that in most cases this should be the
Bayesian. However we are still collecting more data to continue the model validation.

The empirically found prior pmf for Q is a very useful result in itself. In particular,
we believe it can provide testers with a very rough estimate of lower and upper
bounds for the cumulative number of failures expected even before the Function Test
phase starts. The quite regular typologies of behaviour showed by TEI projects under

Function Test in fact permits us not only to know which will be the interval 1
i
,

1
i +1

 
  

 
  

that includes the actual value of E[Q], but also to establish a good approximation
value for E[F]. These numbers used in the formulas (1) and (2) provide us with rough
bounds for the cumulative number of failures. For instance, considering a certain
class of projects and if the Function Test process is planned to last for 100 TIs, we
can estimate prior to starting the test process that the expected cumulative number of
failures at the end of the test will be within [38, 50]. With evidence collected over
more projects, we expect to be able to decide historical failure effectiveness densities,
to be used as reference in process control.

6   Conclusions and Future Developments

We have presented an ongoing experience aimed at introducing statistical control
over TEI Function Test processes. So far we have outlined the procedures for failure
data collection, and the statistical models for interpreting the data. In particular, we

Project 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Grouped TIs

NF

MaxLik

Observed

Bayesian
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Fig. 3. Prediction results for Project 3

have introduced a Classical approach, based on the maximum likelihood estimate,
and a Bayesian model, incorporating empirically defined prior distributions for the
rate of detection of failures. We have already examined both models on several
projects in a preliminary study, and now plan to introduce the models within the
standard test processes, so to make a more comprehensive validation. A key aspect in
the definition of the models was not to require any unnecessary additional work from
testers, and viceversa to adapt as much as possible the models to the existing
procedures.

The objective of introducing statistical control techniques within TEI  is to achieve
the capability to take decisions and then actions with desirable and predictable
effects. We have discussed the application of statistical models to predict the
expected number of failures over the planned period of Function Test. From our
perspective, such models provide the project management team with an effective and
not expensive means to take corrective actions when causes of variation are identified
with respect to the Function Test process performance baselines (e.g., minimum and
maximum fault density computed on historical data in the same product line), and
with respect to meeting TEI slipping through objectives.

The implementation of appropriate corrective actions (such as executing extended
Basic Test in parallel to Function Test, or postponing the end date of Function Test)
can mitigate the risk of failures slipping through Function Test to first six months in
operation, thus reducing rework and maintenance cost. Pilot projects to identify the
most effective analysis technique, and to perform cost benefit analysis for the
mitigation risk strategies connected to the application of the model are planned. In
fact, no extra costs are required to collect data and apply the statistical models, as
data collection is executed according to the standard procedure. To allow the easy use
of statistical models within projects, a tool to be incorporated in the test environment
will be developed.

Project 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Grouped TIs

NF

MaxLik

Observed

Bayesian
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The pilot projects will be managed according to a Function Test Measurement
Plan. The Measurement Plan has the purpose to transfer baseline, models, practices
approved by the organisation to the projects and then to bridge project’s performance
to organisation’s capability. Very briefly, this plan includes:

- organisation objective and capability baseline,
- analysis technique and tools to be used,
- database where to store project’s measurement collection,
- mitigation risk strategies according to objective uncertainty guideline,
- Return on Investment analysis.
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