APPLYING ADVANCED UML BASED TESTING
METHODOLOGY TO E-LEARNING

Jinghua Gao, Eda Marchetti, Andrea Polini
ISTI CNR
ViaMoruzzi 1, Pisaltaly
{Jing.Hua, Eda.Marchetti, Andrea.Polini} @isti.cnr.it

ABSTRACT

We present an ongoing experience in the application of UML based testing methodology in an e Learning environment.
In particular, we focus on the interaction of learning objects and Learning Management Systems (LMS). This paper
reports the application of the proposed technology for test case generation of the SCORM system.

KEYWORDS
e-Learning technologies, UML based testing, automatic test generation, SCORM.

1. INTRODUCTION

The eLearning technologies have been studied for over 40 years, but recently they have seen a growing
interest mainly due to the widespread diffusion of internet, mobile devices, open systems. However the
development of eLearning applications is still an expensive task, in which the “reuse” of already developed
materials and interoperability between different applications are crucial saving ®@nsiderable amount of
money. Focusing precisely on solving the interoperability problem different organizations, such asIMS[16],
ADL [1], deliver specifications and standards, which regulate the data interchange. Unfortunately a general
agreement on what “interoperability” exactly means is not yet achieved, and different suppliers still develop
their eLearning tools and resources, including additional features with respect to the basic characteristics
provided by standard specifications. Obviously, this prevents the interoperability and data exchange of e
Learning system, and makes their combination the most critical part of the eLearning program. In this
situation a possible solution is to adopt an accurate testing process, which verifies precisely the behaviour
and features provided by an existing e-Learning system (LM Sin the following).

For this, adopting the definition of interoperability presented in[20] i.e.: “e-Learning systems are defined
to be interoperable when they can exchange the necessary data, using a common system infrastructure
resulting in the expected end-system behaviour”, in this paper we describe a possible testing process based on
the AGEDIS [2] methodology. We use the documentation provided by the ongoing TELCERT project [23]
(Technology Enhanced Learning Conformance - European Requirements and Testing), and in particular the
UML [26] description of LMSs contained into the Application Profiles [20]. Derived from a base
specification these last in fact contain the useful information for: tailoring the conceptual data schema to the
specific needs of a community; mapping the localized conceptual schemas to a generic binding; defining for
a general LMS the set of abstract APIs" that can be invoked by contents and the corresponding behaviour
[20]. Thus by using this abstract information we first develop a UML model of the system, and then
automatically derive once for each Application Profileaset of test cases useful for verifying that the contents
deployed on LMSs are compliant with the requirements expressed in the Application Profile. The combined
use of amodel and an automatic approach for test case derivation has various advantages such as;

! These have the role of abstracting from the real implementation of each LMS and defining a unique set of
elements on which the test generation can be focused. They can be implemented in the LMSs, using various
technologies and even different names for the methods.

areduction of the time and cost necessary for test cases generation and implementation when areal LM S

isconsidered . It will be only necessary to map the already derived test cases based on the abstract APIs

onthereal one);

an easier modification and reuse of the test suite. Each change in the system model will be automatically

reported to the corresponding set of test cases and test cases derived for the unchanged components in

the model can be reused.
Model based testing is a widespread adopted techniques and in literature there are different proposal which
can mainly divided main into classes: state machine-based and scenario-based approaches. Among the
proposals for test case derivation we only mention the work of Offutt and Abdurazik [17], who first used the
UML Statechart; Liuying and Zhichang[15], who use a formal semantic; Chevalley and Thevenod-Fosse [8]
who proposed a probabilistic method based on transition coverage; Antoniol et a. [3], who used UML
statecharts for covering selected paths in a FSM; Bochmann et a. [6] using FSMs, Tretmans [24] and
Fernandez et al. [9], who used the Input/Output Transition Systems (IOTSs).
To our knowledge model-based testing has not yet received proper consideration inside the eLearning
community and in the literature there are no experiences reported describing the application of one of the
mentioned approaches. The available documentation is focused on atesting process conducted on the basis
of the experience and the skill of test devel opers without adopting a specific model. This paper intend to be
the first attempt at technology transfer, with the aim of bringing into the eLeaning environment all the
advantages of astructured and formal testing approach.
The paper is organized as follows: In Section 2 we describe in details the AGEDIS methodology. In Section
3, focusing on a specific case study, we present the modelling process adopted for defining in UML the
abstract APl and LMS services and the automatic test case generation.. The conclusion are instead in and
Section 4

2. AGEDISAND AML LANGUAGE

In our work we reused the results of the AGEDIS (Automated Generation and Execution of Test Suites for

Dlstributed Component-based Software) [2] project, that begun in October 2000 and is just finished and has

developed a methodology and a set tools for the derivation of test cases from models.

AML (AGEDIS Modeling Language) [2] is the specific language defined and used within the AGEDIS

project, and it is supported by the Objecteering UML Editor tool [18]. The syntax of AML isfully compliant

with that used by UML 1.x, but it only uses a subset of the available UML diagrams, such as state machines,

class diagrams, and object diagrams. In addition to UML, AML allows the definition of test directives used

for annotating the design with special labels that add information to be reused for the test cases generation

step. Test directives are a set of restrictions, constraints, and goals defined by the user to drive the test

generator establishing useful test cases. Test directivesinclude:

= Coverage criteria, which are used to generate a set of test cases with respect to a given coverage
constraint. Coverage criteriaare indicated as a set of expressions over object variables and expressed in a
specific AML diagram called“ test purpose diagrant.

= Test constraints, which are used by the test generator during selection of the relevant execution sequences.

= Test purposes, which look like state machines highlighting a specific aspect of the behaviour that must be
tested.

The AGEDIS methodology generates test cases applying an iterative process with the following six steps

[23]:

= Build a behavioural model of the SUT (System Under Testing). AGEDIS uses the tool Objecteering
together with the AML profile to create the system model.

= Annotate the model with testing information. It is possible to either describe the interfaces between the
model and SUT, or to use test directives to annotate the model.

= Automatically generate a test suite. This is the core function of AGEDIS, a test case generator is able to
automatically generate the test case from the devel oped model.

= Review the model test information and test suite with developers and customers;

= Executethetest suite automatically and log the results;

= Review of theresults repeating steps 2 to 5 until the coverage and quality goals of the test are achieved.

In the next section we show the application of AGEDIS to a case study. However, with respect to the six
steps above, we only report the results obtained running the first four and stopping the process to the
generation of test cases since we do not have the required information for executing the tests.

3. CASE STUDY

In this section we present an application of the AGEIS methodology for testing the correct implementation of
the APIs developed by a specific LMS. We consider in particular the Shareable Courseware Object
Reference Model (SCORM) platform [21], which is one of the most accepted standard in the eLearning
community. In the following sections, by using the SCORM documentation we focus on the derivation of a
proper AML model documentation, and the application of the AGEDIStools for deriving the test cases.
It must be noted that on the SCORM web site [21] a test suite for verifying the conformity of the learning
objects with the behaviour of specific LMSisalready available, though it is unclear the test strategy adopted
for deriving it: our overall impression is that skilled test developers, using their personal knowledge and
previous experiences, developed the test cases. Even if (from a practical point of view) the ad hoc test case
derivation can be very profitable, without a specific reference model the testing generation can be an
unrepeatabl e process, which depends greatly on the talent of theinvolved testers.

We focused therefore on the interactions between the LM S, and the learning objects (in SCORM referred
as Sharable Content Object (SCO)). Learning objects are considered the minimum unit that can be reused and
assembled to structure a course. To enable communication between the LMS and the SCO, SCORM defines
aset of APIs. These can be invoked by the SCOs for interacting with LMS by using get/set/commit methods.
A common behaviour in this context is the learner’s interaction with content objects when this is displayed
by the web browser (SCORM targets, the Web as a primary medium for delivering instruction).

Derivation of the AML -Modd

The first steps gpplying the AGEDIS methodology is the creation of an abstract model which represents the

behaviour of the system that we intend to test. In our case adopting AML, using the available SCORM

documentation and the information enclosed in[5], we devel oped the relative model.

We begin with the definition of a class diagram representing the components of the systems. In particular in

the class diagram we enclosed four different components:

1. Content, which isthe learning object that we intend to test;

2. JSWrapper, which is the API locator. It is responsible for finding the proper API on the APIs interface
when the getAPI method isinvoked by the Content component;

3. API, which represents the API interface implementation. It contains the methods that can be invoked
by the learning objects (content). We consider here a simplified version of the APl in which the error
management is ignored. The methods in the APl are: I nslnitialise, |nsFinish,

I msConmit, | neCetVal ue, | neSetVal ue.

4. LMS, whichisthelearning management system.

We then define an Object Diagram, which corresponds to a specific implementation of the environment

described in the class diagram. Finally, following the sequence of calls admitted for atypical SCORM

section, we define the relative State Machines, which simulate the systems behaviour. For the sake of clarity

we decided to divide the state machineinto three separate components (Figure 1), that will be integrated at

run time by the AGEDI Stoolsinto aunique diagram. Specifically, the State Machine (A) focuses on the

overall system behaviour which always foresees the invocation of LM SInitialiseand LM SFinish methods, at

the beginning and end of every learning object section of interaction, respectively. Between these method
calls, theinvocations of the set, get, commit methods can be performed. These include acycle of set or get or
commit calls (State machine (B)) or any sequence or combination of these three methods (State Machine

©).

ItosCotaredt/zetum tesultinue;

b

["H”“l"]

IrasSet Valugfretum resulttrue I Cret Valug /et value;

Lecis] pltwalks mfied ueh pesulitee,
[r.msami.h..l State Machine (B)
e s Ilu}hm|!{ﬂplvm| oL, a)
um_s_a_ls'd‘w"-:-'mu.u-mu.-.r'.m}m1m“|"' 2 <l " eeCiommitivatin ezt _
/_‘.-""
Zaralla } (SiCaTla Camisib™ala]
-, ; P : etV adnsiterturn el It it o manlttme,
UmmeFimEmrmturn, ronl e e "y : —
e uns.ru!!wfh-.l:u.mns-unm.k; et alls * 1 OeiCads CommaiCels |
- - 8 — 1 e — H
fi B LBt Valuebetum r:su.i‘.lm.-.;—-fl.nﬁ (et Valeehetum valee,)
[LSz |
| TrseSen Wabia thetuen esullres,
3 |
State Machine (A) State Machine (C)

Figure1l Different State Machines

Test Purpose Definition
In this section we describe the derivation of the AGEDI S test purpose, which focuses onthe behaviour of the
system. Graphically, it looks like a state machine, but the states considered are represented without actions or
events. In particular, states from different classes can be used in one diagram and triggers do not represent
processing of events by the local machine, but they match the transitions of the model. From atechnical point
of view the test purpose must be labelled with the stereotype <<test purpose>> to distinguish it from the state
machine. The peculiarity of this diagram is that it is possible to create different test purposes, each one
focused on a specific system function.
In our case study, due to the simplicity of the developed state machines, we decided to define a unique test
purpose that merged all system functions (see Figure 2). The states must be opportunely labelled with
specific marks (tagged values) that will be used by the test generator for deriving the test suite. In our case
study these are:
= |nit: indicating the initial state of the test purpose.
= Accept: indicating asuccessful termination of the test.
For the sake of simplicity in our case study, we ignored the error management and we used only the marks
{init} and {accept}. Specifically because we are interested in testing all the functions of the system, we
consider as initial and final state the statet pnotiniti ali se and t pfi ni sh respectively. In the test
purpose between these two states all the paths involving the t pgetval ue, tpsetvalue and
t pcommi t areadmitted.
Considering instead the transitions, they can be labelled using AML language, by triggers and guards. The
former describe the emission/reception of events at the specification level and are represented using regular
form expressions such as:

= source(hj ect?target Obj ect. sigNanme()/opNane() indicating that targetObject must

receive asignal or an operation call from sourceObject.
= source(bject!target Obejct.sigName()/opNane() the sourceObject must send a signal
or an operation call to targetObject.

When the definition of the SourceObject and the TargetObject is irrelevant, it is possible to substitute
their name with a“*” in thetrigger expression. For instance, in the test purpose of the figure above we write
I1 | melnitialize.return(resulttrue) inthefirsttransition for indicating that we do not care
which are the sender and the receiver of the event.

The guard is a condition used for limiting the situation in which a transition can occur. The value of the
guard in atest purpose must match the guard value in the state machine. Otherwise there will be some errors
when you compile the model. The transition in test purpose can be fired only when the trigger and the guard
expression are satisfied.

tphoinitialise
{mdt}

1 Irnalnitialige returndresulttre)

1 ImeSetValue returniresulttrue) |' . '| *1%* IrmaCorundt rebumiresulttre)
e

tpinit: _J

#1 IrnaCet Value rebumivralue)
1% ImsCorrmit retjumresulttrue)

!.hnsGetValue.retunl(value%, *.T.]msCommit.retu.m(resulttru.e)
tpsetvalue | | tpgetvalus | | tpeoraradt

*| "‘z.‘ﬁ.msSetValue returnresulttne) L 1|‘! * lros et Walue returnivralue) L

1 ImsSetValue returmresulttne)
I ImsFinish retumresulttre)

1# ImeFinish retumiresulttrue) tpfinish
{accept} *|* ImsFinish return(resulttrne)

Figure2 The test purpose diagram

Test Cases Derivation

Once the test purpose has been defined, it is possible to derive the test cases. To do this is necessary to
compile the model using one of the available AGEDIS tool for turning it into Intermediate Format (IF),
which isthe internal language of AGEDIS. During this process, the information of the state machine and test
directives are encoded and a test directive file (TE) is automatically produced for the corresponding test
purpose Using the IF and TE files the test generator is able to use the information of the model and the test
purpose, and generating as many test cases as specified by the user. Referring to the case study presented in
Section 3 and the test purpose of Figure 2the generation of test cases is carried out considering al the
different paths between the states labelled {init} and {accept}. In particular, each path is then transformed
into a different test case. In Figure 3 we report the description of two of the test cases derived.

wntoae 1ot
Erwtep T mom e i moee=T1
| 4 r\fru;:zllaﬁ objoci=AR & pigrmtire=imaintinlise srinrg iype=call) | i algriat i re=bmz i las) sainng iype=cdl
— e g = =
i:"r\rmarlmn nhiaci=AF& sigrebire=imsintialiser ssimg iype=rsfum & signetLre=bmsiniia live] aslneg iy pe=mmium
W=l iing
1 aap T2 me s s T3 < mep T2 mexiPass=T1
rinmchan nhiscl=AR A sigroeture=imsGefvalun(l e orirg type=rall inimraclion chisct=APLS 3ignetumes=bne Geleabn]: xatireg 1y pe=cell
=t T3 o1 %0 e T4 = wiap T3 noxiPame-Ti
I- vk araction objeci=AR A sigatore=lmaGeivalunll 2 oF b ippe=stum = rdara ot on olaet=APLE S 1Rt R i o B o ks ool e 19 p o= wiumm
Wabmaalum =k
Bt T oy oF arem TS —owlap T4 mp=iPames 1S
FEmactinn ohjecr=AF & sigratire=ImsCommil] ==ti1q iype=cell inierachon chieci=APL signati re=imeSefvalun[r ssnng fpa=rall
atep TS X P ade=T8 Sembeg TH sl P ass-TE
I rtmmchan object=ARN & oigretue=imezCommild): =stiig iype=m-um imeraction ceoi=APLS aljnetie=kne SetCdus [sating trpe=wtun
Sal=rrauiiuae Autok=reauHine
E1ogaep T oo Wil ass—TT esnap Th masiP ass=TF
rtomchan object=AR A sigratire=imzF inzhlt szinng {ypa=cali ilersation objeci=APLR slgnatre=knaFinehlsvig 1ppe=call
rwdep T4 nmy il s 5ot P e =-wap TT nexiPame-SinnPomm
SFetamctin dbjaci=AR & soatiresimsFinahix saling 13pasmanm =Himarachon e r=APLE g | gnatiesi g Flnghil sstreg 19 pa=relim
al=readinig Aad=reautines
[P R P alep Sladufacs
AcStmgs “ypemsmd_c Wediclspass T mge PR C VAN CispaEs

Figure3 TestcaseA & B

4. CONCLUSON

We present our experience in applying model-based testing for testing the interaction between learning
objects and a specific LMS. In particular, we focus on UML-based testing, adopting the AGEDIS
methodol ogy for test case derivation. To this end we describe in detail the necessary steps for modelling the
system behaviour and consequently deriving the test cases. However, this is an ongoing experience, we are
till investigating which could be the best approach for model —based testing in eLeaning environment.
Moreover considering in particular the SCORM application, we are planning to compare the performance of
the automatically generated test suiteswith those provided by the SCORM documentation.

ACKNOWLEDGEMENT

The authors would like to thank the Telcert Project for the materials and the financial support. We also
gratefully acknowledge Dr. Hartman of the IBM Haifa Research Laboratory and former leader of the Agedis
project for providing the tool and support.

REFERENCES

[1] ADL Advanced Distributed Learning. Available at http://www.adlnet.org.

[2] AGEDIS documentation available at http://www.agedis.de

[3] Antoniol, G. et a, September 30-October 4,2002, A Case Study Wsing the Round-Trip Strategy for StateBased
Class Testing, Proceedings of | EEE |SSRE2002, Germany, pp.383-397.

[4] Basanieri, F, et al. September 30 - October 4, 2002The Cow Suite Approach to Planning and Deriving Test Suitesin
UML Projects, Proc. UML 02, LNCS 2460, Dresden, Germany, pp. 383-397.

[5] Bel J, etd. Application Profile for UK FE to appear on http://www.opengroup.org/tel cert/.

[6] Bochmann, G.V. et a. 1994Testing: Review of Methods and Relevance for Software Testing”, Proc. Int. Symp. on
Soft. Testing and Analysis (ISSTA), Seattle, pp. 109-124.

[7] Briand, L. et al, 2002, A UML-Based Approach to System Testing, Journal of Software and Systems Modeling
(SoSyM) Vol. 1 No.1 pp. 10-42.

[8] Chevalley, P. et al, 812 October 2001, A UML-Based Approach to System Testing, Journal of Software and
Systems Modeling(SoSyM), Vol. 1 No.1 2002 pp. 10-42.

[9] Fernandez, J. et al, 1997, An Experiment in Automatic Generation of Test Suites for Protocols with Verification
Technology, Special Issue of Science of Computer Programming, Vol.29, pp.123-146.

[10] Fraikin, F. et al, September 2002, SeDiTeC - Testing Based on Sequence Diagrams, Proceedings of IEEE CASE 02,
Edingburgh.

[11] Graubmann, P. et al, 2000, HyperM SCs and Sequence Diagrams for use case modeling and testing, Proceedings of
UML 2000 LNCSV0l.1939, Pages 32-46.

[12] Harel, D. et al, 2003, Specifying and Executing Behavioural Requirements: The Play In/Play-Out Approach, Journal
of Software and System Modelling(SoSyM)

[13] HEFCE99/39 Use of TLTP materials in UK higher education, 1999 on line at
http://www.hefce.ac.uk/pubs/hefce/1999/99 39.htm

[14] Horton, W. et al, 2003, E-Learning Tool and Technologies, John Wiley & Sons.

[15] Liuying, L. et a, 22-25 September 1999. Test Selection from UML Statecharts, Proceedings of 31% Int. Conf. On
Technology of Object-Oriented Language and System. Nanjing, China.

[16] LMS Global Learning Consortium, Inc. Available at http://www.imsglobal.org (Last updated on 14/9/2004)

[17] Offutt, J. et al, October 2000. Generating Test from UML Specifications. Proceedings of UML 99, Fort Collins, CO.

[18] Objecteering on line at http://www.objecteering.com

[19] Ryser, J. et a, June 2000, Using Dependency Charts to Improve Scenario-Based Testing, Proceedings of TCS2000
Washington D.C..

[20] Smythe, C. State of the Art Report on Technologies and Techniques for Testing, to appear on
http://www.opengroup.org/tel cert/.

[21] SCORM documentation available at http://www.adlnet.ora/index.cfm?useaction=scormabt
[22] SCORM 2004: January 2004 The SCORM Sequencing and Navigation, http://www.adlnet.org, Version 1.4.
[23] TELCERT project http://www.opendgroup.org/tel cert

[24] Tretmans, J., 1996, Conformance Testing with Labelled Transition Systems: Implementation Relations and Test
Generation, Computer Networks and |SDN Systems, Vol,29, pp. 49-79.

[25] Trost, J. et al, June 2002. AGEDIS Modeling Language(AML) Tutorial, available at http://www.agedis.de
[26] UML Documentation available at http://www.uml.org/#UML 2.0.
[27] UMLAUT Project, Available at http://www.irisafr/lUMLAUT/

