
Real-Time UML-based Performance Engineering
to Aid Manager’s Decisions in Multi-project Planning

A. Bertolino
Istituto di Elaborazione

dell’Informazione
CNR, Pisa, Italy
+39 050 3152914

bertolino@iei.pi.cnr.it

E. Marchetti
Istituto di Elaborazione

dell’Informazione
CNR, Pisa, Italy

+39 050 3153467

e.marchetti@iei.pi.cnr.it

R. Mirandola
Dip. Informatica, S& P

Università di Roma TorVergata
Roma, Italy

+39 06 72597381

mirandola@info.uniroma2.it

ABSTRACT

We investigate the usage of software performance engineering to
aid the project manager in making sound, reliable predictions in
software development, and in optimizing the utilization of
resources (typically the people). We assimilate the project teams
to the processing elements of a performance model, and their
activities to the tasks to be accomplished within established time
intervals. The proposed methodology uses as the manager’s
interface a subset of Real-Time UML, the recently adopted OMG
standard specialized profile for addressing schedulability,
performance and timeliness. To illustrate the approach, we model
the case of a manager that must decide a release date for a product
undergoing the testing phase. We show how by means of basic
performance analyses, different workflow assumptions can be
explored and their consequent outcomes automatically derived: by
looking at the analysis results, the manager can thus take an
informed, more responsible decision.

Keywords
Product Release, Project Management, Real-Time UML, Software
Performance Engineering.

1. INTRODUCTION
From the more traditional application fields of hardware devices
and computer systems, performance analysis gathers today
growing interest also in software engineering, to model and
estimate the QoS (quality of service) requirements of software
systems. Our study concerns the application of performance
engineering techniques to a related, yet different, field: the
management of people and tasks during the software development
process.

All along software development, project managers are faced with
difficult decisions. Typically, for instance, managers are in charge
to judge whether the resources assigned to a specified task are
adequate or whether under the existing organizational

schemes the predicted time schedules will be met. Making such
assessments is very difficult, because the involved processes are
highly complex: the influencing factors (both human and
technical in kind) are many, and in most cases not easily
measurable or predictable. Therefore, for taking the most
appropriate resolutions, the manager’s matured skill and
experience remain crucial and irreplaceable. However, it is our
belief that modeling aids and analysis tools can make the
manager’s task easier.

There exist very different kinds of support tools for project
management. They span from just simple graphical notations for
modeling the flow of activities, such as the Gannt Charts, to quite
sophisticated mathematical tools, that can predict, by analysis or
simulation, the outcomes deriving from the manager’s hypotheses
about the resources involved and the events flow.

Our research addresses in particular the usage of Software
Performance Engineering (SPE) to aid project managers. We
believe in fact that, bypassing the classical application domain of
computers operation, SPE techniques and tools can play an
important role also in the framework of project management.

At the basis of our study is the metaphor that project teams can be
assimilated to the processing elements of performance models,
and the development activities to the tasks to be performed by the
processing elements within established time intervals. Following
this metaphor, well known techniques from performance analysis
can be usefully adapted to the purposes of assessing the time to
completion of specified tasks, handling personnel multitasking
over different projects, optimizing the workloads in development
cycles, deciding about products release, and similar managerial
issues.

Among the advantages of using SPE for management, we
highlight the capability to handle multiple projects and their
mutual interfering in schedule and resources usage. Also of
relevance is the soundness of the predictions provided by SPE
tools, that can rely on a solid mathematical background and have
a statistical validity. Clearly, performance techniques can provide
the necessary analytical support, but the role of manager’s
expertise remain essential for tuning the input models with the
proper parameters values.

The idea of using performance techniques for management
actually is not completely new (as we notice in Section 6).
However much work remains to be done, especially towards
facilitating the practical and effective deployment of SPE
techniques by managers, that, as universally known, are too busy
to see favorably the adoption of novel technologies.

In this respect, we have identified two crucial directions for our
research: on one side, we need to consider several trial
applications and develop the relative performance models, so that
blueprints for various plausible contexts in project management
are already on hand. We have developed one possible application
in [2] concerning a waterfall development process, another
scenario is proposed in this paper to support the decision of
releasing a product based on the management of trouble reports,
and a more general case study encompassing the modeling of the
Rational Unified Process (RUP) [10] is currently under study.

On the other side, we need to equip the proposed methodology
with an interface that appears familiar to managers. We aim at
building a setting in which managers develop a model of the flow
of activities and of tasks distribution, using notations and tools
they normally use, and then a tool automatically translates the
model in a format that is processable by performance analysis
algorithms. We do not want to require that managers become
knowledgeable of performance techniques, usually "perceived as
difficult and time consuming" by software engineers [14].

In particular, we have adopted as the input modeling notation the
Unified Modeling Language (UML) [17], [26]. UML is becoming
the standard notation for analysis, design and implementation of
object oriented systems, and is widely used in industry.

Performance modeling of computer systems by means of UML
diagrams has already been proposed in the literature [5], [14].
However, the modeling diagrams did not comply with the
standard UML notation. So, on one side a widely used language is
proposed; on the other managers are required to use it in a not
standard way in order to be able to handle timing and resources in
quantitative way. This contradiction could eventually get the
opposite result than the intended one of facilitating the adoption
of our methodology by managers.

Fortunately, a specialized UML profile with extensions that can
handle real time requirements has been recently introduced and
adopted as an OMG standard, i.e., RT-UML [18]. RT-UML
includes standard methods for UML-compliant modeling of
timing aspects, such as physical time, timing specifications,
timing services and mechanisms; for modeling resources (logical
and physical), concurrency and scheduling, software and
hardware infrastructures and their mappings, and allows for the
introduction of more specialized notations where necessary.

Therefore, the natural evolution of our methodology is to
customise the methodology proposed in [5], [14] to adopt the
standard RT-UML profile as the input modeling notation.

1.1 Paper structure
The main contribution of this paper is the usage of the Real-Time
UML profile for the performance modeling of project
management contexts. RT-UML is briefly introduced in the next
section.

As an illustrative example, we consider a case study of a manager
that must decide whether a product is ready to be released based
on the status of the trouble reports compiled during the test and
debug phase. The case study is described in Section 3.

In Section 4 we illustrate the methodology and in Section 5
present an analysis of the obtained results for the case study

examined. Related work and Conclusions follow in Sections 6 and
7, respectively.

2. REAL-TIME UML
Assuming that the reader is familiar with the standard UML
notation (see, e.g., [17]), in this section we introduce the Real-
Time UML profile, and then briefly describe the specific RT-
UML extensions that we use in this paper.

The Unified Modeling Language (UML) is generally recognized
as a very useful tool for modeling the functional characteristics of
a system (e.g., see papers in [23], [24]). However, several
important system requirements such as response time, availability,
throughput and bandwidth cannot be expressed functionally.
These are often referred to in abstract as the QoS (quality of
service) characteristics.

Historically, UML had ignored non-functional requirements, and
by general consensus the lack of a quantifiable notion of time and
resources was felt as “an impediment to its broader use in the real-
time and embedded domain” [18]. In 1999, to cope with the needs
from this key area, the Object Management Group (OMG) issued
an explicit request for proposals1 (RFP) for a UML domain-
specific interpretation (fully conformant with the UML standard)
capable to deal with non-functional requirements.

The UML Profile for Schedulability, Performance and Time (RT-
UML) has been proposed as a response to this RFP by a working
consortium of OMG member companies, and has been recently
adopted as an OMG standard (September 2001 after two
revisions).

RT-UML is not an extension to the UML metamodel, but a set of
domain profiles for UML allowing for the construction of models
that can be used to make (early in the life cycle) quantitative
predictions regarding the characteristics of timeliness,
schedulability, and performance [18].

The RT-UML profile was not conceived for a specific analysis
method, but is intended to provide a single unifying framework
encompassing the existing analysis methods, still leaving enough
flexibility for different specializations.

Basically, the underlying idea is to import as annotations in the
UML models the characteristics relative to the target domain
viewpoint (performance, real-time, schedulability, concurrency),
in such a way that various (existing and future) analysis
techniques can usefully exploit the provided features.

The overall structure of RT-UML is modularized so to allow
system designers and developers to only use those elements of the
profile that they need, and to consent future extensions. The
profile is in fact partitioned into a number of sub-profiles, i.e.,
“profile packages dedicated to specific aspects and analysis
techniques”. At the core of the profile is the general resource
modeling framework, itself consisting of three sub-profiles
dealing respectively with resource modeling, concurrency and
time-specific concepts. Then, based on this common framework,
more specific sub-profiles are defined. Here we focus on the
performance analysis (PA) profile.

A performance context specifies one or more scenarios, i.e.,
ordered sequences of steps, describing various dynamic situations

1 OMG document number: ad/99-03-13

involving the usage of a specified set of both processing and
passive resources under specified workloads (i.e., the load
intensity and the required or estimated response times for the
scenario). A scenario might involve multiple concurrent threads
due to forking whithin a scenario.

The RT-UML PA sub-profile provides UML extensions to deal
with the above notions of scenarios, resources, and workloads and
the associated attributes (in the following, PA attributes), so to
allow for extensive and wide-ranging performance analyses. In
our methodology, we are actually interested only on a small subset
of these extensions.

In particular, PA scenarios can be modeled following either a
Collaboration-based approach or and Activity-based approach. In
the tradition of [5], [14], we take here the former approach, and
represent a scenario by an annotated Sequence Diagram. In the
future, we also intend to investigate the usage of activity graphs,
which might present some advantages in expressiveness [18].

The subset of PA annotations we deal with concerns the
workload, the steps and the resources involved in the considered
scenario. Specifically, we consider a closed workload, where a
fixed number of jobs remain indefinitely in the scenario,
characterized by its size and by its response time (PA attributes:
PApopulation and PAresptime, respectively). The main
characteristics of a step we take into account are the number of
times it is repeated, and its service demand (i.e., the request to be
accomplished) on the host resource (PA attributes: PArep and
PAdemand, respectively). Finally, for the involved resources, we
are interested in modeling the resource scheduling policy; the
possibility of service preemption; a relative speed factor with
respect to a normative resource, and the percentage of resource
utilization (PA attributes: PASchdPolicy, PApreemptable, PArate
and PAutilization, respectively).

The numerical values associated to the PA attributes may have
different meanings; for example, they may represent a fixed value,
a variable to be estimated, an average value or a distribution, or
else they may be a prediction, a measure or a requirement. To
model PA value semantics, RT-UML follows a predefined syntax
[18], whereby it is possible to specify all the desired
characteristics (for an example application see Section 4).

3. CASE STUDY
The proposed methodology can be useful at any stage of
development, when the project manager is called to dynamically
take the most appropriate decision based on the actual project
status and the emerging circumstances. SPE techniques can help
to predict the outcomes that will result from manager’s
assumptions and to early figure out whether under the current
workflow the settled objectives will be met.

In particular, the case study we investigate here concerns the
release decision for a software product. The factors that influence
this decision can be many, including marketing exigencies, timing
constraints, or quality requirements. Here we consider that the
release follows a test and debug phase, and that the decision is
primarily driven by the product quality, measured in terms of
found bugs. More precisely, we suppose that as usual the testers
report each failure found during the test execution in a form,
called the trouble report, and that the product will be released
only after the testing is completed with no trouble report left open.

We consider that at the beginning of the test phase, the manager
wants to early predict the expected time to release. The presented
case study is derived from [8], to which we refer for major detail.

As a first step we model the organization structure of the company
considering the testing stage and the management of reported
problems (we disregard the teams not directly involved in these
activities). The organization is composed by a project manager
PM, a test team T (1÷3 people), a development team D (2÷4
people), the system architects AR (1÷2 people).

The testers start to execute the planned test cases and every few
days (we assume 3 in this example), they insert the trouble reports
in an on-line database, called the tracking system TS, which only
the testers and the project manager can modify.

At each TS update, the PM analyses the trouble reports and takes
the proper resolution for each problem. We consider three
possible outcomes from his/her analysis:

• The problem must be fixed: the PM classifies the problem
as “open” and passes it on to the developers. In this case
study for simplicity we assume no prioritization politics
among failures, i.e., all reported problems are assigned the
same severity (different priorities could also be handled, but
the example would be more complicated)

• The problem can be deferred. The PM chooses to leave the
problem in the current version of the product and to do the
fix in a subsequent release. The problem is classified as
“deferred”.

• The problem is not recognized as such. From the trouble
report analysis the PM concludes that it is not a real
problem, because the program was actually supposed to
work in that way. The problem is classified as “as
designed”.

The TS update with the problem classification as “deferred” or “as
designed” by the PM closes the trouble report (at least for this
product release). If instead the problem is classified as “open”,
further actions must be taken as exemplified below.

On receiving the open problem reports from the PM, the
developers first analyze them to check whether they have enough
information to fix the problems or need further explanation about
the failure symptoms from the testers. In the latter case, the
workflow may include an interaction cycle with the testers.
Occasionally, the developers may realize that the fix requires a
major design change and inform so the PM, who may require the
intervention of the software architects to modify the design, after
which the developers modify the code accordingly.

After every problem fix, the testers have to retest the modified
parts of the program (regression test). They hence either classify
the problem as “closed”, updating consequently the associated
trouble report in the TS, or possibly generate further trouble
reports containing the new problems found during the test phase.

Given this rough model of the activities and personnel involved,
the project manager periodically analyzes the status of the TS and
estimates the expected time at which the product can be released,
that is when the TS only contains problem reports classified as
“deferred” or “as designed”, i.e. there are not remaining “open”
problems.

If the estimated release time is too late, for example with respect
to the agreed date with the customer, the PM has to take the
proper corrective actions. For instance, the PM could increase the
number of people involved in the development or in the test phase
or else decide to negotiate a later release date. Alternatively, if
more projects are being handled contemporaneously by the
involved personnel, the PM could decide to temporarily divert the
people from one or more of the concurrent projects to accelerate
this one.

In such situations, it is very important that the PM can base
his/her resolution on a reliable estimate, not on a subjective guess,
and that he/she can objectively take into account all the likely
combinations of events.

This is the purpose of the methodology presented in the following
section: we intend to supply the project manager with a tool that
uses SPE techniques to:

• predict the release time, also allowing for multi-projects
management, i.e., the teams are not dedicated full time to a
single project

• evidence the component that represents the bottleneck and
is responsible of the release time delay

• identify the most convenient teams composition in order to
ensure the all the projects are released within the deadline.

4. THE METHODOLOGY
As stated in the introduction, the objective of this research work is
to propose sound, reliable solutions to support the manager’s
decisional process in multi-project management. Our proposal is
to apply for this purpose well-known techniques from the field of
computer performance engineering, such as Software Performance
Engineering (SPE) [19], [20] and queueing networks models
[12]. Queuing networks, in fact, are the largest widespread
method in performance field.2

The SPE basic concept is the separation of the software model
(SM) from its execution environment model (i.e., hardware
platform model or machinery model, MM). The SM captures the
essential aspects of software behavior; we represent it by means of
Execution Graphs (EG). An EG is a graph whose nodes represent
software workload components and whose edges represent
transfers of control. Each node is weighted by use of a demand
vector that represents the resource usage of the node (i.e., the
demand for each resource).

The MM models the hardware platform and is based on the
Extended Queueing Network Model (EQNM) [12]. To specify an
EQNM, we need to define: the components (i.e., service centers),
the topology (i.e., the connections among centers) and some
relevant parameters (such as job classes, job routing among
centers, scheduling discipline at service centers, service demand at
service centers). Component and topology specification is
performed according to the system description, while parameters
specification is obtained from information derived by EGs and
from knowledge of resource capabilities. Once the EQNM is

2 The results presented in this paper could anyway be obtained via
the application of other used approaches, like Petri nets, LQNs or
process algebras, by applying the appropriate transformation rules
[23], [24], [25] from the UML diagrams to these notations.

completely specified, it can be analysed by use of classical
solution techniques (simulation, analytical technique, hybrid
simulation [12]) to obtain performance indices such as the mean
network response time or the utilization index.

We adapt here performance analysis methods to the purpose of
handling personnel multitasking and of optimizing workloads in
software project management. We follow the metaphor that
project teams correspond to the processing resources in
performance models, and project activities are the tasks to be
performed within established time intervals. Using the above SPE
concepts, the SM captures the aspects relative to the activity
planning, while the MM the ones relative to people (over/under)
utilization and distribution.

In particular, we apply a method proposed in [5], [14] for the
derivation of performance models based on SPE techniques,
starting from a set of UML diagrams. The SM is thus derived
from a Sequence Diagram SD, and the MM from a Deployment
Diagram DD. The method then extracts from these diagrams the
main factors affecting system performance and combines them to
generate a performance model. The method, in its original
conception, used the standard UML diagrams, with simple ad hoc
annotations. We here introduce an improved version of that
method, that relies on the standardised RT-UML profile, to which
the derived SD and DD fully comply.

Let us outline the steps to be performed (and who is in charge of
each of them) to derive a queueing network based model of a
software project stage.

1. Manager: analysis

In this step the manager should estimate the basic
activity steps, the number and role of people involved,
the time necessary for completing the different steps and
the resources available3.

2. Manager: modelling

The analysis results from step 1 have to be modelled by
use of RT-UML diagrams. In particular, a Sequence
Diagrams models the project activities and a
Deployment Diagram models the resources available
and their characteristics.

3. Automatic: SPE models generation

By applying the method proposed in [5], that quite
naturally suits to the RT-UML diagrams, it is possible to
derive a model for the planned activity (the SM based
on EG) and a model for the involved teams and
resources (the MM based on EQNM).

4. Automatic: model evaluation

 The EQNM obtained in the previous step, which
represents both the teams and the activities, can be
solved to obtain results such as the completion time for
the project (or for a single phase) and the resource
utilization.

5. Manager: analysis of results

3 Note that this is a classical manager duty and not a specific

request of the proposed method.

The results obtained in step 4 are analysed by the PM
and, if different from those expected (or desired), he/she
can go back to step 1 (or 2), make some modifications to

the settled parameters, and repeat the process until the
desired results are obtained.

Let us consider for each step the method application to the case
study described in Section 3.

Figure 1: Sequence Diagram

 : Program

Manager

 : Tracking

System

 : Tester

Team

 : Development

Team

 :

Architects

1. Software to test

1.1. Problem Report

<<PAstep>>
{PArep=Nrep
PAdemand=('req','mean',ts)}

2. Problem Request

<<PAstep>>
{PArep=Nrep
PAdemand=('req', 'mean',ts)}

2.1. Data

4. Bug as designed

5. Bug to fix

5.1. Regression Test

5.1.1. Problem Report Closure

6. Bug to fix

6.1. info request

6.1.1. info

6.2. Regression Test

6.2.1. Problem Report Closure

7. Bug to fix

7.1. Bug Fix Review

7.1.1. Design Review

7.1.1.1. Design Implement

7.1.1.1.1. Regression Test

7.1.1.1.1.1. Problem ReportClosure

<<PaclosedLoad>>
{PApopulation=NUsers
PAresptime('msr',’mean',$t_to_release)}

3. Bug Deferred

<<PAstep>>
{PAdemand=('req', 'mean', t_def_PM*$N*p_def)}

<<PAstep>>
{PAdemand=('req', 'mean', t_as_des_PM*$N*p_as_des)}

<<PAstep>>
{PAdemand=('req', 'mean', t_fix_PM*$N*p_fix)}

<<PAstep>>
{PAdemand=('req','mean', t_fix_DV*$N*p_fix)}

<<PAstep>>
{PAdemand=('req','mean', t_fix_T*$N*p_fix)}

Analysis: Several involved boundary conditions (number of
resources, strategy for project realease, etc.) have already been
established; some other are left undefined as parameters (symbolic
expression) to be estimated in steps 4 and 5.

Modeling: The performed choices lead to the generation of the SD
and the DD described in Figure 1: and Figure 2:, where several
stereotypes and tagged values of RT-UML and described in
Section 2 have been used.

Figure 2: Deployment Diagram

In particular, the SD (Fig. X) models the testing phase activities
as illustrated in Section 3. For example, the workload in the
scenario is modelled by associating, to the first scenario step, the
stereotype PAclosedLoad with attributes PApopulation (modeling
the number of jobs in the scenario), which is a variable equal to
$Nuser, and Paresptime, which is an expected analysis results,
modeled as a measured (‘msr’) distribution whose required mean
is expressed as $t_to_release.

When the PM analyses the trouble report containing a variable
number of bugs ($N), with a given probability (p_def) the bugs
are deferred and the PM deals with this case in a time which is
proportional to the number of deferred bugs. This is simply
modeled by associating to the relative step the stereotipe PAstep
with attribute PAdemand as a required (‘req’) distribution whose
mean is given by t_def_PM*$N*p_def.

The DD models the organization structure of the company as
described in Section 3. In this case, the DD nodes can refer to
both classical resources (device, processor, database) and people
teams. Moreover, the DD models also the communication nodes:

for instance, the Intranet to access the database TS and a meeting
room symbolizing a “communication channel” among different
teams. Each node represents a kind of resource and to model its
main features we associate to each resource a stereotype PAhost
with attributes: PaschdPolicy, modeling the service discipline
equal to FIFO (First In First Out), PS (Processor Sharing) or PR
(pre-empt-resume), PApreemptable with value Yes, and
PAutilization, to be estimated as an analysis result, equal to $Util.

SPE model generation: Figures 3 and 4 illustrate the EGs
obtained from figures 1 and 2, while Figure 5 shows the EQNM.

With respect to the SD and the DD, in this step we have made the
following choices: i) the database TS and the connected Intranet
have not been modelled, because the times involved in the TS
accesses are order of magnitude less than the times required by the
activity steps (msec vs days); ii) the meeting room has been
considered simply as a delay center modeling the communications
with the manager.

:Meeting

Room

:Intranet

:PM :T :D :A

{PAschedPolicy=FIFO

PArate=1
PAutilization=$util
PActxtSwT=('est‘,'mean',1,‘ms')}

{PAschedPolicy=FIFO
PArate=1
PAutilization=$util}

{PAschedPolicy=PS
PArate=1
PAutilization=$util}

{PAschedPolicy=FIFO
PArate=1
PAutilization=$util}

{PAschedPolicy=FIFO
PArate=1
PAutilization=$util}

{PAschedPolicy=FIFO
PArate=1

PAutilization=$util}

:TS

{PA s chedPolic y= FIFO
PApreemtable=ye s
P A rate = 1
PAutilization=$ut il}

:Meeting

Room

:Intranet

:PM :T :D :A

{PAschedPolicy=FIFO

PArate=1
PAutilization=$util
PActxtSwT=('est‘,'mean',1,‘ms')}

{PAschedPolicy=FIFO
PArate=1
PAutilization=$util}

{PAschedPolicy=PS
PArate=1
PAutilization=$util}

{PAschedPolicy=FIFO
PArate=1
PAutilization=$util}

{PAschedPolicy=FIFO
PArate=1
PAutilization=$util}

{PAschedPolicy=FIFO
PArate=1

PAutilization=$util}

:TS

{PA s chedPolic y= FIFO
PApreemtable=ye s
P A rate = 1
PAutilization=$ut il}

Figure 3 represents an EG at a high level of abstraction modeling
the main activities of the testing phase without details, while
Figure 4 shows the details of the block named “problem analysis”,
by illustrating several activities modeled in Figure 1. Moreover,
the demand vector for each block is derived by combining
information coming from annotations in the SD and in the DD.

Figure 3: The high level EG obtained from SD in Figure 1

For example, the first block is called “3+4” because it models the
interactions 3 and 4 in the SD; its associated demand vector
represents the service demand to the resources involved in the
scenario for the management of bugs that are deferred or classified
“as designed”. In such a case only the manager is involved and
his/her service demand can be derived from the annotated SD as

(t_def_PM* $N*p_def + t_as_des_PM*$N*p_as_des).

An example of a possible EQNM, modeling resources and
activity, is illustrated in figure 5, for an organization structure
consisting of 1 PM, 1 T, 2 DV, 1 SA.

Note that the different kind of projects (depending, for example,
on the the test duration or on the number of bugs) generate
different instances of the demand vectors for the EGs in Figures 3
and 4, and therefore different routing chains in the EQNM. The
possible choices lead to generate different models to be evaluated
in the next step.

Model evaluation: several analysis can be done by assigning
different values to parameters in the EQNM. Examples of various
model evaluations are illustrated in the next Section.

Analysis of results: the manager can make several kinds of
decision by analysing the results obtained in the previous step, an
example of this kind of results analysis is illustrated in the next
section.

Figure 4: The low level EG for “problem analysis” block obtained from SD in Figure 1

end

start

Test 3/6 days

Test 3 days

Problem
analysis

Problem
analysis

end

start

Test 3/6 days

Test 3 days

Problem
analysis

Problem
analysis

Problem analysis: details

3+4

5 + 5.1+5.1.1

6

6.2.1

6.1.16.2

7+7.1+7.1.1+ 7.1.1.1+
7.1.1.1.1+ 7.1.1.1.1.1

(d_PM, d_DV, d_T, d_SA, d_MR)

(t_fix2_PM* $N*p_fix2, 0, 0, 0,0)

(0, 0, t_fix2_T*$N*p_fix2, 0,t_MR)

(t_fix3_PM* $N*p_fix3 + t3_PM* p_fix3,
t_fix3_DV* $N*p_fix3 + t3_DV*p_fix3 ,
t_fix3_T* p_fix3, t_fix3_SA*p_fix3,
t_MR)

(0, 0, t2_T*$N*p_fix2*p_T, 0,0)(0, t_fix2_DV*$N*p_fix2, 0,0,0)

(t_def_PM* $N*p_def +
t_as_des_PM*$N*p_as_des, 0, 0, 0,0)

(t_fix1_PM* $N*p_fix1, t_fix1_DV*$N*p_fix1,
t_fix1_T*$N*p_fix1, 0, t_MR)

Demand vector:Problem analysis: details

3+4

5 + 5.1+5.1.1

6

6.2.1

6.1.16.2

7+7.1+7.1.1+ 7.1.1.1+
7.1.1.1.1+ 7.1.1.1.1.1

(d_PM, d_DV, d_T, d_SA, d_MR)

(t_fix2_PM* $N*p_fix2, 0, 0, 0,0)

(0, 0, t_fix2_T*$N*p_fix2, 0,t_MR)

(t_fix3_PM* $N*p_fix3 + t3_PM* p_fix3,
t_fix3_DV* $N*p_fix3 + t3_DV*p_fix3 ,
t_fix3_T* p_fix3, t_fix3_SA*p_fix3,
t_MR)

(0, 0, t2_T*$N*p_fix2*p_T, 0,0)(0, t_fix2_DV*$N*p_fix2, 0,0,0)

(t_def_PM* $N*p_def +
t_as_des_PM*$N*p_as_des, 0, 0, 0,0)

(t_fix1_PM* $N*p_fix1, t_fix1_DV*$N*p_fix1,
t_fix1_T*$N*p_fix1, 0, t_MR)

Demand vector:

Figure 5: The EQN Model obtained from SD in Figure 1 and
from DD in Figure 2

5. ANALYSIS OF RESULTS
We now illustrate how the above methodology can support the
manager’s decisional process.

Before, it is important to point out that on the manager’s side the
only effort required to employ the methodology is to explicitly
derive in a SD such as the one shown in Figure 1 a high level
model of the workflow of the ongoing activities and in a DD (see
Figure 2) the organization structure. He/she does not need to
know all the other details given above on how such models are
translated into SPE models and evaluated.

Even the derivation of the RT-UML diagrams could be felt at first
impact as an undesirable extra burden for the already overloaded
manager. However it is not objectively a lot of effort: if one has a
clear view (as plausibly the manager must have) of how the
process is structured and of which are the activities to accomplish
and their mutual influences, deriving the RT-UML diagrams that
depict them at a high level of detail should not take much,
especially with the support of an appropriate interactive tool.
Besides, we expect that the returns make it worthwhile.

In fact, once such diagrams have been derived, various interesting
analyses can be conducted in completely automated way. The
manager can make any different assumptions for the parameters of
the derived model and obtain immediately a reliable prediction of
what will be the outcomes consequent to each single assumption.

Generally for each model there will be many parameters that can
be varied. For the case study of the release decision, for instance,
we have considered the following ones: the estimated duration of
the test period, the number of registered trouble reports, the
composition of the involved teams, and whether they are fully
dedicated to the examined project or instead are
contemporaneously handling other projects.

Let us consider as a first example the following assumptions:

§ the planned duration for the test phase of a given product is
six days;

§ the personnel in charge for the test and debug phase consists
of one tester, two developers and one software architect

(plus of course the manager): this configuration is denoted
as T1, D2, SA1, PM1;

§ the tester and the two developers are at the same time
engaged in another project.

We figure out that before the test phase starts the manager wants
an estimate of the release date. Assuming as a first guess that 10
trouble reports are issued, the SPE analysis estimates that on
average the product will be ready for release (i.e., no more open
trouble reports exist) after 17 days from the start of the test phase.
If the manager had committed for an earlier release deadline, say
in 12 days, it is unlikely that he/she will be able to meet it. Even
considering the more optimistic hypothesis that only 2 bugs are
encountered, in the present configuration the release time would
not be shorter than 14 days. Thus, either the manager negotiates a
more realistic deadline, or he/she takes some countermeasure.

One obvious possibility is to add more personnel: using our
methodology, revising the estimates is immediate. We change the
parameters configuration, and re-obtain the release time estimates.
If for instance one more tester is added, the product would be
ready in 12 days with 2 bugs, but in 15 days with 10 bugs: this
could not be sufficient.

If the project under exam has high priority, another possible
countermeasure could be to take away from the other parallel
project the resources that are necessary to complete this one. If the
tester and the two developers are fully dedicated to this project,
than the predicted release time with 10 bugs is reduced to 12 days,
which was the target deadline.

Thus, by means of simple SPE analyses, the manager gets
statistical predictions that can support his/her decisional process.

Another interesting parameter is the rate of utilization of the
human resources. This analysis can be very useful not only to
better administrate the human resources, but also to identify
which are the bottlenecks when a phase takes too long.

In the initial configuration we assumed of one tester and two
developers, employed in this and in another project, we can see
that the bottleneck is clearly the tester, as the utilization rate is
computed as 99%, while the two developers are well employed,
with a rate of 55%. Deciding to fully dedicate one tester and two
developers to the test and debug phase allows the manager to meet
the deadline, but in such a configuration the developers are under-
utilized, at 29%. One further possibility to explore could be to
devote full time one tester, while leaving the two developers on
both projects. In such configuration we would get a release period
of 13 days, but the resources are better employed (46% the tester
and 58% the two developers).

Another interesting fact to observe is that although obviously the
duration of the test and debug process can be highly influenced by
the number of bugs found, a rational organization of the personnel
can be even more crucial, especially for large enterprises dealing
with more development processes in parallel. We can observe in
fact from the analysis results that the release delay increases faster
as the teams get involved in more contemporaneous projects than
if we increase the estimated number of bugs. For instance,
considering a large product with a planned test period of 9 days,
and a configuration of 1 tester, 2 developers, 1 software architect
and the manager, when all these resources are completely
dedicated the expected time to release, even foreseeing 20 bugs, is
18 days, against the 20 days estimated to handle half (i.e., 10)

SA

TS

PM

DV

MR
DV

SA

TS

PM

DV

MR
DV

bugs if the tester and the developers are contemporaneously
employed in another project. If we further consider a
configuration in which the tester and the developers are handling
three more projects, even though in this project we optimistically
assume to find only 2 bugs, handling them would take 28 days.

To further illustrate the obtained results, we report in Table 1
below the estimated time to release measured in days (one
working day has been considered equal to 8 hours, and the results
shown are rounded to the closest integer). We considered two
alternative configurations: T1, D2, SA1 and T2, D2, SA1 (i.e.,
one tester, two developers and one software architect or two
testers, two developers and one software architect, plus in either
case of course the PM). We investigate the release time when the

planned duration for the test and debug phase is three, six or nine
days (with a group of four columns for each case), and when 2, or
10, or 20 trouble reports are issued, as indicated in each row. For
each case, then, we derive the estimate when the resources (the
people) are fully dedicated to the project under exam (denoted as
1-0-0); the test team is fully dedicated, while the developers are
handling this and another project (1-0-1); both the testers and the
developers are handling this and another project (1-1-1), and
finally both the testers and the developers are handling three more
projects in addition to this one (1-3-3).

In Table 2 we report the utilization rate resulting for the testers
and the developers in each considered configuration.

Table 1. Estimated time to release in days

 Planned Test Duration=3 days Planned Test Duration=6 days Planned Test Duration=9 days

 Proj
#Bugs 1-0-0 1-0-1 1-1-1 1-3-3 1-0-0 1-0-1 1-1-1 1-3-3 1-0-0 1-0-1 1-1-1 1-3-3

2 5 6 8 13 8 10 14 25 11 13 17 28

10 9 10 11 17 12 13 17 29 14 16 20 31

T1
D2
SA1 20 14 15 16 22 16 18 22 32 18 20 24 35

2 5 6 6 10 8 10 12 19 11 13 14 22

10 9 110 11 14 11 13 15 22 14 15 17 24

T2
D2
SA1 20 14 16 16 20 16 17 20 27 18 19 21 28

Table 2. Utilization rate of testers and developers

 Planned Test Duration=3 days Planned Test Duration=6 days Planned Test Duration=9 days

1-0-0 1-0-1 1-1-1 1-3-3 1-0-0 1-0-1 1-1-1 1-3-3 1-0-0 1-0-1 1-1-1 1-3-3 Proj
#Bugs T D T D T D T D T D T D T D T D T D T D T D T D

2 21 23 15 59 99 55 100 77 66 10 50 56 99 53 100 76 79 70 65 54 99 52 100 75

10 29 29 25 57 99 56 100 74 56 29 46 58 99 55 100 76 69 16 59 56 99 54 100 76

T1
D2
SA1 20 31 31 28 55 99 55 100 73 49 30 46 56 99 55 100 74 69 23 56 55 99 55 100 76

2 12 24 7 59 55 58 76 77 37 10 26 29 55 55 74 75 40 70 34 54 55 54 70 76

10 14 29 13 57 55 56 76 75 30 22 24 31 56 56 75 75 36 17 33 56 56 55 72 76

T2
D2
SA1 20 15 30 14 55 54 55 75 70 26 27 22 31 56 57 74 74 33 24 28 55 56 55 74 74

6. RELATED WORK
A voluminous literature about project management and
development can be found in the last years, but little of it treats
the problem of multiproject development planning and people
multitasking on several contemporaneous projects. We report here
a brief survey of both the previous related studies (we refer to [9]
for a more complete review of the literature) and the more diffuse
(decisional) tools.

Related studies

Two crucial aspects of project management are resources
distribution and activity planning during the software
development. These issues belong to a more general research field
that is Concurrent Engineering (CE) [21]. This discipline became
popular with the studies of Imai et al. [7] and Takeuchi and
Nonaka [22] and has changed both the academic and the
industrial approach to the product development process. However,
these works focus mainly in organizing the tasks in a single
project, considering in particular the decomposition of a complex
product design into smaller activities and their subsequent
coordination.
On the other hand, considering the distribution of resources in a
multiproject environment, PERT (Project Evaluation and Review

Technique) and CPM (Critical Path Methods) [6] are probably the
first proposed methods. They describe an idealized flow of project
activities, in which no new project is introduced over time and
activity times are treated as deterministic. Markov chain models
[9], [27], which assume activity time exponentially distributed
and use matrix methods for deciding the task time order in
development [3], were the natural subsequential evolutions.
Personnel organization and resources distribution among several
developed project at the same time is instead the problem studied
by Adler et al. [1]. The authors put the attention on five basic
process elements: jobs, tasks, procedure constraints, resources,
and flow management control. In particular, a single process may
need to handle a variety of job types, that in turn are divided in
tasks (i.e., activities or operations). Tasks are connected by
precedence relations. The resources are engineers and technicians
and they are the units that execute the tasks. The flow
management control represents how the resources executed a
job’s constituent tasks. Lock [13] identifies a sixth element
consisting of the assessment of individual contributions.
The work presented here is related to Adler et al.’s [1]. These
authors in fact use queueing networks and stochastic processing
network models to represent product development and identify
it’s the bottlenecks in task scheduling.

Decisional tools
To make a realistic planning, managers need to consider the
current workloads of human resources and take the most
appropriate decisions for meeting the project deadlines. The
decisional support they can use generally is of two kinds. One
consists of traditional techniques, like Control Charts or Gannt
Charts [3]], that visualize resources and personnel and distribute
them among the phases of project development. Tools oftentimes
support these methods, which are extremely intuitive, but
generally the validity of the plans depends strictly on the
subjective skill of the managers. Besides, the use of these
techniques in a multiproject context could be rather difficult. The
second kind of decisional support consists of specialized tools for
managers, like Microsoft Project tool [28] or the Kerzner Project
Management Maturity Online Assessment tool [29]. These
provide a valid help for maintaining an updated database of the
available people and resources, and for producing and visualizing
a project plan. However, most tools consider only a specific
aspect of management, focusing for example either on the
completion time or on the personnel distribution and, more
importantly, they cannot explicitly manage several
contemporaneous projects. Finally, the majority of available tools
apply ad hoc algorithms for simulating the project evolution,
based on some parameters values introduced by the user. Some of
those tools generate approximate predictions without any
guarantee of statistical significance.

7. CONCLUSIONS
We have discussed the usage of classical SPE techniques to
support the management of people and workflows in software
processes. The SPE models are derived from RT-UML diagrams
that model the flow of activities and the structure of the enterprise
organization. Precisely, we used a Sequence Diagram for the
former and a Deployment Diagram for the latter.

We have illustrated in a case study encompassing the test and
debug phase how the proposed methodology could be of help to a

manager for establishing a reliable release date avoiding over or
under utilization of personnel.

To use the methodology only the knowledge of a small subset of
the RT-UML profile is requested on the manager’s side, and a
small effort to develop the two diagrams. All the necessary
transformations and desired analyses can then be conducted in
automated way by SPE tools.

It must also be considered that the diagrams have not to be re-
derived from scratch at each application of the methodology. It is
in fact plausible to hypothesize that the processes that govern the
various phases of development in the company are standardized
and do not change completely at each new project. Therefore,
after an initial investment to model the various stages of the
development process in use, at each next application of the
methodology the manager can only need to tune the parameters,
or in the worst case to make some update to the existing diagrams.

Our future work will include the investigation of further utilities
of the RT-UML profile, such as for instance the usage of activity
diagrams instead of the sequence diagrams; the development of
more case studies, in particular we have started to investigate the
model of the whole RUP (Rational Unified Process); finally, of
course we are still working on the automation of RT-UML based
SPE. A tool that translates the RT-UML diagrams in a format that
is processable by SPE tools is currently under development. The
transformation method relies on an earlier existing method RIF
that used the standard UML notation with ad hoc annotations.
Here we have adapted that method to deal with the standard RT-
UML profile.

8. REFERENCES
[1] Adler. P., S., Mandelbaum, A., Nguyen, V., Schwerer,
E. From Project to Process Management: An Empirically Based
Framework for Analyzing Product Development Time.
Management Science, Vol. 42, 1995, 458-484.
[2] Basanieri F., Bertolino A., Marchetti, E., Mirandola, R.
Automating the Management of Teams and Tasks in Software
Multiprojects using UML and Queueing Networks. Technical
Report, IEI-TR 17-2001, April 2001.
[3] Burr, A. and Owen, M. Statistical Method for Software
Quality: Using Metrics for Process Improvement. Int. Thomson
Computer Press, 1996.

[4] Black, T., A., Fine, C., H., and Sachs, E., M., A Method
for Systems Design Using Precedence Relationships: An
Application to Automotive Brake Systems. M.I.T. Sloan School
of Management, Cambridge, MA, Working Paper no. 3208, 1990.
[5] Cortellessa, V. and Mirandola, R. Deriving a Queueing
Network based Performance Model from UML Diagrams in Proc.
WOSP2000 (Ottawa Canada, September 2000), 58-70.
[6] Dean, B., V., Project Management: Methods and
Studies, North-Holland, Amsterdam 1985.
[7] Imai, K., Nonaka, I., Takeuchi, H. Managing the New
Product Development Process: How the Japanese Companies
Learn an Unleran in Clark, K., b., Hayes, R., H., Lorenz, C. (eds.).
The uneasy Alliance. Harvard Businnes School Press, Boston,
1985.
[8] Kaner, C., Falk, J. Nguyen, H.Q., Testing Computer
Software, Wiley & Sons, 1999.

[9] Krishnan, V., Ulrich, K., T., Product Development
Decisions :A Review of the Literature Management Science, (Vol.
47, 2001), 1-21
[10] Kruchten, P. The Rational Unified Process: An
Introduction. Addison-Wesley, 1998.
[11] Kulkarni, V., G., Adlakha, V.,G. Markov an Morkov-
Regenerative PERT Networks Oper. Res. (1986) Vol. 34, 769-
781.
[12] Lavenberg S.S. Computer Performance Modeling
Handbook (New York, 1983), Academic Press.
[13] Loch, C. H.: Operations Management and
Reengineering, European Management Journal (Vol.16, 1998),
306 – 317.
[14] Mirandola R., Cortellessa V. UML based Performance
Modeling of Distributed Systems in Proc. UML2000 (York UK,
October 2000) LNCS 1939, Springer Verlag, 2000.
[15] Pooley R., Software Engineering and Performance: A
Roadmap, (in Finkelstein A. ed.) The Future of Software
Engineering, 22nd ICSE.
[16] Putnam L.H., Mayers W. Mesaures for Exellence:
Reliable Software on Time, within Budget, (Englewood Cliffs,
New Jersey, 1992) Yourdon Press Computing Series.
[17] Rumbaugh J., Jacobson I., Booch J. The Unified
Modeling Language Reference Manual (1999) Addison Wesley.
[18] Selic B. “Response to the OMG RFP for Schedulability,
Performance and Time” OMG document Ad/2001-06-14.
[19] Smith, C.U. Performance Engineering of Software
Systems. Addison-Wesley, Reading, (MA, 1990).

[20] Smith, C.U. and L. Williams. Performance Solutions,
Addison-Wesley, 2001.
[21] Smith, R., The Historical Roots of Cuncurrent
Engineering Fundamentals. IEEE Transaction on Engineering
Mangement (Vol. 43, 1997), 67-78.
[22] Takeuchi, H., Nonaka, I., The New Product
Development Game. Harvard Businnes Review (vol.64, 1986),
137-146.
[23] The Unified Modeling Language, Advancing the
standard, Proceedings of Third International Conference (A.
Evans, S. Kent, B. Selic, Eds.), York, UK, October 2000, LNCS
1939
[24] The Unified Modeling Language, Modeling Languages,
Concepts and Tools, Proceedings of Fourth International
Conference (M. Gogolla, C. Kobryn Eds.), Toronto, Canada,
October 2001, LNCS 2185.
[25] Wosp2000, Proccedings of Second International
Workshop on Software andPerformance, Ottawa, Canada,
September 2000, ACM press.
[26] UML Documentation version 1.3 Web Site. On-line at
http://www.rational.com/uml/resources/documentation/index.jsps/
[27] Weiss, G. Stochastic Bounds on Distribution of Optimal
Value Function with Application to PERT, Network Flows and
Reliability Oper. Res. (Vol. 36, 1986), 595-605.
[28] http://www.microsoft.com/office/project/
[29] http://www.iil.com/brochures/kerzner.htm

