
1

A simple model to predict
how many more failures will appear in testing

A. Bertolino, E. Marchetti

Istituto di Elaborazione della Informazione, CNR, Pisa, Italy

bertolino@iei.pi.cnr.it, e.marchetti@iei.pi.cnr.it

Abstract

This paper deals with dynamic models to evaluate how many more failures will be observed in

future tests, based on the failures observed so far. The assessment of reliability through testing is

now one of the most mature fields in software engineering. There exist tens of reliability growth

models, and several tools for applying them. The major assumptions of these models are that test

cases are randomly drawn from the operational profile, and that as defects are found and

removed, reliability will exhibit an increasing trend. Both assumptions are hardly satisfied in the

first stages of the testing process or for the testing of small modules. Besides, there are not

reasons why commonly used test methods at this time, such as specification-based testing or

branch coverage, should exhibit a regular trend in reliability.

These are the motivations for the work reported here. A dynamic model is introduced that can be

applied to predict the number of remaining failures in early test phases. It is called the Bemar

model. The Bemar model is quite general and makes no assumption on as to how tests are

selected. The most attractive feature is indeed the simplicity of the model: testers have just to

collect the detection rates of failures, i.e., the intervals between subsequent failures. No

estimation of parameters of the product or of the development process is required.

Keywords: Bayesian approach, defect count models, functional testing, number of expected

failures

1. Introduction

In spite of great advances in the software engineering field since the complaints about a software

crisis began to spread in the mid-seventies, the state of practice in software development is still

such that producing defect-free code remains wishful thinking. On the contrary, coping with

software failures, during development and after release, is among the hardest tasks of managers,

while testing, debugging and maintenance activities still consume the largest part of development

effort and resources. For these reasons, methods to estimate the defect contents of software are of

great interest for managers and testers.

Researchers have devoted much attention to this problem and have proposed many models to

quantify faults and failures. It is important to distinguish between two different approaches that

have been taken. One approach consists of looking at properties of the present or past products,

and/or at parameters of the development process and then, using these observations, trying to

make a guess of the total number of defects, or faults, in the current product. A different approach

2

is instead to observe defects, or, more properly, failures, as they show up in testing. Based on

the observed behavior, one then uses statistical inference procedures to predict the number or the

time of failures expected in future tests or in operation.

Depending on which of the two approaches is followed, defect counting models have been

categorized as static or dynamic, respectively [Conte et al., 1986, Chapter 7]. However, the fact

that static and dynamic models assess two different entities, namely defects in the code the first

and failures to be observed the second, must be underscored.

Static models are very attractive to managers, because they provide "numbers", which the

managers are eager of, very early in advance in comparison with dynamic models. The latter can

only be used late in the life cycle, i.e., in the testing phases, when it may be too late to

efficaciously re-direct development efforts. In fact, static defect models are used to identify more

risky modules and consequently re-allocate testing resources or modify design. In addition, static

models claim to estimate the total number of defects. As by testing we find and fix failures, then,

static models would provide a prediction on how many defects are left in the code, which may

seem a very attractive measure at first glance.

On the other hand, a defect can be more or less disturbing depending on whether, and how much

frequently, it will eventually show up to the final user (and depending of course on the

seriousness of its consequences). Indeed, in many or in few, some defects will inevitably escape

testing and debugging. So, in the end, the real important measure to decide whether a product can

be released is software reliability; i.e., the number of failures, and not of remaining defects, must

be estimated. Until they do not cause failures, remaining defects do not trouble neither customers

nor producers.

The right position is that static and dynamic models are both useful, but for different objectives.

In the front-end phases of the life cycle, managers should use static models to apportion risk

among modules and to allocate development time and resources. In the final stages of

development, instead, they should use dynamic models in order to evaluate how much disturbing

are the defects that are inevitably left, and to decide whether the product is ready for delivery.

This paper deals with dynamic models to evaluate how many more failures are expected to be

observed in future tests, based on the failures observed so far. The assessment of reliability

through testing is now one of the most mature fields in software engineering [Lyu, 1996]. There

now exist tens of reliability growth models, and several tools for applying them, in combination

with rather sophisticated techniques to evaluate the accuracy of the measures given by the models,

and to select the most appropriate model for a specific data set.

Existing models, though, all share the underlying assumption that the test cases are randomly

drawn from the operational profile, and that as defects are found and removed, reliability will

exhibit an increasing trend. Both assumptions are hardly satisfied in the first stages of the testing

process. Industrial test processes commonly undergo several subsequent steps, identified with

differing terms, from unit to subsystem, and to system testing. Operational testing can only start

when the software configuration and behavior are fairly stable, and is applied to the whole

system, or to big-size portions of it. For the testing of single modules, or of small subsystems,

3

identifying an operational profile is quite difficult and expensive, and perhaps not sensible at all.

Besides, there are not reasons why commonly used test methods at this time, e.g., branch

coverage, should consistently exhibit a regular growth in reliability.

These are the underlying motivations for the work reported here. We introduce a dynamic model,

called the Bemar model, that can be applied to predict the expected number of remaining failures

in early test phases. The Bemar model is quite general and makes no assumption on as to how test

are selected. The most attractive feature is indeed the simplicity of the model. It only requires to

collect the intervals of time between subsequent failures. No estimation of parameters of the

product or of the development process is needed.

In the next section the underlying intuitive model is described; the mathematical formulation is

provided in Section 3. The model has been applied to some real world data; the results are

presented in Section 4. Although the data available are too poor to validate the model, these first

results look promising. This work is still in a preliminary phase; we briefly outline future

directions in the Conclusions.

2. Model Rationale

In measurement, one tries to map observations of the empirical world to mathematical entities that

can be formally manipulated. Models are defined trying to capture one's intuition and

understanding of the real world; indeed, "intuition is the starting point for all measurement"

[Fenton and Pfleeger,1997]. In this section we present the intuition underlying the Bemar model.

The stimulus for this work came from the analysis of the test results collected over several

projects by a software producer, namely Ericsson Telecomunicazioni S.p.A. in Rome. This

producer routinely logs for each product the failures observed since early test phases until beta

testing, and is interested in finding more effective ways to use these data for project management

and product control. So far, these data are used to derive measures of fault density, that is the

ratio between the cumulative number of failures observed in a given time period and the product

size, expressed in lines of code.

With regard to the results from beta testing, which is operational, standard approaches for

reliability estimates and predictions can be applied. In [Bertolino et al., 1998], we describe a first

case study conducted at the same producer, aimed at experiencing the use of software reliability

engineering techniques. But, reliability growth models could not be applied to the early test

phases, for the reasons we explained in the introduction.

It must be made clear beforehand that it is not the case that this producer is looking for new

testing methods to be applied that would facilitate failure predictions (as could be for instance the

case if fault seeding approaches were applied). On the contrary, this producer has a well

established and formalized test process, and is looking for efficient metrics that can be applied to

the data collected. It is plausible to assume that to a certain extent this proviso would be the same

for many other producers.

We surveyed the literature in search for a dynamic model that could be applied to the test outputs

from the early test phases; reliability growth models could not be used, as earlier explained. An

4

interesting finding of this survey was [Cai, 98]. Cai has proposed a model to predict the

remaining number of defects in the code based on the failures that are observed in testing, which

is in a sense a hybrid approach between static and dynamic models. Since the assumptions

underlying Cai's model reasonably held for the projects of this producer, the model was applied

to the data available, in order to see if the estimation of defects provided by the model was

conclusive for our situation, but with negative results.

We investigated on the reasons why Cai's method, which reportedly worked well on his data, did

not function on our data. One of the findings was that Cai's model does not consider the time

occurrence of failures. Intuitively, Cai's model is similar to fault seeding methods, but instead of

considering the proportion between seeded faults and unknown faults, Cai divides the software

under test into two parts, and uses the relative occurrence of (real) faults in either parts. The

model is thus only concerned with the number of faults and possibly with how these are

distributed among the modules of a system, but not with the time of their detection.

In our opinion, the rate of failure discovery is a fundamental parameter, and should be included in

the model. In simple words, the scenario we have in mind is that n failures are detected after d

days of testing, and that we want to estimate how many more failures we expect to find in the

next d' days, if we continue to test in the same way. We reasonably think that the prediction

should be different if the failures are uniformly distributed over the d days, or if instead all the

failures are, say, discovered in the first day of testing, and then the remaining (d - 1) days exhibit

no failures.

We have consequently defined a new dynamic model taking into account the time distribution of

failure discoveries. The intuition behind this new model is very simple: assuming that we can

know a priori, or somehow estimate, the rate of failure findings over the sequence of executed

tests, say t, then if by n we denote the total number of tests to be executed, quite obviously the

expected number of failures f would be estimated by:

(1) f= n*t

Of course this formula is rather naive and cannot be used in practice in this simplistic form,

because the rate of failure detection in testing can never be established with certainty; it is rather a

random variable, for which a distribution should be identified. For each new product under test,

the empirical distribution of the failure detection rate can only be precisely drawn only after the

testing is completed. However, if we could assume that, after having observed the test results for

some time it stabilizes (i.e., it can be used as an approximation of the real, so far unknown

distribution, to predict future behavior), then a formula generalizing Eq. (1) could be used. This

is the underlying intuition of the Bemar model. To derive the distribution of the failure detection

rate from the observation of test results, Bemar uses a Bayesian approach. This is described in the

next section.

According to its justification, we expect that Bemar performs better when the rate of detection of

failures in testing remains more or less stable. This is in contrast with the assumption underlying

reliability growth models. In fact, the Bemar model should be applied to early test phases, and in

general to all those situations in which failures are found with some regularity, and remains valid

5

only for limited periods, i.e., till the point in which the rate of occurrence of failures starts to

decrease as an effect of having removed a high number of faults.

In other words, the Bemar model performs well as long as reliability growth models cannot yet be

applied. It is foreseeable that the Bemar model and a reliability growth model can be used in

complementary way. How these could be combined will be object of future investigation.

3. Description of the Bemar Model

Before presenting the definitions and formulas adopted in the model, the typology of data

available is described.

The software producer provided us with sets of failure data collected over several projects during

the phase of subsystem testing. The test cases are deterministically chosen by examining the

functional specifications and altogether before test execution starts (which means that the number

of tests to be executed is decided in advance). The tests are not executed continuously, but only

during the working days (i.e., five days in a week) and 8 hours per day. For each project, the

information registered consists of the start and end dates of the test phase, and of the calendar day

(but not the day time) of discovery of each failure. Test execution (CPU) times were not

recorded.

Based on the coarse granularity of available data, we decided to group failure data into test

intervals (TIs). A TI could be as long as a day, a week, or any other length (for instance

measured in seconds), depending on the global duration of the testing, the precision of the data

available and the amount of observed failures.

A TI in which at least a failure is observed is called a failed test interval (FTI), otherwise it is said

a successful TI. Note that, anyhow small a test interval is chosen, until this remains larger than a

single test there will always be a chance to observe more than one failure within a failed test

interval. Hence, we predict the expected number of failures in two steps: first we predict NFTI,

i.e., the number of FTIs is estimated. Then, from this number, we derive the number of failures

NF .

In the first step, to estimate NFTI, we define the distance between two subsequent FTIs as a

random variable T, that can take discrete values within an interval [1, M] (where M is a maximum

fixed value). Precisely, for each i within [1,M], the associated probability mass function (pmf),

pT(i) = P(T=i), gives the probability that the next failure will be observed after i TIs (i.e., i -1

successful TIs are observed and then the ith TI is a FTI).

Denoting by NTI the total number of test intervals to be performed, and with Ε Τ[] ()= ⋅
=
∑ p i iT
i

M

1

, it

can be shown that the following formula holds1:

(2) NTI NFTI= ⋅ Ε Τ[]

1 Actually, this formula holds precisely if it can be assumed that the last test interval is a failed one. Otherwise, the
left-hand side should be decreased by the number of test intervals occurring between the last FTI and the last test
interval. This adjustment will be neglected in the paper.

6

Since for each project the number of test intervals can be easily derived (remember that the

functional test cases are preselected in advance), Equation (2) above can be solved for NFTI,

yielding:

(3)
N

NTI
FTI =

Ε Τ[]

We need now a procedure to derive E[T]. Looking at the data available, we see that the failures

are variously distributed over the whole test period and it is not generally the case that towards the

end of the functional test period less failures are observed than at the beginning (as it is expected

in operational testing). In particular, the data do not show any consistent reliability increasing

trend, appearance which was confirmed by the Laplace test [Kanoun et al., 1997] conducted over

all the sets of data. In Figure 1, we show for instance the failure data relative to one of the

products analyzed.

Figure 1: Failure data for a product

To develop a prediction procedure which is sensible, and correlated with the behavior of a given

product under test, it is desirable to use the test results collected as functional test proceeds to

adjust an initial estimate of the pmf. Hence, we chose to adopt a Bayesian approach.

In the Bayesian framework, probabilities are meant to describe an observer subjective knowledge

of yet-unknown events. This knowledge evolves as events are observed. In this context, the pmf

of T pT(i) is taken as the prior knowledge about the behavior of a product under test. I.e., pT(i) is

taken to model a tester's subjective belief about the rate of failure detection before some evidence

(the test results) about the product under test is observed. During the performance of the

functional testing, the realization of a sequence of test intervals with and without failures is

observed. Thanks to this evidence, the tester's knowledge about this product evolves and a new
distribution for the pmf of T, called the posterior distribution, can be derived. Denoting by Fk the

sequence of observed outcomes (failed/successful) for the first k TIs, the posterior distribution
p'T,k(i) then gives P(Τ=i | Fk), i.e., it is the update of pT(i) after having observed the sequence

Fk. Applying Bayes' formula we have:

project 1

0

1

2

3

4

5

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100
Test intervals

7

(4) p i P T i F
P T i P F T i

P F T j P T j
T k k

prior k

k prior
j

M
'

, () ((|)
() (|)

(|) ()
= = =

= =

= =
=

∑
1

in which the term P(Fk|Τ=i) is usually called a likelihood function. To derive it, we can consider

that, if T=i, then the probability of observing a failure in the next test interval is 1/i, i.e.:

(5) P(F1|T = i) = {
1
i

 if F1 is failed

(1 − 1
i
) if F1 is successful

Substituting this in formula 4, and iterating the same reasoning also to the subsequent test

intervals, we finally obtain2:

(6) p i
p i

i i

P j
j j

T k

T

f k f

T

f k f

j

M

'
, ()

()

()

=
⋅ 



 −





⋅ 





−





−

−

=
∑

1
1

1

1
1

1

1

which gives the posterior pmf for the random variable T, after observing k test intervals, out of

which f were failed.

In general, deriving a prior distribution for the probability of interest is a difficult task, which also

generates some perplexity towards the usefulness of Bayesian inference methods. In our case, the

form of pT(i) can be derived on the basis of data available from similar products. In general, some

suitable representation of ignorance is often adopted, like for instance the uniform distribution,

though actually absolute ignorance can never be assumed.

By using the posterior pmf provided by formula (6) to derive E[T], by (3) we can then derive

NFTI,k, i.e., the number of FTIs expected after NTI test intervals, using the test information

collected during the first k test intervals.

From NFTI,k the total number of failures NF needs now to be estimated. This clearly depends on

how many failures on average are observed within a FTI. We can again define a random variable

F to represents the number of failures observed within a FTI, and then derive NF from NFTI, with

N N E FF FTI= ⋅ [].

We derive an empirical pmf for F by considering the results from the first k TIs. In particular, by

analyzing the sets of failure data available, a maximum number of failures per FTI, MF, can be

fixed. From the distribution of the number of failures within a failed test interval, we are able to

calculate the expectation E F P F i ik k
i

MF

[] ()= = ⋅
=
∑

1

.

2In the generalization of this formula from the case k=1 to larger values of k, we have in reality used some relaxed
assumptions, which could raise some objection to its validity from a purely theoretical viewpoint. In future work
we will fix these problems. However, on the set of data available, this formula performed better than other
theoretically stronger models.

8

Therefore, after having observed k TIs, the number of failures that a product will show at the end

of the functional test is:
(7) N N E FF k FTI k k, , []= ⋅

The formulas (3) and (7) are to be used incrementally during functional test, i.e., considering

each time a greater value for k, and adjusting the pmfs involved correspondingly. In this way, the

prediction about the total number of failures for a product as testing proceeds will be more and

more precise.

4. Application

The Bemar method has been experimented on the failure data relative to the functional test phase

of several products; we have also tried it on some operational test results (for which we expect the

model is not working as well as for functional testing). We briefly present the results in sections

4.1 and 4.2, respectively.

4.1 Functional testing

Before applying the Bemar model to the data relative to functional testing, we investigated ways

to derive a suitable prior distribution for T.

About these data we knew that the products performed similar functionalities, they had been

tested by the same producer and with the same methodology. It was plausible to expect that the

test results could exhibit a similar behavior, which would be a useful fact to derive a prior pmf for

T.

More in general, it is probable that a software producer has collected similar information about the

functional tests developed in the past. In the case that the products exhibit a similar behavior, the

information collected (in particular the mean and the variance) can be useful to establish a proper

prior pmf of T for the next product that the producer will test.

First of all, analyzing the failure data we noticed that the distance between subsequent FTIs was

not greater than 20 and that the maximum number of failures per FTI was 6. Therefore we

considered that the variable T could take discrete values within the interval [1,20] and we put

MF=6.

Then for each project we derived a histogram of the time distance (measured in elapsed test

intervals) occurring between two subsequent FTIs. In Figure 2 we report the histogram

corresponding to the product shown in figure 1. Analyzing the histograms for this and all the

other sets of data available, a certain regularity in the failure behavior under functional testing was

in fact noted. This observation would sustain the hypothesis that a general distribution for the

distance between two successive FTIs for the functional test process of this producer can be

identified.

9

Figure 2: Histogram for the random variable T

In particular, after some analysis, we decided to approximate the prior pmf of T with a normal

truncated distribution. We derived the normal curve with mean and variance equal to the sample

mean and variance, and truncated it between 1 and 20. Since the data we have are grouped within

intervals, we then approximated this continuous distribution with a discrete one.

The approach we followed to verify the model was the following. Considering the whole series

of test outputs of a product, an intermediate test interval TIk is taken as the current point. From

this point, the cumulative number of failures that will be observed for the whole testing period is

estimated applying the Bemar model. For the prediction, therefore, we use the failure data

collected from the beginning of the functional test up to the selected point TIk.

This computation is repeated for progressively longer test intervals (i.e., for greater values of k),

for instance after the first 5 TIs, after the first 10 TIs, 15, and so on. In fact, since a Bayesian

inference procedure is used, the prediction is progressively updated considering each time a

greater amount of collected data.

In Figure 3 the results obtained applying the Bemar method to some of the sets of data available

are shown. In these figures on the horizontal axis we put the number of test intervals, k ,

considered to make the prediction, and on the vertical axis the cumulative number of failures, NF,

predicted at the end of functional test. The dotted line represents the cumulative number of failures

predicted at the end of the functional test using as prior pmf of T the normal truncated

distribution. The effect of improvement of the prediction as more test outputs are observed is

clearly visible. To compare the results predicted with the real ones, in the figures we drew the

actual number of failures counted at the end of the testing (the horizontal line). The strip around

the horizontal line marked with vertical segments signs the zone where the relative error of the

estimation is below 10%.

project 1

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

distance between subsequent FTIs

n
u

m
b

e
r

o
f

F
T

Is

10

(a)

 (b)

 (c)

Figure 3: Predictions with the Bemar model

In general, for all the case studies considered, we could observe that the model starts with very

high errors, but after about a half of the test period, the prediction becomes quite good. We are

currently studying other ways to derive a prior pmf for a specific producer from the test result

observed in earlier projects. We expect that a prior pmf which fits better to the test process under

investigation should converge more quickly to a valid prediction.

project 1

40

45

50
55
60

65

70
75
80

85

90
95

100
105

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100k

project 2

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

5 15 25 35 45 55 65 75 85 95 105 115 125 135k

project 3

20
30
40

50
60
70
80

90
100
110
120

130
140

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175
k

N
F

11

4.2 Application to operational test data

We are interested in discovering if and how the Bemar model can be applied as a complementary

approach to reliability growth models or in those situations in which the failure data relative to

operational testing do not show a reliability increasing trend. For this reason, we also tried our

model on some operational test results collected by the same producer during beta testing.

The problem in applying the Bemar model to this kind of data was that operational test results

collected previously on similar projects were not available. Therefore we could not apply the

criteria described in the previous section for the selection of a prior pmf of T. We hence decided

to adopt a uniform prior distribution.

For the rest, the approach to apply the Bemar model to the data collected during the operational

phase is the same of that described in Section 4.1: we took an intermediate test interval k as the

current point of the operational test, and from this point we predicted the expected final number of

failures. This computation has been repeated taking progressively longer periods. We report the

results in the figure below.

Figure 4: Prediction of the Bemar model for beta testing

The performance of the model becomes acceptable after 110 TIs, over a complessive period of

180 TIs. We must add that attempts to apply standard reliability growth models to these same data

were not successful; the problem was that the reliability did not regularly increase, as required by

those models.

On the contrary, we expect a worse performance of Bemar over data that exhibit consistent

reliability growth. We have tried the model on a set of data taken from the literature (Abdel-

Ghaly, 1986). These data are reported as execution times in seconds between successive failures.

To apply our model, we have grouped the failure data into test intervals of 600 seconds.

project 4

20
22

24
26
28

30

32
34

36

38
40

42
44
46

48

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185
k

N
F

12

Figure 5: Prediction of the Bemar model for operational testing

5. Conclusions

This work is still in a preliminary stage. We are investigating dynamic models for monitoring and

controlling the test process based on observed test results. In this paper we have briefly presented

the motivations, the formulation and a few applications of a new model that can be applied to

failure data to predict the expected number of failures in future tests. The model is still

incomplete, and needs further validation on more data. In particular, the formula used to make the

prediction needs to be augmented with some method to estimate in advance the error bound. For

the time being, we have evaluated the relative error against known results, and the model

performance looks encouraging.

This model assumes that the detected failures are distributed over the whole test period, and that

reliability does not exhibit a regular trend. This could be the case for the early test phases, when

many failures still remain, and standard reliability growth models cannot yet be applied. In this

sense, we believe that this model works in complementary way with reliability growth models,

and in fact we intend to investigate an approach to use both models in combination.

Acknowledgements

We thank Emilia Peciola and Gaetano Lombardi of the Research&Development Division of

Ericsson Telecomunicazioni S.p.A. in Rome, for providing us with valuable data and

information, as well as for useful discussions and interest during the development of this work.

References

A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood, Evaluation of Competing Software Reliability
Predictions, IEEE Tr. On Software Eng., Vol. SE-12, No. 9, Sept. 1996, pp. 950-967.

operational data

7 0
7 5
8 0
8 5
9 0
9 5

100
105
110
115
120
125
130
135
140
145
150

5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 105 115 125 135 145 155 165k

N
F

13

A. Bertolino, G. Lombardi, E. Marchetti, E. Peciola, “Introducing a Reliability Measurement
Program into an Industrial Context”, Proc. of ESCOM-ENCRESS 98, Rome, May 27-29 1998,
pp. 277-286.

K. Y. Cai “On Estimating the Number of Defects Remaining in the Software”, J. System
Software, Vol. 40, No. 2, pp. 93-114, February 1998.

S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics and Models, The
Benjamin/Cummings Publishing Co., Menlo Park, Ca, 1986.

N. E. Fenton and S. L. Pfleeger, Software Metrics A Rigorous and Practical Approach, 2nd Ed.,
Int. Thomson Comp. Press, 1997.

K. Kanoun, M. Kaaniche, and J. P. Laprie, “Qualitative and Quantitative Reliability
Assessment”, IEEE Software, Vol. 14, No. 2, Mach 1997.

M. R. Lyu (Ed.), Handbook of Software Reliability Engineering, McGraw-Hill, 1996.

