
Introducing a reliability measurement program
into an industrial context

Antonia Bertolino, Gaetano Lombardi, Eda Marchetti, Emilia Peciola

Abstract
 We report on an experience in the industrial employment of software reliability engineering techniques at
Ericsson Telecomunicazioni S.P.A.. The experience includes a case study on the application of operational
statistical testing techniques to a selected baseline project. This case study is aimed at evaluating the hypothesis
that operational testing can achieve higher reliability than conventional deterministic approaches, with lno or
imited additional costs. We have adopted Musa's SRET approach for test design and guidance. At the same
time, we are also investigating the application of software reliability models on some available failure data, in
order to understand the feasibility of the more comprehensive objective of introducing a reliability measurement
program. While the experience is still going on, we describe some preliminary results.

1. Introduction
Software Reliability Engineering (SRE) encompasses state-of-practice techniques and tools for analysing,

managing and improving the reliability of software products [4]. The central focus is on the quantitative
evaluation of the operational behaviour, as contrasted with the qualitative evaluation provided by conventional
(non reliability based) validation and verification activities. In this paper we report about an ongoing experience
at Ericsson Telecomunicazioni S.p.A. in Rome (TEI in the following) aimed at experimenting the applicability
of SRE techniques in this industrial context.

In agreement with corporate policies, the TEI software development process undergoes assessment and
improvement actions on regular bases and moreover failures in the field of released products are routinely
monitored for the first six months of operation. Though, so far, specific reliability objectives have not been
explicitly set for the development process, nor any attempts to measure the achieved reliability of TEI products
have been tried. TEI is now going to improve its competence in the area of statistical process control and
prediction methods. In particular, it feels to be at a right stage of maturity for trying SRE techniques.

In this perspective, the objective of this experience is twofold. On the one hand we intend to experiment a
reliability guided testing process in contrast with the purely functional approach currently taken: the hypothesis
we want to test is that operational statistical testing can achieve higher reliability than functional (deterministic)
testing. On the other hand, we would also like to make a preliminary (and modest) attempt to introduce
reliability measurement techniques: we have started by analysing available field failure data of completed
projects, as well as operational test results which are being collected in the course of this experience.

In the next section, we describe the TEI development process and the motivations for this experience. In
Section 3 we illustrate a case study aimed at evaluating operational statistical testing within the TEI testing
process. In Section 4 we report some results of the failure data analysis and reliability model selection activities.
Finally, in Section 5, we outline some preliminary insights and hint at further work.

2. TEI process
Within the frame of the company-wide Ericsson System Software Initiative (ESSI), regular assessments are

being performed at all Ericsson Software Design Centers according to the Capability Maturity Model (CMM)
for software, Version 1.1 [8]. Main objectives of ESSI are to identify key areas for process improvement and to
propose a framework for subsequent improvement actions. An assessment has been recently performed at TEI
organisation. The assessment covered the AXE10 (multi-application, open-ended digital switching product for
public telecommunications networks) software development area. The software processes at TEI were found to
be at the Defined level of maturity (level 3). Although this result was very satisfying, TEI is now going to
initiate some of the level 4 practices. The organization intends to improve its capabilities in statistical process
control and in prediction methods. This experience is one of the improvement activities launched in that area.

One objective placed by ESSI is reducing below a determined value the fault density figures that are
obtained by monitoring the first six months of operation of released products. Fault density is measured by the
ratio between the cumulative number of failures observed in that period over the product size, expressed in lines
of code. Root Cause Analysis (RCA) of reported failures is routinely performed, to track back failures to the
phase in which they have been originated. An important finding of RCA for TEI products was that a high
percentage of failures (48%) corresponded to software faults that could have been discovered during the
Function Test phase, one of the four test phases in TEI test strategy, namely:

1) Basic Test, testing the smallest module (test object) in the system. The goal is to verify design
specification;

2) Integration Test, testing a functional area: all modules in that area are integrated;
3) Function Test, verifying system functions;
4) System Test, verifying system performance and architectural requirements.
Currently, Function Test is performed along a function test specification, with the goal of testing

conformance of the target function to its specifications. Test cases are derived manually by testers, by making a
systematic analysis of the specification documentation and trying to cover all the specified functionalities (or
use cases). The function test phase is organised in a specified number of stages. All the failures discovered
within a stage are logged and reported to software designers, who trace failures back to code and correct them.
A new software version is then released, which is resubmitted to testing in the next test stage. Function Test
stops when all the test cases defined in the test case specification have been successfully performed, either at
first try or after suitable code correction. Specific reliability objectives are not explicitly considered in test
planning, and no estimation of achieved reliability is currently performed.

3. The case study
In agreement with ESSI objectives, and specifically in order to reduce the fault density figures via a more

efficient Function Test, we have set up a case study. The hypothesis we intend to test is that the
cost/effectiveness ratio of the TEI Function Test process can be improved by introducing explicit reliability
objectives to guide it. To this purpose, a baseline project has been selected (described in Section 3.2), and
reliability guided testing techniques will be applied to the Function Test phase of this baseline project, i.e., the
test selection will be performed so as to reproduce the expected usage of the system in operation. In this way we
expect to achieve higher reliability levels for the tested product after release. Although they are not primary
objectives for this case study, other important measurable benefits are expected as well. Specifically, SRE
techniques will provide a means for predicting product reliability in operation (via analysis of the test results
under a reliability growth model). In parallel to this case study, we have also started the evaluation of failure
data available from past projects using well known reliability growth models. The aim of this analysis is to
assess current reliability levels achieved with the conventional testing approach for similar products. Some
results are reported in Section 4.

3.1. Testing guided by reliability objectives
Our interest in SRE techniques is mainly in the application of SRE activities to the testing stage. Musa has

recently introduced the Software Reliability Engineered Testing (SRET) methodology, whereby "SRET is
testing guided by reliability objectives and expected usage and criticality of different operations in the field" [7].
The SRET approach consists of five principal activities (see [4,6,7]):

1. Define the reliability objectives;
2. Develop the operational profile;
3. Prepare the tests;
4. Execute the tests;
5. Interpret test results.
Reportedly [4, Chapter 6], Musa's SRET approach has been successfully applied to many projects with

documented strong benefit/cost ratio results. For this reason, we decided to adopt this approach for application
to our process improvement experiment via reliability guided testing. Hence, more precisely, this case study is
aimed at testing the conjecture that Function Test conducted according to Musa's SRET approach leads to cost-
effective reliability improvements over current TEI practice.

In this case study, we have set up a testing process precisely reflecting the above five stages approach. In a
sense, the most critical part was the second activity, i.e., the development of an operational profile for the
software under test. Musa defines an operational profile as "the set of operations and their probability of
occurrence". To obtain the list of operations, SRET outlines a five steps procedure, starting from identifying a
list of possibly different customer types, progressively breaking them down into different user types, and then
into the different modes in which a user can invoke the system. In turn, for each system mode a functional
profile is defined, and finally the functional profile is converted to the operational profile.

We emphasise that this is the first time that reliability guided testing is attempted within TEI and
consequently in some occasions during the implementation of the SRET process we found ourselves in the
necessity to act as pioneers and to decide for acceptable engineering compromises, where we missed part of the
information or the background required.

As already said, other benefits are expected from adopting the new approach. In particular, unlike the current
Function Test approach, SRET provides a means of predicting product reliability in operation (last activity
"Interpret test results"). Within the experiment, we thus intend to select and adopt a suitable reliability growth
model to analyse failure results during the debugging period. The predicted reliability will then be compared to
that which would have been obtained by the conventional approach, as well as to that experienced in operation

for similar products. Also, we intend to keep track of maintenance costs after product delivery, to check whether
SRET actually reduces them, as it claims.

3.2. The baseline project
The project used as a base to evaluate the SRET approach is the ‘CTM project’. The CTM project

implements the service Cordless Terminal Mobility (CTM) in the Ericsson AXE architecture. CTM is a service
that allows users of cordless terminals to be mobile within and between networks. Where radio coverage is
provided and the cordless terminal has appropriate access rights, the user will be able to make calls from, and to
receive calls at, any location within the fixed public and/or private networks, and to move without interruption
of a call in progress. The solution adopted by Ericsson is to connect the mobile terminal to the fixed network via
a Central Control Fixed Part (CCFP), whose main aim is to concentrate the traffic towards the CTM Exchange
in a more capacious link called a ‘device’. All the devices between a CCFP and a CTM Exchange are grouped,
for administrative reasons, in an entity called a ‘route’. The Ericsson CTM architecture is shown in Figure 1.
The baseline project consists of the administration functionalities of the links between CCFP and CTM
Exchange.

CTM
Exchange

Fixed
NetworkCCFP

Figure 1. Ericsson CTM architecture

3.3. Experiment plan
The execution steps of the proposed experiment are:

1) Define the reliability required for stopping the testing in the SRET approach, based on TEI quality objectives.
2) Analyse the baseline project to produce a list of its functions (meaning, according to Musa's usage, a specific

task or part of the overall work to be performed by the system).
3) Define an operational profile for the baseline project, using the SRET method. In particular, identify the

individual operations and determine their respective occurrence rates. In addition, define, where appropriate,
severity classes for expected failure modes, so as to test more thoroughly those functions for which higher-
severity failures are possible.

4) The baseline project will undergo two Function Test tracks in parallel:
a) track F (for TEI Function Test), to be tested according to the conventional TEI method: test cases are

deterministically selected to obtain 100% coverage of all the functionalities identified in the manual
analysis of the functional specifications.

b) track R (for Random Test), to be tested following the new approach, based on the operational profile
defined in step 3.

 The two tracks will be assigned to two different groups of persons that will operate in a totally independent
way in order not to bias the results of the experiment. The duplication of the Function Test phase into
modified and unmodified test tracks, run side by side in the same case study, will allow us to derive
significant measures of improvement through the direct, quantitative comparison of the reliability achieved in
the two tracks.

5) Set up a test environment for the new test method. SRET requires random test selection. Automated tools to
help launch the tests and log test results are already used in TEI; these will be adapted to allow for handling
of random variables. The evaluation of test outcomes (success/failure), which is always a difficult problem, is
here exacerbated by the uncertainty of the randomly selected inputs. We will adopt a viable solution to
automate it as far as feasible, exploiting the relative simplicity of the subsystem at hand.

6) Execute the test cases. Track R will be tested using the SRET approach until the requested reliability is
obtained. In parallel, starting from the first release of the software, track F will be tested according to the

standard TEI approach into successive releases after corrective actions until all the test cases are covered
with no failure.

7) Evaluate experimental results. We will evaluate the cost/effectiveness of the SRET approach in the context of
TEI development process with regard to direct improvements, such as increase of reliability, and also indirect
benefits, such as reduction of maintenance costs or improvement of the design phase efficiency.

3.4. Current situation
With reference to the experiment plan described above, we depict here the current situation.

3.4.1. Definition of the required reliability
ESSI improvement objectives require that fault density, i.e., the number of the failures found in the first six

months of operation over the product size, is reduced to less than 0,15. We have estimated that only 1% of the
activity of a CTM-AXE10 switching is spent for administrative functions, that are those in the baseline project.
From this, we estimated that the reliability required for the system under test is in the order of 10-3 failures per
hour of operation.

3.4.2. Definition of the operational profile
Operator manuals and previous experiences in similar systems have been used as input to derive the

operational profile. In the following tables we describe the results of the obtained profiles, according to the
SRET approach. Regarding the operational profile, we used an implicit approach, i.e., the profile is represented
by a behavioural tree. In Fig. 2 we show only a branch of this tree. The severity of the failures is considered
when assigning the probabilities.

3.4.3. Test case definition
 With regard to track F, we used the test instructions prepared according to the standard Function Test
process. With regard to track R, for each leaf of the tree we have specified one or more test cases (to be
randomly selected).

Table 1. Customers profile

Customer Probability
Telecom Operator 100%

Table 2. Users profile

User Probability
Operator 100%

Table 3. System-modes profile
Mode Probability

Installation 10%
Operation 90%

Table 4. Functional profile

Function Installation-mode
Probability

Operation-mode
Probability

 Definition of a route 26,2% 14%
 Deletion of a route 0,78% 7%
 Change of route parameters 1,56% 14%
 Print of route parameters 31,4% 21%
 Connect a device to a route 28,8% 17%
 Disconnect a device from a route 0,78% 7%
 Print device data 5,24% 10%
 Print device connections data 5,24% 10%

No syntax errors
have been done

Syntax errors
have been done

R is already
defined

There is
room for R

There is no
room for R

R is not
defined

Normal command
execution

System restart during
command execution

System small restart after
command execution

System large restart after
command execution

95%

5%

2%

98%
1%

99%

5,49%

4,7%

0,31%

89,5%

This situation
absolute probability

is:
0,0244%

Definition
of a route R

Figure 2. Operational profile for ‘Definition of a route’ in the ‘ Installation’ system-mode

3.4.4. Set-up of the test environment
To set-up the test environment, we have integrated a proprietary Ericsson tool, called ‘AUTOSIS’, with an

ad-hoc developed tool ‘STUT’. AUTOSIS is a tool used for testing any system provided with an interface for
man-machine interaction. The test is performed by sending commands towards the test object and by analysing
the obtained printouts. The instructions to perform the test are supplied in the form of AUTOSIS test
instructions (TIs), which are written prior to execution. A TI contains AUTOSIS instructions interpretable by
AUTOSIS and commentary text. The tool generates two output files:

- a log file, with the execution trace, to be used in the debugging of errors;
- a report file, recording the execution time and the result of each test case.
AUTOSIS has been extended in order to handle random variables with the integration of STUT. STUT is a

tool that has been developed to select the test cases according to the SRET approach. It generates a file
specifying the test instructions to be used as input to AUTOSIS by processing the following input information:
- the operational profile and the related test instructions for each leaf of the tree;
- the definitions of the random variables;
- the required reliability value.

The usage of STUT does not require any specific training for TEI testers, because the structure of the input
file is quite similar to the structure of the AUTOSIS input file.

Finally, to compute the current reliability of the system under test, we are using readily available tools (see
Section 4).

3.4.5. Execute the test cases
We have now started to execute test cases by performing the following steps:

i) using STUT, we select a set of test cases;
ii) using AUTOSIS, we execute the selected set of test cases: each time a failure is observed, we fix it, update
the reliability of the system under test and return to step i).

This process is being repeated until the required reliability is reached.

4. Evaluation of reliability
Before starting to experiment the SRET approach, we thought it necessary to assess the current situation in

terms of the reliability that is achieved by TEI development process. In fact, the hypothesis at the basis of this
experiment is that operational statistical testing can achieve higher reliability than conventional (purely
functional) TEI approach. Although, for the testing of this hypothesis, the experiment plan includes the
comparison of the reliability obtained in the two parallel test tracks, one according to the conventional approach
and the other following the new one, we think that assessing the reliability achieved on other similar products
can also provide useful indications. As already explained, TEI monitors and logs all failures found in the field
for the first six months of operations. At present, such data are not used directly for reliability estimation; on the
contrary, they are used to evaluate the failure densities, and the timing of failures is thus not directly accessible.
However, we have got access to the detailed failure report, including timing information, for a completed
product which is similar to the baseline product.

To these data, we have applied standard techniques for reliability evaluation; the findings of this analysis are
summarised in the next two subsections. We are the first to admit that these first evaluations are quite limited in
their scope. Though, we hope that we can soon augment these first results with more data, even because we feel
that this experience can promote a more collaborative attitude towards SRE techniques in the producing units.

4.1. Data analysis

We performed first a detailed analysis of the data available, in order to verify their suitability for applying
reliability growth models.

The very first assumption for reliability assessment is that the analysed product is exercised according to the
operational profile. This is not the case for the Basic, Integration and Function Test phases (at least, not so far).
Thus, for the product examined, only the failure data relative to the six months of monitored operation are
meaningful. For these six months, we had a reported number of 35 failures, collected over a set of five
installations run in parallel. The products run continuously and failures are reported on a daily basis. For this
reason, and also for complying with corporate established attitudes, we opted for reliability growth models in
the class of number of failures per time period. The period to be considered as the time unit naturally
corresponded to one calendar day, in turn corresponding to five days of execution time, by considering the five
plants monitored.

Another very basilar assumption for using reliability growth models is that the failure data exhibit a growth
in reliability. Somewhat surprisingly, this was not the case if we considered the data set as a whole. At a closer
inspection, though, we noticed an anomalous behavior in the first two months: just two failures in the first
month, and a set of eleven failures all concentrated in the second month. Thus, we decided to filter the data, by
discarding the first month of operation. After this filtering, the failure data relative to the last five months (33
failures) exhibited an increase in reliability, although this remained very small. These informal analyses were
confirmed by the Laplace Test, which has been applied to the data to observe the trend in reliability [3]; the
Laplace test confirmed that reliability was increasing, but very slowly. We are studying causes for this.

4.2. Model fitting

A major step in predicting software reliability is to decide which model is the best one for a particular
context. It is now well known that there is no software reliability model that performs better than any other one
in any case. Fortunately, recent theoretical advances in the field [1,2] have largely eliminated some difficulties
that arose in the choice and calibration of these models for a specific case.

More importantly from the practitioner's perspective, several software reliability tools are today available
that help users to make this choice without requiring them a deep knowledge of the mathematical aspects of the
software reliability models. With these tools, in fact, the user may readily apply the best known software
reliability models at his/her set of failure data and then choose, by analysing the produced results, the model that
gives the best predictions.

In our case, we adopted the well known tool CASRE [4,5], that includes, for the failure per time period data,
the following software reliability models: Brooks/Motley (BM), Schneidewind (SM), NHPP (also known as
Goel-Okumoto), Generalized Poisson (PM), Yamada S-Shaped (YM).

For each model, the tool automatically computes the prequential likelihood function (PL), which is a general
means of comparing the accuracy of predictions provided by more models when applied to a same failure data
set [1]. In particular, the best model is characterized by the highest value of PL (we must specify that for
convenience CASRE computes -ln(PL), so in this case the best model is that showing the lowest value).

For each model CASRE also shows the results of executing the Chi-Square test, which is a standard way to
check the accuracy of predictions with respect to raw data (goodness-of-fit measure). In particular, we decide
that a selected analytical distribution can be used to correctly represent a given empirical distribution if the Chi-
Square value is within a specified interval.

The results of the accuracy analysis made by the tool to our failure data are shown in Table 5. We can
observe that the evaluation of the Chi-Square test (in this case with 4 degrees of freedom) brings us to reject the
Yamada S-Shaped model (the models fit well for the analysed data set if the Chi-Square value is within the
interval [0.207, 9.49]).

Considering the value computed for (-ln PL), we can see that the NHPP and SM models give the most
accurate results for the data source. Indeed, for our data set the observations period have the same length, so
NHPP and SM are equivalent [4, Chapter 3].

Table 5. Analysis of models

 BM bin BM pois NHPP YM SM
 -ln PL 36,677 45,998 36,677 42,494 36,677
 (3) (5) (1) (4) (1)
 Chi-Square 4,913 4,936 4,772 26,050 4,772
 (3) (4) (1) (5) (1)

Finally, we show below in Figure 3 the cumulative number of failures predicted versus the raw data and in

Figure 4 the relative error, computed as:

(PredictedNoFailures− ActualNoFailures)

ActualNoFailures

5. Conclusions
Even if the case study is not finished yet (we have encountered some difficulties not directly related to the

implementation of the case study, but which arrested the work anyway), it is already possible to bring out some
remarks from the comparison between SRET and the conventional approach.

Some observations regard the effort required to apply the SRET approach:
• SRET requires extra effort with respect to Function Test standard process, in particular for the definition of

the operational profile. If new systems have to be modelled, it will be quite difficult to find usage data to assign
the right probabilities.

• The definition of test instructions can be more difficult because in SRET they have to be specified in a
more abstract way (for the need to consider random variables);

• Considering the high number of test cases to be executed, a completely automated environment is required.
The Ericsson AXE10 target environment is not completely automatable, so we had to limit the application of
this case study to the simulated environment, that is the administrative part. It was not possible to execute some
categories of test cases that required to be run on the target system, like tests for evaluating performance or
involving traffic.

Figure 3: Curves derived by CASRE for the cumulative number of failures relative to the NHPP model

Test interval number

-0.80

-0.70
-0.60

-0.50

-0.40

-0.30

-0.20
-0.10

0.00

0.10

0.20

34 44 54 64 74 84 94 104 114 124 134 144 154 164 174 184

Figure 4: Relative error of NHPP model for the cumulative number of failures

However, we could improve the standard approach by applying some lessons learned from the application of

the SRET strategy. So far, the actual use of the SRET approach has been carrying out the following benefits:
• a better understanding of the function/feature in the early phase of the development process;

• a structured approach to identify the test cases (we have used a behavioural tree), that made the
identification of test cases easier. We also identified some new test cases that would not have been considered
following the conventional approach. By executing them, two new faults were discovered in the released
product;

• a prioritisation of functions and test cases to shorten the lead time in date-driven projects. In fact, the exit
criterion of the standard Function Test process requires that the whole set of test cases has to be executed
successfully. This criterion involves an execution time related to the number of test cases. The introduction of a
priority criterion and a classification of incident severity levels allows a tester to identify exit criteria to shorten
the lead time in date-driven projects. This priority criterion may be identified by using the operational profile,
i.e.: the most critical set of test cases as experienced by the customers has to be executed and passed without any
failures of major incident severity levels;

• an improved work organisation between developers and testers, both involved in the derivation of the
operational profile. The close collaboration between testers, system engineers and product users has produced
valuable side benefits, such as a deeper understanding of user needs, less ambiguity in the specification of
system requirements, and the possibility for testers to contribute to system reviews;

• expertise has been gained during this case study both with respect to the construction of an operational
model, and with the use and tuning of reliability models, thus enhancing TEI's staff awareness of reliability
issues, and allowing a reuse of those competencies in future projects. Should the new techniques prove
successful, applying the new test technique will allow TEI to control the reliability of its software products and
the associated test cost.

These first remarks are so far only qualitative. We look forward to collecting quantitative results from the
prosecution of the experiment, so that we can confirm or reject our conjectures on more concrete grounds.

We also intend to augment the reliability measurement activity with the analysis of more data, and to
understand why the showed increase of reliability appears so slow.

6. References
[1] Abdel-Ghaly, A. A., Chan, P. Y., and Littlewood, B., "Evaluation of Competing Software

Reliability Predictions", IEEE Trans. Soft. Engineering, Vol. SE-12, No. 9, Sept. 1986.
[2] Brocklehurst S. and Littlewood B., "New Ways to Get Accurate Reliability Measures", IEEE

Software, Vol. 9, n. 4, pp. 34-42, July 1992.
[3] Kanoun, K., Kaaniche, M., and Laprie, J. P., "Qualitative and Quantitative Reliability

Assessment", IEEE Software, Vo. 14, No. 2, March 1997.
[4] Lyu, M. R. (Ed.), Handbook of Software Reliability Engineering, McGraw-Hill, 1996.
[5] Lyu, M. R., Nikora, A. P., and Farr, W. H., "A Systematic and Comprehensive Tool for Software

Reliability Modeling and Measurement", Proc. of the 23rd Int. Symp. on Fault-Tolerant
Computing (FTCS 23), Toulouse, France, June 1993, pp. 648-653.

[6] Musa, J. D., "Operational Profiles in Software-Reliability Engineering", IEEE Software, March
1993, pp.14-32.

[7] Musa, J. D., "Software-Reliability Engineered Testing", Proc. of the 9th Int. Software Quality
Week, S. Francisco, USA, May 21-24, 1996, paper 2Q2.

[8] Paulk, M. C., Curtis, B., Chrissis, M. B. and Weber, C. V., "Capability Maturity Model for
Software, Version 1.1", SEI CMU Int. Rep. CMU/SEI-93-TR-24, February 1993.

Acknowledgements
Paolo Di Benedetto heavily contributed to this work with the development of the STUT tool, and helped in

the phase of definition of the operational profile.

